
MySQL Reference Manual

MySQL Reference Manual

Table of Contents
Preface ...xx
1. General Information ... 1

1.1. About This Manual .. 1
1.1.1. Conventions Used in This Manual .. 2

1.2. Overview of the MySQL Database Management System 4
1.2.1. History of MySQL .. 5
1.2.2. The Main Features of MySQL ... 5
1.2.3. MySQL Stability .. 8
1.2.4. How Big MySQL Tables Can Be ... 8
1.2.5. Year 2000 Compliance ...10

1.3. MySQL Development Roadmap ..11
1.3.1. MySQL 4.0 in a Nutshell ...11
1.3.2. MySQL 4.1 in a Nutshell ...13
1.3.3. MySQL 5.0: The Next Development Release15

1.4. MySQL Information Sources ..15
1.4.1. MySQL Mailing Lists ...15
1.4.2. MySQL Community Support on IRC (Internet Relay Chat)21
1.4.3. MySQL Community Support at the MySQL Forums22

1.5. MySQL Standards Compliance ...22
1.5.1. What Standards MySQL Follows ..23
1.5.2. Selecting SQL Modes ...23
1.5.3. Running MySQL in ANSI Mode ..23
1.5.4. MySQL Extensions to Standard SQL ...24
1.5.5. MySQL Differences from Standard SQL ..27
1.5.6. How MySQL Deals with Constraints ...32
1.5.7. Known Errors and Design Deficiencies in MySQL35

2. Installing MySQL ...41
2.1. General Installation Issues ...41

2.1.1. Operating Systems Supported by MySQL ...41
2.1.2. Choosing Which MySQL Distribution to Install43
2.1.3. How to Get MySQL ...54
2.1.4. Verifying Package Integrity Using MD5 Checksums or GnuPG54
2.1.5. Installation Layouts ..57

2.2. Standard MySQL Installation Using a Binary Distribution58
2.3. Installing MySQL on Windows ...58

2.3.1. Windows System Requirements ..59
2.3.2. Choosing An Installation Package ...60
2.3.3. Installing MySQL with the Automated Installer60
2.3.4. Using the MySQL Installation Wizard ...60
2.3.5. Using the Configuration Wizard ...63
2.3.6. Installing MySQL from a noinstall Zip Archive68
2.3.7. Extracting the Install Archive ...68
2.3.8. Creating an Option File ...68
2.3.9. Selecting a MySQL Server type ..69
2.3.10. Starting the Server for the First Time ...71
2.3.11. Starting MySQL from the Windows Command Line72
2.3.12. Starting MySQL as a Windows Service ..73
2.3.13. Testing The MySQL Installation ...75
2.3.14. Troubleshooting a MySQL Installation Under Windows75
2.3.15. Upgrading MySQL on Windows ...76
2.3.16. MySQL on Windows Compared to MySQL on Unix77

2.4. Installing MySQL on Linux ..80
2.5. Installing MySQL on Mac OS X ...82
2.6. Installing MySQL on NetWare ...84
2.7. Installing MySQL on Other Unix-Like Systems ...86
2.8. MySQL Installation Using a Source Distribution ..89

2.8.1. Source Installation Overview ...90

iv

2.8.2. Typical configure Options ..93
2.8.3. Installing from the Development Source Tree95
2.8.4. Dealing with Problems Compiling MySQL98
2.8.5. MIT-pthreads Notes ... 101
2.8.6. Installing MySQL from Source on Windows 102
2.8.7. Compiling MySQL Clients on Windows .. 106

2.9. Post-Installation Setup and Testing .. 106
2.9.1. Windows Post-Installation Procedures ... 107
2.9.2. Unix Post-Installation Procedures ... 107
2.9.3. Securing the Initial MySQL Accounts .. 118

2.10. Upgrading MySQL ... 121
2.10.1. Upgrading from Version 4.1 to 5.0 .. 122
2.10.2. Upgrading from Version 4.0 to 4.1 .. 122
2.10.3. Upgrading from Version 3.23 to 4.0 ... 128
2.10.4. Upgrading from Version 3.22 to 3.23 ... 131
2.10.5. Upgrading from Version 3.21 to 3.22 ... 133
2.10.6. Upgrading from Version 3.20 to 3.21 ... 133
2.10.7. Upgrading the Grant Tables ... 134
2.10.8. Copying MySQL Databases to Another Machine 135

2.11. Downgrading MySQL ... 136
2.11.1. Downgrading to 4.0 .. 137

2.12. Operating System-Specific Notes ... 138
2.12.1. Linux Notes .. 138
2.12.2. Mac OS X Notes .. 144
2.12.3. Solaris Notes ... 145
2.12.4. BSD Notes .. 149
2.12.5. Other Unix Notes ... 152
2.12.6. OS/2 Notes ... 164
2.12.7. BeOS Notes .. 164

2.13. Perl Installation Notes ... 165
2.13.1. Installing Perl on Unix .. 165
2.13.2. Installing ActiveState Perl on Windows .. 166
2.13.3. Problems Using the Perl DBI/DBD Interface 166

3. MySQL Tutorial ... 169
3.1. Connecting to and Disconnecting from the Server 169
3.2. Entering Queries .. 170
3.3. Creating and Using a Database .. 172

3.3.1. Creating and Selecting a Database ... 174
3.3.2. Creating a Table .. 174
3.3.3. Loading Data into a Table ... 175
3.3.4. Retrieving Information from a Table ... 177

3.4. Getting Information About Databases and Tables 189
3.5. Using mysql in Batch Mode ... 190
3.6. Examples of Common Queries .. 192

3.6.1. The Maximum Value for a Column ... 192
3.6.2. The Row Holding the Maximum of a Certain Column 193
3.6.3. Maximum of Column per Group ... 193
3.6.4. The Rows Holding the Group-wise Maximum of a Certain Field 194
3.6.5. Using User Variables .. 194
3.6.6. Using Foreign Keys ... 195
3.6.7. Searching on Two Keys .. 196
3.6.8. Calculating Visits Per Day ... 196
3.6.9. Using AUTO_INCREMENT .. 197

3.7. Queries from the Twin Project .. 198
3.7.1. Find All Non-distributed Twins .. 198
3.7.2. Show a Table of Twin Pair Status ... 200

3.8. Using MySQL with Apache ... 201
4. Using MySQL Programs .. 202

4.1. Overview of MySQL Programs ... 202
4.2. Invoking MySQL Programs ... 203
4.3. Specifying Program Options ... 203

4.3.1. Using Options on the Command Line .. 204
4.3.2. Using Option Files ... 205

MySQL Reference Manual

v

4.3.3. Using Environment Variables to Specify Options 208
4.3.4. Using Options to Set Program Variables ... 209

5. Database Administration .. 211
5.1. The MySQL Server and Server Startup Scripts ... 211

5.1.1. Overview of the Server-Side Scripts and Utilities 211
5.1.2. The mysqld-max Extended MySQL Server 212
5.1.3. The mysqld_safe Server Startup Script .. 214
5.1.4. The mysql.server Server Startup Script ... 217
5.1.5. The mysqld_multi Program for Managing Multiple MySQL Servers .. 217

5.2. Configuring the MySQL Server .. 221
5.2.1. mysqld Command-Line Options ... 221
5.2.2. The Server SQL Mode .. 231
5.2.3. Server System Variables ... 236
5.2.4. Server Status Variables ... 262

5.3. The MySQL Server Shutdown Process ... 271
5.4. General Security Issues ... 272

5.4.1. General Security Guidelines ... 273
5.4.2. Making MySQL Secure Against Attackers 275
5.4.3. Startup Options for mysqld Concerning Security 276
5.4.4. Security Issues with LOAD DATA LOCAL 277

5.5. The MySQL Access Privilege System .. 278
5.5.1. What the Privilege System Does ... 278
5.5.2. How the Privilege System Works .. 279
5.5.3. Privileges Provided by MySQL .. 283
5.5.4. Connecting to the MySQL Server ... 286
5.5.5. Access Control, Stage 1: Connection Verification 287
5.5.6. Access Control, Stage 2: Request Verification 290
5.5.7. When Privilege Changes Take Effect ... 293
5.5.8. Causes of Access denied Errors ... 293
5.5.9. Password Hashing in MySQL 4.1 ... 298

5.6. MySQL User Account Management .. 302
5.6.1. MySQL Usernames and Passwords ... 303
5.6.2. Adding New User Accounts to MySQL ... 304
5.6.3. Removing User Accounts from MySQL ... 307
5.6.4. Limiting Account Resources .. 307
5.6.5. Assigning Account Passwords .. 308
5.6.6. Keeping Your Password Secure .. 309
5.6.7. Using Secure Connections ... 311

5.7. Disaster Prevention and Recovery ... 317
5.7.1. Database Backups .. 317
5.7.2. Example Backup and Recovery Strategy .. 319
5.7.3. Table Maintenance and Crash Recovery ... 322
5.7.4. Setting Up a Table Maintenance Schedule 334
5.7.5. Getting Information About a Table .. 335

5.8. MySQL Localization and International Usage .. 340
5.8.1. The Character Set Used for Data and Sorting 340
5.8.2. Setting the Error Message Language .. 341
5.8.3. Adding a New Character Set .. 342
5.8.4. The Character Definition Arrays ... 344
5.8.5. String Collating Support .. 344
5.8.6. Multi-Byte Character Support .. 344
5.8.7. Problems With Character Sets .. 345
5.8.8. MySQL Server Time Zone Support ... 345

5.9. The MySQL Log Files .. 346
5.9.1. The Error Log ... 347
5.9.2. The General Query Log .. 347
5.9.3. The Update Log .. 348
5.9.4. The Binary Log ... 348
5.9.5. The Slow Query Log .. 352
5.9.6. Log File Maintenance ... 352

5.10. Running Multiple MySQL Servers on the Same Machine 353
5.10.1. Running Multiple Servers on Windows .. 355
5.10.2. Running Multiple Servers on Unix .. 358

MySQL Reference Manual

vi

5.10.3. Using Client Programs in a Multiple-Server Environment 359
5.11. The MySQL Query Cache .. 359

5.11.1. How the Query Cache Operates .. 360
5.11.2. Query Cache SELECT Options ... 361
5.11.3. Query Cache Configuration .. 362
5.11.4. Query Cache Status and Maintenance .. 363

6. Replication in MySQL ... 365
6.1. Introduction to Replication ... 365
6.2. Replication Implementation Overview .. 365
6.3. Replication Implementation Details ... 366

6.3.1. Replication Master Thread States .. 367
6.3.2. Replication Slave I/O Thread States .. 368
6.3.3. Replication Slave SQL Thread States ... 369
6.3.4. Replication Relay and Status Files .. 369

6.4. How to Set Up Replication ... 371
6.5. Replication Compatibility Between MySQL Versions 375
6.6. Upgrading a Replication Setup .. 375

6.6.1. Upgrading Replication to 4.0 or 4.1 ... 376
6.6.2. Upgrading Replication to 5.0 ... 376

6.7. Replication Features and Known Problems .. 377
6.8. Replication Startup Options .. 380
6.9. Replication FAQ .. 388
6.10. Troubleshooting Replication ... 393
6.11. Reporting Replication Bugs .. 394

7. MySQL Optimization .. 396
7.1. Optimization Overview ... 396

7.1.1. MySQL Design Limitations and Tradeoffs 396
7.1.2. Designing Applications for Portability ... 397
7.1.3. What We Have Used MySQL For ... 398
7.1.4. The MySQL Benchmark Suite .. 398
7.1.5. Using Your Own Benchmarks .. 399

7.2. Optimizing SELECT Statements and Other Queries 400
7.2.1. EXPLAIN Syntax (Get Information About a SELECT) 400
7.2.2. Estimating Query Performance ... 408
7.2.3. Speed of SELECT Queries ... 409
7.2.4. How MySQL Optimizes WHERE Clauses .. 409
7.2.5. Range Optimization ... 411
7.2.6. Index Merge Optimization ... 414
7.2.7. How MySQL Optimizes IS NULL ... 416
7.2.8. How MySQL Optimizes DISTINCT ... 417
7.2.9. How MySQL Optimizes LEFT JOIN and RIGHT JOIN 418
7.2.10. How MySQL Optimizes ORDER BY ... 419
7.2.11. How MySQL Optimizes GROUP BY ... 421
7.2.12. How MySQL Optimizes LIMIT ... 423
7.2.13. How to Avoid Table Scans ... 423
7.2.14. Speed of INSERT Statements ... 424
7.2.15. Speed of UPDATE Statements ... 426
7.2.16. Speed of DELETE Statements ... 426
7.2.17. Other Optimization Tips .. 426

7.3. Locking Issues ... 428
7.3.1. Locking Methods ... 428
7.3.2. Table Locking Issues .. 430

7.4. Optimizing Database Structure .. 432
7.4.1. Design Choices ... 432
7.4.2. Make Your Data as Small as Possible .. 432
7.4.3. Column Indexes .. 433
7.4.4. Multiple-Column Indexes .. 434
7.4.5. How MySQL Uses Indexes .. 435
7.4.6. The MyISAM Key Cache ... 437
7.4.7. How MySQL Counts Open Tables .. 442
7.4.8. How MySQL Opens and Closes Tables .. 442
7.4.9. Drawbacks to Creating Many Tables in the Same Database 443

7.5. Optimizing the MySQL Server ... 443

MySQL Reference Manual

vii

7.5.1. System Factors and Startup Parameter Tuning 443
7.5.2. Tuning Server Parameters .. 444
7.5.3. Controlling Query Optimizer Performance 446
7.5.4. How Compiling and Linking Affects the Speed of MySQL 447
7.5.5. How MySQL Uses Memory .. 448
7.5.6. How MySQL Uses DNS ... 449

7.6. Disk Issues .. 450
7.6.1. Using Symbolic Links .. 451

8. MySQL Client and Utility Programs ... 455
8.1. Overview of the Client-Side Scripts and Utilities .. 455
8.2. myisampack, the MySQL Compressed Read-only Table Generator 457
8.3. mysql, the Command-Line Tool .. 462

8.3.1. mysql Commands .. 468
8.3.2. Executing SQL Statements from a Text File 471
8.3.3. mysql Tips ... 471

8.4. mysqladmin, Administering a MySQL Server ... 473
8.5. The mysqlbinlog Binary Log Utility .. 478
8.6. mysqlcc, the MySQL Control Center ... 481
8.7. The mysqlcheck Table Maintenance and Repair Program 483
8.8. The mysqldump Database Backup Program .. 486
8.9. The mysqlhotcopy Database Backup Program ... 493
8.10. The mysqlimport Data Import Program ... 495
8.11. mysqlshow, Showing Databases, Tables, and Columns 497
8.12. perror, Explaining Error Codes .. 499
8.13. The replace String-Replacement Utility .. 499

9. Language Structure ... 501
9.1. Literal Values .. 501

9.1.1. Strings ... 501
9.1.2. Numbers .. 503
9.1.3. Hexadecimal Values ... 503
9.1.4. Boolean Values ... 504
9.1.5. NULL Values .. 504

9.2. Database, Table, Index, Column, and Alias Names 504
9.2.1. Identifier Qualifiers .. 505
9.2.2. Identifier Case Sensitivity .. 506

9.3. User Variables ... 507
9.4. System Variables ... 508

9.4.1. Structured System Variables .. 509
9.5. Comment Syntax .. 511
9.6. Treatment of Reserved Words in MySQL ... 512

10. Character Set Support .. 516
10.1. Character Sets and Collations in General ... 516
10.2. Character Sets and Collations in MySQL .. 517
10.3. Determining the Default Character Set and Collation 518

10.3.1. Server Character Set and Collation .. 518
10.3.2. Database Character Set and Collation ... 519
10.3.3. Table Character Set and Collation ... 519
10.3.4. Column Character Set and Collation .. 520
10.3.5. Examples of Character Set and Collation Assignment 520
10.3.6. Connection Character Sets and Collations 521
10.3.7. Character String Literal Character Set and Collation 523
10.3.8. Using COLLATE in SQL Statements .. 524
10.3.9. COLLATE Clause Precedence ... 525
10.3.10. BINARY Operator .. 525
10.3.11. Some Special Cases Where the Collation Determination Is Tricky ... 525
10.3.12. Collations Must Be for the Right Character Set 526
10.3.13. An Example of the Effect of Collation .. 527

10.4. Operations Affected by Character Set Support .. 528
10.4.1. Result Strings .. 528
10.4.2. CONVERT() ... 528
10.4.3. CAST() ... 529
10.4.4. SHOW Statements ... 529

10.5. Unicode Support .. 530

MySQL Reference Manual

viii

10.6. UTF8 for Metadata ... 531
10.7. Compatibility with Other DBMSs .. 532
10.8. New Character Set Configuration File Format .. 532
10.9. National Character Set ... 532
10.10. Upgrading Character Sets from MySQL 4.0 ... 533

10.10.1. 4.0 Character Sets and Corresponding 4.1 Character Set/Collation Pairs
.. 533
10.10.2. Converting 4.0 Character Columns to 4.1 Format 534

10.11. Character Sets and Collations That MySQL Supports 535
10.11.1. Unicode Character Sets .. 536
10.11.2. West European Character Sets .. 537
10.11.3. Central European Character Sets ... 539
10.11.4. South European and Middle East Character Sets 539
10.11.5. Baltic Character Sets ... 540
10.11.6. Cyrillic Character Sets ... 540
10.11.7. Asian Character Sets ... 541

11. Column Types .. 543
11.1. Column Type Overview ... 543

11.1.1. Overview of Numeric Types .. 543
11.1.2. Overview of Date and Time Types .. 546
11.1.3. Overview of String Types .. 547

11.2. Numeric Types ... 549
11.3. Date and Time Types .. 552

11.3.1. The DATETIME, DATE, and TIMESTAMP Types 553
11.3.2. The TIME Type ... 559
11.3.3. The YEAR Type ... 559
11.3.4. Y2K Issues and Date Types ... 560

11.4. String Types .. 560
11.4.1. The CHAR and VARCHAR Types ... 560
11.4.2. The BINARY and VARBINARY Types ... 561
11.4.3. The BLOB and TEXT Types ... 562
11.4.4. The ENUM Type ... 563
11.4.5. The SET Type ... 564

11.5. Column Type Storage Requirements .. 566
11.6. Choosing the Right Type for a Column ... 567
11.7. Using Column Types from Other Database Engines 567

12. Functions and Operators ... 569
12.1. Operators .. 569

12.1.1. Operator Precedence ... 569
12.1.2. Parentheses ... 570
12.1.3. Comparison Functions and Operators ... 570
12.1.4. Logical Operators ... 576

12.2. Control Flow Functions ... 577
12.3. String Functions ... 579

12.3.1. String Comparison Functions ... 591
12.4. Numeric Functions .. 594

12.4.1. Arithmetic Operators .. 594
12.4.2. Mathematical Functions .. 595

12.5. Date and Time Functions ... 603
12.6. Full-Text Search Functions ... 622

12.6.1. Boolean Full-Text Searches ... 624
12.6.2. Full-Text Searches with Query Expansion 626
12.6.3. Full-Text Restrictions ... 627
12.6.4. Fine-Tuning MySQL Full-Text Search ... 627
12.6.5. Full-Text Search TODO .. 629

12.7. Cast Functions and Operators .. 629
12.8. Other Functions .. 632

12.8.1. Bit Functions ... 632
12.8.2. Encryption Functions .. 634
12.8.3. Information Functions ... 637
12.8.4. Miscellaneous Functions ... 643

12.9. Functions and Modifiers for Use with GROUP BY Clauses 646
12.9.1. GROUP BY (Aggregate) Functions .. 646

MySQL Reference Manual

ix

12.9.2. GROUP BY Modifiers ... 649
12.9.3. GROUP BY with Hidden Fields .. 651

13. SQL Statement Syntax ... 653
13.1. Data Manipulation Statements ... 653

13.1.1. DELETE Syntax ... 653
13.1.2. DO Syntax ... 655
13.1.3. HANDLER Syntax ... 656
13.1.4. INSERT Syntax ... 657
13.1.5. LOAD DATA INFILE Syntax ... 663
13.1.6. REPLACE Syntax ... 670
13.1.7. SELECT Syntax ... 671
13.1.8. Subquery Syntax .. 679
13.1.9. TRUNCATE Syntax ... 690
13.1.10. UPDATE Syntax ... 690

13.2. Data Definition Statements ... 692
13.2.1. ALTER DATABASE Syntax ... 692
13.2.2. ALTER TABLE Syntax ... 692
13.2.3. ALTER VIEW Syntax ... 697
13.2.4. CREATE DATABASE Syntax ... 697
13.2.5. CREATE INDEX Syntax ... 697
13.2.6. CREATE TABLE Syntax ... 699
13.2.7. CREATE VIEW Syntax ... 709
13.2.8. DROP DATABASE Syntax ... 711
13.2.9. DROP INDEX Syntax ... 711
13.2.10. DROP TABLE Syntax ... 712
13.2.11. DROP VIEW Syntax ... 712
13.2.12. RENAME TABLE Syntax ... 712

13.3. MySQL Utility Statements ... 713
13.3.1. DESCRIBE Syntax (Get Information About Columns) 713
13.3.2. USE Syntax ... 714

13.4. MySQL Transactional and Locking Statements .. 714
13.4.1. START TRANSACTION, COMMIT, and ROLLBACK Syntax 714
13.4.2. Statements That Cannot Be Rolled Back 715
13.4.3. Statements That Cause an Implicit Commit 716
13.4.4. SAVEPOINT and ROLLBACK TO SAVEPOINT Syntax 716
13.4.5. LOCK TABLES and UNLOCK TABLES Syntax 716
13.4.6. SET TRANSACTION Syntax ... 719

13.5. Database Administration Statements .. 719
13.5.1. Account Management Statements .. 719
13.5.2. Table Maintenance Statements .. 728
13.5.3. SET Syntax ... 733
13.5.4. SHOW Syntax ... 737
13.5.5. Other Administrative Statements ... 753

13.6. Replication Statements .. 757
13.6.1. SQL Statements for Controlling Master Servers 757
13.6.2. SQL Statements for Controlling Slave Servers 759

13.7. SQL Syntax for Prepared Statements .. 767
14. MySQL Storage Engines and Table Types ... 770

14.1. The MyISAM Storage Engine .. 772
14.1.1. MyISAM Startup Options ... 773
14.1.2. Space Needed for Keys ... 775
14.1.3. MyISAM Table Storage Formats ... 775
14.1.4. MyISAM Table Problems ... 777

14.2. The MERGE Storage Engine .. 779
14.2.1. MERGE Table Problems ... 781

14.3. The MEMORY (HEAP) Storage Engine ... 782
14.4. The BDB (BerkeleyDB) Storage Engine ... 784

14.4.1. Operating Systems Supported by BDB .. 784
14.4.2. Installing BDB ... 785
14.4.3. BDB Startup Options ... 785
14.4.4. Characteristics of BDB Tables ... 786
14.4.5. Things We Need to Fix for BDB .. 788
14.4.6. Restrictions on BDB Tables .. 788

MySQL Reference Manual

x

14.4.7. Errors That May Occur When Using BDB Tables 788
14.5. The EXAMPLE Storage Engine .. 789
14.6. The FEDERATED Storage Engine .. 789

14.6.1. Installing the FEDERATED Storage Engine 789
14.6.2. Description of the FEDERATED Storage Engine 789
14.6.3. How to use FEDERATED Tables ... 790
14.6.4. Limitations of the FEDERATED Storage Engine 791

14.7. The ARCHIVE Storage Engine .. 791
14.8. The CSV Storage Engine .. 792
14.9. The ISAM Storage Engine .. 792

15. The InnoDB Storage Engine .. 794
15.1. InnoDB Overview ... 794
15.2. InnoDB Contact Information ... 794
15.3. InnoDB in MySQL 3.23 ... 794
15.4. InnoDB Configuration .. 795
15.5. InnoDB Startup Options ... 799
15.6. Creating the InnoDB Tablespace .. 804

15.6.1. Dealing with InnoDB Initialization Problems 805
15.7. Creating InnoDB Tables ... 806

15.7.1. How to Use Transactions in InnoDB with Different APIs 806
15.7.2. Converting MyISAM Tables to InnoDB 807
15.7.3. How an AUTO_INCREMENT Column Works in InnoDB 808
15.7.4. FOREIGN KEY Constraints ... 808
15.7.5. InnoDB and MySQL Replication ... 812
15.7.6. Using Per-Table Tablespaces .. 812

15.8. Adding and Removing InnoDB Data and Log Files 814
15.9. Backing Up and Recovering an InnoDB Database 815

15.9.1. Forcing Recovery ... 816
15.9.2. Checkpoints .. 817

15.10. Moving an InnoDB Database to Another Machine 818
15.11. InnoDB Transaction Model and Locking .. 818

15.11.1. InnoDB and AUTOCOMMIT ... 819
15.11.2. InnoDB and TRANSACTION ISOLATION LEVEL 819
15.11.3. Consistent Non-Locking Read .. 820
15.11.4. Locking Reads SELECT ... FOR UPDATE and SELECT ...
LOCK IN SHARE MODE ... 821
15.11.5. Next-Key Locking: Avoiding the Phantom Problem 821
15.11.6. An Example of How the Consistent Read Works in InnoDB 822
15.11.7. Locks Set by Different SQL Statements in InnoDB 823
15.11.8. When Does MySQL Implicitly Commit or Roll Back a Transaction? 824
15.11.9. Deadlock Detection and Rollback .. 824
15.11.10. How to Cope with Deadlocks .. 825

15.12. InnoDB Performance Tuning Tips .. 826
15.12.1. SHOW INNODB STATUS and the InnoDB Monitors 827

15.13. Implementation of Multi-Versioning ... 831
15.14. Table and Index Structures ... 832

15.14.1. Physical Structure of an Index ... 833
15.14.2. Insert Buffering .. 833
15.14.3. Adaptive Hash Indexes .. 833
15.14.4. Physical Record Structure .. 833

15.15. File Space Management and Disk I/O ... 834
15.15.1. Disk I/O ... 834
15.15.2. Using Raw Devices for the Tablespace 834
15.15.3. File Space Management ... 835
15.15.4. Defragmenting a Table .. 836

15.16. Error Handling ... 836
15.16.1. InnoDB Error Codes .. 837
15.16.2. Operating System Error Codes .. 837

15.17. Restrictions on InnoDB Tables ... 842
15.18. InnoDB Troubleshooting ... 844

15.18.1. Troubleshooting InnoDB Data Dictionary Operations 844
16. MySQL Cluster .. 846

16.1. MySQL Cluster Overview .. 846

MySQL Reference Manual

xi

16.2. Basic MySQL Cluster Concepts .. 846
16.3. MySQL Cluster Configuration .. 847

16.3.1. Building from Source Code .. 848
16.3.2. Installing the Software .. 848
16.3.3. Quick Test Setup of MySQL Cluster .. 848
16.3.4. Configuration File .. 850

16.4. Process Management in MySQL Cluster ... 872
16.4.1. MySQL Server Process Usage for MySQL Cluster 872
16.4.2. ndbd, the Storage Engine Node Process 873
16.4.3. ndb_mgmd, the Management Server Process 874
16.4.4. ndb_mgm, the Management Client Process 874
16.4.5. Command Options for MySQL Cluster Processes 875

16.5. Management of MySQL Cluster .. 877
16.5.1. Commands in the Management Client .. 877
16.5.2. Event Reports Generated in MySQL Cluster 878
16.5.3. Single User Mode .. 882
16.5.4. On-line Backup of MySQL Cluster .. 883

16.6. Using High-Speed Interconnects with MySQL Cluster 885
16.6.1. Configuring MySQL Cluster to use SCI Sockets 886
16.6.2. Low-level benchmarks to understand impact of cluster interconnects . 889

16.7. MySQL Cluster Limitations in 4.1 ... 890
17. Introduction to MaxDB .. 893

17.1. History of MaxDB .. 893
17.2. Licensing and Support ... 893
17.3. MaxDB-Related Links ... 893
17.4. Basic Concepts of MaxDB ... 893
17.5. Feature Differences Between MaxDB and MySQL 893
17.6. Interoperability Features Between MaxDB and MySQL 894
17.7. Reserved Words in MaxDB .. 894

