
The Linux-PAM Module Writers' GuideAndrew G. Morgan, morgan�kernel.org DRAFT v0.76 2002/05/09This manual do
uments what a programmer needs to know in order to write a module that
onforms to theLinux-PAM standard. It also dis
usses some se
urity issues from the point of view of the module programmer.Contents1 Introdu
tion 21.1 Synopsis . 21.2 Des
ription . 22 What
an be expe
ted by the module 32.1 Getting and setting PAM_ITEMs and data . 32.1.1 Setting data . 32.1.2 Getting data . 42.1.3 Setting items . 42.1.4 Getting items . 42.1.5 The
onversation me
hanism . 52.1.6 Getting the name of a user . 52.1.7 Setting a Linux-PAM environment variable . 62.1.8 Getting a Linux-PAM environment variable . 72.1.9 Listing the Linux-PAM environment . 72.2 Other fun
tions provided by libpam . 72.2.1 Understanding errors . 72.2.2 Planning for delays . 73 What is expe
ted of a module 83.1 Overview . 83.1.1 Fun
tional independen
e . 83.1.2 Minimizing administration problems . 83.1.3 Arguments supplied to the module . 93.2 Authenti
ation management . 93.3 A

ount management . 103.4 Session management . 113.5 Password management . 114 Generi
 optional arguments 12

1. Introdu
tion 25 Programming notes 135.1 Se
urity issues for module
reation . 135.1.1 Su�
ient resour
es . 135.1.2 Who's who? . 145.1.3 Using the
onversation fun
tion . 145.1.4 Authenti
ation tokens . 145.2 Use of syslog(3) . 155.3 Modules that require system libraries . 155.4 Added requirements for stati
ally loaded modules. 166 An example module �le 177 Files 178 See also 179 Notes 1710 Author/a
knowledgments 1811 Bugs/omissions 1812 Copyright information for this do
ument 181 Introdu
tion1.1 Synopsis#in
lude <se
urity/pam_modules.h>g

 -fPIC -
 pam_module-name.
ld -x --shared -o pam_module-name.so pam_module-name.o1.2 Des
riptionLinux-PAM (Pluggable Authenti
ation Modules for Linux) is a library that enables the lo
al system ad-ministrator to
hoose how individual appli
ations authenti
ate users. For an overview of the Linux-PAMlibrary see the Linux-PAM System Administrators' Guide.A Linux-PAM module is a single exe
utable binary �le that
an be loaded by the Linux-PAM interfa
elibrary. This PAM library is
on�gured lo
ally with a system �le, /et
/pam.
onf, to authenti
ate a userrequest via the lo
ally available authenti
ation modules. The modules themselves will usually be lo
ated inthe dire
tory /usr/lib/se
urity and take the form of dynami
ally loadable obje
t �les (see dlopen(3)).Alternatively, the modules
an be stati
ally linked into the Linux-PAM library; this is mostly to allowLinux-PAM to be used on platforms without dynami
 linking available, but the two forms
an be used

2. What
an be expe
ted by the module 3together. It is the Linux-PAM interfa
e that is
alled by an appli
ation and it is the responsibility of thelibrary to lo
ate, load and
all the appropriate fun
tions in a Linux-PAM-module.Ex
ept for the immediate purpose of intera
ting with the user (entering a password et
..) the module shouldnever
all the appli
ation dire
tly. This ex
eption requires a "
onversation me
hanism" whi
h is do
umentedbelow.2 What
an be expe
ted by the moduleHere we list the interfa
e that the
onventions that all Linux-PAM modules must adhere to.2.1 Getting and setting PAM_ITEMs and dataFirst, we
over what the module should expe
t from the Linux-PAM library and a Linux-PAM awareappli
ation. Essesntially this is the libpam.* library.2.1.1 Setting dataSynopsis:extern int pam_set_data(pam_handle_t *pamh,
onst
har *module_data_name,void *data,void (*
leanup)(pam_handle_t *pamh,void *data, int error_status));The modules may be dynami
ally loadable obje
ts. In general su
h �les should not
ontain stati
 variables.This and the subsequent fun
tion provide a me
hanism for a module to asso
iate some data with the handlepamh. Typi
ally a module will
all the pam_set_data() fun
tion to register some data under a (hopefully)unique module_data_name. The data is available for use by other modules too but not by an appli
ation.The fun
tion
leanup() is asso
iated with the data and, if non-NULL, it is
alled when this data is over-written or following a
all to pam_end() (see the Linux-PAM Appli
ation Developers' Guide).The error_status argument is used to indi
ate to the module the sort of a
tion it is to take in
leaningthis data item. As an example, Kerberos
reates a ti
ket �le during the authenti
ation phase, this �le mightbe asso
iated with a data item. When pam_end() is
alled by the module, the error_status
arries thereturn value of the pam_authenti
ate() or other libpam fun
tion as appropriate. Based on this value theKerberos module may
hoose to delete the ti
ket �le (authenti
ation failure) or leave it in pla
e.The error_status may have been logi
ally OR'd with either of the following two values:PAM_DATA_REPLACEWhen a data item is being repla
ed (through a se
ond
all to pam_set_data()) this mask is used.Otherwise, the
all is assumed to be from pam_end().PAM_DATA_SILENTWhi
h indi
ates that the pro
ess would prefer to perform the
leanup() quietly. That is, dis
ourageslogging/messages to the user.