18. Spatial Extensions in MySQL .. 898
18.1. Introduction ... 898
18.2. The OpenGIS Geometry Model ... 899

18.2.1. The Geometry Class Hierarchy ... 899
18.2.2. Class Geometry ... 900
18.2.3. Class Point ... 901
18.2.4. Class Curve ... 901
18.2.5. Class LineString ... 902
18.2.6. Class Surface ... 902
18.2.7. Class Polygon ... 902
18.2.8. Class GeometryCollection ... 903
18.2.9. Class MultiPoint ... 903
18.2.10. Class MultiCurve ... 903
18.2.11. Class MultiLineString ... 904
18.2.12. Class MultiSurface ... 904
18.2.13. Class MultiPolygon ... 904

18.3. Supported Spatial Data Formats .. 905
18.3.1. Well-Known Text (WKT) Format ... 905
18.3.2. Well-Known Binary (WKB) Format .. 906

18.4. Creating a Spatially Enabled MySQL Database .. 907
18.4.1. MySQL Spatial Data Types .. 907
18.4.2. Creating Spatial Values ... 907
18.4.3. Creating Spatial Columns .. 911
18.4.4. Populating Spatial Columns ... 911
18.4.5. Fetching Spatial Data .. 912

18.5. Analyzing Spatial Information .. 912
18.5.1. Geometry Format Conversion Functions 913
18.5.2. Geometry Functions ... 914
18.5.3. Functions That Create New Geometries from Existing Ones 920
18.5.4. Functions for Testing Spatial Relations Between Geometric Objects .. 922
18.5.5. Relations on Geometry Minimal Bounding Rectangles (MBRs) 922
18.5.6. Functions That Test Spatial Relationships Between Geometries 923

18.6. Optimizing Spatial Analysis ... 924
18.6.1. Creating Spatial Indexes .. 925

MySQL Reference Manual

xii

18.6.2. Using a Spatial Index .. 926
18.7. MySQL Conformance and Compatibility .. 927

18.7.1. GIS Features That Are Not Yet Implemented 927
19. Stored Procedures and Functions .. 928

19.1. Stored Procedure Syntax .. 928
19.1.1. Maintaining Stored Procedures ... 929
19.1.2. SHOW PROCEDURE STATUS and SHOW FUNCTION STATUS 932
19.1.3. CALL Statement ... 932
19.1.4. BEGIN ... END Compound Statement 932
19.1.5. DECLARE Statement ... 932
19.1.6. Variables in Stored Procedures ... 933
19.1.7. Conditions and Handlers .. 933
19.1.8. Cursors .. 934
19.1.9. Flow Control Constructs .. 936

20. Triggers .. 939
20.1. CREATE TRIGGER Syntax ... 939
20.2. DROP TRIGGER Syntax ... 939
20.3. Using Triggers ... 940

21. The INFORMATION_SCHEMA Information Database .. 943
21.1. INFORMATION_SCHEMA Tables ... 944

21.1.1. The INFORMATION_SCHEMA SCHEMATA Table 945
21.1.2. The INFORMATION_SCHEMA TABLES Table 945
21.1.3. The INFORMATION_SCHEMA COLUMNS Table 946
21.1.4. The INFORMATION_SCHEMA STATISTICS Table 948
21.1.5. The INFORMATION_SCHEMA USER_PRIVILEGES Table 949
21.1.6. The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table 949
21.1.7. The INFORMATION_SCHEMA TABLE_PRIVILEGES Table 949
21.1.8. The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table 950
21.1.9. The INFORMATION_SCHEMA CHARACTER_SETS Table 951
21.1.10. The INFORMATION_SCHEMA COLLATIONS Table 951
21.1.11. The INFORMATION_SCHEMA COLLA-
TION_CHARACTER_SET_APPLICABILITY Table 952
21.1.12. The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table 952
21.1.13. The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table 953
21.1.14. The INFORMATION_SCHEMA ROUTINES Table 954
21.1.15. The INFORMATION_SCHEMA VIEWS Table 955
21.1.16. Other INFORMATION_SCHEMA Tables 956

21.2. Extensions to SHOW Statements ... 956
22. MySQL APIs ... 958

22.1. MySQL Program Development Utilities .. 958
22.1.1. msql2mysql, Convert mSQL Programs for Use with MySQL 958
22.1.2. mysql_config, Get compile options for compiling clients 958

22.2. MySQL C API ... 959
22.2.1. C API Data types ... 960
22.2.2. C API Function Overview .. 963
22.2.3. C API Function Descriptions .. 966
22.2.4. C API Prepared Statements .. 1006
22.2.5. C API Prepared Statement Data types .. 1006
22.2.6. C API Prepared Statement Function Overview 1009
22.2.7. C API Prepared Statement Function Descriptions 1011
22.2.8. C API Prepared statement problems ... 1032
22.2.9. C API Handling of Multiple Query Execution 1032
22.2.10. C API Handling of Date and Time Values 1033
22.2.11. C API Threaded Function Descriptions 1034
22.2.12. C API Embedded Server Function Descriptions 1035
22.2.13. Common questions and problems when using the C API 1036
22.2.14. Building Client Programs ... 1038
22.2.15. How to Make a Threaded Client .. 1039
22.2.16. libmysqld, the Embedded MySQL Server Library 1040

22.3. MySQL PHP API ... 1044
22.3.1. Common Problems with MySQL and PHP 1044

22.4. MySQL Perl API .. 1044
22.5. MySQL C++ API ... 1045

MySQL Reference Manual

xiii

22.5.1. Borland C++ ... 1045
22.6. MySQL Python API .. 1045
22.7. MySQL Tcl API ... 1045
22.8. MySQL Eiffel Wrapper ... 1045

23. MySQL Connectors ... 1047
23.1. MySQL ODBC Support ... 1047

23.1.1. Introduction to MyODBC .. 1047
23.1.2. General Information About ODBC and MyODBC 1049
23.1.3. How to Install MyODBC ... 1052
23.1.4. Installing MyODBC from a Binary Distribution on Windows 1052
23.1.5. Installing MyODBC from a Binary Distribution on Unix 1053
23.1.6. Installing MyODBC from a Source Distribution on Windows 1054
23.1.7. Installing MyODBC from a Source Distribution on Unix 1055
23.1.8. Installing MyODBC from the BitKeeper Development Source Tree . 1061
23.1.9. MyODBC Configuration ... 1062
23.1.10. MyODBC Connection-Related Issues 1079
23.1.11. MyODBC and Microsoft Access ... 1079
23.1.12. MyODBC and Microsoft VBA and ASP 1084
23.1.13. MyODBC and Third-Party ODBC Tools 1086
23.1.14. MyODBC General Functionality ... 1086
23.1.15. Basic MyODBC Application Steps .. 1090
23.1.16. MyODBC API Reference ... 1091
23.1.17. MyODBC Data Types ... 1095
23.1.18. MyODBC Error Codes .. 1096
23.1.19. MyODBC With VB: ADO, DAO and RDO 1098
23.1.20. MyODBC with Microsoft .NET .. 1101
23.1.21. Credits ... 1104

23.2. MySQL Java Connectivity (JDBC) .. 1104
24. Error Handling in MySQL .. 1105
25. Extending MySQL .. 1135

25.1. MySQL Internals .. 1135
25.1.1. MySQL Threads .. 1135
25.1.2. MySQL Test Suite ... 1135

25.2. Adding New Functions to MySQL ... 1138
25.2.1. CREATE FUNCTION/DROP FUNCTION Syntax 1138
25.2.2. Adding a New User-defined Function .. 1139
25.2.3. Adding a New Native Function ... 1146

25.3. Adding New Procedures to MySQL ... 1147
25.3.1. Procedure Analyse ... 1148
25.3.2. Writing a Procedure .. 1148

A. Problems and Common Errors .. 1149
A.1. How to Determine What Is Causing a Problem .. 1149
A.2. Common Errors When Using MySQL Programs 1150

A.2.1. Access denied .. 1150
A.2.2. Can't connect to [local] MySQL server 1150
A.2.3. Client does not support authentication protocol 1152
A.2.4. Password Fails When Entered Interactively 1153
A.2.5. Host 'host_name' is blocked 1153
A.2.6. Too many connections .. 1153
A.2.7. Out of memory .. 1154
A.2.8. MySQL server has gone away .. 1154
A.2.9. Packet too large .. 1156
A.2.10. Communication Errors and Aborted Connections 1157
A.2.11. The table is full .. 1158
A.2.12. Can't create/write to file 1158
A.2.13. Commands out of sync .. 1159
A.2.14. Ignoring user .. 1159
A.2.15. Table 'tbl_name' doesn't exist 1159
A.2.16. Can't initialize character set 1160
A.2.17. File Not Found .. 1160

A.3. Installation-Related Issues ... 1161
A.3.1. Problems Linking to the MySQL Client Library 1161
A.3.2. How to Run MySQL as a Normal User 1162

MySQL Reference Manual

xiv

A.3.3. Problems with File Permissions ... 1163
A.4. Administration-Related Issues .. 1163

A.4.1. How to Reset the Root Password .. 1163
A.4.2. What to Do If MySQL Keeps Crashing 1165
A.4.3. How MySQL Handles a Full Disk .. 1167
A.4.4. Where MySQL Stores Temporary Files 1168
A.4.5. How to Protect or Change the MySQL Socket File /tmp/mysql.sock
.. 1168
A.4.6. Time Zone Problems ... 1169

A.5. Query-Related Issues ... 1169
A.5.1. Case Sensitivity in Searches .. 1169
A.5.2. Problems Using DATE Columns .. 1170
A.5.3. Problems with NULL Values ... 1171
A.5.4. Problems with Column Aliases .. 1172
A.5.5. Rollback Failure for Non-Transactional Tables 1172
A.5.6. Deleting Rows from Related Tables .. 1173
A.5.7. Solving Problems with No Matching Rows 1173
A.5.8. Problems with Floating-Point Comparisons 1174

A.6. Optimizer-Related Issues .. 1176
A.7. Table Definition-Related Issues .. 1176

A.7.1. Problems with ALTER TABLE ... 1176
A.7.2. How to Change the Order of Columns in a Table 1177
A.7.3. TEMPORARY TABLE Problems .. 1178

B. Credits ... 1179
B.1. Developers at MySQL AB ... 1179
B.2. Contributors to MySQL .. 1183
B.3. Documenters and translators .. 1188
B.4. Libraries used by and included with MySQL ... 1189
B.5. Packages that support MySQL ... 1190
B.6. Tools that were used to create MySQL ... 1190
B.7. Supporters of MySQL .. 1191

C. MySQL and the Future (the TODO) ... 1192
C.1. New Features Planned for 5.0 ... 1192
C.2. New Features Planned for 5.1 ... 1193
C.3. New Features Planned for the Near Future .. 1194
C.4. New Features Planned for the Mid-Term Future 1196
C.5. New Features We Don't Plan to Implement ... 1197

D. MySQL Change History .. 1198
D.1. Changes in release 5.0.x (Development) ... 1198

D.1.1. Changes in release 5.0.3 (not released yet) 1199
D.1.2. Changes in release 5.0.2 (01 Dec 2004) 1203
D.1.3. Changes in release 5.0.1 (27 Jul 2004) .. 1206
D.1.4. Changes in release 5.0.0 (22 Dec 2003: Alpha) 1209

D.2. Changes in release 4.1.x (Production) .. 1210
D.2.1. Changes in release 4.1.10 (not released yet) 1211
D.2.2. Changes in release 4.1.10 (to be released soon) 1211
D.2.3. Changes in release 4.1.9 (11 Jan 2005) .. 1214
D.2.4. Changes in release 4.1.8 (14 Dec 2004) 1216
D.2.5. Changes in release 4.1.7 (23 Oct 2004: Production) 1219
D.2.6. Changes in release 4.1.6 (10 Oct 2004) .. 1221
D.2.7. Changes in release 4.1.5 (16 Sep 2004) 1222
D.2.8. Changes in release 4.1.4 (26 Aug 2004: Gamma) 1223
D.2.9. Changes in release 4.1.3 (28 Jun 2004: Beta) 1226
D.2.10. Changes in release 4.1.2 (28 May 2004) 1228
D.2.11. Changes in release 4.1.1 (01 Dec 2003) 1237
D.2.12. Changes in release 4.1.0 (03 Apr 2003: Alpha) 1242

D.3. Changes in release 4.0.x (Production) .. 1244
D.3.1. Changes in release 4.0.24 (not released yet) 1245
D.3.2. Changes in release 4.0.23 (18 Dec 2004) 1246
D.3.3. Changes in release 4.0.22 (27 Oct 2004) 1247
D.3.4. Changes in release 4.0.21 (06 Sep 2004) 1249
D.3.5. Changes in release 4.0.20 (17 May 2004) 1251
D.3.6. Changes in release 4.0.19 (04 May 2004) 1252

MySQL Reference Manual

xv

D.3.7. Changes in release 4.0.18 (12 Feb 2004) 1255
D.3.8. Changes in release 4.0.17 (14 Dec 2003) 1258
D.3.9. Changes in release 4.0.16 (17 Oct 2003) 1260
D.3.10. Changes in release 4.0.15 (03 Sep 2003) 1262
D.3.11. Changes in release 4.0.14 (18 Jul 2003) 1266
D.3.12. Changes in release 4.0.13 (16 May 2003) 1270
D.3.13. Changes in release 4.0.12 (15 Mar 2003: Production) 1273
D.3.14. Changes in release 4.0.11 (20 Feb 2003) 1275
D.3.15. Changes in release 4.0.10 (29 Jan 2003) 1276
D.3.16. Changes in release 4.0.9 (09 Jan 2003) 1277
D.3.17. Changes in release 4.0.8 (07 Jan 2003) 1277
D.3.18. Changes in release 4.0.7 (20 Dec 2002) 1278
D.3.19. Changes in release 4.0.6 (14 Dec 2002: Gamma) 1278
D.3.20. Changes in release 4.0.5 (13 Nov 2002) 1280
D.3.21. Changes in release 4.0.4 (29 Sep 2002) 1282
D.3.22. Changes in release 4.0.3 (26 Aug 2002: Beta) 1284
D.3.23. Changes in release 4.0.2 (01 Jul 2002) 1286
D.3.24. Changes in release 4.0.1 (23 Dec 2001) 1289
D.3.25. Changes in release 4.0.0 (Oct 2001: Alpha) 1290

D.4. Changes in release 3.23.x (Recent; still supported) 1292
D.4.1. Changes in release 3.23.59 (not released yet) 1293
D.4.2. Changes in release 3.23.58 (11 Sep 2003) 1293
D.4.3. Changes in release 3.23.57 (06 Jun 2003) 1294
D.4.4. Changes in release 3.23.56 (13 Mar 2003) 1295
D.4.5. Changes in release 3.23.55 (23 Jan 2003) 1296
D.4.6. Changes in release 3.23.54 (05 Dec 2002) 1297
D.4.7. Changes in release 3.23.53 (09 Oct 2002) 1297
D.4.8. Changes in release 3.23.52 (14 Aug 2002) 1298
D.4.9. Changes in release 3.23.51 (31 May 2002) 1299
D.4.10. Changes in release 3.23.50 (21 Apr 2002) 1300
D.4.11. Changes in release 3.23.49 (14 Feb 2002) 1301
D.4.12. Changes in release 3.23.48 (07 Feb 2002) 1301
D.4.13. Changes in release 3.23.47 (27 Dec 2001) 1302
D.4.14. Changes in release 3.23.46 (29 Nov 2001) 1302
D.4.15. Changes in release 3.23.45 (22 Nov 2001) 1303
D.4.16. Changes in release 3.23.44 (31 Oct 2001) 1303
D.4.17. Changes in release 3.23.43 (04 Oct 2001) 1304
D.4.18. Changes in release 3.23.42 (08 Sep 2001) 1305
D.4.19. Changes in release 3.23.41 (11 Aug 2001) 1306
D.4.20. Changes in release 3.23.40 (18 Jul 2001) 1306
D.4.21. Changes in release 3.23.39 (12 Jun 2001) 1307
D.4.22. Changes in release 3.23.38 (09 May 2001) 1307
D.4.23. Changes in release 3.23.37 (17 Apr 2001) 1308
D.4.24. Changes in release 3.23.36 (27 Mar 2001) 1309
D.4.25. Changes in release 3.23.35 (15 Mar 2001) 1310
D.4.26. Changes in release 3.23.34a (11 Mar 2001) 1310
D.4.27. Changes in release 3.23.34 (10 Mar 2001) 1310
D.4.28. Changes in release 3.23.33 (09 Feb 2001) 1311
D.4.29. Changes in release 3.23.32 (22 Jan 2001) 1312
D.4.30. Changes in release 3.23.31 (17 Jan 2001: Production) 1313
D.4.31. Changes in release 3.23.30 (04 Jan 2001) 1314
D.4.32. Changes in release 3.23.29 (16 Dec 2000) 1314
D.4.33. Changes in release 3.23.28 (22 Nov 2000: Gamma) 1316
D.4.34. Changes in release 3.23.27 (24 Oct 2000) 1318
D.4.35. Changes in release 3.23.26 (18 Oct 2000) 1318
D.4.36. Changes in release 3.23.25 (29 Sep 2000) 1319
D.4.37. Changes in release 3.23.24 (08 Sep 2000) 1321
D.4.38. Changes in release 3.23.23 (01 Sep 2000) 1321
D.4.39. Changes in release 3.23.22 (31 Jul 2000) 1322
D.4.40. Changes in release 3.23.21 (04 Jul 2000) 1323
D.4.41. Changes in release 3.23.20 (28 Jun 2000: Beta) 1323
D.4.42. Changes in release 3.23.19 .. 1324
D.4.43. Changes in release 3.23.18 (11 Jun 2000) 1324

MySQL Reference Manual

xvi

D.4.44. Changes in release 3.23.17 (07 Jun 2000) 1324
D.4.45. Changes in release 3.23.16 (16 May 2000) 1325
D.4.46. Changes in release 3.23.15 (08 May 2000) 1326
D.4.47. Changes in release 3.23.14 (09 Apr 2000) 1327
D.4.48. Changes in release 3.23.13 (14 Mar 2000) 1327
D.4.49. Changes in release 3.23.12 (07 Mar 2000) 1328
D.4.50. Changes in release 3.23.11 (16 Feb 2000) 1328
D.4.51. Changes in release 3.23.10 (30 Jan 2000) 1329
D.4.52. Changes in release 3.23.9 (29 Jan 2000) 1329
D.4.53. Changes in release 3.23.8 (02 Jan 2000) 1330
D.4.54. Changes in release 3.23.7 (10 Dec 1999) 1331
D.4.55. Changes in release 3.23.6 (15 Nov 1999) 1331
D.4.56. Changes in release 3.23.5 (20 Oct 1999) 1332
D.4.57. Changes in release 3.23.4 (28 Sep 1999) 1333
D.4.58. Changes in release 3.23.3 (13 Sep 1999) 1334
D.4.59. Changes in release 3.23.2 (09 Aug 1999) 1334
D.4.60. Changes in release 3.23.1 (08 Jul 1999) 1335
D.4.61. Changes in release 3.23.0 (05 Jul 1999: Alpha) 1335

D.5. Changes in release 3.22.x (Old; discontinued) ... 1337
D.5.1. Changes in release 3.22.35 .. 1337
D.5.2. Changes in release 3.22.34 .. 1338
D.5.3. Changes in release 3.22.33 .. 1338
D.5.4. Changes in release 3.22.32 (14 Feb 2000) 1338
D.5.5. Changes in release 3.22.31 .. 1338
D.5.6. Changes in release 3.22.30 (11 Jan 2000) 1338
D.5.7. Changes in release 3.22.29 (02 Jan 2000) 1339
D.5.8. Changes in release 3.22.28 (20 Oct 1999) 1339
D.5.9. Changes in release 3.22.27 (05 Oct 1999) 1339
D.5.10. Changes in release 3.22.26 (16 Sep 1999) 1339
D.5.11. Changes in release 3.22.25 (07 Jun 1999) 1340
D.5.12. Changes in release 3.22.24 (05 Jul 1999) 1340
D.5.13. Changes in release 3.22.23 (08 Jun 1999) 1340
D.5.14. Changes in release 3.22.22 (30 Apr 1999) 1340
D.5.15. Changes in release 3.22.21 (04 Apr 1999) 1341
D.5.16. Changes in release 3.22.20 (18 Mar 1999) 1341
D.5.17. Changes in release 3.22.19 (01 Mar 1999) 1341
D.5.18. Changes in release 3.22.18 (26 Feb 1999) 1341
D.5.19. Changes in release 3.22.17 (22 Feb 1999: Production) 1342
D.5.20. Changes in release 3.22.16 (05 Feb 1999) 1342
D.5.21. Changes in release 3.22.15 (27 Jan 1999) 1342
D.5.22. Changes in release 3.22.14 (01 Jan 1999: Gamma) 1343
D.5.23. Changes in release 3.22.13 (16 Dec 1998) 1343
D.5.24. Changes in release 3.22.12 (09 Dec 1998) 1343
D.5.25. Changes in release 3.22.11 (24 Nov 1998) 1344
D.5.26. Changes in release 3.22.10 (04 Nov 1998) 1344
D.5.27. Changes in release 3.22.9 (19 Oct 1998) 1345
D.5.28. Changes in release 3.22.8 (06 Oct 1998) 1346
D.5.29. Changes in release 3.22.7 (21 Sep 1998: Beta) 1346
D.5.30. Changes in release 3.22.6 (31 Aug 1998) 1347
D.5.31. Changes in release 3.22.5 (20 Aug 1998: Alpha) 1347
D.5.32. Changes in release 3.22.4 (06 Jul 1998: Beta) 1348
D.5.33. Changes in release 3.22.3 (30 Jun 1998) 1349
D.5.34. Changes in release 3.22.2 .. 1349
D.5.35. Changes in release 3.22.1 (Jun 1998) ... 1350
D.5.36. Changes in release 3.22.0 (18 May 1998: Alpha) 1350

D.6. Changes in release 3.21.x .. 1352
D.6.1. Changes in release 3.21.33 (08 Jul 1998) 1352
D.6.2. Changes in release 3.21.32 (30 Jun 1998) 1352
D.6.3. Changes in release 3.21.31 (10 Jun 1998) 1352
D.6.4. Changes in release 3.21.30 .. 1353
D.6.5. Changes in release 3.21.29 .. 1353
D.6.6. Changes in release 3.21.28 .. 1354
D.6.7. Changes in release 3.21.27 .. 1354

MySQL Reference Manual

xvii

D.6.8. Changes in release 3.21.26 .. 1354
D.6.9. Changes in release 3.21.25 .. 1355
D.6.10. Changes in release 3.21.24 .. 1355
D.6.11. Changes in release 3.21.23 .. 1355
D.6.12. Changes in release 3.21.22 .. 1356
D.6.13. Changes in release 3.21.21a ... 1356
D.6.14. Changes in release 3.21.21 .. 1357
D.6.15. Changes in release 3.21.20 .. 1357
D.6.16. Changes in release 3.21.19 .. 1357
D.6.17. Changes in release 3.21.18 .. 1357
D.6.18. Changes in release 3.21.17 .. 1358
D.6.19. Changes in release 3.21.16 .. 1358
D.6.20. Changes in release 3.21.15 .. 1358
D.6.21. Changes in release 3.21.14b .. 1359
D.6.22. Changes in release 3.21.14a ... 1359
D.6.23. Changes in release 3.21.13 .. 1360
D.6.24. Changes in release 3.21.12 .. 1360
D.6.25. Changes in release 3.21.11 .. 1361
D.6.26. Changes in release 3.21.10 .. 1362
D.6.27. Changes in release 3.21.9 .. 1362
D.6.28. Changes in release 3.21.8 .. 1362
D.6.29. Changes in release 3.21.7 .. 1363
D.6.30. Changes in release 3.21.6 .. 1363
D.6.31. Changes in release 3.21.5 .. 1363
D.6.32. Changes in release 3.21.4 .. 1364
D.6.33. Changes in release 3.21.3 .. 1364
D.6.34. Changes in release 3.21.2 .. 1365
D.6.35. Changes in release 3.21.0 .. 1365

D.7. Changes in release 3.20.x .. 1366
D.7.1. Changes in release 3.20.18 .. 1367
D.7.2. Changes in release 3.20.17 .. 1367
D.7.3. Changes in release 3.20.16 .. 1368
D.7.4. Changes in release 3.20.15 .. 1368
D.7.5. Changes in release 3.20.14 .. 1369
D.7.6. Changes in release 3.20.13 .. 1369
D.7.7. Changes in release 3.20.11 .. 1370
D.7.8. Changes in release 3.20.10 .. 1370
D.7.9. Changes in release 3.20.9 ... 1370
D.7.10. Changes in release 3.20.8 .. 1371
D.7.11. Changes in release 3.20.7 .. 1371
D.7.12. Changes in release 3.20.6 .. 1371
D.7.13. Changes in release 3.20.3 .. 1372
D.7.14. Changes in release 3.20.0 .. 1373

D.8. Changes in release 3.19.x .. 1374
D.8.1. Changes in release 3.19.5 ... 1374
D.8.2. Changes in release 3.19.4 ... 1374
D.8.3. Changes in release 3.19.3 ... 1374

D.9. InnoDB Change History .. 1375
D.9.1. MySQL/InnoDB-4.0.21, September 10, 2004 1375
D.9.2. MySQL/InnoDB-4.1.4, August 31, 2004 1376
D.9.3. MySQL/InnoDB-4.1.3, June 28, 2004 ... 1377
D.9.4. MySQL/InnoDB-4.1.2, May 30, 2004 ... 1378
D.9.5. MySQL/InnoDB-4.0.20, May 18, 2004 1379
D.9.6. MySQL/InnoDB-4.0.19, May 4, 2004 ... 1379
D.9.7. MySQL/InnoDB-4.0.18, February 13, 2004 1380
D.9.8. MySQL/InnoDB-5.0.0, December 24, 2003 1381
D.9.9. MySQL/InnoDB-4.0.17, December 17, 2003 1381
D.9.10. MySQL/InnoDB-4.1.1, December 4, 2003 1381
D.9.11. MySQL/InnoDB-4.0.16, October 22, 2003 1382
D.9.12. MySQL/InnoDB-3.23.58, September 15, 2003 1382
D.9.13. MySQL/InnoDB-4.0.15, September 10, 2003 1382
D.9.14. MySQL/InnoDB-4.0.14, July 22, 2003 1383
D.9.15. MySQL/InnoDB-3.23.57, June 20, 2003 1384

MySQL Reference Manual

xviii

D.9.16. MySQL/InnoDB-4.0.13, May 20, 2003 1384
D.9.17. MySQL/InnoDB-4.1.0, April 3, 2003 .. 1385
D.9.18. MySQL/InnoDB-3.23.56, March 17, 2003 1386
D.9.19. MySQL/InnoDB-4.0.12, March 18, 2003 1386
D.9.20. MySQL/InnoDB-4.0.11, February 25, 2003 1386
D.9.21. MySQL/InnoDB-4.0.10, February 4, 2003 1386
D.9.22. MySQL/InnoDB-3.23.55, January 24, 2003 1387
D.9.23. MySQL/InnoDB-4.0.9, January 14, 2003 1387
D.9.24. MySQL/InnoDB-4.0.8, January 7, 2003 1387
D.9.25. MySQL/InnoDB-4.0.7, December 26, 2002 1388
D.9.26. MySQL/InnoDB-4.0.6, December 19, 2002 1388
D.9.27. MySQL/InnoDB-3.23.54, December 12, 2002 1388
D.9.28. MySQL/InnoDB-4.0.5, November 18, 2002 1389
D.9.29. MySQL/InnoDB-3.23.53, October 9, 2002 1390
D.9.30. MySQL/InnoDB-4.0.4, October 2, 2002 1390
D.9.31. MySQL/InnoDB-4.0.3, August 28, 2002 1391
D.9.32. MySQL/InnoDB-3.23.52, August 16, 2002 1391
D.9.33. MySQL/InnoDB-4.0.2, July 10, 2002 .. 1393
D.9.34. MySQL/InnoDB-3.23.51, June 12, 2002 1393
D.9.35. MySQL/InnoDB-3.23.50, April 23, 2002 1393
D.9.36. MySQL/InnoDB-3.23.49, February 17, 2002 1394
D.9.37. MySQL/InnoDB-3.23.48, February 9, 2002 1394
D.9.38. MySQL/InnoDB-3.23.47, December 28, 2001 1395
D.9.39. MySQL/InnoDB-4.0.1, December 23, 2001 1395
D.9.40. MySQL/InnoDB-3.23.46, November 30, 2001 1396
D.9.41. MySQL/InnoDB-3.23.45, November 23, 2001 1396
D.9.42. MySQL/InnoDB-3.23.44, November 2, 2001 1396
D.9.43. MySQL/InnoDB-3.23.43, October 4, 2001 1397
D.9.44. MySQL/InnoDB-3.23.42, September 9, 2001 1397
D.9.45. MySQL/InnoDB-3.23.41, August 13, 2001 1397
D.9.46. MySQL/InnoDB-3.23.40, July 16, 2001 1397
D.9.47. MySQL/InnoDB-3.23.39, June 13, 2001 1398
D.9.48. MySQL/InnoDB-3.23.38, May 12, 2001 1398

D.10. MySQL Cluster Change History ... 1398
D.10.1. MySQL Cluster-4.1.10 (not released yet) 1398
D.10.2. MySQL Cluster-4.1.9 (13 Jan 2005) .. 1398
D.10.3. MySQL Cluster-4.1.8 (14 Dec 2004) ... 1398
D.10.4. MySQL Cluster-4.1.7 (23 Oct 2004) ... 1400
D.10.5. MySQL Cluster-4.1.6 (10 Oct 2004) ... 1401
D.10.6. MySQL Cluster-4.1.5 (16 Sep 2004) ... 1402
D.10.7. MySQL Cluster-4.1.4 (31 Aug 2004) .. 1403
D.10.8. MySQL Cluster-5.0.1 (27 Jul 2004) .. 1404
D.10.9. MySQL Cluster-4.1.3 (28 Jun 2004) ... 1404

E. Porting to Other Systems ... 1405
E.1. Debugging a MySQL Server .. 1406

E.1.1. Compiling MySQL for Debugging .. 1406
E.1.2. Creating Trace Files ... 1407
E.1.3. Debugging mysqld under gdb ... 1407
E.1.4. Using a Stack Trace ... 1408
E.1.5. Using Log Files to Find Cause of Errors in mysqld 1409
E.1.6. Making a Test Case If You Experience Table Corruption 1410

E.2. Debugging a MySQL Client ... 1411
E.3. The DBUG Package ... 1411
E.4. Comments about RTS Threads ... 1412
E.5. Differences Between Thread Packages ... 1414

F. Environment Variables .. 1415
G. MySQL Regular Expressions ... 1416
H. GNU General Public License ... 1420
I. MySQL FLOSS License Exception ... 1425
Index ... 1427

MySQL Reference Manual

xix

Preface
This is the Reference Manual for the MySQL Database System. It documents MySQL up to Version
5.0.3-alpha, but is also applicable for older versions of the MySQL software (such as 3.23 or
4.0-production) because functional changes are indicated with reference to a version number.

xx

Chapter 1. General Information
The MySQL (R) software delivers a very fast, multi-threaded, multi-user, and robust SQL
(Structured Query Language) database server. MySQL Server is intended for mission-critical,
heavy-load production systems as well as for embedding into mass-deployed software. MySQL is a
registered trademark of MySQL AB.

The MySQL software is Dual Licensed. Users can choose to use the MySQL software as an Open
Source product under the terms of the GNU General Public License (http://www.fsf.org/licenses/) or
can purchase a standard commercial license from MySQL AB. See ht-
tp://www.mysql.com/company/legal/licensing/ for more information on our licensing policies.

The following list describes some sections of particular interest in this manual:

• For a discussion about the capabilities of the MySQL Database Server, see Section 1.2.2, “The
Main Features of MySQL”.

• For installation instructions, see Chapter 2, Installing MySQL.

• For tips on porting the MySQL Database Software to new architectures or operating systems,
see Appendix E, Porting to Other Systems.

• For information about upgrading from a Version 4.0 release, see Section 2.10.2, “Upgrading
from Version 4.0 to 4.1”.

• For information about upgrading from a Version 3.23 release, see Section 2.10.3, “Upgrading
from Version 3.23 to 4.0”.

• For information about upgrading from a Version 3.22 release, see Section 2.10.4, “Upgrading
from Version 3.22 to 3.23”.

• For a tutorial introduction to the MySQL Database Server, see Chapter 3, MySQL Tutorial.

• For examples of SQL and benchmarking information, see the benchmarking directory (sql-
bench in the distribution).

• For a history of new features and bugfixes, see Appendix D, MySQL Change History.

• For a list of currently known bugs and misfeatures, see Section 1.5.7, “Known Errors and
Design Deficiencies in MySQL”.

• For future plans, see Appendix C, MySQL and the Future (the TODO).

• For a list of all the contributors to this project, see Appendix B, Credits.

Important:

Reports of errors (often called ``bugs''), as well as questions and comments, should be sent to ht-
tp://bugs.mysql.com. See Section 1.4.1.3, “How to Report Bugs or Problems”.

If you have found a sensitive security bug in MySQL Server, please let us know immediately by
sending an email message to <security@mysql.com>.

1.1. About This Manual
This is the Reference Manual for the MySQL Database System. It documents MySQL up to Version
5.0.3-alpha, but is also applicable for older versions of the MySQL software (such as 3.23 or
4.0-production) because functional changes are indicated with reference to a version number.

1

http://www.fsf.org/licenses/
http://www.mysql.com/company/legal/licensing/
http://www.mysql.com/company/legal/licensing/
http://bugs.mysql.com
http://bugs.mysql.com

Because this manual serves as a reference, it does not provide general instruction on SQL or rela-
tional database concepts. It also does not teach you how to use your operating system or command-
line interpreter.

The MySQL Database Software is under constant development, and the Reference Manual is up-
dated frequently as well. The most recent version of the manual is available online in searchable
form at http://dev.mysql.com/doc/. Other formats also are available, including HTML, PDF, and
Windows CHM versions.

The primary document is the Texinfo file. The HTML version is produced automatically using a
modified version of texi2html. The plain text and Info versions are produced with makeinfo. The
PostScript version is produced using texi2dvi and dvips. The PDF version is produced with pdftex.

If you have any suggestions concerning additions or corrections to this manual, please send them to
the documentation team at <docs@mysql.com>.

This manual was initially written by David Axmark and Michael ``Monty'' Widenius. It is main-
tained by the MySQL Documentation Team, consisting of Paul DuBois, Stefan Hinz, Mike Hillyer,
Jon Stephens, and Russell Dyer. For the many other contributors, see Appendix B, Credits.

The copyright (2004) to this manual is owned by the Swedish company MySQL AB. MySQL and
the MySQL logo are (registered) trademarks of MySQL AB. Other trademarks and registered trade-
marks referred to in this manual are the property of their respective owners, and are used for identi-
fication purposes only.

1.1.1. Conventions Used in This Manual
This manual uses certain typographical conventions:

• constant

Constant-width font is used for command names and options; SQL statements; database, table,
and column names; C and Perl code; and environment variables. Example: ``To see how mysql-
admin works, invoke it with the --help option.''

• constant italic

Italic constant-width font is used to indicate variable input for which you should substitute a
value of your own choosing.

• filename

Constant-width font with surrounding quotes is used for filenames and pathnames. Example:
``The distribution is installed under the /usr/local/ directory.''

• 'c'

Constant-width font with surrounding quotes is also used to indicate character sequences. Ex-
ample: ``To specify a wildcard, use the '%' character.''

• italic

Italic font is used for emphasis, like this.

• boldface

Boldface font is used in table headings and to convey especially strong emphasis.

When commands are shown that are meant to be executed from within a particular program, the pro-

General Information

2

http://dev.mysql.com/doc/

gram is indicated by a prompt shown before the command. For example, shell> indicates a com-
mand that you execute from your login shell, and mysql> indicates a statement that you execute
from the mysql client program:

shell> type a shell command here
mysql> type a mysql statement here

The ``shell'' is your command interpreter. On Unix, this is typically a program such as sh or csh. On
Windows, the equivalent program is command.com or cmd.exe, typically run in a console window.

When you enter a command or statement shown in an example, do not type the prompt shown in the
example.

Database, table, and column names must often be substituted into statements. To indicate that such
substitution is necessary, this manual uses db_name, tbl_name, and col_name. For example,
you might see a statement like this:

mysql> SELECT col_name FROM db_name.tbl_name;

This means that if you were to enter a similar statement, you would supply your own database, ta-
ble, and column names, perhaps like this:

mysql> SELECT author_name FROM biblio_db.author_list;

SQL keywords are not case sensitive and may be written in uppercase or lowercase. This manual
uses uppercase.

In syntax descriptions, square brackets ('[' and ']') are used to indicate optional words or clauses.
For example, in the following statement, IF EXISTS is optional:

DROP TABLE [IF EXISTS] tbl_name

When a syntax element consists of a number of alternatives, the alternatives are separated by vertic-
al bars ('|'). When one member from a set of choices may be chosen, the alternatives are listed with-
in square brackets ('[' and ']'):

TRIM([[BOTH | LEADING | TRAILING] [remstr] FROM] str)

When one member from a set of choices must be chosen, the alternatives are listed within braces ('{'
and '}'):

{DESCRIBE | DESC} tbl_name [col_name | wild]

An ellipsis (...) indicates the omission of a section of a statement, typically to provide a shorter
version of more complex syntax. For example, INSERT ... SELECT is shorthand for the form
of INSERT statement that is followed by a SELECT statement.

An ellipsis can also indicate that the preceding syntax element of a statement may be repeated. In
the following example, multiple reset_option values may be given, with each of those after the
first preceded by commas:

RESET reset_option [,reset_option] ...

Commands for setting shell variables are shown using Bourne shell syntax. For example, the se-
quence to set an environment variable and run a command looks like this in Bourne shell syntax:

shell> VARNAME=value some_command

General Information

3

If you are using csh or tcsh, you must issue commands somewhat differently. You would execute
the sequence just shown like this:

shell> setenv VARNAME value
shell> some_command

1.2. Overview of the MySQL Database Man-
agement System

MySQL, the most popular Open Source SQL database management system, is developed, distrib-
uted, and supported by MySQL AB. MySQL AB is a commercial company, founded by the MySQL
developers. It is a second generation Open Source company that unites Open Source values and
methodology with a successful business model.

The MySQL Web site (http://www.mysql.com/) provides the latest information about MySQL soft-
ware and MySQL AB.

• MySQL is a database management system.

A database is a structured collection of data. It may be anything from a simple shopping list to a
picture gallery or the vast amounts of information in a corporate network. To add, access, and
process data stored in a computer database, you need a database management system such as
MySQL Server. Since computers are very good at handling large amounts of data, database
management systems play a central role in computing, as standalone utilities or as parts of other
applications.

• MySQL is a relational database management system.

A relational database stores data in separate tables rather than putting all the data in one big stor-
eroom. This adds speed and flexibility. The SQL part of ``MySQL'' stands for ``Structured
Query Language.'' SQL is the most common standardized language used to access databases and
is defined by the ANSI/ISO SQL Standard. The SQL standard has been evolving since 1986 and
several versions exist. In this manual, ``SQL-92'' refers to the standard released in 1992,
``SQL:1999'' refers to the standard released in 1999, and ``SQL:2003'' refers to the current ver-
sion of the standard. We use the phrase ``the SQL standard'' to mean the current version of the
SQL Standard at any time.

• MySQL software is Open Source.

Open Source means that it is possible for anyone to use and modify the software. Anybody can
download the MySQL software from the Internet and use it without paying anything. If you
wish, you may study the source code and change it to suit your needs. The MySQL software
uses the GPL (GNU General Public License), http://www.fsf.org/licenses/, to define what you
may and may not do with the software in different situations. If you feel uncomfortable with the
GPL or need to embed MySQL code into a commercial application, you can buy a commercially
licensed version from us. See the MySQL Licensing Overview for more information (ht-
tp://www.mysql.com/company/legal/licensing/).

• The MySQL Database Server is very fast, reliable, and easy to use.

If that is what you are looking for, you should give it a try. MySQL Server also has a practical
set of features developed in close cooperation with our users. You can find a performance com-
parison of MySQL Server with other database managers on our benchmark page. See Sec-
tion 7.1.4, “The MySQL Benchmark Suite”.

MySQL Server was originally developed to handle large databases much faster than existing
solutions and has been successfully used in highly demanding production environments for sev-
eral years. Although under constant development, MySQL Server today offers a rich and useful
set of functions. Its connectivity, speed, and security make MySQL Server highly suited for ac-

General Information

4

http://www.mysql.com/
http://www.fsf.org/licenses/
http://www.mysql.com/company/legal/licensing/
http://www.mysql.com/company/legal/licensing/

cessing databases on the Internet.

• MySQL Server works in client/server or embedded systems.

The MySQL Database Software is a client/server system that consists of a multi-threaded SQL
server that supports different backends, several different client programs and libraries, adminis-
trative tools, and a wide range of application programming interfaces (APIs).

We also provide MySQL Server as an embedded multi-threaded library that you can link into
your application to get a smaller, faster, easier-to-manage product.

• A large amount of contributed MySQL software is available.

It is very likely that your favorite application or language supports the MySQL Database Server.

The official way to pronounce ``MySQL'' is ``My Ess Que Ell'' (not ``my sequel''), but we don't
mind if you pronounce it as ``my sequel'' or in some other localized way.

1.2.1. History of MySQL
We started out with the intention of using mSQL to connect to our tables using our own fast low-
level (ISAM) routines. However, after some testing, we came to the conclusion that mSQL was not
fast enough or flexible enough for our needs. This resulted in a new SQL interface to our database
but with almost the same API interface as mSQL. This API was designed to allow third-party code
that was written for use with mSQL to be ported easily for use with MySQL.

The derivation of the name MySQL is not clear. Our base directory and a large number of our librar-
ies and tools have had the prefix ``my'' for well over 10 years. However, co-founder Monty Wideni-
us's daughter is also named My. Which of the two gave its name to MySQL is still a mystery, even
for us.

The name of the MySQL Dolphin (our logo) is ``Sakila,'' which was chosen by the founders of
MySQL AB from a huge list of names suggested by users in our ``Name the Dolphin'' contest. The
winning name was submitted by Ambrose Twebaze, an Open Source software developer from
Swaziland, Africa. According to Ambrose, the name Sakila has its roots in SiSwati, the local lan-
guage of Swaziland. Sakila is also the name of a town in Arusha, Tanzania, near Ambrose's country
of origin, Uganda.

1.2.2. The Main Features of MySQL
The following list describes some of the important characteristics of the MySQL Database Software.
See also Section 1.3, “MySQL Development Roadmap” for more information about current and up-
coming features.

• Internals and Portability

• Written in C and C++.

• Tested with a broad range of different compilers.

• Works on many different platforms. See Section 2.1.1, “Operating Systems Supported by
MySQL”.

• Uses GNU Automake, Autoconf, and Libtool for portability.

• APIs for C, C++, Eiffel, Java, Perl, PHP, Python, Ruby, and Tcl are available. See
Chapter 22, MySQL APIs.

• Fully multi-threaded using kernel threads. It can easily use multiple CPUs if they are avail-

General Information

5

able.

• Provides transactional and non-transactional storage engines.

• Uses very fast B-tree disk tables (MyISAM) with index compression.

• Relatively easy to add another storage engine. This is useful if you want to add an SQL in-
terface to an in-house database.

• A very fast thread-based memory allocation system.

• Very fast joins using an optimized one-sweep multi-join.

• In-memory hash tables, which are used as temporary tables.

• SQL functions are implemented using a highly optimized class library and should be as fast
as possible. Usually there is no memory allocation at all after query initialization.

• The MySQL code is tested with Purify (a commercial memory leakage detector) as well as
with Valgrind, a GPL tool (http://developer.kde.org/~sewardj/).

• The server is available as a separate program for use in a client/server networked environ-
ment. It is also available as a library that can be embedded (linked) into standalone applica-
tions. Such applications can be used in isolation or in environments where no network is
available.

• Column Types

• Many column types: signed/unsigned integers 1, 2, 3, 4, and 8 bytes long, FLOAT, DOUBLE,
CHAR, VARCHAR, TEXT, BLOB, DATE, TIME, DATETIME, TIMESTAMP, YEAR, SET,
ENUM, and OpenGIS spatial types. See Chapter 11, Column Types.

• Fixed-length and variable-length records.

• Statements and Functions

• Full operator and function support in the SELECT and WHERE clauses of queries. For ex-
ample:

mysql> SELECT CONCAT(first_name, ' ', last_name)
-> FROM citizen
-> WHERE income/dependents > 10000 AND age > 30;

• Full support for SQL GROUP BY and ORDER BY clauses. Support for group functions
(COUNT(), COUNT(DISTINCT ...), AVG(), STD(), SUM(), MAX(), MIN(), and
GROUP_CONCAT()).

• Support for LEFT OUTER JOIN and RIGHT OUTER JOIN with both standard SQL and
ODBC syntax.

• Support for aliases on tables and columns as required by standard SQL.

• DELETE, INSERT, REPLACE, and UPDATE return the number of rows that were changed
(affected). It is possible to return the number of rows matched instead by setting a flag when
connecting to the server.

• The MySQL-specific SHOW command can be used to retrieve information about databases,
tables, and indexes. The EXPLAIN command can be used to determine how the optimizer
resolves a query.

• Function names do not clash with table or column names. For example, ABS is a valid
column name. The only restriction is that for a function call, no spaces are allowed between

General Information

6

http://developer.kde.org/~sewardj/

the function name and the '(' that follows it. See Section 9.6, “Treatment of Reserved Words
in MySQL”.

• You can mix tables from different databases in the same query (as of MySQL 3.22).

• Security

• A privilege and password system that is very flexible and secure, and that allows host-based
verification. Passwords are secure because all password traffic is encrypted when you con-
nect to a server.

• Scalability and Limits

• Handles large databases. We use MySQL Server with databases that contain 50 million re-
cords. We also know of users who use MySQL Server with 60,000 tables and about
5,000,000,000 rows.

• Up to 64 indexes per table are allowed (32 before MySQL 4.1.2). Each index may consist of
1 to 16 columns or parts of columns. The maximum index width is 1000 bytes (500 before
MySQL 4.1.2). An index may use a prefix of a column for CHAR, VARCHAR, BLOB, or
TEXT column types.

• Connectivity

• Clients can connect to the MySQL server using TCP/IP sockets on any platform. On Win-
dows systems in the NT family (NT, 2000, XP, or 2003), clients can connect using named
pipes. On Unix systems, clients can connect using Unix domain socket files.

• In MySQL versions 4.1 and higher, Windows servers also support shared-memory connec-
tions if started with the --shared-memory option. Clients can connect through shared
memory by using the --protocol=memory option.

• The Connector/ODBC (MyODBC) interface provides MySQL support for client programs
that use ODBC (Open Database Connectivity) connections. For example, you can use MS
Access to connect to your MySQL server. Clients can be run on Windows or Unix. MyOD-
BC source is available. All ODBC 2.5 functions are supported, as are many others. See Sec-
tion 23.1, “MySQL ODBC Support”.

• The Connector/J interface provides MySQL support for Java client programs that use JDBC
connections. Clients can be run on Windows or Unix. Connector/J source is available. See
Section 23.2, “MySQL Java Connectivity (JDBC)”.

• Localization

• The server can provide error messages to clients in many languages. See Section 5.8.2,
“Setting the Error Message Language”.

• Full support for several different character sets, including latin1 (ISO-8859-1), german,
big5, ujis, and more. For example, the Scandinavian characters 'â', 'ä' and 'ö' are allowed
in table and column names. Unicode support is available as of MySQL 4.1.

• All data is saved in the chosen character set. All comparisons for normal string columns are
case-insensitive.

• Sorting is done according to the chosen character set (using Swedish collation by default). It
is possible to change this when the MySQL server is started. To see an example of very ad-
vanced sorting, look at the Czech sorting code. MySQL Server supports many different char-
acter sets that can be specified at compile time and runtime.

• Clients and Tools

• The MySQL server has built-in support for SQL statements to check, optimize, and repair
tables. These statements are available from the command line through the mysqlcheck cli-

General Information

7

ent. MySQL also includes myisamchk, a very fast command-line utility for performing
these operations on MyISAM tables. See Chapter 5, Database Administration.

• All MySQL programs can be invoked with the --help or -? options to obtain online as-
sistance.

1.2.3. MySQL Stability
This section addresses the questions, ``How stable is MySQL Server?'' and, ``Can I depend on
MySQL Server in this project?'' We will try to clarify these issues and answer some important ques-
tions that concern many potential users. The information in this section is based on data gathered
from the mailing lists, which are very active in identifying problems as well as reporting types of
use.

The original code stems back to the early 1980s. It provides a stable code base, and the ISAM table
format used by the original storage engine remains backward-compatible. At TcX, the predecessor
of MySQL AB, MySQL code has worked in projects since mid-1996, without any problems. When
the MySQL Database Software initially was released to a wider public, our new users quickly found
some pieces of untested code. Each new release since then has had fewer portability problems, even
though each new release has also had many new features.

Each release of the MySQL Server has been usable. Problems have occurred only when users try
code from the ``gray zones.'' Naturally, new users don't know what the gray zones are; this section
therefore attempts to document those areas that are currently known. The descriptions mostly deal
with Version 3.23, 4.0 and 4.1 of MySQL Server. All known and reported bugs are fixed in the
latest version, with the exception of those listed in the bugs section, which are design-related. See
Section 1.5.7, “Known Errors and Design Deficiencies in MySQL”.

The MySQL Server design is multi-layered with independent modules. Some of the newer modules
are listed here with an indication of how well-tested each of them is:

• Replication (Stable)

Large groups of servers using replication are in production use, with good results. Work on en-
hanced replication features is continuing in MySQL 5.x.

• InnoDB tables (Stable)

The InnoDB transactional storage engine has been declared stable in the MySQL 3.23 tree,
starting from version 3.23.49. InnoDB is being used in large, heavy-load production systems.

• BDB tables (Stable)

The Berkeley DB code is very stable, but we are still improving the BDB transactional stor-
age engine interface in MySQL Server.

• Full-text searches (Stable)

Full-text searching is widely used. Important feature enhancements were added in MySQL 4.0
and 4.1.

• MyODBC 3.51 (Stable)

MyODBC 3.51 uses ODBC SDK 3.51 and is in wide production use. Some issues brought up ap-
pear to be application-related and independent of the ODBC driver or underlying database serv-
er.

1.2.4. How Big MySQL Tables Can Be

General Information

8

MySQL 3.22 had a 4GB (4 gigabyte) limit on table size. With the MyISAM storage engine in
MySQL 3.23, the maximum table size was increased to 8 million terabytes (2 ^ 63 bytes). With this
larger allowed table size, the maximum effective table size for MySQL databases is usually determ-
ined by operating system constraints on file sizes, not by MySQL internal limits.

The InnoDB storage engine maintains InnoDB tables within a tablespace that can be created from
several files. This allows a table to exceed the maximum individual file size. The tablespace can in-
clude raw disk partitions, which allows extremely large tables. The maximum tablespace size is
64TB.

The following table lists some examples of operating system file-size limits. This is only a rough
guide and is not intended to be definitive. For the most up-to-date information, be sure to check the
documentation specific to your operating system.

Operating System File-size Limit

Linux 2.2-Intel 32-bit 2GB (LFS: 4GB)

Linux 2.4 (using ext3 filesystem) 4TB

Solaris 9/10 16TB

NetWare w/NSS filesystem 8TB

win32 w/ FAT/FAT32 2GB/4GB

win32 w/ NTFS 2TB (possibly larger)

MacOS X w/ HFS+ 2TB

On Linux 2.2, you can get MyISAM tables larger than 2GB in size by using the Large File Support
(LFS) patch for the ext2 filesystem. On Linux 2.4, patches also exist for ReiserFS to get support for
big files (up to 2TB). Most current Linux distributions are based on kernel 2.4 and include all the re-
quired LFS patches. With JFS and XFS, petabyte and larger files are possible on Linux. However,
the maximum available file size still depends on several factors, one of them being the filesystem
used to store MySQL tables.

For a detailed overview about LFS in Linux, have a look at Andreas Jaeger's Large File Support in
Linux page at http://www.suse.de/~aj/linux_lfs.html.

Windows users please note: FAT and VFAT (FAT32) are not considered suitable for production use
with MySQL. Use NTFS instead.

By default, MySQL creates MyISAM tables with an internal structure that allows a maximum size of
about 4GB. You can check the maximum table size for a table with the SHOW TABLE STATUS
statement or with myisamchk -dv tbl_name. See Section 13.5.4, “SHOW Syntax”.

If you need a MyISAM table that is larger than 4GB in size (and your operating system supports
large files), the CREATE TABLE statement allows AVG_ROW_LENGTH and MAX_ROWS options.
See Section 13.2.6, “CREATE TABLE Syntax”. You can also change these options with ALTER
TABLE after the table has been created, to increase the table's maximum allowable size. See Sec-
tion 13.2.2, “ALTER TABLE Syntax”.

Other ways to work around file-size limits for MyISAM tables are as follows:

• If your large table is read-only, you can use myisampack to compress it. myisampack usually
compresses a table by at least 50%, so you can have, in effect, much bigger tables. myisampack
also can merge multiple tables into a single table. See Section 8.2, “myisampack, the MySQL
Compressed Read-only Table Generator”.

• Another way to get around the operating system file limit for MyISAM data files is by using the
RAID options. See Section 13.2.6, “CREATE TABLE Syntax”.

• MySQL includes a MERGE library that allows you to handle a collection of MyISAM tables that
have identical structure as a single MERGE table. See Section 14.2, “The MERGE Storage En-

General Information

9

http://www.suse.de/~aj/linux_lfs.html

gine”.

1.2.5. Year 2000 Compliance
The MySQL Server itself has no problems with Year 2000 (Y2K) compliance:

• MySQL Server uses Unix time functions that handle dates into the year 2037 for TIMESTAMP
values. For DATE and DATETIME values, dates through the year 9999 are accepted.

• All MySQL date functions are implemented in one source file, sql/time.cc, and are coded
very carefully to be year 2000-safe.

• In MySQL 3.22 and later, the YEAR column type can store years 0 and 1901 to 2155 in one
byte and display them using two or four digits. All two-digit years are considered to be in the
range 1970 to 2069, which means that if you store 01 in a YEAR column, MySQL Server
treats it as 2001.

The following simple demonstration illustrates that MySQL Server has no problems with DATE or
DATETIME values through the year 9999, and no problems with TIMESTAMP values until after the
year 2030:

mysql> DROP TABLE IF EXISTS y2k;
Query OK, 0 rows affected (0.01 sec)
mysql> CREATE TABLE y2k (date DATE,

-> date_time DATETIME,
-> time_stamp TIMESTAMP);

Query OK, 0 rows affected (0.01 sec)
mysql> INSERT INTO y2k VALUES

-> ('1998-12-31','1998-12-31 23:59:59',19981231235959),
-> ('1999-01-01','1999-01-01 00:00:00',19990101000000),
-> ('1999-09-09','1999-09-09 23:59:59',19990909235959),
-> ('2000-01-01','2000-01-01 00:00:00',20000101000000),
-> ('2000-02-28','2000-02-28 00:00:00',20000228000000),
-> ('2000-02-29','2000-02-29 00:00:00',20000229000000),
-> ('2000-03-01','2000-03-01 00:00:00',20000301000000),
-> ('2000-12-31','2000-12-31 23:59:59',20001231235959),
-> ('2001-01-01','2001-01-01 00:00:00',20010101000000),
-> ('2004-12-31','2004-12-31 23:59:59',20041231235959),
-> ('2005-01-01','2005-01-01 00:00:00',20050101000000),
-> ('2030-01-01','2030-01-01 00:00:00',20300101000000),
-> ('2040-01-01','2040-01-01 00:00:00',20400101000000),
-> ('9999-12-31','9999-12-31 23:59:59',99991231235959);

Query OK, 14 rows affected (0.01 sec)
Records: 14 Duplicates: 0 Warnings: 2
mysql> SELECT * FROM y2k;
+------------+---------------------+----------------+
| date | date_time | time_stamp |
+------------+---------------------+----------------+
1998-12-31	1998-12-31 23:59:59	19981231235959
1999-01-01	1999-01-01 00:00:00	19990101000000
1999-09-09	1999-09-09 23:59:59	19990909235959
2000-01-01	2000-01-01 00:00:00	20000101000000
2000-02-28	2000-02-28 00:00:00	20000228000000
2000-02-29	2000-02-29 00:00:00	20000229000000
2000-03-01	2000-03-01 00:00:00	20000301000000
2000-12-31	2000-12-31 23:59:59	20001231235959
2001-01-01	2001-01-01 00:00:00	20010101000000
2004-12-31	2004-12-31 23:59:59	20041231235959
2005-01-01	2005-01-01 00:00:00	20050101000000
2030-01-01	2030-01-01 00:00:00	20300101000000
2040-01-01	2040-01-01 00:00:00	00000000000000
9999-12-31	9999-12-31 23:59:59	00000000000000
+------------+---------------------+----------------+

General Information

10

14 rows in set (0.00 sec)

The final two TIMESTAMP column values are zero because the year values (2040, 9999) exceed
the TIMESTAMP maximum. The TIMESTAMP data type, which is used to store the current time,
supports values that range from 19700101000000 to 20300101000000 on 32-bit machines
(signed value). On 64-bit machines, TIMESTAMP handles values up to 2106 (unsigned value).