2. What
an be expe
ted by the module 42.1.2 Getting dataSynopsis:extern int pam_get_data(
onst pam_handle_t *pamh,
onst
har *module_data_name,
onst void **data);This fun
tion together with the previous one provides a method of asso
iating module-spe
i�
 data with thehandle pamh. A su

essful
all to pam_get_data will result in *data pointing to the data asso
iated withthe module_data_name. Note, this data is not a
opy and should be treated as
onstant by the module.Note, if there is an entry but it has the value NULL, then this
all returns PAM_NO_MODULE_DATA.2.1.3 Setting itemsSynopsis:extern int pam_set_item(pam_handle_t *pamh,int item_type,
onst void *item);This fun
tion is used to (re)set the value of one of the item_types. The reader is urged to read the entryfor this fun
tion in the Linux-PAM appli
ation developers' manual.In addition to the items listed there, the module
an set the following two item_types:PAM_AUTHTOKThe authenti
ation token (often a password). This token should be ignored by all module fun
tionsbesides pam_sm_authenti
ate() and pam_sm_
hauthtok(). In the former fun
tion it is used to passthe most re
ent authenti
ation token from one sta
ked module to another. In the latter fun
tion thetoken is used for another purpose. It
ontains the
urrently a
tive authenti
ation token.PAM_OLDAUTHTOKThe old authenti
ation token. This token should be ignored by all module fun
tions ex
eptpam_sm_
hauthtok().Both of these items are reset before returning to the appli
ation. When resetting these items, the Linux-PAM library �rst writes 0's to the
urrent tokens and then free()'s the asso
iated memory.The return values for this fun
tion are listed in the Linux-PAM Appli
ation Developers' Guide.2.1.4 Getting itemsSynopsis:extern int pam_get_item(
onst pam_handle_t *pamh,int item_type,
onst void **item);This fun
tion is used to obtain the value of the spe
i�ed item_type. It is better do
umented in the Linux-PAM Appli
ation Developers' Guide. However, there are three things worth stressing here:

2. What
an be expe
ted by the module 5
• Generally, if the module wishes to obtain the name of the user, it should not use this fun
tion, butinstead perform a
all to pam_get_user() (see se
tion 2.1.6 (below)).
• The module is additionally privileged to read the authenti
ation tokens, PAM_AUTHTOK andPAM_OLDAUTHTOK (see the se
tion above on pam_set_data()).
• The module should not free() or alter the data pointed to by *item after a su

essful return frompam_get_item(). This pointer points dire
tly at the data
ontained within the *pamh stru
ture.Should a module require that a
hange is made to the this ITEM it should make the appropriate
all topam_set_item().2.1.5 The
onversation me
hanismFollowing the
all pam_get_item(pamh,PAM_CONV,&item), the pointer item points to a stru
ture
ontainingan a pointer to a
onversation-fun
tion that provides limited but dire
t a

ess to the appli
ation. The purposeof this fun
tion is to allow the module to prompt the user for their password and pass other informationin a manner
onsistent with the appli
ation. For example, an X-windows based program might pop upa dialog box to report a login failure. Just as the appli
ation should not be
on
erned with the methodof authenti
ation, so the module should not di
tate the manner in whi
h input (output) is obtained from(presented to) to the user.The reader is strongly urged to read the more
omplete des
ription of the pam_
onv stru
ture,written from the perspe
tive of the appli
ation developer, in the Linux-PAM Appli
ationDevelopers' Guide.The return values for this fun
tion are listed in the Linux-PAM Appli
ation Developers' Guide.The pam_response stru
ture returned after a
all to the pam_
onv fun
tion must be free()'d by the module.Sin
e the
all to the
onversation fun
tion originates from the module, it is
lear that this pam_responsestru
ture
ould be either stati
ally or dynami
ally (using mallo
() et
.) allo
ated within the appli
ation.Repeated
alls to the
onversation fun
tion would likely overwrite stati
 memory, so it is required that fora su

essful return from the
onversation fun
tion the memory for the response stru
ture is dynami
allyallo
ated by the appli
ation with one of the mallo
() family of
ommands and must be free()'d by themodule.If the pam_
onv me
hanism is used to enter authenti
ation tokens, the module should either pass the resultto the pam_set_item() library fun
tion, or
opy it itself. In su
h a
ase, on
e the token has been stored (byone of these methods or another one), the memory returned by the appli
ation should be overwritten with0's, and then free()'d.There is a handy ma
ro _pam_drop_reply() to be found in <se
urity/_pam_ma
ros.h> that
an be usedto
onveniently
leanup a pam_response stru
ture. (Note, this in
lude �le is spe
i�
 to the Linux-PAMsour
es, and whilst it will work with Sun derived PAM implementations, it is not generally distributed bySun.)2.1.6 Getting the name of a userSynopsis:extern int pam_get_user(pam_handle_t *pamh,
onst
har **user,
onst
har *prompt);This is a Linux-PAM library fun
tion that returns the (prospe
tive) name of the user. To determine theusername it does the following things, in this order:

2. What
an be expe
ted by the module 6
•
he
ks what pam_get_item(pamh, PAM_USER, ...); would have returned. If this is not NULL thisis what it returns. Otherwise,
• obtains a username from the appli
ation via the pam_
onv me
hanism, it prompts the user with the�rst non-NULL string in the following list:� The prompt argument passed to the fun
tion� What is returned by pam_get_item(pamh,PAM_USER_PROMPT, ...);� The default prompt: �Please enter username: �By whatever means the username is obtained, a pointer to it is returned as the
ontents of *user. Note,this memory should not be free()'d by the module. Instead, it will be liberated on the next
all topam_get_user(), or by pam_end() when the appli
ation ends its intera
tion with Linux-PAM.Also, in addition, it should be noted that this fun
tion sets the PAM_USER item that is asso
iated with thepam_[gs℄et_item() fun
tion.The return value of this fun
tion is one of the following:
• PAM_SUCCESS - username obtained.
• PAM_CONV_AGAIN -
onverstation did not
omplete and the
aller is required to return
ontrol to theappli
ation, until su
h time as the appli
ation has
ompleted the
onversation pro
ess. A module
allingpam_get_user() that obtains this return
ode, should return PAM_INCOMPLETE and be prepared (wheninvoked the next time) to re
all pam_get_user() to �ll in the user's name, and then pi
k up where itleft o� as if nothing had happened. This pro
edure is needed to support an event-driven appli
ationprogramming model.
• PAM_CONV_ERR - the
onversation method supplied by the appli
ation failed to obtain the username.2.1.7 Setting a Linux-PAM environment variableSynopsis:extern int pam_putenv(pam_handle_t *pamh,
onst
har *name_value);Linux-PAM
omes equipped with a series of fun
tions for maintaining a set of environment variables.The environment is initialized by the
all to pam_start() and is erased with a
all to pam_end(). Thisenvironment is asso
iated with the pam_handle_t pointer returned by the former
all.The default environment is all but empty. It
ontains a single NULL pointer, whi
h is always required toterminate the variable-list. The pam_putenv() fun
tion
an be used to add a new environment variable,repla
e an existing one, or delete an old one.
• Adding/repla
ing a variableTo add or overwrite a Linux-PAM environment variable the value of the argument name_value,should be of the following form:name_value="VARIABLE=VALUE OF VARIABLE"Here, VARIABLE is the environment variable's name and what follows the `=' is its (new) value. (Note,that "VARIABLE=" is a valid value for name_value, indi
ating that the variable is set to "".)

2. What
an be expe
ted by the module 7
• Deleting a variableTo delete a Linux-PAM environment variable the value of the argument name_value, should be ofthe following form:name_value="VARIABLE"Here, VARIABLE is the environment variable's name and the absen
e of an `=' indi
ates that the variableshould be removed.In all
ases PAM_SUCCESS indi
ates su

ess.2.1.8 Getting a Linux-PAM environment variableSynopsis:extern
onst
har *pam_getenv(pam_handle_t *pamh,
onst
har *name);This fun
tion
an be used to return the value of the given variable. If the returned value is NULL, the variableis not known.2.1.9 Listing the Linux-PAM environmentSynopsis:extern
har *
onst *pam_getenvlist(pam_handle_t *pamh);This fun
tion returns a pointer to the entire Linux-PAM environment array. At �rst sight the type of thereturned data may appear a little
onfusing. It is basi
ally a read-only array of
hara
ter pointers, that liststhe NULL terminated list of environment variables set so far.Although, this is not a
on
ern for the module programmer, we mention here that an appli
ation should be
areful to
opy this entire array before exe
uting pam_end() otherwise all the variable information will be lost.(There are fun
tions in libpam_mis
 for this purpose: pam_mis
_
opy_env() and pam_mis
_drop_env().)2.2 Other fun
tions provided by libpam2.2.1 Understanding errors
• extern
onst
har *pam_strerror(pam_handle_t *pamh, int errnum);This fun
tion returns some text des
ribing the Linux-PAM error asso
iated with the argumenterrnum. If the error is not re
ognized �Unknown Linux-PAM error� is returned.2.2.2 Planning for delays
• extern int pam_fail_delay(pam_handle_t *pamh, unsigned int mi
ro_se
)This fun
tion is o�ered by Linux-PAM to fa
ilitate time delays following a failed
all topam_authenti
ate() and before
ontrol is returned to the appli
ation. When using this fun
tionthe module programmer should
he
k if it is available with,

3. What is expe
ted of a module 8#ifdef PAM_FAIL_DELAY....#endif /* PAM_FAIL_DELAY */Generally, an appli
ation requests that a user is authenti
ated by Linux-PAM through a
all topam_authenti
ate() or pam_
hauthtok(). These fun
tions
all ea
h of the sta
ked authenti
ationmodules listed in the Linux-PAM
on�guration �le. As dire
ted by this �le, one of more of themodules may fail
ausing the pam_...()
all to return an error. It is desirable for there to also be apause before the appli
ation
ontinues. The prin
ipal reason for su
h a delay is se
urity: a delay a
tsto dis
ourage brute for
e di
tionary atta
ks primarily, but also helps hinder timed (
f.
overt
hannel)atta
ks.The pam_fail_delay() fun
tion provides the me
hanism by whi
h an appli
ation or module
an sug-gest a minimum delay (of mi
ro_se
 mi
ro-se
onds). Linux-PAM keeps a re
ord of the longest timerequested with this fun
tion. Should pam_authenti
ate() fail, the failing return to the appli
ation isdelayed by an amount of time randomly distributed (by up to 25%) about this longest value.Independent of su