Although MySQL Server itself is Y2K-safe, you may run into problems if you use it with applica-
tions that are not Y2K-safe. For example, many old applications store or manipulate years using
two-digit values (which are ambiguous) rather than four-digit values. This problem may be com-
pounded by applications that use values such as 00 or 99 as ``missing'' value indicators. Unfortu-
nately, these problems may be difficult to fix because different applications may be written by dif-
ferent programmers, each of whom may use a different set of conventions and date-handling func-
tions.

Thus, even though MySQL Server has no Y2K problems, it is the application's responsibility to
provide unambiguous input. See Section 11.3.4, “Y2K Issues and Date Types” for MySQL Server's
rules for dealing with ambiguous date input data that contains two-digit year values.

1.3. MySQL Development Roadmap
This section provides a snapshot of the MySQL development roadmap, including major features im-
plemented or planned for MySQL 4.0, 4.1, 5.0, and 5.1. The following sections provide information
for each release series.

The current production release series is MySQL 4.1, which was declared stable for production use
as of Version 4.1.7, released in October 2004. The previous production release series is MySQL 4.0,
which was declared stable for production use as of Version 4.0.12, released in March 2003. Produc-
tion status means that future 4.1 and 4.0 development is limited only to bugfixes. For the older
MySQL 3.23 series, only critical bugfixes are made.

Active MySQL development currently is taking place in the MySQL 5.0 release series, this means
that new features are being added there. MySQL 5.0 is available in alpha status.

Before upgrading from one release series to the next, please see the notes at Section 2.10,
“Upgrading MySQL”.

Plans for some of the most requested features are summarized in the following table.

Feature MySQL Series

Unions 4.0

Subqueries 4.1

R-trees 4.1 (for MyISAM tables)

Stored procedures 5.0

Views 5.0

Cursors 5.0

Foreign keys 5.1 (implemented in 3.23 for InnoDB)

Triggers 5.0 and 5.1

Full outer join 5.1

Constraints 5.1

1.3.1. MySQL 4.0 in a Nutshell
MySQL Server 4.0 is available in production status.

General Information

11

MySQL 4.0 is available for download at http://dev.mysql.com/ and from our mirrors. MySQL 4.0
has been tested by a large number of users and is in production use at many large sites.

The major new features of MySQL Server 4.0 are geared toward our existing business and com-
munity users, enhancing the MySQL database software as the solution for mission-critical, heavy-
load database systems. Other new features target the users of embedded databases.

1.3.1.1. Features Available in MySQL 4.0

• Speed enhancements

• MySQL 4.0 has a query cache that can give a huge speed boost to applications with repetit-
ive queries. See Section 5.11, “The MySQL Query Cache”.

• Version 4.0 further increases the speed of MySQL Server in a number of areas, such as bulk
INSERT statements, searching on packed indexes, full-text searching (using FULLTEXT in-
dexes), and COUNT(DISTINCT).

• Embedded MySQL Server introduced

• The new Embedded Server library can easily be used to create standalone and embedded ap-
plications. The embedded server provides an alternative to using MySQL in a client/server
environment. See Section 1.3.1.2, “The Embedded MySQL Server”.

• InnoDB storage engine as standard

• The InnoDB storage engine is offered as a standard feature of the MySQL server. This
means full support for ACID transactions, foreign keys with cascading UPDATE and DE-
LETE, and row-level locking are standard features. See Chapter 15, The InnoDB Storage
Engine.

• New functionality

• The enhanced FULLTEXT search properties of MySQL Server 4.0 enables FULLTEXT in-
dexing of large text masses with both binary and natural-language searching logic. You can
customize minimal word length and define your own stop word lists in any human language,
enabling a new set of applications to be built with MySQL Server. See Section 12.6,
“Full-Text Search Functions”.

• Standards compliance, portability, and migration

• MySQL Server supports the UNION statement, a standard SQL feature.

• MySQL runs natively on Novell NetWare 6.0 and higher. See Section 2.6, “Installing
MySQL on NetWare”.

• Features to simplify migration from other database systems to MySQL Server include
TRUNCATE TABLE (as in Oracle).

• Internationalization

• Our German, Austrian, and Swiss users should note that MySQL 4.0 supports a new charac-
ter set, latin1_de, which ensures that the German sorting order sorts words with umlauts
in the same order as do German telephone books.

• Usability enhancements

In the process of implementing features for new users, we have not forgotten requests from our
loyal community of existing users.

• Most mysqld parameters (startup options) can be set without taking down the server. This is

General Information

12

http://dev.mysql.com/

a convenient feature for database administrators (DBAs). See Section 13.5.3, “SET Syntax”.

• Multiple-table DELETE and UPDATE statements have been added.

• On Windows, symbolic link handling at the database level is enabled by default. On Unix,
the MyISAM storage engine supports symbolic linking at the table level (and not just the
database level as before).

• SQL_CALC_FOUND_ROWS and FOUND_ROWS() are new functions that make it possible
to find out the number of rows a SELECT query that includes a LIMIT clause would have
returned without that clause.

The news section of this manual includes a more in-depth list of features. See Section D.3,
“Changes in release 4.0.x (Production)”.

1.3.1.2. The Embedded MySQL Server

The libmysqld embedded server library makes MySQL Server suitable for a vastly expanded
realm of applications. By using this library, developers can embed MySQL Server into various ap-
plications and electronics devices, where the end user has no knowledge of there actually being an
underlying database. Embedded MySQL Server is ideal for use behind the scenes in Internet appli-
ances, public kiosks, turnkey hardware/software combination units, high performance Internet serv-
ers, self-contained databases distributed on CD-ROM, and so on.

Many users of libmysqld benefit from the MySQL Dual Licensing. For those not wishing to be
bound by the GPL, the software is also made available under a commercial license. See ht-
tp://www.mysql.com/company/legal/licensing/ for more information on the licensing policy of
MySQL AB. The embedded MySQL library uses the same interface as the normal client library, so
it is convenient and easy to use. See Section 22.2.16, “libmysqld, the Embedded MySQL Server
Library”.

On Windows there are two different libraries:

libmysqld.lib Dynamic library for threaded applications.

mysqldemb.lib Static library for not threaded applications.

1.3.2. MySQL 4.1 in a Nutshell
MySQL Server 4.0 laid the foundation for new features implemented in MySQL 4.1, such as sub-
queries and Unicode support, and for the work on stored procedures being done in version 5.0.
These features come at the top of the wish list of many of our customers. Well-known for its stabil-
ity, speed, and ease of use, MySQL Server is able to fulfill the requirement checklists of very de-
manding buyers.

MySQL Server 4.1 is currently in production status, and binaries are available for download at ht-
tp://dev.mysql.com/downloads/mysql/4.1.html. All binary releases pass our extensive test suite
without any errors on the platforms on which we test. See Section D.2, “Changes in release 4.1.x
(Production)”.

For those wishing to use the most recent development source for MySQL 4.1, we also make our Bit-
Keeper repositories publicly available. See Section 2.8.3, “Installing from the Development Source
Tree”.

1.3.2.1. Features Available in MySQL 4.1

This section lists features implemented in MySQL 4.1. Features that are available in MySQL 5.0 are
described in Section C.1, “New Features Planned for 5.0”.

General Information

13

http://www.mysql.com/company/legal/licensing/
http://www.mysql.com/company/legal/licensing/
http://dev.mysql.com/downloads/mysql/4.1.html
http://dev.mysql.com/downloads/mysql/4.1.html

• Support for subqueries and derived tables

• A ``subquery'' is a SELECT statement nested within another statement. A ``derived table''
(an unnamed view) is a subquery in the FROM clause of another statement. See Sec-
tion 13.1.8, “Subquery Syntax”.

• Speed enhancements

• Faster binary client/server protocol with support for prepared statements and parameter bind-
ing. See Section 22.2.4, “C API Prepared Statements”.

• BTREE indexing is supported for HEAP tables, significantly improving response time for
non-exact searches.

• New functionality

• CREATE TABLE tbl_name2 LIKE tbl_name1 allows you to create, with a single
statement, a new table with a structure exactly like that of an existing table.

• The MyISAM storage engine supports OpenGIS spatial types for storing geographical data.
See Chapter 18, Spatial Extensions in MySQL.

• Replication can be done over SSL connections.

• Standards compliance, portability, and migration

• The new client/server protocol adds the ability to pass multiple warnings to the client, rather
than only a single result. This makes it much easier to track problems that occur in opera-
tions such as bulk data loading.

• SHOW WARNINGS shows warnings for the last command. See Section 13.5.4.20, “SHOW
WARNINGS Syntax”.

• Internationalization and Localization

• To support applications that require the use of local languages, the MySQL software offers
extensive Unicode support through the utf8 and ucs2 character sets.

• Character sets can be defined per column, table, and database. This allows for a high degree
of flexibility in application design, particularly for multi-language Web sites.

• For documentation for this improved character set support, see Chapter 10, Character Set
Support.

• Per-connection time zones are supported, allowing individual clients to select their own time
zone when necessary.

• Usability enhancements

• In response to popular demand, we have added a server-based HELP command that can be
used to get help information for SQL statements. The advantage of having this information
on the server side is that the information is always applicable to the particular server version
that you actually are using. Because this information is available by issuing an SQL state-
ment, any client can be written to access it. For example, the help command of the mysql
command-line client has been modified to have this capability.

• In the new client/server protocol, multiple statements can be issued with a single call. See
Section 22.2.9, “C API Handling of Multiple Query Execution”.

• The new client/server protocol also supports returning multiple result sets. This might occur
as a result of sending multiple statements, for example.

• A new INSERT ... ON DUPLICATE KEY UPDATE ... syntax has been implemen-
ted. This allows you to UPDATE an existing row if the INSERT would have caused a duplic-

General Information

14

ate in a PRIMARY or UNIQUE index. See Section 13.1.4, “INSERT Syntax”.

• A new aggregate function, GROUP_CONCAT() adds the extremely useful capability of con-
catenating column values from grouped rows into a single result string. See Section 12.9,
“Functions and Modifiers for Use with GROUP BY Clauses”.

The news section of this manual includes a more in-depth list of features. See Section D.2,
“Changes in release 4.1.x (Production)”.

1.3.3. MySQL 5.0: The Next Development Release
New development for MySQL is focused on the 5.0 release, featuring stored procedures, views
(including updatable views), rudimentary triggers, and other new features. See Section C.1, “New
Features Planned for 5.0”.

For those wishing to take a look at the bleeding edge of MySQL development, we make our Bit-
Keeper repository for MySQL version 5.0 publicly available. See Section 2.8.3, “Installing from the
Development Source Tree”. As of December 2003, binary builds of version 5.0 have also been
available.

1.4. MySQL Information Sources
1.4.1. MySQL Mailing Lists

This section introduces the MySQL mailing lists and provides guidelines as to how the lists should
be used. When you subscribe to a mailing list, you receive all postings to the list as email messages.
You can also send your own questions and answers to the list.

1.4.1.1. The MySQL Mailing Lists

To subscribe to or unsubscribe from any of the mailing lists described in this section, visit ht-
tp://lists.mysql.com/. For most of them, you can select the regular version of the list where you get
individual messages, or a digest version where you get one large message per day.

Please do not send messages about subscribing or unsubscribing to any of the mailing lists, because
such messages are distributed automatically to thousands of other users.

Your local site may have many subscribers to a MySQL mailing list. If so, the site may have a local
mailing list, so that messages sent from lists.mysql.com to your site are propagated to the loc-
al list. In such cases, please contact your system administrator to be added to or dropped from the
local MySQL list.

If you wish to have traffic for a mailing list go to a separate mailbox in your mail program, set up a
filter based on the message headers. You can use either the List-ID: or Delivered-To: head-
ers to identify list messages.

The MySQL mailing lists are as follows:

• announce

This list is for announcements of new versions of MySQL and related programs. This is a low-
volume list to which all MySQL users should subscribe.

• mysql

This is the main list for general MySQL discussion. Please note that some topics are better dis-
cussed on the more-specialized lists. If you post to the wrong list, you may not get an answer.

General Information

15

http://lists.mysql.com/
http://lists.mysql.com/

• bugs

This list is for people who want to stay informed about issues reported since the last release of
MySQL or who want to be actively involved in the process of bug hunting and fixing. See Sec-
tion 1.4.1.3, “How to Report Bugs or Problems”.

• internals

This list is for people who work on the MySQL code. This is also the forum for discussions on
MySQL development and for posting patches.

• mysqldoc

This list is for people who work on the MySQL documentation: people from MySQL AB, trans-
lators, and other community members.

• benchmarks

This list is for anyone interested in performance issues. Discussions concentrate on database per-
formance (not limited to MySQL), but also include broader categories such as performance of
the kernel, filesystem, disk system, and so on.

• packagers

This list is for discussions on packaging and distributing MySQL. This is the forum used by dis-
tribution maintainers to exchange ideas on packaging MySQL and on ensuring that MySQL
looks and feels as similar as possible on all supported platforms and operating systems.

• java

This list is for discussions about the MySQL server and Java. It is mostly used to discuss JDBC
drivers, including MySQL Connector/J.

• win32

This list is for all topics concerning the MySQL software on Microsoft operating systems, such
as Windows 9x, Me, NT, 2000, XP, and 2003.

• myodbc

This list is for all topics concerning connecting to the MySQL server with ODBC.

• gui-tools

This list is for all topics concerning MySQL GUI tools, including MySQL Administrator
and the MySQL Control Center graphical client.

• cluster

This list is for discussion of MySQL Cluster.

• dotnet

This list is for discussion of the MySQL server and the .NET platform. Mostly related to the
MySQL Connector/Net provider.

• plusplus

This list is for all topics concerning programming with the C++ API for MySQL.

• perl

This list is for all topics concerning the Perl support for MySQL with DBD::mysql.

General Information

16

If you're unable to get an answer to your questions from a MySQL mailing list, one option is to pur-
chase support from MySQL AB. This puts you in direct contact with MySQL developers.

The following table shows some MySQL mailing lists in languages other than English. These lists
are not operated by MySQL AB.

• <mysql-france-subscribe@yahoogroups.com>

A French mailing list.

• <list@tinc.net>

A Korean mailing list. Email subscribe mysql your@email.address to this list.

• <mysql-de-request@lists.4t2.com>

A German mailing list. Email subscribe mysql-de your@email.address to this list.
You can find information about this mailing list at http://www.4t2.com/mysql/.

• <mysql-br-request@listas.linkway.com.br>

A Portuguese mailing list. Email subscribe mysql-br your@email.address to this
list.

• <mysql-alta@elistas.net>

A Spanish mailing list. Email subscribe mysql your@email.address to this list.

1.4.1.2. Asking Questions or Reporting Bugs

Before posting a bug report or question, please do the following:

• Start by searching the MySQL online manual at http://dev.mysql.com/doc/. We try to keep the
manual up to date by updating it frequently with solutions to newly found problems. The change
history (http://dev.mysql.com/doc/mysql/en/News.html) can be particularly useful since it is
quite possible that a newer version contains a solution to your problem.

• Search in the bugs database at http://bugs.mysql.com/ to see whether the bug has been reported
and fixed.

• Search the MySQL mailing list archives at http://lists.mysql.com/.

• You can also use http://www.mysql.com/search/ to search all the Web pages (including the
manual) that are located at the MySQL AB Web site.

If you can't find an answer in the manual or the archives, check with your local MySQL expert. If
you still can't find an answer to your question, please follow the guidelines on sending mail to a
MySQL mailing list, outlined in the next section, before contacting us.

1.4.1.3. How to Report Bugs or Problems

The normal place to report bugs is http://bugs.mysql.com/, which is the address for our bugs data-
base. This database is public, and can be browsed and searched by anyone. If you log in to the sys-
tem, you can enter new reports.

Writing a good bug report takes patience, but doing it right the first time saves time both for us and
for yourself. A good bug report, containing a full test case for the bug, makes it very likely that we
will fix the bug in the next release. This section helps you write your report correctly so that you
don't waste your time doing things that may not help us much or at all.

General Information

17

http://www.4t2.com/mysql/
http://dev.mysql.com/doc/
http://dev.mysql.com/doc/mysql/en/News.html
http://bugs.mysql.com/
http://lists.mysql.com/
http://www.mysql.com/search/
http://bugs.mysql.com/

We encourage everyone to use the mysqlbug script to generate a bug report (or a report about any
problem). mysqlbug can be found in the scripts directory (source distribution) and in the bin
directory under your MySQL installation directory (binary distribution). If you are unable to use
mysqlbug (for example, if you are running on Windows), it is still vital that you include all the ne-
cessary information noted in this section (most importantly, a description of the operating system
and the MySQL version).

The mysqlbug script helps you generate a report by determining much of the following information
automatically, but if something important is missing, please include it with your message. Please
read this section carefully and make sure that all the information described here is included in your
report.

Preferably, you should test the problem using the latest production or development version of
MySQL Server before posting. Anyone should be able to repeat the bug by just using mysql
test < script_file on the included test case or by running the shell or Perl script that is in-
cluded in the bug report.

All bugs posted in the bugs database at http://bugs.mysql.com/ are corrected or documented in the
next MySQL release. If only minor code changes are needed to correct a problem, we may also post
a patch that fixes the problem.

If you have found a sensitive security bug in MySQL, you can send email to
<security@mysql.com>.

If you have a repeatable bug report, please report it to the bugs database at http://bugs.mysql.com/.
Note that even in this case it's good to run the mysqlbug script first to find information about your
system. Any bug that we are able to repeat has a high chance of being fixed in the next MySQL re-
lease.

To report other problems, you can use one of the MySQL mailing lists.

Remember that it is possible for us to respond to a message containing too much information, but
not to one containing too little. People often omit facts because they think they know the cause of a
problem and assume that some details don't matter. A good principle is this: If you are in doubt
about stating something, state it. It is faster and less troublesome to write a couple more lines in
your report than to wait longer for the answer if we must ask you to provide information that was
missing from the initial report.

The most common errors made in bug reports are (a) not including the version number of the
MySQL distribution used, and (b) not fully describing the platform on which the MySQL server is
installed (including the platform type and version number). This is highly relevant information, and
in 99 cases out of 100, the bug report is useless without it. Very often we get questions like, ``Why
doesn't this work for me?'' Then we find that the feature requested wasn't implemented in that
MySQL version, or that a bug described in a report has been fixed in newer MySQL versions.
Sometimes the error is platform-dependent; in such cases, it is next to impossible for us to fix any-
thing without knowing the operating system and the version number of the platform.

If you compiled MySQL from source, remember also to provide information about your compiler, if
it is related to the problem. Often people find bugs in compilers and think the problem is MySQL-re-
lated. Most compilers are under development all the time and become better version by version. To
determine whether your problem depends on your compiler, we need to know what compiler you
use. Note that every compiling problem should be regarded as a bug and reported accordingly.

It is most helpful when a good description of the problem is included in the bug report. That is, give
a good example of everything you did that led to the problem and describe, in exact detail, the prob-
lem itself. The best reports are those that include a full example showing how to reproduce the bug
or problem. See Section E.1.6, “Making a Test Case If You Experience Table Corruption”.

If a program produces an error message, it is very important to include the message in your report. If
we try to search for something from the archives using programs, it is better that the error message
reported exactly matches the one that the program produces. (Even the lettercase should be ob-
served.) You should never try to reproduce from memory what the error message was; instead, copy
and paste the entire message into your report.

General Information

18

http://bugs.mysql.com/
http://bugs.mysql.com/

If you have a problem with Connector/ODBC (MyODBC), please try to generate a trace file and
send it with your report. See Section 23.1.1.9, “How to Report MyODBC Problems or Bugs”.

Please remember that many of the people who read your report do so using an 80-column display.
When generating reports or examples using the mysql command-line tool, you should therefore use
the --vertical option (or the \G statement terminator) for output that would exceed the avail-
able width for such a display (for example, with the EXPLAIN SELECT statement; see the example
later in this section).

Please include the following information in your report:

• The version number of the MySQL distribution you are using (for example, MySQL 4.0.12).
You can find out which version you are running by executing mysqladmin version. The mysql-
admin program can be found in the bin directory under your MySQL installation directory.

• The manufacturer and model of the machine on which you experience the problem.

• The operating system name and version. If you work with Windows, you can usually get the
name and version number by double-clicking your My Computer icon and pulling down the
``Help/About Windows'' menu. For most Unix-like operating systems, you can get this informa-
tion by executing the command uname -a.

• Sometimes the amount of memory (real and virtual) is relevant. If in doubt, include these values.

• If you are using a source distribution of the MySQL software, the name and version number of
the compiler used are needed. If you have a binary distribution, the distribution name is needed.

• If the problem occurs during compilation, include the exact error messages and also a few lines
of context around the offending code in the file where the error occurs.

• If mysqld died, you should also report the query that crashed mysqld. You can usually find this
out by running mysqld with query logging enabled, and then looking in the log after mysqld
crashes See Section E.1.5, “Using Log Files to Find Cause of Errors in mysqld”.

• If a database table is related to the problem, include the output from mysqldump --no-data
db_name tbl_name. This is very easy to do and is a powerful way to get information about
any table in a database. The information helps us create a situation matching the one you have
experienced.

• For speed-related bugs or problems with SELECT statements, you should always include the
output of EXPLAIN SELECT ..., and at least the number of rows that the SELECT state-
ment produces. You should also include the output from SHOW CREATE TABLE tbl_name
for each involved table. The more information you give about your situation, the more likely it is
that someone can help you.

The following is an example of a very good bug report. It should be posted with the mysqlbug
script. The example uses the mysql command-line tool. Note the use of the \G statement termin-
ator for statements whose output width would otherwise exceed that of an 80-column display
device.

mysql> SHOW VARIABLES;
mysql> SHOW COLUMNS FROM ...\G

<output from SHOW COLUMNS>
mysql> EXPLAIN SELECT ...\G

<output from EXPLAIN>
mysql> FLUSH STATUS;
mysql> SELECT ...;

<A short version of the output from SELECT,
including the time taken to run the query>

mysql> SHOW STATUS;
<output from SHOW STATUS>

• If a bug or problem occurs while running mysqld, try to provide an input script that reproduces

General Information

19

the anomaly. This script should include any necessary source files. The more closely the script
can reproduce your situation, the better. If you can make a reproducible test case, you should
post it on http://bugs.mysql.com/ for high-priority treatment.

If you can't provide a script, you should at least include the output from mysqladmin variables
extended-status processlist in your mail to provide some information on how your system is
performing.

• If you can't produce a test case with only a few rows, or if the test table is too big to be mailed to
the mailing list (more than 10 rows), you should dump your tables using mysqldump and create
a README file that describes your problem.

Create a compressed archive of your files using tar and gzip or zip, and use FTP to transfer the
archive to ftp://ftp.mysql.com/pub/mysql/upload/. Then enter the problem into our bugs database
at http://bugs.mysql.com/.

• If you think that the MySQL server produces a strange result from a query, include not only the
result, but also your opinion of what the result should be, and an account describing the basis for
your opinion.

• When giving an example of the problem, it's better to use the variable names, table names, and
so on that exist in your actual situation than to come up with new names. The problem could be
related to the name of a variable or table. These cases are rare, perhaps, but it is better to be safe
than sorry. After all, it should be easier for you to provide an example that uses your actual situ-
ation, and it is by all means better for us. In case you have data that you don't want to show to
others, you can use FTP to transfer it to ftp://ftp.mysql.com/pub/mysql/upload/. If the informa-
tion is really top secret and you don't want to show it even to us, then go ahead and provide an
example using other names, but please regard this as the last choice.

• Include all the options given to the relevant programs, if possible. For example, indicate the op-
tions that you use when you start the mysqld server as well as the options that you use to run
any MySQL client programs. The options to programs such as mysqld and mysql, and to the
configure script, are often keys to answers and are very relevant. It is never a bad idea to include
them. If you use any modules, such as Perl or PHP, please include the version numbers of those
as well.

• If your question is related to the privilege system, please include the output of mysqlaccess, the
output of mysqladmin reload, and all the error messages you get when trying to connect. When
you test your privileges, you should first run mysqlaccess. After this, execute mysqladmin re-
load version and try to connect with the program that gives you trouble. mysqlaccess can be
found in the bin directory under your MySQL installation directory.

• If you have a patch for a bug, do include it. But don't assume that the patch is all we need, or that
we can use it, if you don't provide some necessary information such as test cases showing the
bug that your patch fixes. We might find problems with your patch or we might not understand
it at all; if so, we can't use it.

If we can't verify exactly what the purpose of the patch is, we won't use it. Test cases help us
here. Show that the patch handles all the situations that may occur. If we find a borderline case
(even a rare one) where the patch won't work, it may be useless.

• Guesses about what the bug is, why it occurs, or what it depends on are usually wrong. Even the
MySQL team can't guess such things without first using a debugger to determine the real cause
of a bug.

• Indicate in your bug report that you have checked the reference manual and mail archive so that
others know you have tried to solve the problem yourself.

• If you get a parse error, please check your syntax closely. If you can't find something
wrong with it, it's extremely likely that your current version of MySQL Server doesn't support
the syntax you are using. If you are using the current version and the manual at ht-
tp://dev.mysql.com/doc/ doesn't cover the syntax you are using, MySQL Server doesn't support
your query. In this case, your only options are to implement the syntax yourself or email

General Information

20

http://bugs.mysql.com/
ftp://ftp.mysql.com/pub/mysql/upload/
http://bugs.mysql.com/
ftp://ftp.mysql.com/pub/mysql/upload/
http://dev.mysql.com/doc/
http://dev.mysql.com/doc/

<licensing@mysql.com> and ask for an offer to implement it.

If the manual covers the syntax you are using, but you have an older version of MySQL Server,
you should check the MySQL change history to see when the syntax was implemented. In this
case, you have the option of upgrading to a newer version of MySQL Server. See Appendix D,
MySQL Change History.

• If your problem is that your data appears corrupt or you get errors when you access a particular
table, you should first check and then try to repair your tables with CHECK TABLE and RE-
PAIR TABLE or with myisamchk. See Chapter 5, Database Administration.

If you are running Windows, please verify that lower_case_table_names is 1 or 2 with
SHOW VARIABLES LIKE 'lower_case_table_names'.

• If you often get corrupted tables, you should try to find out when and why this happens. In this
case, the error log in the MySQL data directory may contain some information about what
happened. (This is the file with the .err suffix in the name.) See Section 5.9.1, “The Error
Log”. Please include any relevant information from this file in your bug report. Normally
mysqld should never crash a table if nothing killed it in the middle of an update. If you can find
the cause of mysqld dying, it's much easier for us to provide you with a fix for the problem. See
Section A.1, “How to Determine What Is Causing a Problem”.

• If possible, download and install the most recent version of MySQL Server and check whether it
solves your problem. All versions of the MySQL software are thoroughly tested and should
work without problems. We believe in making everything as backward-compatible as possible,
and you should be able to switch MySQL versions without difficulty. See Section 2.1.2,
“Choosing Which MySQL Distribution to Install”.

If you are a support customer, please cross-post the bug report to
<mysql-support@mysql.com> for higher-priority treatment, as well as to the appropriate
mailing list to see whether someone else has experienced (and perhaps solved) the problem.

For information on reporting bugs in MyODBC, see Section 23.1.1.9, “How to Report MyODBC
Problems or Bugs”.

For solutions to some common problems, see Appendix A, Problems and Common Errors.

When answers are sent to you individually and not to the mailing list, it is considered good etiquette
to summarize the answers and send the summary to the mailing list so that others may have the be-
nefit of responses you received that helped you solve your problem.

1.4.1.4. Guidelines for Answering Questions on the Mailing List

If you consider your answer to have broad interest, you may want to post it to the mailing list in-
stead of replying directly to the individual who asked. Try to make your answer general enough that
people other than the original poster may benefit from it. When you post to the list, please make
sure that your answer is not a duplication of a previous answer.

Try to summarize the essential part of the question in your reply; don't feel obliged to quote the en-
tire original message.