ess, the delay time is reset to its zero default value when Linux-PAM returns
ontrol to the appli
ation.3 What is expe
ted of a moduleThe module must supply a sub-set of the six fun
tions listed below. Together they de�ne the fun
tion of aLinux-PAM module. Module developers are strongly urged to read the
omments on se
urity that followthis list.3.1 OverviewThe six module fun
tions are grouped into four independent management groups. These groups are asfollows: authenti
ation, a

ount , session and password . To be properly de�ned, a module must de�ne allfun
tions within at least one of these groups. A single module may
ontain the ne
essary fun
tions for allfour groups.3.1.1 Fun
tional independen
eThe independen
e of the four groups of servi
e a module
an o�er means that the module should allow forthe possibility that any one of these four servi
es may legitimately be
alled in any order. Thus, the modulewriter should
onsider the appropriateness of performing a servi
e without the prior su

ess of some otherpart of the module.As an informative example,
onsider the possibility that an appli
ation applies to
hange a user's authen-ti
ation token, without having �rst requested that Linux-PAM authenti
ate the user. In some
ases thismay be deemed appropriate: when root wants to
hange the authenti
ation token of some lesser user. Inother
ases it may not be appropriate: when joe mali
iously wants to reset ali
e's password; or whenanyone other than the user themself wishes to reset their KERBEROS authenti
ation token. A poli
y forthis a
tion should be de�ned by any reasonable authenti
ation s
heme, the module writer should
onsiderthis when implementing a given module.3.1.2 Minimizing administration problemsTo avoid system administration problems and the poor
onstru
tion of a /et
/pam.
onf �le, the moduledeveloper may de�ne all six of the following fun
tions. For those fun
tions that would not be
alled, the

3. What is expe
ted of a module 9module should return PAM_SERVICE_ERR and write an appropriate message to the system log. When thisa
tion is deemed inappropriate, the fun
tion would simply return PAM_IGNORE.3.1.3 Arguments supplied to the moduleThe flags argument of ea
h of the following fun
tions
an be logi
ally OR'd with PAM_SILENT, whi
h isused to inform the module to not pass any text (errors or warnings) to the appli
ation.The arg
 and argv arguments are taken from the line appropriate to this module�that is, with the ser-vi
e_name mat
hing that of the appli
ation�in the
on�guration �le (see the Linux-PAM System Admin-istrators' Guide). Together these two parameters provide the number of arguments and an array of pointersto the individual argument tokens. This will be familiar to C programmers as the ubiquitous method ofpassing
ommand arguments to the fun
tion main(). Note, however, that the �rst argument (argv[0℄) is atrue argument and not the name of the module.3.2 Authenti
ation managementTo be
orre
tly initialized, PAM_SM_AUTHmust be #define'd prior to in
luding <se
urity/pam_modules.h>.This will ensure that the prototypes for stati
 modules are properly de
lared.
• PAM_EXTERN int pam_sm_authenti
ate(pam_handle_t *pamh, int flags, int arg
,
onst
har **argv);This fun
tion performs the task of authenti
ating the user.The flags argument
an be a logi
ally OR'd with PAM_SILENT and optionally take the following value:PAM_DISALLOW_NULL_AUTHTOKreturn PAM_AUTH_ERR if the database of authenti
ation tokens for this authenti
ation me
hanismhas a NULL entry for the user. Without this �ag, su
h a NULL token will lead to a su

ess withoutthe user being prompted.Besides PAM_SUCCESS return values that
an be sent by this fun
tion are one of the following:PAM_AUTH_ERRThe user was not authenti
atedPAM_CRED_INSUFFICIENTFor some reason the appli
ation does not have su�
ient
redentials to authenti
ate the user.PAM_AUTHINFO_UNAVAILThe modules were not able to a

ess the authenti
ation information. This might be due to anetwork or hardware failure et
.PAM_USER_UNKNOWNThe supplied username is not known to the authenti
ation servi
ePAM_MAXTRIESOne or more of the authenti
ation modules has rea
hed its limit of tries authenti
ating the user.Do not try again.
• PAM_EXTERN int pam_sm_set
red(pam_handle_t *pamh, int flags, int arg
,
onst
har**argv);This fun
tion performs the task of altering the
redentials of the user with respe
t to the
orrespondingauthorization s
heme. Generally, an authenti
ation module may have a

ess to more information about

3. What is expe
ted of a module 10a user than their authenti
ation token. This fun
tion is used to make su
h information available tothe appli
ation. It should only be
alled after the user has been authenti
ated but before a session hasbeen established.Permitted �ags, one of whi
h, may be logi
ally OR'd with PAM_SILENT are,PAM_ESTABLISH_CREDSet the
redentials for the authenti
ation servi
e,PAM_DELETE_CREDDelete the
redentials asso
iated with the authenti
ation servi
e,PAM_REINITIALIZE_CREDReinitialize the user
redentials, andPAM_REFRESH_CREDExtend the lifetime of the user
redentials.Prior to Linux-PAM-0.75, and due to a de�
ien
y with the way the auth sta
k was handled in the
ase of the set
red sta
k being pro
essed, the module was required to attempt to return the same error
ode as pam_sm_authenti
ate did. This was ne
essary to preserve the logi
 followed by libpam as itexe
utes the sta
k of authenti
ation modules, when the appli
ation
alled either pam_authenti
ate()or pam_set
red(). Failing to do this, led to
onfusion on the part of the System Administrator.For Linux-PAM-0.75 and later, libpam handles the
redential sta
k mu
h more sanely. The waythe auth sta
k is navigated in order to evaluate the pam_set
red() fun
tion
all, independent ofthe pam_sm_set
red() return
odes, is exa
tly the same way that it was navigated when evalu-ating the pam_authenti
ate() library
all. Typi
ally, if a sta
k entry was ignored in evaluatingpam_authenti
ate(), it will be ignored when libpam evaluates the pam_set
red() fun
tion
all. Oth-erwise, the return
odes from ea
h module spe
i�
 pam_sm_set
red()
all are treated as required.Besides PAM_SUCCESS, the module may return one of the following errors:PAM_CRED_UNAVAILThis module
annot retrieve the user's
redentials.PAM_CRED_EXPIREDThe user's
redentials have expired.PAM_USER_UNKNOWNThe user is not known to this authenti
ation module.PAM_CRED_ERRThis module was unable to set the
redentials of the user.these, non-PAM_SUCCESS, return values will typi
ally lead to the
redential sta
k failing . The �rst su
herror will dominate in the return value of pam_set
red().3.3 A

ount managementTo be
orre
tly initialized, PAM_SM_ACCOUNT must be #define'd prior to in
luding
<se
urity/pam_modules.h>. This will ensure that the prototype for a stati
 module is properlyde
lared.

• PAM_EXTERN int pam_sm_a

t_mgmt(pam_handle_t *pamh, int flags, int arg
,
onst
har**argv);

3. What is expe
ted of a module 11This fun
tion performs the task of establishing whether the user is permitted to gain a

ess at thistime. It should be understood that the user has previously been validated by an authenti
ation module.This fun
tion
he
ks for other things. Su
h things might be: the time of day or the date, the terminalline, remote hostname, et
. .This fun
tion may also determine things like the expiration on passwords, and respond that the user
hange it before
ontinuing.Valid �ags, whi
h may be logi
ally OR'd with PAM_SILENT, are the same as those appli
able to theflags argument of pam_sm_authenti
ate.This fun
tion may return one of the following errors,PAM_ACCT_EXPIREDThe user is no longer permitted a

ess to the system.PAM_AUTH_ERRThere was an authenti
ation error.PAM_AUTHTOKEN_REQDThe user's authenti
ation token has expired. Before
alling this fun
tion again the appli
ationwill arrange for a new one to be given. This will likely result in a
all to pam_sm_
hauthtok().PAM_USER_UNKNOWNThe user is not known to the module's a

ount management
omponent.3.4 Session managementTo be
orre
tly initialized, PAM_SM_SESSION must be #define'd prior to in
luding
<se
urity/pam_modules.h>. This will ensure that the prototypes for stati
 modules are properlyde
lared.The following two fun
tions are de�ned to handle the initialization/termination of a session. For example,at the beginning of a session the module may wish to log a message with the system regarding the user.Similarly, at the end of the session the module would inform the system that the user's session has ended.It should be possible for sessions to be opened by one appli
ation and
losed by another. This either requiresthat the module uses only information obtained from pam_get_item(), or that information regarding thesession is stored in some way by the operating system (in a �le for example).

• PAM_EXTERN int pam_sm_open_session(pam_handle_t *pamh, int flags, int arg
,
onst
har **argv);This fun
tion is
alled to
ommen
e a session. The only valid, but optional, �ag is PAM_SILENT.As a return value, PAM_SUCCESS signals su

ess and PAM_SESSION_ERR failure.
• PAM_EXTERN int pam_sm_
lose_session(pam_handle_t *pamh, int flags, int arg
,
onst
har **argv);This fun
tion is
alled to terminate a session. The only valid, but optional, �ag is PAM_SILENT.As a return value, PAM_SUCCESS signals su

ess and PAM_SESSION_ERR failure.3.5 Password managementTo be
orre
tly initialized, PAM_SM_PASSWORD must be #define'd prior to in
luding

<se
urity/pam_modules.h>. This will ensure that the prototype for a stati
 module is properlyde
lared.

4. Generi
 optional arguments 12
• PAM_EXTERN int pam_sm_
hauthtok(pam_handle_t *pamh, int flags, int arg
,
onst
har**argv);This fun
tion is used to (re-)set the authenti
ation token of the user. A valid �ag, whi
h may belogi
ally OR'd with PAM_SILENT,
an be built from the following list,PAM_CHANGE_EXPIRED_AUTHTOKThis argument indi
ates to the module that the users authenti
ation token (password) shouldonly be
hanged if it has expired. This �ag is optional and must be
ombined with one of thefollowing two �ags. Note, however, the following two options are mutually ex
lusive.PAM_PRELIM_CHECKThis indi
ates that the modules are being probed as to their ready status for altering the user'sauthenti
ation token. If the module requires a

ess to another system over some network itshould attempt to verify it
an
onne
t to this system on re
eiving this �ag. If a module
annotestablish it is ready to update the user's authenti
ation token it should return PAM_TRY_AGAIN,this information will be passed ba
k to the appli
ation.PAM_UPDATE_AUTHTOKThis informs the module that this is the
all it should
hange the authorization tokens. If the �agis logi
ally OR'd with PAM_CHANGE_EXPIRED_AUTHTOK, the token is only
hanged if it has a
tuallyexpired.Note, the Linux-PAM library
alls this fun
tion twi
e in su