Please don't post mail messages from your browser with HTML mode turned on. Many users don't
read mail with a browser.

1.4.2. MySQL Community Support on IRC (Internet Re-
lay Chat)

In addition to the various MySQL mailing lists, you can find experienced community people on
IRC (Internet Relay Chat). These are the best networks/channels currently known to us:

General Information

21

• freenode (see http://www.freenode.net/ for servers)

• #mysql Primarily MySQL questions, but other database and general SQL questions are
welcome. Questions about PHP, Perl or C in combination with MySQL are also common.

• EFnet (see http://www.efnet.org/ for servers)

• #mysql MySQL questions.

If you are looking for IRC client software to connect to an IRC network, take a look at X-Chat (ht-
tp://www.xchat.org/). X-Chat (GPL licensed) is available for Unix as well as for Windows plat-
forms.

1.4.3. MySQL Community Support at the MySQL For-
ums

The latest community support resource are the forums at http://forums.mysql.com.

There are a variety of forums available, grouped in the following general categories:

• Migration

• MySQL Usage

• MySQL Connectors

• MySQL Technology

• Business

1.5. MySQL Standards Compliance
This section describes how MySQL relates to the ANSI/ISO SQL standards. MySQL Server has
many extensions to the SQL standard, and here you can find out what they are and how to use them.
You can also find information about functionality missing from MySQL Server, and how to work
around some differences.

The SQL standard has been evolving since 1986 and several versions exist. In this manual,
``SQL-92'' refers to the standard released in 1992, ``SQL:1999'' refers to the standard released in
1999, and ``SQL:2003'' refers to the current version of the standard. We use the phrase ``the SQL
standard'' to mean the current version of the SQL Standard at any time.

Our goal is to not restrict MySQL Server usability for any usage without a very good reason for do-
ing so. Even if we don't have the resources to perform development for every possible use, we are
always willing to help and offer suggestions to people who are trying to use MySQL Server in new
territories.

One of our main goals with the product is to continue to work toward compliance with the SQL
standard, but without sacrificing speed or reliability. We are not afraid to add extensions to SQL or
support for non-SQL features if this greatly increases the usability of MySQL Server for a large seg-
ment of our user base. The HANDLER interface in MySQL Server 4.0 is an example of this strategy.
See Section 13.1.3, “HANDLER Syntax”.

We continue to support transactional and non-transactional databases to satisfy both mission-critical
24/7 usage and heavy Web or logging usage.

MySQL Server was originally designed to work with medium size databases (10-100 million rows,
or about 100MB per table) on small computer systems. Today MySQL Server handles terabyte-size

General Information

22

http://www.freenode.net/
http://www.efnet.org/
http://www.xchat.org/
http://www.xchat.org/
http://forums.mysql.com

databases, but the code can also be compiled in a reduced version suitable for hand-held and embed-
ded devices. The compact design of the MySQL server makes development in both directions pos-
sible without any conflicts in the source tree.

Currently, we are not targeting realtime support, although MySQL replication capabilities offer sig-
nificant functionality.

Database cluster support exists through third-party clustering solutions as well as the integration of
our acquired NDB Cluster technology, available from version 4.1.2. See Chapter 16, MySQL
Cluster.

We are also looking at providing XML support in the database server.

1.5.1. What Standards MySQL Follows
We are aiming toward supporting the full ANSI/ISO SQL standard, but without making concessions
to speed and quality of the code.

ODBC levels 0#3.51.

1.5.2. Selecting SQL Modes
The MySQL server can operate in different SQL modes, and can apply these modes differentially
for different clients. This allows an application to tailor server operation to its own requirements.

Modes define what SQL syntax MySQL should support and what kind of validation checks it should
perform on the data. This makes it easier to use MySQL in a lot of different environments and to use
MySQL together with other database servers.

You can set the default SQL mode by starting mysqld with the --sql-mode="modes" option.
Beginning with MySQL 4.1, you can also change the mode after startup time by setting the
sql_mode variable with a SET [SESSION|GLOBAL] sql_mode='modes' statement.

For more information on setting the server mode, see Section 5.2.2, “The Server SQL Mode”.

1.5.3. Running MySQL in ANSI Mode
You can tell mysqld to use the ANSI mode with the --ansi startup option. See Section 5.2.1,
“mysqld Command-Line Options”.

Running the server in ANSI mode is the same as starting it with these options (specify the -
-sql_mode value on a single line):

--transaction-isolation=SERIALIZABLE
--sql-mode=REAL_AS_FLOAT,PIPES_AS_CONCAT,ANSI_QUOTES,
IGNORE_SPACE,ONLY_FULL_GROUP_BY

In MySQL 4.1, you can achieve the same effect with these two statements (specify the sql_mode
value on a single line):

SET GLOBAL TRANSACTION ISOLATION LEVEL SERIALIZABLE;
SET GLOBAL sql_mode = 'REAL_AS_FLOAT,PIPES_AS_CONCAT,ANSI_QUOTES,
IGNORE_SPACE,ONLY_FULL_GROUP_BY';

See Section 1.5.2, “Selecting SQL Modes”.

In MySQL 4.1.1, the sql_mode options shown can be also be set with this statement:

SET GLOBAL sql_mode='ansi';

General Information

23

In this case, the value of the sql_mode variable is set to all options that are relevant for ANSI
mode. You can check the result like this:

mysql> SET GLOBAL sql_mode='ansi';
mysql> SELECT @@global.sql_mode;

-> 'REAL_AS_FLOAT,PIPES_AS_CONCAT,ANSI_QUOTES,
IGNORE_SPACE,ONLY_FULL_GROUP_BY,ANSI';

1.5.4. MySQL Extensions to Standard SQL
MySQL Server includes some extensions that you probably won't find in other SQL databases. Be
warned that if you use them, your code won't be portable to other SQL servers. In some cases, you
can write code that includes MySQL extensions, but is still portable, by using comments of the form
/*! ... */. In this case, MySQL Server parses and execute the code within the comment as it
would any other MySQL statement, but other SQL servers will ignore the extensions. For example:

SELECT /*! STRAIGHT_JOIN */ col_name FROM table1,table2 WHERE ...

If you add a version number after the '!' character, the syntax within the comment is executed only
if the MySQL version is equal to or newer than the specified version number:

CREATE /*!32302 TEMPORARY */ TABLE t (a INT);

This means that if you have Version 3.23.02 or newer, MySQL Server uses the TEMPORARY
keyword.

The following descriptions list MySQL extensions, organized by category.

• Organization of data on disk

MySQL Server maps each database to a directory under the MySQL data directory, and tables
within a database to filenames in the database directory. This has a few implications:

•
Database names and table names are case sensitive in MySQL Server on operating systems
that have case-sensitive filenames (such as most Unix systems). See Section 9.2.2,
“Identifier Case Sensitivity”.

• You can use standard system commands to back up, rename, move, delete, and copy tables
that are managed by the MyISAM or ISAM storage engines. For example, to rename a My-
ISAM table, rename the .MYD, .MYI, and .frm files to which the table corresponds.

Database, table, index, column, or alias names may begin with a digit (but may not consist
solely of digits).

• General language syntax

• Strings may be enclosed by either '"' or ''', not just by '''.

• Use of '\' as an escape character in strings.

• In SQL statements, you can access tables from different databases with the
db_name.tbl_name syntax. Some SQL servers provide the same functionality but call
this User space. MySQL Server doesn't support tablespaces such as used in statements
like this: CREATE TABLE ralph.my_table...IN my_tablespace.

• SQL statement syntax

General Information

24

• The ANALYZE TABLE, CHECK TABLE, OPTIMIZE TABLE, and REPAIR TABLE
statements.

• The CREATE DATABASE and DROP DATABASE statements. See Section 13.2.4, “CRE-
ATE DATABASE Syntax”.

• The DO statement.

• EXPLAIN SELECT to get a description of how tables are joined.

• The FLUSH and RESET statements.

• The SET statement. See Section 13.5.3, “SET Syntax”.

• The SHOW statement. See Section 13.5.4, “SHOW Syntax”.

• Use of LOAD DATA INFILE. In many cases, this syntax is compatible with Oracle's LOAD
DATA INFILE. See Section 13.1.5, “LOAD DATA INFILE Syntax”.

• Use of RENAME TABLE. See Section 13.2.12, “RENAME TABLE Syntax”.

• Use of REPLACE instead of DELETE + INSERT. See Section 13.1.6, “REPLACE Syntax”.

• Use of CHANGE col_name, DROP col_name, or DROP INDEX, IGNORE or RENAME
in an ALTER TABLE statement. Use of multiple ADD, ALTER, DROP, or CHANGE clauses
in an ALTER TABLE statement. See Section 13.2.2, “ALTER TABLE Syntax”.

• Use of index names, indexes on a prefix of a field, and use of INDEX or KEY in a CREATE
TABLE statement. See Section 13.2.6, “CREATE TABLE Syntax”.

• Use of TEMPORARY or IF NOT EXISTS with CREATE TABLE.

• Use of IF EXISTS with DROP TABLE.

• You can drop multiple tables with a single DROP TABLE statement.

• The ORDER BY and LIMIT clauses of the UPDATE and DELETE statements.

• INSERT INTO ... SET col_name = ... syntax.

• The DELAYED clause of the INSERT and REPLACE statements.

• The LOW_PRIORITY clause of the INSERT, REPLACE, DELETE, and UPDATE state-
ments.

• Use of INTO OUTFILE and STRAIGHT_JOIN in a SELECT statement. See Sec-
tion 13.1.7, “SELECT Syntax”.

• The SQL_SMALL_RESULT option in a SELECT statement.

• You don't need to name all selected columns in the GROUP BY part. This gives better per-
formance for some very specific, but quite normal queries. See Section 12.9, “Functions and
Modifiers for Use with GROUP BY Clauses”.

• You can specify ASC and DESC with GROUP BY.

• The ability to set variables in a statement with the := assignment operator:

mysql> SELECT @a:=SUM(total),@b=COUNT(*),@a/@b AS avg
-> FROM test_table;

mysql> SELECT @t1:=(@t2:=1)+@t3:=4,@t1,@t2,@t3;

General Information

25

• Column types

• The column types MEDIUMINT, SET, ENUM, and the different BLOB and TEXT types.

• The column attributes AUTO_INCREMENT, BINARY, NULL, UNSIGNED, and ZEROFILL.

• Functions and operators

• To make it easier for users who come from other SQL environments, MySQL Server sup-
ports aliases for many functions. For example, all string functions support both standard
SQL syntax and ODBC syntax.

• MySQL Server understands the || and && operators to mean logical OR and AND, as in the
C programming language. In MySQL Server, || and OR are synonyms, as are && and AND.
Because of this nice syntax, MySQL Server doesn't support the standard SQL || operator
for string concatenation; use CONCAT() instead. Because CONCAT() takes any number of
arguments, it's easy to convert use of the || operator to MySQL Server.

• Use of COUNT(DISTINCT list) where list has more than one element.

• All string comparisons are case-insensitive by default, with sort ordering determined by the
current character set (ISO-8859-1 Latin1 by default). If you don't like this, you should de-
clare your columns with the BINARY attribute or use the BINARY cast, which causes com-
parisons to be done using the underlying character code values rather then a lexical ordering.

• The % operator is a synonym for MOD(). That is, N % M is equivalent to MOD(N,M). % is
supported for C programmers and for compatibility with PostgreSQL.

• The =, <>, <= ,<, >=,>, <<, >>, <=>, AND, OR, or LIKE operators may be used in column
comparisons to the left of the FROM in SELECT statements. For example:

mysql> SELECT col1=1 AND col2=2 FROM tbl_name;

• The LAST_INSERT_ID() function that returns the most recent AUTO_INCREMENT
value. See Section 12.8.3, “Information Functions”.

• LIKE is allowed on numeric columns.

• The REGEXP and NOT REGEXP extended regular expression operators.

• CONCAT() or CHAR() with one argument or more than two arguments. (In MySQL Server,
these functions can take any number of arguments.)

• The BIT_COUNT(), CASE, ELT(), FROM_DAYS(), FORMAT(), IF(), PASSWORD(),
ENCRYPT(), MD5(), ENCODE(), DECODE(), PERIOD_ADD(), PERIOD_DIFF(),
TO_DAYS(), and WEEKDAY() functions.

• Use of TRIM() to trim substrings. Standard SQL supports removal of single characters
only.

• The GROUP BY functions STD(), BIT_OR(), BIT_AND(), BIT_XOR(), and
GROUP_CONCAT(). See Section 12.9, “Functions and Modifiers for Use with GROUP BY
Clauses”.

For a prioritized list indicating when new extensions are added to MySQL Server, you should con-
sult the online MySQL TODO list at http://dev.mysql.com/doc/mysql/en/TODO.html. That is the
latest version of the TODO list in this manual. See Appendix C, MySQL and the Future (the
TODO).

General Information

26

http://dev.mysql.com/doc/mysql/en/TODO.html

1.5.5. MySQL Differences from Standard SQL
We try to make MySQL Server follow the ANSI SQL standard and the ODBC SQL standard, but
MySQL Server performs operations differently in some cases:

• For VARCHAR columns, trailing spaces are removed when the value is stored. (Fixed in MySQL
5.0.3). See Section 1.5.7, “Known Errors and Design Deficiencies in MySQL”.

• In some cases, CHAR columns are silently converted to VARCHAR columns when you define a
table or alter its structure. (Fixed in MySQL 5.0.3). See Section 13.2.6.1, “Silent Column Spe-
cification Changes”.

• Privileges for a table are not automatically revoked when you delete a table. You must explicitly
issue a REVOKE statement to revoke privileges for a table. See Section 13.5.1.3, “GRANT and
REVOKE Syntax”.

• The CAST() function does not support cast to REAL or BIGINT. See Section 12.7, “Cast Func-
tions and Operators”.

• Standard SQL requires that a HAVING clause in a SELECT statement be able to refer to columns
in the GROUP BY clause. This cannot be done before MySQL 5.0.2.

1.5.5.1. Subqueries

MySQL 4.1 supports subqueries and derived tables. A ``subquery'' is a SELECT statement nested
within another statement. A ``derived table'' (an unnamed view) is a subquery in the FROM clause of
another statement. See Section 13.1.8, “Subquery Syntax”.

For MySQL versions older than 4.1, most subqueries can be rewritten using joins or other methods.
See Section 13.1.8.11, “Rewriting Subqueries as Joins for Earlier MySQL Versions” for examples
that show how to do this.

1.5.5.2. SELECT INTO TABLE

MySQL Server doesn't support the Sybase SQL extension: SELECT ... INTO TABLE
Instead, MySQL Server supports the standard SQL syntax INSERT INTO ... SELECT ...,
which is basically the same thing. See Section 13.1.4.1, “INSERT ... SELECT Syntax”.

INSERT INTO tbl_temp2 (fld_id)
SELECT tbl_temp1.fld_order_id
FROM tbl_temp1 WHERE tbl_temp1.fld_order_id > 100;

Alternatively, you can use SELECT INTO OUTFILE ... or CREATE TABLE ... SELECT.

From version 5.0, MySQL supports SELECT ... INTO with user variables. The same syntax
may also be used inside stored procedures using cursors and local variables. See Section 19.1.6.3,
“SELECT ... INTO Statement”.

1.5.5.3. Transactions and Atomic Operations

MySQL Server (version 3.23-max and all versions 4.0 and above) supports transactions with the
InnoDB and BDB transactional storage engines. InnoDB provides full ACID compliance. See
Chapter 14, MySQL Storage Engines and Table Types.

The other non-transactional storage engines in MySQL Server (such as MyISAM) follow a different
paradigm for data integrity called ``atomic operations.'' In transactional terms, MyISAM tables ef-
fectively always operate in AUTOCOMMIT=1 mode. Atomic operations often offer comparable in-
tegrity with higher performance.

With MySQL Server supporting both paradigms, you can decide whether your applications are best

General Information

27

served by the speed of atomic operations or the use of transactional features. This choice can be
made on a per-table basis.

As noted, the trade-off for transactional versus non-transactional table types lies mostly in perform-
ance. Transactional tables have significantly higher memory and diskspace requirements, and more
CPU overhead. On the other hand, transactional table types such as InnoDB also offer many signi-
ficant features. MySQL Server's modular design allows the concurrent use of different storage en-
gines to suit different requirements and deliver optimum performance in all situations.

But how do you use the features of MySQL Server to maintain rigorous integrity even with the non-
transactional MyISAM tables, and how do these features compare with the transactional table types?

1. If your applications are written in a way that is dependent on being able to call ROLLBACK
rather than COMMIT in critical situations, transactions are more convenient. Transactions also
ensure that unfinished updates or corrupting activities are not committed to the database; the
server is given the opportunity to do an automatic rollback and your database is saved.

If you use non-transactional tables, MySQL Server in almost all cases allows you to resolve
potential problems by including simple checks before updates and by running simple scripts
that check the databases for inconsistencies and automatically repair or warn if such an incon-
sistency occurs. Note that just by using the MySQL log or even adding one extra log, you can
normally fix tables perfectly with no data integrity loss.

2. More often than not, critical transactional updates can be rewritten to be atomic. Generally
speaking, all integrity problems that transactions solve can be done with LOCK TABLES or
atomic updates, ensuring that there are no automatic aborts from the server, which is a common
problem with transactional database systems.

3. Even a transactional system can lose data if the server goes down. The difference between dif-
ferent systems lies in just how small the time-lag is where they could lose data. No system is
100% secure, only ``secure enough.'' Even Oracle, reputed to be the safest of transactional data-
base systems, is reported to sometimes lose data in such situations.

To be safe with MySQL Server, whether or not using transactional tables, you only need to
have backups and have binary logging turned on. With this you can recover from any situation
that you could with any other transactional database system. It is always good to have backups,
regardless of which database system you use.

The transactional paradigm has its benefits and its drawbacks. Many users and application de-
velopers depend on the ease with which they can code around problems where an abort appears to
be, or is necessary. However, even if you are new to the atomic operations paradigm, or more famil-
iar with transactions, do consider the speed benefit that non-transactional tables can offer on the or-
der of three to five times the speed of the fastest and most optimally tuned transactional tables.

In situations where integrity is of highest importance, MySQL Server offers transaction-level reliab-
ility and integrity even for non-transactional tables. If you lock tables with LOCK TABLES, all up-
dates stall until integrity checks are made. If you obtain a READ LOCAL lock (as opposed to a write
lock) for a table that allows concurrent inserts at the end of the table, reads are allowed, as are in-
serts by other clients. The newly inserted records are not be seen by the client that has the read lock
until it releases the lock. With INSERT DELAYED, you can queue inserts into a local queue, until
the locks are released, without having the client wait for the insert to complete. See Section 13.1.4.2,
“INSERT DELAYED Syntax”.

``Atomic,'' in the sense that we mean it, is nothing magical. It only means that you can be sure that
while each specific update is running, no other user can interfere with it, and there can never be an
automatic rollback (which can happen with transactional tables if you are not very careful). MySQL
Server also guarantees that there are no dirty reads.

Following are some techniques for working with non-transactional tables:

General Information

28

• Loops that need transactions normally can be coded with the help of LOCK TABLES, and you
don't need cursors to update records on the fly.

• To avoid using ROLLBACK, you can use the following strategy:

1. Use LOCK TABLES to lock all the tables you want to access.

2. Test the conditions that must be true before performing the update.

3. Update if everything is okay.

4. Use UNLOCK TABLES to release your locks.

This is usually a much faster method than using transactions with possible rollbacks, although
not always. The only situation this solution doesn't handle is when someone kills the threads in
the middle of an update. In this case, all locks are released but some of the updates may not have
been executed.

• You can also use functions to update records in a single operation. You can get a very efficient
application by using the following techniques:

• Modify columns relative to their current value.

• Update only those columns that actually have changed.

For example, when we are doing updates to some customer information, we update only the cus-
tomer data that has changed and test only that none of the changed data, or data that depends on
the changed data, has changed compared to the original row. The test for changed data is done
with the WHERE clause in the UPDATE statement. If the record wasn't updated, we give the cli-
ent a message: ``Some of the data you have changed has been changed by another user.'' Then
we show the old row versus the new row in a window so that the user can decide which version
of the customer record to use.

This gives us something that is similar to column locking but is actually even better because we
only update some of the columns, using values that are relative to their current values. This
means that typical UPDATE statements look something like these:

UPDATE tablename SET pay_back=pay_back+125;
UPDATE customer
SET
customer_date='current_date',
address='new address',
phone='new phone',
money_owed_to_us=money_owed_to_us-125

WHERE
customer_id=id AND address='old address' AND phone='old phone';

This is very efficient and works even if another client has changed the values in the pay_back
or money_owed_to_us columns.

•
In many cases, users have wanted LOCK TABLES and/or ROLLBACK for the purpose of man-
aging unique identifiers. This can be handled much more efficiently without locking or rolling
back by using an AUTO_INCREMENT column and either the LAST_INSERT_ID() SQL func-
tion or the mysql_insert_id() C API function. See Section 12.8.3, “Information Func-
tions”. See Section 22.2.3.33, “mysql_insert_id()”.

You can generally code around the need for row-level locking. Some situations really do need it,
and InnoDB tables support row-level locking. With MyISAM tables, you can use a flag column
in the table and do something like the following:

UPDATE tbl_name SET row_flag=1 WHERE id=ID;

General Information

29

MySQL returns 1 for the number of affected rows if the row was found and row_flag wasn't
1 in the original row.

You can think of it as though MySQL Server changed the preceding query to:

UPDATE tbl_name SET row_flag=1 WHERE id=ID AND row_flag <> 1;

1.5.5.4. Stored Procedures and Triggers

Stored procedures are implemented in MySQL version 5.0. See Chapter 19, Stored Procedures and
Functions.

Triggers are currently being implemented, with basic functionality in MySQL 5.0, with further de-
velopment planned for MySQL 5.1.

1.5.5.5. Foreign Keys

In MySQL Server 3.23.44 and up, the InnoDB storage engine supports checking of foreign key
constraints, including CASCADE, ON DELETE, and ON UPDATE. See Section 15.7.4, “FOREIGN
KEY Constraints”.

For storage engines other than InnoDB, MySQL Server parses the FOREIGN KEY syntax in CRE-
ATE TABLE statements, but does not use or store it. In the future, the implementation will be ex-
tended to store this information in the table specification file so that it may be retrieved by mysql-
dump and ODBC. At a later stage, foreign key constraints will be implemented for MyISAM tables
as well.

Foreign key enforcement offers several benefits to database developers:

• Assuming proper design of the relationships, foreign key constraints make it more difficult for a
programmer to introduce an inconsistency into the database.

• Centralized checking of constraints by the database server makes it unnecessary to perform these
checks on the application side. This eliminates the possibility that different applications may not
all check the constraints in the same way.

• Using cascading updates and deletes can simplify the application code.

• Properly designed foreign key rules aid in documenting relationships between tables.

Do keep in mind that these benefits come at the cost of additional overhead for the database server
to perform the necessary checks. Additional checking by the server affects performance, which for
some applications may be sufficiently undesirable as to be avoided if possible. (Some major com-
mercial applications have coded the foreign-key logic at the application level for this reason.)

MySQL gives database developers the choice of which approach to use. If you don't need foreign
keys and want to avoid the overhead associated with enforcing referential integrity, you can choose
another table type instead, such as MyISAM. (For example, the MyISAM storage engine offers very
fast performance for applications that perform only INSERT and SELECT operations, because the
inserts can be performed concurrently with retrievals. See Section 7.3.2, “Table Locking Issues”.)

If you choose not to take advantage of referential integrity checks, keep the following considerations
in mind:

• In the absence of server-side foreign key relationship checking, the application itself must
handle relationship issues. For example, it must take care to insert rows into tables in the proper
order, and to avoid creating orphaned child records. It must also be able to recover from errors

General Information

30

that occur in the middle of multiple-record insert operations.

• If ON DELETE is the only referential integrity capability an application needs, note that as of
MySQL Server 4.0, you can use multiple-table DELETE statements to delete rows from many
tables with a single statement. See Section 13.1.1, “DELETE Syntax”.

• A workaround for the lack of ON DELETE is to add the appropriate DELETE statement to your
application when you delete records from a table that has a foreign key. In practice, this is often
as quick as using foreign keys, and is more portable.

Be aware that the use of foreign keys can in some instances lead to problems:

• Foreign key support addresses many referential integrity issues, but it is still necessary to design
key relationships carefully to avoid circular rules or incorrect combinations of cascading deletes.

• It is not uncommon for a DBA to create a topology of relationships that makes it difficult to re-
store individual tables from a backup. (MySQL alleviates this difficulty by allowing you to tem-
porarily disable foreign key checks when reloading a table that depends on other tables. See Sec-
tion 15.7.4, “FOREIGN KEY Constraints”. As of MySQL 4.1.1, mysqldump generates dump
files that take advantage of this capability automatically when reloaded.)

Note that foreign keys in SQL are used to check and enforce referential integrity, not to join tables.
If you want to get results from multiple tables from a SELECT statement, you do this by performing
a join between them:

SELECT * FROM t1, t2 WHERE t1.id = t2.id;

See Section 13.1.7.1, “JOIN Syntax”. See Section 3.6.6, “Using Foreign Keys”.

The FOREIGN KEY syntax without ON DELETE ... is often used by ODBC applications to pro-
duce automatic WHERE clauses.

1.5.5.6. Views

Views (including updatable views) are implemented in the 5.0 version of MySQL Server. Views are
available in binary releases from 5.0.1 and up. See Section 13.2.7, “CREATE VIEW Syntax”.

Views are useful for allowing users to access a set of relations (tables) as if it were a single table,
and limiting their access to just that. Views can also be used to restrict access to rows (a subset of a
particular table). For access control to columns, you can also use the sophisticated privilege system
in MySQL Server. See Section 5.5, “The MySQL Access Privilege System”.

In designing an implementation of views, our ambitious goal, as much as is possible within the con-
fines of SQL, has been full compliance with ``Codd's Rule #6'' for relational database systems: ``All
views that are theoretically updatable, should in practice also be updatable.''

1.5.5.7. '--' as the Start of a Comment

Some other SQL databases use '--' to start comments. MySQL Server uses '#' as the start comment
character. You can also use the C comment style /* this is a comment */ with MySQL
Server. See Section 9.5, “Comment Syntax”.

MySQL Server 3.23.3 and above support the '--' comment style, provided the comment is followed
by a space (or by a control character such as a newline). The requirement for a space is to prevent
problems with automatically generated SQL queries that have used something like the following
code, where we automatically insert the value of the payment for !payment!:

UPDATE account SET credit=credit-!payment!

General Information

31

Think about what happens if the value of payment is a negative value such as -1:

UPDATE account SET credit=credit--1

credit--1 is a legal expression in SQL, but if -- is interpreted as the start of a comment, part of
the expression is discarded. The result is a statement that has a completely different meaning than
intended:

UPDATE account SET credit=credit

The statement produces no change in value at all! This illustrates that allowing comments to start
with '--' can have serious consequences.

Using our implementation of this method of commenting in MySQL Server 3.23.3 and up, cred-
it--1 is actually safe.

Another safe feature is that the mysql command-line client removes all lines that start with '--'.

The following information is relevant only if you are running a MySQL version earlier than 3.23.3:

If you have an SQL program in a text file that contains '--' comments, you should use the replace
utility as follows to convert the comments to use '#' characters:

shell> replace " --" " #" < text-file-with-funny-comments.sql \
| mysql db_name

instead of the usual:

shell> mysql db_name < text-file-with-funny-comments.sql

You can also edit the command file ``in place'' to change the '--' comments to '#' comments:

shell> replace " --" " #" -- text-file-with-funny-comments.sql

Change them back with this command:

shell> replace " #" " --" -- text-file-with-funny-comments.sql

1.5.6. How MySQL Deals with Constraints
MySQL allows you to work both with transactional tables that allow rollback and with non-
transactional tables that do not. Because of this, constraint handling is a bit different in MySQL than
in other databases. We must handle the case when you have inserted or updated a lot of rows in a
non-transactional table for which changes cannot be rolled back when an error occurs.

The basic philosophy is that MySQL Server tries to produce an error for anything that it can detect
while parsing a statement to be executed, and tries to recover from any errors that occur while ex-
ecuting the statement. We do this in most cases, but not yet for all. See Section C.3, “New Features
Planned for the Near Future”.

The options MySQL has when an error occurs are to stop the statement in the middle or to recover
as well as possible from the problem and continue. By default, the server follows the latter course.
This means, for example, that the server may coerce illegal values to the closest legal values.

Beginning with MySQL 5.0.2, several SQL mode options are available to provide greater control
over how accepting to be of bad data values and whether to continue executing a statement or abort
it when errors occur. Using these options, you can configure MySQL Server to act in a more tradi-
tional fashion that is like other DBMSs that reject improper input. The SQL mode can be set at

General Information

32

runtime, which enables individual clients to select the behavior most appropriate for their require-
ments. See Section 5.2.2, “The Server SQL Mode”.

The following sections describe what happens for the different types of constraints.

1.5.6.1. PRIMARY KEY and UNIQUE Index Constraints

Normally, an error occurs when you try to INSERT or UPDATE a row that causes a primary key,
unique key, or foreign key violation. If you are using a transactional storage engine such as
InnoDB, MySQL automatically rolls back the statement. If you are using a non-transactional stor-
age engine, MySQL stops processing the statement at the row for which the error occurred and
leaves any remaining rows unprocessed.

If you wish to ignore such key violations, MySQL supports an IGNORE keyword for INSERT and
UPDATE. In this case, MySQL ignores any key violations and continues processing with the next
row. See Section 13.1.4, “INSERT Syntax”. See Section 13.1.10, “UPDATE Syntax”.

You can get information about the number of rows actually inserted or updated with the
mysql_info() C API function. See Section 22.2.3.31, “mysql_info()”. In MySQL 4.1 and
up, you also can use the SHOW WARNINGS statement. See Section 13.5.4.20, “SHOW WARNINGS
Syntax”.

For the moment, only InnoDB tables support foreign keys. See Section 15.7.4, “FOREIGN KEY
Constraints”. Foreign key support in MyISAM tables is scheduled for implementation in MySQL
5.1.

1.5.6.2. Constraints on Invalid Data

Before MySQL 5.0.2, MySQL is forgiving of illegal or improper data values and coerces them to
legal values for data entry. In MySQL 5.0.2 and up, that remains the default behavior, but you can
select more traditional treatment of bad values such that the server rejects them and aborts the state-
ment in which they occur. This section describes the default (forgiving) behavior of MySQL, as well
as the newer strict SQL mode and how it differs.

The following holds true when you are not using strict mode. If you insert an ``incorrect'' value into
a column, such as a NULL into a NOT NULL column or a too-large numeric value into a numeric
column, MySQL sets the column to the ``best possible value'' instead of producing an error:

• If you try to store an out of range value in a numeric column, MySQL Server instead stores zero,
the smallest possible value, or the largest possible value in the column.

• For strings, MySQL stores either the empty string or the longest possible string that can be in the
column.

• If you try to store a string that doesn't start with a number into a numeric column, MySQL Serv-
er stores 0.

• If you try to store NULL into a column that doesn't take NULL values, MySQL Server stores 0 or
'' (the empty string) instead.

• MySQL allows you to store certain incorrect date values into DATE and DATETIME columns
(such as '2000-02-31' or '2000-02-00'). The idea is that it's not the job of the SQL
server to validate dates. If MySQL can store a date value and retrieve exactly the same value,
MySQL stores it as given. If the date is totally wrong (outside the server's ability to store it), the
special date value '0000-00-00' is stored in the column instead.

• If an INSERT statement specifies no value for a column, MySQL inserts its default value if the
column definition includes an explicit DEFAULT clause. If the definition has no such DEFAULT
clause, MySQL inserts the implicit default value for the column data type. In general, this is the
empty string for string columns, 0 for numeric columns, and '0000-00-00' for date columns.
Implicit default values are discussed in Section 13.2.6, “CREATE TABLE Syntax”.

General Information

33

The reason for the preceding rules is that we can't check these conditions until the statement has be-
gun executing. We can't just roll back if we encounter a problem after updating a few rows, because
the storage engine may not support rollback. The option of terminating the statement is not that
good; in this case, the update would be ``half done,'' which is probably the worst possible scenario.
In this case, it's better to ``do the best you can'' and then continue as if nothing happened.

In MySQL 5.0.2 and up, you can select stricter treatment of input values by using the
STRICT_TRANS_TABLES or STRICT_ALL_TABLES SQL modes. See Section 5.2.2, “The Serv-
er SQL Mode”.

STRICT_TRANS_TABLES works like this: For transactional storage engines, bad data values oc-
curring anywhere in the statement causes the to abort and roll back. For non-transactional storage
engines, the statement aborts if the error occurs in the first row to be inserted or updated. (In this
case, the statement can be regarded to leave the table unchanged, just as for a transactional table.)
Errors in rows after the first do not abort the statement. Instead, bad data values are adjusted and res-
ult in warnings rather than errors. In other words, with STRICT_TRANS_TABLES, a wrong value
causes MySQL to roll back, if it can, all updates done so far.

For stricter checking, enable STRICT_ALL_TABLES. This is the same as
STRICT_TRANS_TABLES except that for non-transactional storage engines, errors abort the state-
ment even for bad data in rows following the first row. This means that if an error occurs partway
through a multiple-row insert or update for a non-transactional table, a partial update results. Earlier
rows are inserted or updated, but those from the point of the error on are not. To avoid this for non-
transactional tables, either use single-row statements or else use STRICT_TRANS_TABLES if con-
version warnings rather than errors are acceptable. To avoid problems in the first place, do not use
MySQL to check column content. It is safest (and often faster) to let the application ensure that it
passes only legal values to the database.

With either of the strict mode options, you can cause errors to be treated as warnings by using IN-
SERT IGNORE or UPDATE IGNORE.

1.5.6.3. ENUM and SET Constraints

ENUM and SET columns provide an efficient way to define columns that can contain only a given
set of values. However, before MySQL 5.0.2, ENUM and SET are not real constraints. This is for the
same reasons that NOT NULL is not honored. See Section 1.5.6.2, “Constraints on Invalid Data”.

ENUM columns always have a default value. If you don't specify a default value, then it is NULL for
columns that can have NULL, otherwise the first enumeration value is used as the default value.

If you insert an incorrect value into an ENUM column or if you force a value into an ENUM column
with IGNORE, it is set to the reserved enumeration value of 0, which is displayed as an empty string
in string context. See Section 11.4.4, “The ENUM Type”.

If you insert an incorrect value into a SET column, the incorrect value is ignored. For example, if
the column can contain the values 'a', 'b', and 'c', an attempt to assign 'a,x,b,y' results in
a value of 'a,b'. See Section 11.4.5, “The SET Type”.

As of MySQL 5.0.2, you can configure the server to use strict SQL mode. See Section 5.2.2, “The
Server SQL Mode”. When strict mode is not enabled, values entered into ENUM and SET columns
are handled as just described for MySQL 4.x. However, if strict mode is enabled, the definition of a
ENUM or SET column does act as a constraint on values entered into the column. An error occurs for
values that do not satisfy these conditions:

• An ENUM value must be one of those listed in the column definition, or the internal numeric
equivalent thereof. The value cannot be the error value (that is, 0 or the empty string). For a
column defined as ENUM('a','b','c'), values such as '', 'd', and 'ax' are illegal and
are rejected.

• A SET value must be the empty string or a value consisting of one or more of the values listed in
the column definition separated by commas. For a column defined as SET('a','b','c'),
values such as 'd', and 'a,b,c,d' are illegal and are rejected.

General Information

34

Errors for invalid values can be suppressed in strict mode if you use INSERT IGNORE or UPDATE
IGNORE. In this case, a warning is generated rather than an error. For ENUM, the value is inserted as
the error member (0). For SET, the value is inserted as given except that any invalid substrings are
deleted. For example, 'a,x,b,y' results in a value of 'a,b', as described earlier.

1.5.7. Known Errors and Design Deficiencies in MySQL

1.5.7.1. Errors in 3.23 Fixed in a Later MySQL Version

The following known errors or bugs are not fixed in MySQL 3.23 because fixing them would in-
volve changing a lot of code that could introduce other even worse bugs. The bugs are also classi-
fied as ``not fatal'' or ``bearable.''

• You should avoid using spaces at the end of column names because this can cause weird behavi-
or. (Fixed in MySQL 4.0.) (Bug #4196)

• You can get a deadlock (hung thread) if you use LOCK TABLE to lock multiple tables and then
in the same connection use DROP TABLE to drop one of them while another thread is trying to
lock it. (To break the deadlock, you can use KILL to terminate any of the threads involved.)
This issue is resolved as of MySQL 4.0.12.

• SELECT MAX(key_column) FROM t1,t2,t3... where one of the tables are empty
doesn't return NULL but instead returns the maximum value for the column. This issue is re-
solved as of MySQL 4.0.11.

• DELETE FROM heap_table without a WHERE clause doesn't work on a locked HEAP table.

1.5.7.2. Errors in 4.0 Fixed in a Later MySQL Version

The following known errors or bugs are not fixed in MySQL 4.0 because fixing them would involve
changing a lot of code that could introduce other even worse bugs. The bugs are also classified as
``not fatal'' or ``bearable.''

• In HAVING you can get a crash or wrong result if you use an alias to a RAND() function. This is
fixed in 4.1.10 but will not be fixed in 4.0 because the fix 'may' cause side effects for some ap-
plications.

• In a UNION, the first SELECT determines the type, max_length, and NULL properties for the
resulting columns. This issue is resolved as of MySQL 4.1.1; the property values are based on
the rows from all UNION parts.

• In DELETE with many tables, you can't refer to tables to be deleted through an alias. This is
fixed as of MySQL 4.1.

• You cannot mix UNION ALL and UNION DISTINCT in the same query. If you use ALL for
one UNION, it is used for all of them. This is fixed as of MySQL 4.1.2. The rules for mixed
UNION types are given in Section 13.1.7.2, “UNION Syntax”.

• FLUSH TABLES WITH READ LOCK does not block CREATE TABLE, which may cause a
problem with the binary log position when doing a full backup of tables and the binary log.

• mysqldump --single-transaction --master-data behaved like mysqldump -
-master-data, so the dump was a blocking one. This is fixed starting from MySQL 4.1.8.

• When using the RPAD() function (or any function adding spaces to the right) in a query that
had to be resolved by using a temporary table, all resulting strings had rightmost spaces removed
(i.e. RPAD() did not work).

General Information

35

1.5.7.3. Open Bugs and Design Deficiencies in MySQL

The following problems are known and fixing them is a high priority:

• If you compare a NULL value to a subquery using ALL/ANY/SOME and the subquery returns an
empty result, the comparison might evaluate to the non-standard result of NULL rather than to
TRUE or FALSE. This will be fixed in MySQL 5.0.

• Even if you are using lower_case_table_names=2 (which enables MySQL to remember
the used case for databases and table names) MySQL does not remember the used case for data-
base names for the function DATABASE() or in various logs (on case-insensitive systems).

• Dropping a FOREIGN KEY constraint doesn't work in replication because the constraint may
have another name on the slave.

• REPLACE (and LOAD DATA with the REPLACE option) does not trigger ON DELETE CAS-
CADE.

• DISTINCT with ORDER BY doesn't work inside GROUP_CONCAT() if you don't use all and
only those columns that are in the DISTINCT list.

• If one user has a long-running transaction and another user drops a table that is updated in the
transaction, there is small chance that the binary log may contain the DROP TABLE command
before the table is used in the transaction itself. We plan to fix this in 5.0 by having the DROP
TABLE wait until the table is not used in any transaction.

• When inserting a big integer value (between 2^63 and 2^64#1) into a decimal/string column, it
is inserted as a negative value because the number is evaluated in a signed integer context. We
plan to fix this in MySQL 4.1.

• FLUSH TABLES WITH READ LOCK does not block COMMIT if the server is running without
binary logging, which may cause a problem (of consistency between tables) when doing a full
backup.

• ANALYZE TABLE on a BDB table may in some cases make the table unusable until you restart
mysqld. If this happens, look for errors of the following form in the MySQL error file:

001207 22:07:56 bdb: log_flush: LSN past current end-of-log

• MySQL accepts parentheses in the FROM clause of a SELECT statement, but silently ignores
them. The reason for not giving an error is that many clients that automatically generate queries
add parentheses in the FROM clause even where they are not needed.

• Concatenating many RIGHT JOINS or combining LEFT and RIGHT join in the same query
may not give a correct answer because MySQL only generates NULL rows for the table preced-
ing a LEFT or before a RIGHT join. This will be fixed in 5.0 at the same time we add support
for parentheses in the FROM clause.

• Don't execute ALTER TABLE on a BDB table on which you are running multiple-statement
transactions until all those transactions complete. (The transaction might be ignored.)

• ANALYZE TABLE, OPTIMIZE TABLE, and REPAIR TABLE may cause problems on tables
for which you are using INSERT DELAYED.

• Doing a LOCK TABLE ... and FLUSH TABLES ... doesn't guarantee that there isn't a
half-finished transaction in progress on the table.

• BDB tables are a bit slow to open. If you have many BDB tables in a database, it takes a long
time to use the mysql client on the database if you are not using the -A option or if you are us-
ing rehash. This is especially notable when you have a large table cache.

General Information

36

• Replication uses query-level logging: The master writes the executed queries to the binary log.
This is a very fast, compact, and efficient logging method that works perfectly in most cases. Al-
though we have never heard of it actually occurring, it is theoretically possible for the data on
the master and slave to become different if a query is designed in such a way that the data modi-
fication is non-deterministic; that is, left to the will of the query optimizer. (That generally is not
a good practice anyway, even outside of replication!) For example:

• CREATE ... SELECT or INSERT ... SELECT statements that insert zero or NULL
values into an AUTO_INCREMENT column.

• DELETE if you are deleting rows from a table that has foreign keys with ON DELETE
CASCADE properties.

• REPLACE ... SELECT, INSERT IGNORE ... SELECT if you have duplicate key
values in the inserted data.

If and only if all these queries have no ORDER BY clause guaranteeing a deterministic or-
der.

For example, for INSERT ... SELECT with no ORDER BY, the SELECT may return rows
in a different order (which results in a row having different ranks, hence getting a different num-
ber in the AUTO_INCREMENT column), depending on the choices made by the optimizers on
the master and slave. A query is optimized differently on the master and slave only if:

• The files used by the two queries are not exactly the same; for example, OPTIMIZE TA-
BLE was run on the master tables and not on the slave tables. (To fix this, OPTIMIZE TA-
BLE, ANALYZE TABLE, and REPAIR TABLE are written to the binary log as of MySQL
4.1.1).

• The table is stored using a different storage engine on the master than on the slave. (It is pos-
sible to use different storage engines on the master and slave. For example, you can use In-
noDB on the master, but MyISAM on the slave if the slave has less available disk space.)

• MySQL buffer sizes (key_buffer_size, and so on) are different on the master and
slave.

• The master and slave run different MySQL versions, and the optimizer code differs between
these versions.

This problem may also affect database restoration using mysqlbinlog|mysql.

The easiest way to avoid this problem in all cases is to add an ORDER BY clause to such non-
deterministic queries to ensure that the rows are always stored or modified in the same order. In
future MySQL versions, we will automatically add an ORDER BY clause when needed.

The following problems are known and will be fixed in due time:

• Log filenames are based on the server hostname (if you don't specify a filename with the startup
option). You have to use options like --log-bin=old_host_name-bin if you change
your hostname to something else. Another option is to just rename the old files to reflect your
hostname change (and if these are binary logs, you also need to edit the binary log index file and
fix the binlog names there). See Section 5.2.1, “mysqld Command-Line Options”.

• mysqlbinlog does not delete temporary files left after a LOAD DATA INFILE command. See
Section 8.5, “The mysqlbinlog Binary Log Utility”.

• RENAME doesn't work with TEMPORARY tables or tables used in a MERGE table.

• Due to the way table definition files are stored, you cannot use character 255 (CHAR(255)) in
table names, column names, or enumerations. This is scheduled to be fixed in version 5.1 when
we have new table definition format files.

General Information

37

• When using SET CHARACTER SET, you can't use translated characters in database, table, and
column names.

• You can't use '_' or '%' with ESCAPE in LIKE ... ESCAPE.

• If you have a DECIMAL column in which the same number is stored in different formats (for ex-
ample, +01.00, 1.00, 01.00), GROUP BY may regard each value as a different value.

• You cannot build the server in another directory when using MIT-pthreads. Because this re-
quires changes to MIT-pthreads, we are not likely to fix this. See Section 2.8.5, “MIT-pthreads
Notes”.

• BLOB and TEXTvalues can't ``reliably'' be used in GROUP BY or ORDER BY or DISTINCT.
Only the first max_sort_length bytes are used when comparing BLOB values in these
cases. The default value of max_sort_length value is 1024. It can be changed at server star-
tup time. As of MySQL 4.0.3, it can also be changed at runtime. For older versions, a work-
around for most cases is to use a substring. For example:

SELECT DISTINCT LEFT(blob_col,2048) FROM tbl_name;

• Numeric calculations are done with BIGINT or DOUBLE (both are normally 64 bits long).
Which precision you get depends on the function. The general rule is that bit functions are done
with BIGINT precision, IF and ELT() with BIGINT or DOUBLE precision, and the rest with
DOUBLE precision. You should try to avoid using unsigned long long values if they resolve to
be bigger than 63 bits (9223372036854775807) for anything other than bit fields. MySQL Serv-
er 4.0 has better BIGINT handling than 3.23.

• All string columns, except BLOB and TEXT columns, automatically have all trailing spaces re-
moved when retrieved. For CHAR types, this is okay. The bug is that in MySQL Server,
VARCHAR columns are treated the same way.

• You can have only up to 255 ENUM and SET columns in one table.

• In MIN(), MAX(), and other aggregate functions, MySQL currently compares ENUM and SET
columns by their string value rather than by the string's relative position in the set.

• mysqld_safe redirects all messages from mysqld to the mysqld log. One problem with this is
that if you execute mysqladmin refresh to close and reopen the log, stdout and stderr are
still redirected to the old log. If you use --log extensively, you should edit mysqld_safe to log
to host_name.err instead of host_name.log so that you can easily reclaim the space for
the old log by deleting the old one and executing mysqladmin refresh.

• In the UPDATE statement, columns are updated from left to right. If you refer to an updated
column, you get the updated value instead of the original value. For example, the following
statement increments KEY by 2, not 1:

mysql> UPDATE tbl_name SET KEY=KEY+1,KEY=KEY+1;

• You can refer to multiple temporary tables in the same query, but you cannot refer to any given
temporary table more than once. For example, the following doesn't work:

mysql> SELECT * FROM temp_table, temp_table AS t2;
ERROR 1137: Can't reopen table: 'temp_table'

• The optimizer may handle DISTINCT differently when you are using ``hidden'' columns in a
join than when you are not. In a join, hidden columns are counted as part of the result (even if
they are not shown), whereas in normal queries, hidden columns don't participate in the DIS-
TINCT comparison. We will probably change this in the future to never compare the hidden
columns when executing DISTINCT.

An example of this is:

General Information

38

SELECT DISTINCT mp3id FROM band_downloads
WHERE userid = 9 ORDER BY id DESC;

and

SELECT DISTINCT band_downloads.mp3id
FROM band_downloads,band_mp3
WHERE band_downloads.userid = 9
AND band_mp3.id = band_downloads.mp3id
ORDER BY band_downloads.id DESC;

In the second case, you might in MySQL Server 3.23.x get two identical rows in the result set
(because the values in the hidden id column may differ).

Note that this happens only for queries where you don't have the ORDER BY columns in the res-
ult.

• Because MySQL Server allows you to work with table types that don't support transactions, and
thus can't roll back data, some things behave a little differently in MySQL Server than in other
SQL servers. This is just to ensure that MySQL Server never needs to do a rollback for an SQL
statement. This may be a little awkward at times because column values must be checked in the
application, but this actually gives you a nice speed increase because it allows MySQL Server to
do some optimizations that otherwise would be very hard to do.

If you set a column to an incorrect value, MySQL Server, instead of doing a rollback, stores the
``best possible value'' in the column. For information about how this occurs, see Section 1.5.6,
“How MySQL Deals with Constraints”.

• If you execute a PROCEDURE on a query that returns an empty set, in some cases the PROCED-
URE does not transform the columns.

• Creation of a table of type MERGE doesn't check whether the underlying tables are of compatible
types.

• If you use ALTER TABLE first to add a UNIQUE index to a table used in a MERGE table and
then to add a normal index on the MERGE table, the key order is different for the tables if there
was an old key that was not unique in the table. This is because ALTER TABLE puts UNIQUE
indexes before normal indexes to be able to detect duplicate keys as early as possible.

The following are known bugs in earlier versions of MySQL:

• In the following case you can get a core dump:

• Delayed insert handler has pending inserts to a table.

• LOCK TABLE with WRITE.

• FLUSH TABLES.

• Before MySQL Server 3.23.2, an UPDATE that updated a key with a WHERE on the same key
may have failed because the key was used to search for records and the same row may have been
found multiple times:

UPDATE tbl_name SET KEY=KEY+1 WHERE KEY > 100;

A workaround is to use:

UPDATE tbl_name SET KEY=KEY+1 WHERE KEY+0 > 100;

General Information

39

This works because MySQL Server does not use an index on expressions in the WHERE clause.

• Before MySQL Server 3.23, all numeric types were treated as fixed-point fields. That means that
you had to specify how many decimals a floating-point field should have. All results were re-
turned with the correct number of decimals.

For information about platform-specific bugs, see the installation and porting instructions in Sec-
tion 2.12, “Operating System-Specific Notes” and Appendix E, Porting to Other Systems.

General Information

40

Chapter 2. Installing MySQL
This chapter describes how to obtain and install MySQL:

1. Determine whether your platform is supported. Please note that not all supported systems
are equally good for running MySQL on them. On some it is much more robust and efficient
than others. See Section 2.1.1, “Operating Systems Supported by MySQL” for details.

2. Choose which distribution to install. Several versions of MySQL are available, and most are
available in several distribution formats. You can choose from pre-packaged distributions con-
taining binary (precompiled) programs or source code. When in doubt, use a binary distribu-
tion. We also provide public access to our current source tree for those who want to see our
most recent developments and help us test new code. To determine which version and type of
distribution you should use, see Section 2.1.2, “Choosing Which MySQL Distribution to In-
stall”.

3. Download the distribution that you want to install. For a list of sites from which you can
obtain MySQL, see Section 2.1.3, “How to Get MySQL”. You can verify the integrity of the
distribution using the instructions in Section 2.1.4, “Verifying Package Integrity Using MD5
Checksums or GnuPG”.

4. Install the distribution. To install MySQL from a binary distribution, use the instructions in
Section 2.2, “Standard MySQL Installation Using a Binary Distribution”. To install MySQL
from a source distribution or from the current development source tree, use the instructions in
Section 2.8, “MySQL Installation Using a Source Distribution”.

Note: If you plan to upgrade an existing version of MySQL to a newer version rather than in-
stalling MySQL for the first time, see Section 2.10, “Upgrading MySQL” for information
about upgrade procedures and about issues that you should consider before upgrading.

If you encounter installation difficulties, see Section 2.12, “Operating System-Specific Notes”
for information on solving problems for particular platforms.

5. Perform any necessary post-installation setup. After installing MySQL, read Section 2.9,
“Post-Installation Setup and Testing”. This section contains important information about mak-
ing sure the MySQL server is working properly. It also describes how to secure the initial
MySQL user accounts, which have no passwords until you assign passwords. The section ap-
plies whether you install MySQL using a binary or source distribution.

6. If you want to run the MySQL benchmark scripts, Perl support for MySQL must be available.
See Section 2.13, “Perl Installation Notes”.

2.1. General Installation Issues
Before installing MySQL, you should do the following:

1. Determine whether or not MySQL runs on your platform.

2. Choose a distribution to install.

3. Download the distribution and verify its integrity.

This section contains the information necessary to carry out these steps. After doing so, you can use
the instructions in later sections of the chapter to install the distribution that you choose.

2.1.1. Operating Systems Supported by MySQL

41

This section lists the operating systems on which you can expect to be able to run MySQL.

We use GNU Autoconf, so it is possible to port MySQL to all modern systems that have a C++
compiler and a working implementation of POSIX threads. (Thread support is needed for the server.
To compile only the client code, the only requirement is a C++ compiler.) We use and develop the
software ourselves primarily on Linux (SuSE and Red Hat), FreeBSD, and Sun Solaris (Versions 8
and 9).

MySQL has been reported to compile successfully on the following combinations of operating sys-
tem and thread package. Note that for many operating systems, native thread support works only in
the latest versions.

• AIX 4.x, 5.x with native threads. See Section 2.12.5.3, “IBM-AIX notes”.

• Amiga.

• BSDI 2.x with the MIT-pthreads package. See Section 2.12.4.5, “BSD/OS Version 2.x Notes”.

• BSDI 3.0, 3.1 and 4.x with native threads. See Section 2.12.4.5, “BSD/OS Version 2.x Notes”.

• Digital Unix 4.x with native threads. See Section 2.12.5.5, “Alpha-DEC-UNIX Notes (Tru64)”.

• FreeBSD 2.x with the MIT-pthreads package. See Section 2.12.4.1, “FreeBSD Notes”.

• FreeBSD 3.x and 4.x with native threads. See Section 2.12.4.1, “FreeBSD Notes”.

• FreeBSD 4.x with LinuxThreads. See Section 2.12.4.1, “FreeBSD Notes”.

• HP-UX 10.20 with the DCE threads or the MIT-pthreads package. See Section 2.12.5.1,
“HP-UX Version 10.20 Notes”.

• HP-UX 11.x with the native threads. See Section 2.12.5.2, “HP-UX Version 11.x Notes”.

• Linux 2.0+ with LinuxThreads 0.7.1+ or glibc 2.0.7+ for various CPU architectures. See Sec-
tion 2.12.1, “Linux Notes”.

• Mac OS X. See Section 2.12.2, “Mac OS X Notes”.

• NetBSD 1.3/1.4 Intel and NetBSD 1.3 Alpha (requires GNU make). See Section 2.12.4.2,
“NetBSD Notes”.

• Novell NetWare 6.0. See Section 2.6, “Installing MySQL on NetWare”.

• OpenBSD > 2.5 with native threads. OpenBSD < 2.5 with the MIT-pthreads package. See Sec-
tion 2.12.4.3, “OpenBSD 2.5 Notes”.

• OS/2 Warp 3, FixPack 29 and OS/2 Warp 4, FixPack 4. See Section 2.12.6, “OS/2 Notes”.

• SCO OpenServer with a recent port of the FSU Pthreads package. See Section 2.12.5.8, “SCO
Notes”.

• SCO UnixWare 7.1.x. See Section 2.12.5.9, “SCO UnixWare Version 7.1.x Notes”.

• SGI Irix 6.x with native threads. See Section 2.12.5.7, “SGI Irix Notes”.

• Solaris 2.5 and above with native threads on SPARC and x86. See Section 2.12.3, “Solaris
Notes”.

• SunOS 4.x with the MIT-pthreads package. See Section 2.12.3, “Solaris Notes”.

• Tru64 Unix. See Section 2.12.5.5, “Alpha-DEC-UNIX Notes (Tru64)”.

• Windows 9x, Me, NT, 2000, XP, and 2003. See Section 2.3, “Installing MySQL on Windows”.

Installing MySQL

42

Not all platforms are equally well-suited for running MySQL. How well a certain platform is suited
for a high-load mission-critical MySQL server is determined by the following factors:

• General stability of the thread library. A platform may have an excellent reputation otherwise,
but MySQL is only as stable as the thread library it calls, even if everything else is perfect.

• The capability of the kernel and the thread library to take advantage of symmetric multi-pro-
cessor (SMP) systems. In other words, when a process creates a thread, it should be possible for
that thread to run on a different CPU than the original process.

• The capability of the kernel and the thread library to run many threads that acquire and release a
mutex over a short critical region frequently without excessive context switches. If the imple-
mentation of pthread_mutex_lock() is too anxious to yield CPU time, this hurts MySQL
tremendously. If this issue is not taken care of, adding extra CPUs actually makes MySQL
slower.

• General filesystem stability and performance.

• If your tables are big, the ability of the filesystem to deal with large files at all and to deal with
them efficiently.

• Our level of expertise here at MySQL AB with the platform. If we know a platform well, we en-
able platform-specific optimizations and fixes at compile time. We can also provide advice on
configuring your system optimally for MySQL.

• The amount of testing we have done internally for similar configurations.

• The number of users that have successfully run MySQL on the platform in similar configura-
tions. If this number is high, the chances of encountering platform-specific surprises are much
smaller.