ession. The �rst time withPAM_PRELIM_CHECK and then, if the module does not return PAM_TRY_AGAIN, subsequently withPAM_UPDATE_AUTHTOK. It is only on the se
ond
all that the authorization token is (possibly)
hanged.PAM_SUCCESS is the only su

essful return value, valid error-returns are:PAM_AUTHTOK_ERRThe module was unable to obtain the new authenti
ation token.PAM_AUTHTOK_RECOVERY_ERRThe module was unable to obtain the old authenti
ation token.PAM_AUTHTOK_LOCK_BUSYCannot
hange the authenti
ation token sin
e it is
urrently lo
ked.PAM_AUTHTOK_DISABLE_AGINGAuthenti
ation token aging has been disabled.PAM_PERM_DENIEDPermission denied.PAM_TRY_AGAINPreliminary
he
k was unsu

essful. Signals an immediate return to the appli
ation is desired.PAM_USER_UNKNOWNThe user is not known to the authenti
ation token
hanging servi
e.4 Generi
 optional argumentsHere we list the generi
 arguments that all modules
an expe
t to be passed. They are not mandatory, andtheir absen
e should be a

epted without
omment by the module.debugUse the syslog(3)
all to log debugging information to the system log �les.

5. Programming notes 13no_warnInstru
t module to not give warning messages to the appli
ation.use_first_passThe module should not prompt the user for a password. Instead, it should obtain the previously typedpassword (by a
all to pam_get_item() for the PAM_AUTHTOK item), and use that. If that doesn't work,then the user will not be authenti
ated. (This option is intended for auth and passwd modules only).try_first_passThe module should attempt authenti
ation with the previously typed password (by a
all topam_get_item() for the PAM_AUTHTOK item). If that doesn't work, then the user is prompted fora password. (This option is intended for auth modules only).use_mapped_passWARNING:
oding this fun
tionality may
ause the module writer to break lo
al en
ryption laws.For example, in the U.S. there are restri
tions on the export
omputer
ode that is
apable of strongen
ryption. It has not been established whether this option is a�e
ted by this law, but one mightreasonably assume that it does until told otherwise. For this reason, this option is not supported byany of the modules distributed with Linux-PAM.The intended fun
tion of this argument, however, is that the module should take the existing authen-ti
ation token from a previously invoked module and use it as a key to retrieve the authenti
ationtoken for this module. For example, the module might
reate a strong hash of the PAM_AUTHTOK item(established by a previously exe
uted module). Then, with logi
al-ex
lusive-or, use the result as a keyto safely store/retrieve the authenti
ation token for this module in/from a lo
al �le et
. .expose_a

ountIn general the leakage of some information about user a

ounts is not a se
ure poli
y for modules toadopt. Sometimes information su
h as users names or home dire
tories, or preferred shell,
an be usedto atta
k a user's a

ount. In some
ir
umstan
es, however, this sort of information is not deemeda threat: displaying a user's full name when asking them for a password in a se
ured environment
ould also be
alled being 'friendly'. The expose_a

ount argument is a standard module argumentto en
ourage a module to be less dis
rete about a

ount information as it is deemed appropriate bythe lo
al administrator.5 Programming notesHere we
olle
t some pointers for the module writer to bear in mind when writing/developing a Linux-PAM
ompatible module.5.1 Se
urity issues for module
reation5.1.1 Su�
ient resour
esCare should be taken to ensure that the proper exe
ution of a module is not
ompromised by a la
k of systemresour
es. If a module is unable to open su�
ient �les to perform its task, it should fail gra
efully, or requestadditional resour
es. Spe
i�
ally, the quantities manipulated by the setrlimit(2) family of
ommandsshould be taken into
onsideration.

5. Programming notes 145.1.2 Who's who?Generally, the module may wish to establish the identity of the user requesting a servi
e. This may not bethe same as the username returned by pam_get_user(). Indeed, that is only going to be the name of theuser under whose identity the servi
e will be given. This is not ne
essarily the user that requests the servi
e.In other words, user X runs a program that is setuid-Y, it grants the user to have the permissions of Z. Aspe
i�
 example of this sort of servi
e request is the su program: user joe exe
utes su to be
ome the userjane. In this situation X=joe, Y=root and Z=jane. Clearly, it is important that the module does not
onfuse these di�erent users and grant an inappropriate level of privilege.The following is the
onvention to be adhered to when juggling user-identities.
• X, the identity of the user invoking the servi
e request. This is the user identi�er; returned by thefun
tion getuid(2).
• Y, the privileged identity of the appli
ation used to grant the requested servi
e. This is the e�e
tiveuser identi�er; returned by the fun
tion geteuid(2).
• Z, the user under whose identity the servi
e will be granted. This is the username returned bypam_get_user(2) and also stored in the Linux-PAM item, PAM_USER.
• Linux-PAM has a pla
e for an additional user identity that a module may
are to make use of. Thisis the PAM_RUSER item. Generally, network sensitive modules/appli
ations may wish to set/read thisitem to establish the identity of the user requesting a servi
e from a remote lo
ation.Note, if a module wishes to modify the identity of either the uid or euid of the running pro
ess, it shouldtake
are to restore the original values prior to returning
ontrol to the Linux-PAM library.5.1.3 Using the
onversation fun
tionPrior to
alling the
onversation fun
tion, the module should reset the
ontents of the pointer that willreturn the appli
ations response. This is a good idea sin
e the appli
ation may fail to �ll the pointer andthe module should be in a position to noti
e!The module should be prepared for a failure from the
onversation. The generi
 error would bePAM_CONV_ERR, but anything other than PAM_SUCCESS should be treated as indi
ating failure.5.1.4 Authenti
ation tokensTo ensure that the authenti
ation tokens are not left lying around the items, PAM_AUTHTOK andPAM_OLDAUTHTOK, are not available to the appli
ation: they are de�ned in <se
urity/pam_modules.h>.This is ostensibly for se
urity reasons, but a mali
iously programmed appli
ation will always have a