Based on the preceding criteria, the best platforms for running MySQL at this point are x86 with
SuSE Linux using a 2.4 kernel, and ReiserFS (or any similar Linux distribution) and SPARC with
Solaris (2.7-9). FreeBSD comes third, but we really hope it joins the top club once the thread library
is improved. We also hope that at some point we is able to include into the top category all other
platforms on which MySQL currently compiles and runs okay, but not quite with the same level of
stability and performance. This requires some effort on our part in cooperation with the developers
of the operating system and library components that MySQL depends on. If you are interested in im-
proving one of those components, are in a position to influence its development, and need more de-
tailed instructions on what MySQL needs to run better, send an email message to the MySQL in-
ternals mailing list. See Section 1.4.1.1, “The MySQL Mailing Lists”.

Please note that the purpose of the preceding comparison is not to say that one operating system is
better or worse than another in general. We are talking only about choosing an OS for the specific
purpose of running MySQL. With this in mind, the result of this comparison would be different if
we considered more factors. In some cases, the reason one OS is better than the other could simply
be that we have been able to put more effort into testing and optimizing for a particular platform.
We are just stating our observations to help you decide which platform to use for running MySQL.

2.1.2. Choosing Which MySQL Distribution to Install
When preparing to install MySQL, you should decide which version to use. MySQL development
occurs in several release series, and you can pick the one that best fits your needs. After deciding
which version to install, you can choose a distribution format. Releases are available in binary or
source format.

2.1.2.1. Choosing Which Version of MySQL to Install

The first decision to make is whether you want to use a production (stable) release or a development
release. In the MySQL development process, multiple release series co-exist, each at a different

Installing MySQL

43

stage of maturity:

• MySQL 5.0 is the newest development release series and is under very active development for
new features. Alpha releases have been issued to allow more widespread testing.

• MySQL 4.1 is the current stable (production-quality) release series. New releases are issued for
bugfixes. No new features are added that could diminish the code stability.

• MySQL 4.0 is the previous stable (production-quality) release series. New releases are issued for
bugfixes. No new features are added that could diminish the code stability.

• MySQL 3.23 is the old stable (production-quality) release series. This series is retired, so new
releases are issued only to fix critical bugs.

We don't believe in a complete freeze, as this also leaves out bugfixes and things that ``must be
done.'' ``Somewhat frozen'' means that we may add small things that ``almost surely do not affect
anything that's currently working.'' Naturally, relevant bugfixes from an earlier series propagate to
later series.

Normally, if you are beginning to use MySQL for the first time or trying to port it to some system
for which there is no binary distribution, we recommend going with the production release series.
Currently this is MySQL 4.1. All MySQL releases, even those from development series, are checked
with the MySQL benchmarks and an extensive test suite before being issued.

If you are running an old system and want to upgrade, but don't want to take the chance of having a
non-seamless upgrade, you should upgrade to the latest version in the same release series you are
using (where only the last part of the version number is newer than yours). We have tried to fix only
fatal bugs and make small, relatively safe changes to that version.

If you want to use new features not present in the production release series, you can use a version
from a development series. Note that development releases are not as stable as production releases.

If you want to use the very latest sources containing all current patches and bugfixes, you can use
one of our BitKeeper repositories. These are not ``releases'' as such, but are available as previews of
the code on which future releases are based.

The MySQL naming scheme uses release names that consist of three numbers and a suffix; for ex-
ample, mysql-4.1.2-alpha. The numbers within the release name are interpreted like this:

• The first number (4) is the major version and also describes the file format. All Version 4 re-
leases have the same file format.

• The second number (1) is the release level. Taken together, the major version and release level
constitute the release series number.

• The third number (2) is the version number within the release series. This is incremented for
each new release. Usually you want the latest version for the series you have chosen.

For each minor update, the last number in the version string is incremented. When there are major
new features or minor incompatibilities with previous versions, the second number in the version
string is incremented. When the file format changes, the first number is increased.

Release names also include a suffix to indicates the stability level of the release. Releases within a
series progress through a set of suffixes to indicate how the stability level improves. The possible
suffixes are:

• alpha indicates that the release contains some large section of new code that hasn't been 100%
tested. Known bugs (usually there are none) should be documented in the News section. See Ap-
pendix D, MySQL Change History. There are also new commands and extensions in most alpha

Installing MySQL

44

releases. Active development that may involve major code changes can occur in an alpha re-
lease, but everything is tested before issuing a release. For this reason, there should be no known
bugs in any MySQL release.

• beta means that all new code has been tested. No major new features that could cause corrup-
tion in old code are added. There should be no known bugs. A version changes from alpha to
beta when there haven't been any reported fatal bugs within an alpha version for at least a month
and we have no plans to add any features that could make any old command unreliable.

• gamma is a beta that has been around a while and seems to work fine. Only minor fixes are ad-
ded. This is what many other companies call a release.

• If there is no suffix, it means that the version has been run for a while at many different sites
with no reports of bugs other than platform-specific bugs. Only critical bugfixes are applied to
the release. This is what we call a production (stable) or `General Availability' (GA) release.

MySQL uses a naming scheme that is slightly different from most other products. In general, it's rel-
atively safe to use any version that has been out for a couple of weeks without being replaced with a
new version within the release series.

All releases of MySQL are run through our standard tests and benchmarks to ensure that they are re-
latively safe to use. Because the standard tests are extended over time to check for all previously
found bugs, the test suite keeps getting better.

All releases have been tested at least with:

• An internal test suite

The mysql-test directory contains an extensive set of test cases. We run these tests for virtu-
ally every server binary. See Section 25.1.2, “MySQL Test Suite” for more information about
this test suite.

• The MySQL benchmark suite

This suite runs a range of common queries. It is also a test to see whether the latest batch of op-
timizations actually made the code faster. See Section 7.1.4, “The MySQL Benchmark Suite”.

• The crash-me test

This test tries to determine what features the database supports and what its capabilities and lim-
itations are. See Section 7.1.4, “The MySQL Benchmark Suite”.

Another test is that we use the newest MySQL version in our internal production environment, on at
least one machine. We have more than 100GB of data to work with.

2.1.2.2. Choosing a Distribution Format

After choosing which version of MySQL to install, you should decide whether to use a binary distri-
bution or a source distribution. In most cases, you should probably use a binary distribution, if one
exists for your platform. Binary distributions are available in native format for many platforms, such
as RPM files for Linux or DMG package installers for Mac OS X. Distributions also are available as
Zip archives or compressed tar files.

Reasons to choose a binary distribution include the following:

• Binary distributions generally are easier to install than source distributions.

• To satisfy different user requirements, we provide two different binary versions: one compiled
with the non-transactional storage engines (a small, fast binary), and one configured with the

Installing MySQL

45

most important extended options like transaction-safe tables. Both versions are compiled from
the same source distribution. All native MySQL clients can connect to servers from either
MySQL version.

The extended MySQL binary distribution is marked with the -max suffix and is configured with
the same options as mysqld-max. See Section 5.1.2, “The mysqld-max Extended MySQL Serv-
er”.

If you want to use the MySQL-Max RPM, you must first install the standard MySQL-server
RPM.

Under some circumstances, you may be better off installing MySQL from a source distribution:

• You want to install MySQL at some explicit location. The standard binary distributions are
``ready to run'' at any place, but you may want to have even more flexibility to place MySQL
components where you want.

• You want to configure mysqld with some extra features that are not included in the standard
binary distributions. Here is a list of the most common extra options that you may want to use:

• --with-innodb (default for MySQL 4.0 and up)

• --with-berkeley-db (not available on all platforms)

• --with-raid

• --with-libwrap

• --with-named-z-libs (this is done for some of the binaries)

• --with-debug[=full]

• You want to configure mysqld without some features that are included in the standard binary
distributions. For example, distributions normally are compiled with support for all character
sets. If you want a smaller MySQL server, you can recompile it with support for only the charac-
ter sets you need.

• You have a special compiler (such as pgcc) or want to use compiler options that are better op-
timized for your processor. Binary distributions are compiled with options that should work on a
variety of processors from the same processor family.

• You want to use the latest sources from one of the BitKeeper repositories to have access to all
current bugfixes. For example, if you have found a bug and reported it to the MySQL develop-
ment team, the bugfix is committed to the source repository and you can access it there. The
bugfix does not appear in a release until a release actually is issued.

• You want to read (or modify) the C and C++ code that makes up MySQL. For this purpose, you
should get a source distribution, because the source code is always the ultimate manual.

• Source distributions contain more tests and examples than binary distributions.

2.1.2.3. How and When Updates Are Released

MySQL is evolving quite rapidly here at MySQL AB and we want to share new developments with
other MySQL users. We try to make a release when we have very useful features that others seem to
have a need for.

We also try to help out users who request features that are easy to implement. We take note of what
our licensed users want to have, and we especially take note of what our support customers want and
try to help them out.

Installing MySQL

46

No one has to download a new release. The News section tells you if the new release has something
you really want. See Appendix D, MySQL Change History.

We use the following policy when updating MySQL:

• Releases are issued within each series. For each release, the last number in the version is one
more than the previous release within the same series.

• Production (stable) releases are meant to appear about 1-2 times a year. However, if small bugs
are found, a release with only bugfixes is issued.

• Working releases/bugfixes to old releases are meant to appear about every 4-8 weeks.

• Binary distributions for some platforms are made by us for major releases. Other people may
make binary distributions for other systems, but probably less frequently.

• We make fixes available as soon as we have identified and corrected small or non-critical but
annoying bugs. The fixes are available immediately from our public BitKeeper repositories, and
will be included in the next release.

• If by any chance a fatal bug is found in a release, we make a new release as soon as possible.
(We would like other companies to do this, too!)

2.1.2.4. Release Philosophy---No Known Bugs in Releases

We put a lot of time and effort into making our releases bug-free. To our knowledge, we have not
released a single MySQL version with any known ``fatal'' repeatable bugs. (A ``fatal'' bug is
something that crashes MySQL under normal usage, produces incorrect answers for normal queries,
or has a security problem.)

We have documented all open problems, bugs, and issues that are dependent on design decisions.
See Section 1.5.7, “Known Errors and Design Deficiencies in MySQL”.

Our aim is to fix everything that is fixable without risk of making a stable MySQL version less
stable. In certain cases, this means we can fix an issue in the development versions, but not in the
stable (production) version. Naturally, we document such issues so that users are aware of them.

Here is a description of how our build process works:

• We monitor bugs from our customer support list, the bugs database at http://bugs.mysql.com/,
and the MySQL external mailing lists.

• All reported bugs for live versions are entered into the bugs database.

• When we fix a bug, we always try to make a test case for it and include it into our test system to
ensure that the bug can never recur without being detected. (About 90% of all fixed bugs have a
test case.)

• We create test cases for all new features we add to MySQL.

• Before we start to build a new MySQL release, we ensure that all reported repeatable bugs for
the MySQL version (3.23.x, 4.0.x, etc) are fixed. If something is impossible to fix (due to some
internal design decision in MySQL), we document this in the manual. See Section 1.5.7,
“Known Errors and Design Deficiencies in MySQL”.

• We do a build on all platforms for which we support binaries (15+ platforms) and run our test
suite and benchmark suite on all of them.

• We do not publish a binary for a platform for which the test or benchmark suite fails. If the prob-
lem is due to a general error in the source, we fix it and do the build plus tests on all systems

Installing MySQL

47

http://bugs.mysql.com/

again from scratch.

• The build and test process takes 2-3 days. If we receive a report regarding a fatal bug during this
process (for example, one that causes a core dump), we fix the problem and restart the build pro-
cess.

• After publishing the binaries on http://dev.mysql.com/, we send out an announcement message
to the mysql and announce mailing lists. See Section 1.4.1.1, “The MySQL Mailing Lists”.
The announcement message contains a list of all changes to the release and any known problems
with the release. The Known Problems section in the release notes has been needed for only a
handful of releases.

• To quickly give our users access to the latest MySQL features, we do a new MySQL release
every 4-8 weeks. Source code snapshots are built daily and are available at ht-
tp://downloads.mysql.com/snapshots.php.

• If, despite our best efforts, we get any bug reports after the release is done that there was
something critically wrong with the build on a specific platform, we fix it at once and build a
new 'a' release for that platform. Thanks to our large user base, problems are found quickly.

• Our track record for making stable releases is quite good. In the last 150 releases, we had to do a
new build for fewer than 10 releases. In three of these cases, the bug was a faulty glibc library
on one of our build machines that took us a long time to track down.

2.1.2.5. MySQL Binaries Compiled by MySQL AB

As a service of MySQL AB, we provide a set of binary distributions of MySQL that are compiled
on systems at our site or on systems where supporters of MySQL kindly have given us access to
their machines.

In addition to the binaries provided in platform-specific package formats, we offer binary distribu-
tions for a number of platforms in the form of compressed tar files (.tar.gz files). See Sec-
tion 2.2, “Standard MySQL Installation Using a Binary Distribution”.

For Windows distributions, see Section 2.3, “Installing MySQL on Windows”.

These distributions are generated using the script Build-tools/Do-compile, which compiles
the source code and creates the binary tar.gz archive using scripts/make_binary_distribution.

These binaries are configured and built with the following compilers and options. This information
can also be obtained by looking at the variables COMP_ENV_INFO and CONFIGURE_LINE inside
the script bin/mysqlbug of every binary tar file distribution.

The following binaries are built on MySQL AB development systems:

• Linux 2.4.xx x86 with gcc 2.95.3:

CFLAGS="-O2 -mcpu=pentiumpro" CXX=gcc CXXFLAGS="-O2 -
mcpu=pentiumpro -felide-constructors" ./configure -
-prefix=/usr/local/mysql --with-extra-charsets=complex -
-enable-thread-safe-client --enable-local-infile -
-enable-assembler --disable-shared -
-with-client-ldflags=-all-static -
-with-mysqld-ldflags=-all-static

• Linux 2.4.x x86 with icc (Intel C++ Compiler 8.0):

CC=icc CXX=icc CFLAGS="-O3 -unroll2 -ip -mp -no-gcc -restrict"
CXXFLAGS="-O3 -unroll2 -ip -mp -no-gcc -restrict" ./configure -
-prefix=/usr/local/mysql --localstatedir=/usr/local/mysql/data -
-libexecdir=/usr/local/mysql/bin --with-extra-charsets=complex -

Installing MySQL

48

http://dev.mysql.com/
http://downloads.mysql.com/snapshots.php
http://downloads.mysql.com/snapshots.php

-enable-thread-safe-client --enable-local-infile -
-enable-assembler --disable-shared -
-with-client-ldflags=-all-static -
-with-mysqld-ldflags=-all-static --with-embedded-server -
-with-innodb

• Linux 2.4.xx Intel Itanium 2 with ecc (Intel C++ Itanium Compiler 7.0):

CC=ecc CFLAGS="-O2 -tpp2 -ip -nolib_inline" CXX=ecc
CXXFLAGS="-O2 -tpp2 -ip -nolib_inline" ./configure -
-prefix=/usr/local/mysql --with-extra-charsets=complex -
-enable-thread-safe-client --enable-local-infile

• Linux 2.4.xx Intel Itanium with ecc (Intel C++ Itanium Compiler 7.0):

CC=ecc CFLAGS=-tpp1 CXX=ecc CXXFLAGS=-tpp1 ./configure -
-prefix=/usr/local/mysql --with-extra-charsets=complex -
-enable-thread-safe-client --enable-local-infile

• Linux 2.4.xx alpha with ccc (Compaq C V6.2-505 / Compaq C++ V6.3-006):

CC=ccc CFLAGS="-fast -arch generic" CXX=cxx CXXFLAGS="-fast -
arch generic -noexceptions -nortti" ./configure -
-prefix=/usr/local/mysql --with-extra-charsets=complex -
-enable-thread-safe-client --enable-local-infile -
-with-mysqld-ldflags=-non_shared -
-with-client-ldflags=-non_shared --disable-shared

• Linux 2.x.xx ppc with gcc 2.95.4:

CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc
CXXFLAGS="-O3 -fno-omit-frame-pointer -felide-constructors -
fno-exceptions -fno-rtti" ./configure --prefix=/usr/local/mysql
--localstatedir=/usr/local/mysql/data -
-libexecdir=/usr/local/mysql/bin --with-extra-charsets=complex -
-enable-thread-safe-client --enable-local-infile -
-disable-shared --with-embedded-server --with-innodb

• Linux 2.4.xx s390 with gcc 2.95.3:

CFLAGS="-O2" CXX=gcc CXXFLAGS="-O2 -felide-constructors"
./configure --prefix=/usr/local/mysql -
-with-extra-charsets=complex --enable-thread-safe-client -
-enable-local-infile --disable-shared -
-with-client-ldflags=-all-static -
-with-mysqld-ldflags=-all-static

• Linux 2.4.xx x86_64 (AMD64) with gcc 3.2.1:

CXX=gcc ./configure --prefix=/usr/local/mysql -
-with-extra-charsets=complex --enable-thread-safe-client -
-enable-local-infile --disable-shared

• Sun Solaris 8 x86 with gcc 3.2.3:

CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc
CXXFLAGS="-O3 -fno-omit-frame-pointer -felide-constructors -
fno-exceptions -fno-rtti" ./configure --prefix=/usr/local/mysql
--localstatedir=/usr/local/mysql/data -
-libexecdir=/usr/local/mysql/bin --with-extra-charsets=complex -
-enable-thread-safe-client --enable-local-infile -
-disable-shared --with-innodb

Installing MySQL

49

• Sun Solaris 8 SPARC with gcc 3.2:

CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc
CXXFLAGS="-O3 -fno-omit-frame-pointer -felide-constructors -
fno-exceptions -fno-rtti" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client -
-enable-local-infile --enable-assembler --with-named-z-libs=no -
-with-named-curses-libs=-lcurses --disable-shared

• Sun Solaris 8 SPARC 64-bit with gcc 3.2:

CC=gcc CFLAGS="-O3 -m64 -fno-omit-frame-pointer" CXX=gcc
CXXFLAGS="-O3 -m64 -fno-omit-frame-pointer -felide-constructors
-fno-exceptions -fno-rtti" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client -
-enable-local-infile --with-named-z-libs=no -
-with-named-curses-libs=-lcurses --disable-shared

• Sun Solaris 9 SPARC with gcc 2.95.3:

CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc
CXXFLAGS="-O3 -fno-omit-frame-pointer -felide-constructors -
fno-exceptions -fno-rtti" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client -
-enable-local-infile --enable-assembler -
-with-named-curses-libs=-lcurses --disable-shared

• Sun Solaris 9 SPARC with cc-5.0 (Sun Forte 5.0):

CC=cc-5.0 CXX=CC ASFLAGS="-xarch=v9" CFLAGS="-Xa -xstrconst -mt
-D_FORTEC_ -xarch=v9" CXXFLAGS="-noex -mt -D_FORTEC_ -xarch=v9"
./configure --prefix=/usr/local/mysql -
-with-extra-charsets=complex --enable-thread-safe-client -
-enable-local-infile --enable-assembler --with-named-z-libs=no -
-enable-thread-safe-client --disable-shared

• IBM AIX 4.3.2 ppc with gcc 3.2.3:

CFLAGS="-O2 -mcpu=powerpc -Wa,-many " CXX=gcc CXXFLAGS="-O2 -
mcpu=powerpc -Wa,-many -felide-constructors -fno-exceptions -
fno-rtti" ./configure --prefix=/usr/local/mysql -
-with-extra-charsets=complex --enable-thread-safe-client -
-enable-local-infile --with-named-z-libs=no --disable-shared

• IBM AIX 4.3.3 ppc with xlC_r (IBM Visual Age C/C++ 6.0):

CC=xlc_r CFLAGS="-ma -O2 -qstrict -qoptimize=2 -qmaxmem=8192"
CXX=xlC_r CXXFLAGS ="-ma -O2 -qstrict -qoptimize=2 -
qmaxmem=8192" ./configure --prefix=/usr/local/mysql -
-localstatedir=/usr/local/mysql/data -
-libexecdir=/usr/local/mysql/bin --with-extra-charsets=complex -
-enable-thread-safe-client --enable-local-infile -
-with-named-z-libs=no --disable-shared --with-innodb

• IBM AIX 5.1.0 ppc with gcc 3.3:

CFLAGS="-O2 -mcpu=powerpc -Wa,-many" CXX=gcc CXXFLAGS="-O2 -
mcpu=powerpc -Wa,-many -felide-constructors -fno-exceptions -
fno-rtti" ./configure --prefix=/usr/local/mysql -
-with-extra-charsets=complex --enable-thread-safe-client -
-enable-local-infile --with-named-z-libs=no --disable-shared

• IBM AIX 5.2.0 ppc with xlC_r (IBM Visual Age C/C++ 6.0):

Installing MySQL

50

CC=xlc_r CFLAGS="-ma -O2 -qstrict -qoptimize=2 -qmaxmem=8192"
CXX=xlC_r CXXFLAGS="-ma -O2 -qstrict -qoptimize=2 -qmaxmem=8192"
./configure --prefix=/usr/local/mysql -
-localstatedir=/usr/local/mysql/data -
-libexecdir=/usr/local/mysql/bin --with-extra-charsets=complex -
-enable-thread-safe-client --enable-local-infile -
-with-named-z-libs=no --disable-shared --with-embedded-server -
-with-innodb

• HP-UX 10.20 pa-risc1.1 with gcc 3.1:

CFLAGS="-DHPUX -I/opt/dce/include -O3 -fPIC" CXX=gcc
CXXFLAGS="-DHPUX -I/opt/dce /include -felide-constructors -
fno-exceptions -fno-rtti -O3 -fPIC" ./configure -
-prefix=/usr/local/mysql --with-extra-charsets=complex -
-enable-thread-safe-client --enable-local-infile --with-pthread
--with-named-thread-libs=-ldce --with-lib-ccflags=-fPIC -
-disable-shared

• HP-UX 11.00 pa-risc with aCC (HP ANSI C++ B3910B A.03.50):

CC=cc CXX=aCC CFLAGS=+DAportable CXXFLAGS=+DAportable
./configure --prefix=/usr/local/mysql -
-localstatedir=/usr/local/mysql/data -
-libexecdir=/usr/local/mysql/bin --with-extra-charsets=complex -
-enable-thread-safe-client --enable-local-infile -
-disable-shared --with-embedded-server --with-innodb

• HP-UX 11.11 pa-risc2.0 64bit with aCC (HP ANSI C++ B3910B A.03.33):

CC=cc CXX=aCC CFLAGS=+DD64 CXXFLAGS=+DD64 ./configure -
-prefix=/usr/local/mysql --with-extra-charsets=complex -
-enable-thread-safe-client --enable-local-infile -
-disable-shared

• HP-UX 11.11 pa-risc2.0 32bit with aCC (HP ANSI C++ B3910B A.03.33):

CC=cc CXX=aCC CFLAGS="+DAportable" CXXFLAGS="+DAportable"
./configure --prefix=/usr/local/mysql -
-localstatedir=/usr/local/mysql/data -
-libexecdir=/usr/local/mysql/bin --with-extra-charsets=complex -
-enable-thread-safe-client --enable-local-infile -
-disable-shared --with-innodb

• HP-UX 11.22 ia64 64bit with aCC (HP aC++/ANSI C B3910B A.05.50):

CC=cc CXX=aCC CFLAGS="+DD64 +DSitanium2" CXXFLAGS="+DD64
+DSitanium2" ./configure --prefix=/usr/local/mysql -
-localstatedir=/usr/local/mysql/data -
-libexecdir=/usr/local/mysql/bin --with-extra-charsets=complex -
-enable-thread-safe-client --enable-local-infile -
-disable-shared --with-embedded-server --with-innodb

• Apple Mac OS X 10.2 powerpc with gcc 3.1:

CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc
CXXFLAGS="-O3 -fno-omit-frame-pointer -felide-constructors -
fno-exceptions -fno-rtti" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client -
-enable-local-infile --disable-shared

• FreeBSD 4.7 i386 with gcc 2.95.4:

Installing MySQL

51

CFLAGS=-DHAVE_BROKEN_REALPATH ./configure -
-prefix=/usr/local/mysql --with-extra-charsets=complex -
-enable-thread-safe-client --enable-local-infile -
-enable-assembler --with-named-z-libs=not-used --disable-shared

• FreeBSD 4.7 i386 using LinuxThreads with gcc 2.95.4:

CFLAGS="-DHAVE_BROKEN_REALPATH -D__USE_UNIX98 -D_REENTRANT -
D_THREAD_SAFE -I/usr/local/include/pthread/linuxthreads"
CXXFLAGS="-DHAVE_BROKEN_REALPATH -D__USE_UNIX98 -D_REENTRANT -
D_THREAD_SAFE -I/usr/local/include/pthread/linuxthreads"
./configure --prefix=/usr/local/mysql -
-localstatedir=/usr/local/mysql/data -
-libexecdir=/usr/local/mysql/bin --enable-thread-safe-client -
-enable-local-infile --enable-assembler -
-with-named-thread-libs="-DHAVE_GLIBC2_STYLE_GETHOSTBYNAME_R -
D_THREAD_SAFE -I /usr/local/include/pthread/linuxthreads -
L/usr/local/lib -llthread -llgcc_r" --disable-shared -
-with-embedded-server --with-innodb

• QNX Neutrino 6.2.1 i386 with gcc 2.95.3qnx-nto 20010315:

CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc
CXXFLAGS="-O3 -fno-omit-frame-pointer -felide-constructors -
fno-exceptions -fno-rtti" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client -
-enable-local-infile --disable-shared

The following binaries are built on third-party systems kindly provided to MySQL AB by other
users. These are provided only as a courtesy; MySQL AB does not have full control over these sys-
tems, so we can provide only limited support for the binaries built on them.

• SCO Unix 3.2v5.0.6 i386 with gcc 2.95.3:

CFLAGS="-O3 -mpentium" LDFLAGS=-static CXX=gcc CXXFLAGS="-O3 -
mpentium -felide-constructors" ./configure -
-prefix=/usr/local/mysql --with-extra-charsets=complex -
-enable-thread-safe-client --enable-local-infile -
-with-named-z-libs=no --enable-thread-safe-client -
-disable-shared

• SCO OpenUnix 8.0.0 i386 with CC 3.2:

CC=cc CFLAGS="-O" CXX=CC ./configure --prefix=/usr/local/mysql -
-with-extra-charsets=complex --enable-thread-safe-client -
-enable-local-infile --with-named-z-libs=no -
-enable-thread-safe-client --disable-shared

• Compaq Tru64 OSF/1 V5.1 732 alpha with cc/cxx (Compaq C V6.3-029i / DIGITAL C++
V6.1-027):

CC="cc -pthread" CFLAGS="-O4 -ansi_alias -ansi_args -fast -
inline speed -speculate all" CXX="cxx -pthread" CXXFLAGS="-O4 -
ansi_alias -fast -inline speed -speculate all -noexceptions -
nortti" ./configure --prefix=/usr/local/mysql -
-with-extra-charsets=complex --enable-thread-safe-client -
-enable-local-infile --with-named-thread-libs="-lpthread -lmach
-lexc -lc" --disable-shared --with-mysqld-ldflags=-all-static

• SGI Irix 6.5 IP32 with gcc 3.0.1:

Installing MySQL

52

CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXXFLAGS="-O3 -
fno-omit-frame-pointer -felide-constructors -fno-exceptions -
fno-rtti" ./configure --prefix=/usr/local/mysql -
-with-extra-charsets=complex --enable-thread-safe-client -
-enable-local-infile --disable-shared

• FreeBSD/sparc64 5.0 with gcc 3.2.1:

CFLAGS=-DHAVE_BROKEN_REALPATH ./configure -
-prefix=/usr/local/mysql --localstatedir=/usr/local/mysql/data -
-libexecdir=/usr/local/mysql/bin --with-extra-charsets=complex -
-enable-thread-safe-client --enable-local-infile -
-disable-shared --with-innodb

The following compile options have been used for binary packages that MySQL AB provided in the
past. These binaries no longer are being updated, but the compile options are listed here for refer-
ence purposes.