ess toall memory of the pro
ess, so it is only super�
ially enfor
ed. As a general rule the module should over-write authenti
ation tokens as soon as they are no longer needed. Espe
ially before free()'ing them. TheLinux-PAM library is required to do this when either of these authenti
ation token items are (re)set.Not to dwell too little on this
on
ern; should the module store the authenti
ation tokens either as (automati
)fun
tion variables or using pam_[gs℄et_data() the asso
iated memory should be over-written expli
itlybefore it is released. In the
ase of the latter storage me
hanism, the asso
iated
leanup() fun
tion shouldexpli
itly overwrite the *data before free()'ing it: for example,/** An example
leanup() fun
tion for releasing memory that was used to

5. Programming notes 15* store a password.*/int
leanup(pam_handle_t *pamh, void *data, int error_status){
har *xx;if ((xx = data)) {while (*xx)*xx++ = '\0';free(data);}return PAM_SUCCESS;}5.2 Use of syslog(3)Only rarely should error information be dire
ted to the user. Usually, this is to be limited to �sorry you
annot login now � type messages. Information
on
erning errors in the
on�guration �le, /et
/pam.
onf,or due to some system failure en
ountered by the module, should be written to syslog(3) with fa
ility-typeLOG_AUTHPRIV.With a few ex
eptions, the level of logging is, at the dis
retion of the module developer. Here is there
ommended usage of di�erent logging levels:
• As a general rule, errors en
ountered by a module should be logged at the LOG_ERR level. However, infor-mation regarding an unre
ognized argument, passed to a module from an entry in the /et
/pam.
onf�le, is required to be logged at the LOG_ERR level.
• Debugging information, as a
tivated by the debug argument to the module in /et
/pam.
onf, shouldbe logged at the LOG_DEBUG level.
• If a module dis
overs that its personal
on�guration �le or some system �le it uses for information is
orrupted or somehow unusable, it should indi
ate this by logging messages at level, LOG_ALERT.
• Shortages of system resour
es, su
h as a failure to manipulate a �le or mallo
() failures should belogged at level LOG_CRIT.
• Authenti
ation failures, asso
iated with an in
orre
tly typed password should be logged at level,LOG_NOTICE.5.3 Modules that require system librariesWriting a module is mu
h like writing an appli
ation. You have to provide the "
onventional hooks" for itto work
orre
tly, like pam_sm_authenti
ate() et
., whi
h would
orrespond to the main() fun
tion in anormal fun
tion.Typi
ally, the author may want to link against some standard system libraries. As when one
ompiles anormal program, this
an be done for modules too: you simply append the -lXXX arguments for the desiredlibraries when you
reate the shared module obje
t. To make sure a module is linked to the libwhatever.solibrary when it is dlopen()ed, try:% g

 -shared -Xlinker -x -o pam_module.so pam_module.o -lwhatever

5. Programming notes 165.4 Added requirements for stati
ally loaded modules.Modules may be stati
ally linked into libpam. This should be true of all the modules distributed with thebasi
 Linux-PAM distribution. To be stati
ally linked, a module needs to export information about thefun
tions it
ontains in a manner that does not
lash with other modules.The extra
ode ne
essary to build a stati
 module should be delimited with #ifdef PAM_STATIC and #endif.The stati

ode should do the following:
• De�ne a single stru
ture, stru
t pam_module,
alled _pam_modname_modstru
t, where modname isthe name of the module as used in the �lesystem but without the leading dire
tory name (generally/usr/lib/se
urity/ or the su�x (generally .so).As a simple example,
onsider the following module
ode whi
h de�nes a module that
an be
ompiled tobe stati
 or dynami
:#in
lude <stdio.h> /* for NULL define */#define PAM_SM_PASSWORD /* the only pam_sm_... fun
tion de
lared */#in
lude <se
urity/pam_modules.h>PAM_EXTERN int pam_sm_
hauthtok(pam_handle_t *pamh, int flags,int arg
,
onst
har **argv){ return PAM_SUCCESS;}#ifdef PAM_STATIC /* for the
ase that this module is stati
 */stru
t pam_module _pam_modname_modstru
t = { /* stati
 module data */"pam_modname",NULL,NULL,NULL,NULL,NULL,pam_sm_
hauthtok,};#endif /* end PAM_STATIC */To be linked with libpam, stati
ly-linked modules must be built from within the Linux-PAM-X.YY/modules/subdire
tory of the Linux-PAM sour
e dire
tory as part of a normal build of the Linux-PAM system.The Make�le, for the module in question, must exe
ute the register_stati
 shell s
ript that is lo
ated inthe Linux-PAM-X.YY/modules/ subdire
tory. This is to ensure that the module is properly registered withlibpam.The two manditory arguments to register_stati
 are the title, and the pathname of the obje
t �le
ontaining the module's
ode. The pathname is spe
i�ed relative to the Linux-PAM-X.YY/modules dire
tory.The pathname may be an empty string�this is for the
ase that a single obje
t �le needs to register morethan one stru
t pam_module. In su
h a
ase, exa
tly one
all to register_stati
must indi
ate the obje
t�le.Here is an example; a line in the Make�le might look like this:

6. An example module �le 17register:ifdef STATIC(
d ..; ./register_stati
 pam_modname pam_modname/pam_modname.o)endifFor some further examples, see the modules subdire
tory of the
urrent Linux-PAM distribution.6 An example module �leAt some point, we may in
lude a fully
ommented example of a module in this do
ument. For now, we pointthe reader to these two lo
ations in the publi
 CVS repository:
• Amodule that always su

eeds: http://
vs.sour
eforge.net/
gi-bin/view
vs.
gi/pam/Linux-PAM/modules/pam_permit/
• Amodule that always fails: http://
vs.sour
eforge.net/
gi-bin/view
vs.
gi/pam/Linux-PAM/modules/pam_deny/7 Files/usr/lib/libpam.so.*the shared library providing appli
ations with a

ess to Linux-PAM./et
/pam.
onfthe Linux-PAM
on�guration �le./usr/lib/se
urity/pam_*.sothe primary lo
ation for Linux-PAM dynami
ally loadable obje
t �les; the modules.8 See also
• The Linux-PAM System Administrators' Guide.
• The Linux-PAM Appli
ation Writers' Guide.
• V. Samar and R. S
hemers (SunSoft), �UNIFIED LOGIN WITH PLUGGABLE AUTHENTICATIONMODULES�, Open Software Foundation Request For Comments 86.0, O
tober 1995.9 NotesI intend to put development
omments here... like �at the moment this isn't a
tually supported�. At releasetime what ever is in this se
tion will be pla
ed in the Bugs se
tion below! :)
• Perhaps we should keep a registry of data-names as used by pam_[gs℄et_data() so there are nounintentional problems due to
on�i
ts?
• pam_strerror() should be internationalized....
• There has been some debate about whether initgroups() should be in an appli
ation or in a module.It was settled by Sun who stated that initgroups is an a
tion of the appli
ation. The modules arepermitted to add additional groups, however.
• Re�nements/futher suggestions to syslog(3) usage by modules are needed.

10. Author/a
knowledgments 1810 Author/a
knowledgmentsThis do
ument was written by Andrew G. Morgan (morgan�kernel.org)with many
ontributions from ChrisAdams, Peter Allgeyer, Tim Baversto
k, Tim Berger, Craig S. Bell, Derri
k J. Brashear, Ben Buxton, SethChaiklin, Oliver Crow, Chris Dent, Mar
 Ewing, Cristian Gafton, Emmanuel Galanos, Brad M. Gar
ia, Eri
Hester, Roger Hu, Eri
 Ja
ks
h, Mi
hael K. Johnson, David Kin
hlea, Olaf Kir
h, Mar
in Korzonek, StephenLangasek, Ni
olai Langfeldt, Elliot Lee, Luke Kenneth Casson Leighton, Al Longyear, Ingo Luetkebohle,Marek Mi
halkiewi
z, Robert Milkowski, Aleph One, Martin Pool, Sean Reifs
hneider, Jan Rekorajski, ErikTroan, Theodore Ts'o, Je� Upho�, Myles Uyema, Savo
hkin Andrey Vladimirovi
h, Ronald Wahl, DavidWood, John Wilmes, Joseph S. D. Yao and Alex O. Yuriev.Thanks are also due to Sun Mi
rosystems, espe
ially to Vipin Samar and Charlie Lai for their advi
e.At an early stage in the development of Linux-PAM, Sun gra
iously made the do
umentation for theirimplementation of PAM available. This a
t greatly a

elerated the development of Linux-PAM.11 Bugs/omissionsFew PAM modules
urrently exist. Few PAM-aware appli
ations exist. This do
ument is hopelessly un�n-ished. Only a partial list of people is
redited for all the good work they have done.12 Copyright information for this do
umentCopyright (
) Andrew G. Morgan 1996-2002. All rights reserved.Email: <morgan�kernel.org>Redistribution and use in sour
e and binary forms, with or without modi�
ation, are permitted providedthat the following
onditions are met:
• 1. Redistributions of sour
e
ode must retain the above
opyright noti
e, and the entire permissionnoti
e in its entirety, in
luding the dis
laimer of warranties.
• 2. Redistributions in binary form must reprodu
e the above
opyright noti
e, this list of
onditions andthe following dis
laimer in the do
umentation and/or other materials provided with the distribution.
• 3. The name of the author may not be used to endorse or promote produ
ts derived from this softwarewithout spe
i�
 prior written permission.Alternatively, this produ
t may be distributed under the terms of the GNU General Publi
 Li
ense (GPL),in whi
h
ase the provisions of the GNU GPL are required instead of the above restri
tions. (This
lauseis ne
essary due to a potential bad intera
tion between the GNU GPL and the restri
tions
ontained in aBSD-style
opyright.)THIS SOFTWARE IS PROVIDED �AS IS� AND ANY EXPRESS OR IMPLIED WARRANTIES, IN-CLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY ANDFITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORBE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSE-QUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTEGOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOW-EVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIA-BILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OFTHE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

12. Copyright information for this do
ument 19$Id: pam_modules.sgml,v 1.9 2002/05/10 06:00:12 agmorgan Exp $