• Linux 2.2.xx SPARC with egcs 1.1.2:

CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc
CXXFLAGS="-O3 -fno-omit-frame-pointer -felide-constructors -
fno-exceptions -fno-rtti" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client -
-enable-local-infile --enable-assembler --disable-shared

• Linux 2.2.x with x686 with gcc 2.95.2:

CFLAGS="-O3 -mpentiumpro" CXX=gcc CXXFLAGS="-O3 -mpentiumpro -
felide-constructors -fno-exceptions -fno-rtti" ./configure -
-prefix=/usr/local/mysql --enable-assembler -
-with-mysqld-ldflags=-all-static --disable-shared -
-with-extra-charsets=complex

• SunOS 4.1.4 2 sun4c with gcc 2.7.2.1:

CC=gcc CXX=gcc CXXFLAGS="-O3 -felide-constructors" ./configure -
-prefix=/usr/local/mysql --disable-shared -
-with-extra-charsets=complex --enable-assembler

• SunOS 5.5.1 (and above) sun4u with egcs 1.0.3a or 2.90.27 or

gcc 2.95.2 and newer: CC=gcc CFLAGS="-O3" CXX=gcc CXXFLAGS="-O3 -
felide-constructors -fno-exceptions -fno-rtti" ./configure -
-prefix=/usr/local/mysql --with-low-memory -
-with-extra-charsets=complex --enable-assembler

• SunOS 5.6 i86pc with gcc 2.8.1:

CC=gcc CXX=gcc CXXFLAGS=-O3 ./configure -
-prefix=/usr/local/mysql --with-low-memory -
-with-extra-charsets=complex

• BSDI BSD/OS 3.1 i386 with gcc 2.7.2.1:

CC=gcc CXX=gcc CXXFLAGS=-O ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex

• BSDI BSD/OS 2.1 i386 with gcc 2.7.2:

CC=gcc CXX=gcc CXXFLAGS=-O3 ./configure -

Installing MySQL

53

-prefix=/usr/local/mysql --with-extra-charsets=complex

• AIX 4.2 with gcc 2.7.2.2:

CC=gcc CXX=gcc CXXFLAGS=-O3 ./configure -
-prefix=/usr/local/mysql --with-extra-charsets=complex

Anyone who has more optimal options for any of the preceding configurations listed can always
mail them to the MySQL internals mailing list. See Section 1.4.1.1, “The MySQL Mailing
Lists”.

RPM distributions prior to MySQL 3.22 are user-contributed. Beginning with MySQL 3.22, RPM
distributions are generated by MySQL AB.

If you want to compile a debug version of MySQL, you should add --with-debug or -
-with-debug=full to the preceding configure commands and remove any -
fomit-frame-pointer options.

2.1.3. How to Get MySQL
Check the MySQL downloads page (http://dev.mysql.com/downloads/) for information about the
current version and for downloading instructions. For a complete up-to-date list of MySQL down-
load mirror sites, see http://dev.mysql.com/downloads/mirrors.html. There you can also find inform-
ation about becoming a MySQL mirror site and how to report a bad or out-of-date mirror.

Our main mirror is located at http://mirrors.sunsite.dk/mysql/.

2.1.4. Verifying Package Integrity Using MD5 Check-
sums or GnuPG

After you have downloaded the MySQL package that suits your needs and before you attempt to in-
stall it, you should make sure that it is intact and has not been tampered with. MySQL AB offers
three means of integrity checking:

• MD5 checksums

• Cryptographic signatures using GnuPG, the GNU Privacy Guard

• For RPM packages, the built-in RPM integrity verification mechanism

The following sections describe how to use these methods.

If you notice that the MD5 checksum or GPG signatures do not match, first try to download the re-
spective package one more time, perhaps from another mirror site. If you repeatedly cannot success-
fully verify the integrity of the package, please notify us about such incidents, including the full
package name and the download site you have been using, at <webmaster@mysql.com> or
<build@mysql.com>. Do not report downloading problems using the bug-reporting system.

2.1.4.1. Verifying the MD5 Checksum

After you have downloaded a MySQL package, you should make sure that its MD5 checksum
matches the one provided on the MySQL download pages. Each package has an individual check-
sum that you can verify with the following command, where package_name is the name of the
package you downloaded:

shell> md5sum package_name

Installing MySQL

54

http://dev.mysql.com/downloads/
http://dev.mysql.com/downloads/mirrors.html
http://mirrors.sunsite.dk/mysql/

Example:

shell> md5sum mysql-standard-4.0.17-pc-linux-i686.tar.gz
60f5fe969d61c8f82e4f7f62657e1f06 mysql-standard-4.0.17-pc-linux-i686.tar.gz

You should verify that the resulting checksum (the string of hexadecimal digits) matches the one
displayed on the download page immediately below the respective package.

Note: Make sure to verify the checksum of the archive file (e.g. the .zip or .tar.gz file) and
not of the files that are contained inside of the archive!

Note that not all operating systems support the md5sum command. On some, it is simply called
md5 and others do not ship it at all. On Linux, it is part of the GNU Text Utilities package,
which is available for a wide range of platforms. You can download the source code from ht-
tp://www.gnu.org/software/textutils/ as well. If you have OpenSSL installed, you can also use the
command openssl md5 package_name instead. A DOS/Windows implementation of the
md5 command line utility is available from http://www.fourmilab.ch/md5/. A graphical MD5
checking tool is winMd5Sum, which can be obtained from http://winmd5sum.solidblue.biz/.

2.1.4.2. Signature Checking Using GnuPG

Another method of verifying the integrity and authenticity of a package is to use cryptographic sig-
natures. This is more reliable than using MD5 checksums, but requires more work.

Beginning with MySQL 4.0.10 (February 2003), MySQL AB started signing downloadable pack-
ages with GnuPG (GNU Privacy Guard). GnuPG is an Open Source alternative to the very
well-known Pretty Good Privacy (PGP) by Phil Zimmermann. See http://www.gnupg.org/
for more information about GnuPG and how to obtain and install it on your system. Most Linux dis-
tributions ship with GnuPG installed by default. For more information about OpenPGP, see ht-
tp://www.openpgp.org/.

To verify the signature for a specific package, you first need to obtain a copy of MySQL AB's pub-
lic GPG build key. You can download the key from http://www.keyserver.net/. The key that you
want to obtain is named build@mysql.com. Alternatively, you can cut and paste the key directly
from the following text:

Key ID:
pub 1024D/5072E1F5 2003-02-03

MySQL Package signing key (www.mysql.com) <build@mysql.com>
Fingerprint: A4A9 4068 76FC BD3C 4567 70C8 8C71 8D3B 5072 E1F5
Public Key (ASCII-armored):
-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v1.0.6 (GNU/Linux)
Comment: For info see http://www.gnupg.org
mQGiBD4+owwRBAC14GIfUfCyEDSIePvEW3SAFUdJBtoQHH/nJKZyQT7h9bPlUWC3
RODjQReyCITRrdwyrKUGku2FmeVGwn2u2WmDMNABLnpprWPkBdCk96+OmSLN9brZ
fw2vOUgCmYv2hW0hyDHuvYlQA/BThQoADgj8AW6/0Lo7V1W9/8VuHP0gQwCgvzV3
BqOxRznNCRCRxAuAuVztHRcEAJooQK1+iSiunZMYD1WufeXfshc57S/+yeJkegNW
hxwR9pRWVArNYJdDRT+rf2RUe3vpquKNQU/hnEIUHJRQqYHo8gTxvxXNQc7fJYLV
K2HtkrPbP72vwsEKMYhhr0eKCbtLGfls9krjJ6sBgACyP/Vb7hiPwxh6rDZ7ITnE
kYpXBACmWpP8NJTkamEnPCia2ZoOHODANwpUkP43I7jsDmgtobZX9qnrAXw+uNDI
QJEXM6FSbi0LLtZciNlYsafwAPEOMDKpMqAK6IyisNtPvaLd8lH0bPAnWqcyefep
rv0sxxqUEMcM3o7wwgfN83POkDasDbs3pjwPhxvhz6//62zQJ7Q7TXlTUUwgUGFj
a2FnZSBzaWduaW5nIGtleSAod3d3Lm15c3FsLmNvbSkgPGJ1aWxkQG15c3FsLmNv
bT6IXQQTEQIAHQUCPj6jDAUJCWYBgAULBwoDBAMVAwIDFgIBAheAAAoJEIxxjTtQ
cuH1cY4AnilUwTXn8MatQOiG0a/bPxrvK/gCAJ4oinSNZRYTnblChwFaazt7PF3q
zIhMBBMRAgAMBQI+PqPRBYMJZgC7AAoJEElQ4SqycpHyJOEAn1mxHijft00bKXvu
cSo/pECUmppiAJ41M9MRVj5VcdH/KN/KjRtW6tHFPYhMBBMRAgAMBQI+QoIDBYMJ
YiKJAAoJELb1zU3GuiQ/lpEAoIhpp6BozKI8p6eaabzF5MlJH58pAKCu/ROofK8J
Eg2aLos+5zEYrB/LsrkCDQQ+PqMdEAgA7+GJfxbMdY4wslPnjH9rF4N2qfWsEN/l
xaZoJYc3a6M02WCnHl6ahT2/tBK2w1QI4YFteR47gCvtgb6O1JHffOo2HfLmRDRi
Rjd1DTCHqeyX7CHhcghj/dNRlW2Z0l5QFEcmV9U0Vhp3aFfWC4Ujfs3LU+hkAWzE
7zaD5cH9J7yv/6xuZVw411x0h4UqsTcWMu0iM1BzELqX1DY7LwoPEb/O9Rkbf4fm
Le11EzIaCa4PqARXQZc4dhSinMt6K3X4BrRsKTfozBu74F47D8Ilbf5vSYHbuE5p

Installing MySQL

55

http://www.gnu.org/software/textutils/
http://www.gnu.org/software/textutils/
http://www.fourmilab.ch/md5/
http://winmd5sum.solidblue.biz/
http://www.gnupg.org/
http://www.openpgp.org/
http://www.openpgp.org/
http://www.keyserver.net/

/1oIDznkg/p8kW+3FxuWrycciqFTcNz215yyX39LXFnlLzKUb/F5GwADBQf+Lwqq
a8CGrRfsOAJxim63CHfty5mUc5rUSnTslGYEIOCR1BeQauyPZbPDsDD9MZ1ZaSaf
anFvwFG6Llx9xkU7tzq+vKLoWkm4u5xf3vn55VjnSd1aQ9eQnUcXiL4cnBGoTbOW
I39EcyzgslzBdC++MPjcQTcA7p6JUVsP6oAB3FQWg54tuUo0Ec8bsM8b3Ev42Lmu
QT5NdKHGwHsXTPtl0klk4bQk4OajHsiy1BMahpT27jWjJlMiJc+IWJ0mghkKHt92
6s/ymfdf5HkdQ1cyvsz5tryVI3Fx78XeSYfQvuuwqp2H139pXGEkg0n6KdUOetdZ
Whe70YGNPw1yjWJT1IhMBBgRAgAMBQI+PqMdBQkJZgGAAAoJEIxxjTtQcuH17p4A
n3r1QpVC9yhnW2cSAjq+kr72GX0eAJ4295kl6NxYEuFApmr1+0uUq/SlsQ==
=YJkx
-----END PGP PUBLIC KEY BLOCK-----

You can import the build key into your personal public GPG keyring by using gpg --import.
For example, if you save the key in a file named mysql_pubkey.asc, the import command
looks like this:

shell> gpg --import mysql_pubkey.asc

See the GPG documentation for more information on how to work with public keys.

After you have downloaded and imported the public build key, download your desired MySQL
package and the corresponding signature, which also is available from the download page. The sig-
nature file has the same name as the distribution file with an .asc extension. For example:

Distribution file mysql-standard-4.0.17-pc-linux-i686.tar.gz

Signature file mysql-stand-
ard-4.0.17-pc-linux-i686.tar.gz.asc

Make sure that both files are stored in the same directory and then run the following command to
verify the signature for the distribution file:

shell> gpg --verify package_name.asc

Example:

shell> gpg --verify mysql-standard-4.0.17-pc-linux-i686.tar.gz.asc
gpg: Warning: using insecure memory!
gpg: Signature made Mon 03 Feb 2003 08:50:39 PM MET
using DSA key ID 5072E1F5
gpg: Good signature from

"MySQL Package signing key (www.mysql.com) <build@mysql.com>"

The Good signature message indicates that everything is all right. You can ignore the insec-
ure memory warning.

2.1.4.3. Signature Checking Using RPM

For RPM packages, there is no separate signature. RPM packages have a built-in GPG signature and
MD5 checksum. You can verify a package by running the following command:

shell> rpm --checksig package_name.rpm

Example:

shell> rpm --checksig MySQL-server-4.0.10-0.i386.rpm
MySQL-server-4.0.10-0.i386.rpm: md5 gpg OK

Note: If you are using RPM 4.1 and it complains about (GPG) NOT OK (MISSING KEYS:
GPG#5072e1f5), even though you have imported the MySQL public build key into your own

Installing MySQL

56

GPG keyring, you need to import the key into the RPM keyring first. RPM 4.1 no longer uses your
personal GPG keyring (or GPG itself). Rather, it maintains its own keyring because it is a system-
wide application and a user's GPG public keyring is a user-specific file. To import the MySQL pub-
lic key into the RPM keyring, first obtain the key as described in the previous section. Then use
rpm --import to import the key. For example, if you have the public key stored in a file named
mysql_pubkey.asc, import it using this command:

shell> rpm --import mysql_pubkey.asc

If you need to obtain the MySQL public key, see Section 2.1.4.2, “Signature Checking Using
GnuPG”.

2.1.5. Installation Layouts
This section describes the default layout of the directories created by installing binary or source dis-
tributions provided by MySQL AB. If you install a distribution provided by another vendor, some
other layout might be used.

On Windows, the default installation directory is C:\mysql. With MySQL version 4.1.5 and high-
er, this has changed to C:\Program Files\MySQL\MySQL Server 4.1, where 4.1 is the
major version of the installation. The folder has the following subdirectories:

Directory Contents of Directory

bin Client programs and the mysqld server

data Log files, databases

Docs Documentation

examples Example programs and scripts

include Include (header) files

lib Libraries

scripts Utility scripts

share Error message files

Installations created from Linux RPM distributions result in files under the following system direct-
ories:

Directory Contents of Directory

/usr/bin Client programs and scripts

/usr/sbin The mysqld server

/var/lib/mysql Log files, databases

/usr/share/doc/packages Documentation

/usr/include/mysql Include (header) files

/usr/lib/mysql Libraries

/usr/share/mysql Error message and character set files

/usr/share/sql-bench Benchmarks

On Unix, a tar file binary distribution is installed by unpacking it at the installation location you
choose (typically /usr/local/mysql) and creates the following directories in that location:

Directory Contents of Directory

bin Client programs and the mysqld server

data Log files, databases

docs Documentation, ChangeLog

Installing MySQL

57

include Include (header) files

lib Libraries

scripts mysql_install_db

share/mysql Error message files

sql-bench Benchmarks

A source distribution is installed after you configure and compile it. By default, the installation step
installs files under /usr/local, in the following subdirectories:

Directory Contents of Directory

bin Client programs and scripts

include/mysql Include (header) files

info Documentation in Info format

lib/mysql Libraries

libexec The mysqld server

share/mysql Error message files

sql-bench Benchmarks and crash-me test

var Databases and log files

Within an installation directory, the layout of a source installation differs from that of a binary in-
stallation in the following ways:

• The mysqld server is installed in the libexec directory rather than in the bin directory.

• The data directory is var rather than data.

• mysql_install_db is installed in the bin directory rather than in the scripts directory.

• The header file and library directories are include/mysql and lib/mysql rather than in-
clude and lib.

You can create your own binary installation from a compiled source distribution by executing the
scripts/make_binary_distribution script from the top directory of the source distribu-
tion.

2.2. Standard MySQL Installation Using a Bin-
ary Distribution

The next several sections cover the installation of MySQL on platforms where we offer packages
using the native packaging format of the respective platform. (This is also known as performing a
``binary install.'') However, binary distributions of MySQL are available for many other platforms
as well. See Section 2.7, “Installing MySQL on Other Unix-Like Systems” for generic installation
instructions for these packages that apply to all platforms.

See Section 2.1, “General Installation Issues” for more information on what other binary distribu-
tions are available and how to obtain them.

2.3. Installing MySQL on Windows
A native Windows version of MySQL has been available from MySQL AB since version 3.21 and
represents a sizable percentage of the daily downloads of MySQL. This section describes the pro-

Installing MySQL

58

cess for installing MySQL on Windows.

With the release of MySQL 4.1.5, MySQL AB has introduced a new installer for the Windows ver-
sion of MySQL, combined with a new GUI Configuration Wizard. This combination automatically
installs MySQL, creates an option file, starts the server, and secures the default user accounts.

If you have installed a version of MySQL prior to version 4.1.5, you must perform the following
steps:

1. Obtain and install the distribution.

2. Set up an option file if necessary.

3. Select the server that you want to use.

4. Start the server.

5. Assign passwords to the initial MySQL accounts.

This process also must be followed with newer MySQL installations where the installation package
does not include an installer.

MySQL for Windows is available in two distribution formats:

• The binary distribution contains a setup program that installs everything you need so that you
can start the server immediately.

• The source distribution contains all the code and support files for building the executables using
the VC++ 6.0 compiler.

Generally speaking, you should use the binary distribution. It's simpler, and you need no additional
tools to get MySQL up and running.

This section describes how to install MySQL on Windows using a binary distribution. To install us-
ing a source distribution, see Section 2.8.6, “Installing MySQL from Source on Windows”.

2.3.1. Windows System Requirements
To run MySQL on Windows, you need the following:

• A 32-bit Windows operating system such as 9x, Me, NT, 2000, XP, or Windows Server 2003.

A Windows NT based operating system (NT, 2000, XP, 2003) permits you to run the MySQL
server as a service. The use of a Windows NT based operating system is strongly recommended.
See Section 2.3.12, “Starting MySQL as a Windows Service”.

• TCP/IP protocol support.

• A copy of the MySQL binary distribution for Windows, which can be downloaded from ht-
tp://dev.mysql.com/downloads/. See Section 2.1.3, “How to Get MySQL”.

Note: If you download the distribution via FTP, we recommend the use of an adequate FTP cli-
ent with a resume feature to avoid corruption of files during the download process.

• A tool that can read .zip files, to unpack the distribution file.

• Enough space on the hard drive to unpack, install, and create the databases in accordance with
your requirements (generally a minimum of 200 megabytes is recommended.)

Installing MySQL

59

http://dev.mysql.com/downloads/
http://dev.mysql.com/downloads/

You may also have the following optional requirements:

• If you plan to connect to the MySQL server via ODBC, you also need a Connector/ODBC
driver. See Section 23.1, “MySQL ODBC Support”.

• If you need tables with a size larger than 4GB, install MySQL on an NTFS or newer filesystem.
Don't forget to use MAX_ROWS and AVG_ROW_LENGTH when you create tables. See Sec-
tion 13.2.6, “CREATE TABLE Syntax”.

2.3.2. Choosing An Installation Package
Starting with MySQL version 4.1.5, there are three install packages to choose from when installing
MySQL on Windows. The Packages are as follows:

• The Essentials Package: This package has a filename similar to mysql-essen-
tial-4.1.9-win32.msi and contains the minimum files needed to install MySQL on Win-
dows, including the Configuration Wizard. This package does not include optional components
such as the embedded server and benchmark suite.

• The Complete Package: This package has a filename similar to mysql-4.1.9-win32.zip
and contains all files needed for a complete Windows installation, including the Configuration
Wizard. This package includes optional components such as the embedded server and bench-
mark suite.

• The Noinstall Archive: This package has a filename similar to mysql-noin-
stall-4.1.9-win32.zip and contains all the files found in the Complete install package,
with the exception of the Configuration Wizard. This package does not include an automated in-
staller, and must be manually installed and configured.

The Essentials package is recommended for most users.

Your choice of install package affects the installation process you must follow. If you choose to in-
stall either the Essentials or Complete install packages, see Section 2.3.3, “Installing MySQL with
the Automated Installer”. If you choose to install MySQL from the Noinstall archive, see Sec-
tion 2.3.6, “Installing MySQL from a noinstall Zip Archive”.

2.3.3. Installing MySQL with the Automated Installer
Starting with MySQL 4.1.5, users can use the new MySQL Installation Wizard and MySQL Config-
uration Wizard to install MySQL on Windows. The MySQL Installation Wizard and MySQL Con-
figuration Wizard are designed to install and configure MySQL in such a way that new users can
immediately get started using MySQL.

The MySQL Installation Wizard and MySQL Configuration Wizard are available in the Essentials
and Complete install packages, and are recommended for most standard MySQL installations. Ex-
ceptions include users who need to install multiple instances of MySQL on a single server and ad-
vanced users who want complete control of server configuration.

If you are installing a version of MySQL prior to MySQL 4.1.5, please follow the instructions for
installing MySQL from the Noinstall installation package. See Section 2.3.6, “Installing MySQL
from a noinstall Zip Archive”.

2.3.4. Using the MySQL Installation Wizard

2.3.4.1. Introduction

MySQL Installation Wizard is a new installer for the MySQL server that uses the latest installer

Installing MySQL

60

technologies for Microsoft Windows. The MySQL Installation Wizard, in combination with the
MySQL Configuration Wizard, allows a user to install and configure a MySQL server that is ready
for use immediately after installation.

The MySQL Installation Wizard is the standard installer for all MySQL server distributions, version
4.1.5 and higher. Users of previous versions of MySQL need to manually shut down and remove
their existing MySQL installations before installing MySQL with the MySQL Installation Wizard.
See Section 2.3.4.7, “Upgrading MySQL” for more information on upgrading from a previous ver-
sion.

Microsoft has included an improved version of their Microsoft Windows Installer (MSI) in the re-
cent versions of Windows. Using the MSI has become the de-facto standard for application installa-
tions on Windows 2000, Windows XP, and Windows Server 2003. The MySQL Installation Wizard
makes use of this technology to provide a smoother and more flexible installation progress.

The Microsoft Windows Installer Engine was updated with the release of Windows XP; those using
a previous version of Windows can reference this Microsoft Knowledge Base article
[http://support.microsoft.com/default.aspx?scid=kb;EN-US;292539] for information on upgrading
to the latest version of the Windows Installer Engine.

Further, Microsoft has introduced the WiX (Windows Installer XML) tool set recently. It is the first
highly acknowledged Open Source project from Microsoft. We switched to WiX because it is an
Open Source project and it allows us to handle the complete Windows installation process in a flex-
ible way with scripts.

Improving the MySQL Installation Wizard depends on the support and feedback of users like you. If
you find that the MySQL Installation Wizard is lacking some feature important to you, or if you dis-
cover a bug, please use our MySQL Bug System [http://bugs.mysql.com] to request features or re-
port problems.

2.3.4.2. Downloading and Starting the MySQL Installation Wizard

The MySQL server install packages can be downloaded from http://dev.mysql.com/downloads/. If
the package you download is contained within a Zip archive, you need to extract the archive first.

The process for starting the wizard depends on the contents of the install package you download. If
there is a setup.exe file present, double-click it to start the install process. If there is a .msi file
present, double-click it to start the install process.

2.3.4.3. Choosing an Install Type

There are up three installation types available: Typical, Complete, and Custom.

The Typical installation type installs the MySQL server, the mysql command-line client, and the
command-line utilities. The command-line clients and utilities include mysqldump, myisamchk,
and several other tools to help you manage the MySQL server.

The Complete installation type installs all components included in the installation package. The
full installation package includes components such as the embedded server library, the benchmark
suite, support scripts, and documentation.

The Custom installation type gives you complete control over which packages you wish to install
and the installation path that is used. See Section 2.3.4.4, “The Custom Install Dialog” for more in-
formation on performing a custom install.

If you choose the Typical or Complete installation types and click the Next button, you ad-
vance to the confirmation screen to confirm your choices and begin the installation. If you choose
the Custom installation type and click the Next button, you advance to the custom install dialog,
described in Section 2.3.4.4, “The Custom Install Dialog”

2.3.4.4. The Custom Install Dialog

Installing MySQL

61

http://support.microsoft.com/default.aspx?scid=kb;EN-US;292539
http://bugs.mysql.com
http://dev.mysql.com/downloads/

If you wish to change the installation path or the specific components that are installed by the
MySQL Installation Wizard, you should choose the Custom installation type.

All available components are listed in a tree view on the left side of the custom install dialog. Com-
ponents that are not installed have a red X icon, components that are installed have a gray icon. To
change whether a component is installed, click on the component's icon and choose an new option
from the drop-down list that appears.

You can change the default installation path by clicking the Change... button to the right of the dis-
played installation path.

After choosing your install components and installation path, click the Next button to advance to the
confirmation dialog.

2.3.4.5. The Confirmation Dialog

Once you choose an installation type and optionally choose your installation components, you ad-
vance to the confirmation dialog. Your installation type and installation path are displayed for you
to review.

To install MySQL if you are satisfied with your settings, click the Install button. To change your
settings, click the Back button. To exit the MySQL Installation Wizard without installing MySQL,
click the Cancel button.

After installation is complete, you are given the option of registering with the MySQL web site. Re-
gistration gives you access to post in the MySQL forums at forums.mysql.com
[http://forums.mysql.com], along with the ability to report bugs at bugs.mysql.com
[http://bugs.mysql.com] and to subscribe to the newsletter. The final screen of the installer provides
a summary of the installation and gives you the option to launch the MySQL Configuration Wizard,
which you can use to create a configuration file, install the MySQL service, and configure security.

2.3.4.6. Changes Made by MySQL Installation Wizard

Once you click the Install button, the MySQL Installation Wizard begins the installation process and
makes certain changes to your system which are described in the sections that follow.

Changes to the Registry

The MySQL Installation Wizard creates one Windows registry key in a typical install situation, loc-
ated in HKEY_LOCAL_MACHINE\SOFTWARE\MySQL AB.

The MySQL Installation Wizard creates a key named after the major version of the server that is be-
ing installed, such as MySQL Server 4.1. It contains two string values, Location and Ver-
sion. The Location string contains the path to the installation directory. In a default installation
it contains C:\Program Files\MySQL\MySQL Server 4.1\. The Version string con-
tains the release number. For example, for an installation of MySQL Server 4.1.5 the key contains a
value of 4.1.5.

These registry keys are used to help external tools identify the installed location of the MySQL serv-
er, preventing a complete scan of the hard-disk to determine the installation path of the MySQL
server. The registry keys are not required to run the server and when using the noinstall Zip
archive the registry keys are not created.

Changes to the Start Menu

The MySQL Installation Wizard creates a new entry in the Windows Start menu under a common
MySQL menu heading named after the major version of MySQL that you have installed. For ex-
ample, if you install MySQL 4.1, the MySQL Installation Wizard creates a MySQL Server 4.1 sec-
tion in the start menu.

The following entries are created within the new Start menu section:

Installing MySQL

62

http://forums.mysql.com
http://bugs.mysql.com

• MySQL Command Line Client: This is a shortcut to the mysql command-line client and is
configured to connect as the root user. The shortcut prompts for a root user password when
connecting.

• MySQL Server Instance Config Wizard: This is a shortcut to the MySQL Configur-
ation Wizard. Use this shortcut to configure a newly installed server, or to re-configure an exist-
ing server.

• MySQL Documentation: This is a link to the MySQL server documentation that is stored
locally in the MySQL server installation directory. This option is not available when the MySQL
server is installed from the essential installation package.

Changes to the File System

The MySQL Installation Wizard by default installs the MySQL server to C:\Program
Files\MySQL\MySQL Server 4.1, where Program Files is the default location for ap-
plications in your system, and 4.1 is the major version of your MySQL server. This is the new re-
commended location for the MySQL server, replacing the previous default location of c:\mysql.

By default, all MySQL applications are stored in a common directory at C:\Program
Files\MySQL, where Program Files is the default location for applications in your Windows
installation. A typical MySQL installation on a developer machine may look like this:

C:\Program Files\MySQL\MySQL Server 4.1
C:\Program Files\MySQL\MySQL Server 5.0
C:\Program Files\MySQL\MySQL Administrator 1.0
C:\Program Files\MySQL\MySQL Query Browser 1.0

This approach makes it easier to manage and maintain all MySQL applications installed on a partic-
ular system.

2.3.4.7. Upgrading MySQL

From MySQL version 4.1.5, the new MySQL Installation Wizard can perform server upgrades auto-
matically using the upgrade capabilities of MSI. That means you do not need to remove a previous
installation manually before installing a new release. The installer automatically shuts down and re-
moves the previous MySQL service before installing the new version.

Automatic upgrades are only available when upgrading between installations that have the same ma-
jor and minor version numbers. For example, you can upgrade automatically from MySQL 4.1.5 to
MySQL 4.1.6, but not from MySQL 4.1 to MySQL 5.0.

If you are upgrading MySQL version 4.1.4 or earlier to version 4.1.5 or later, you must first manu-
ally shut down and remove the older installation before upgrading. Be sure to back up your data-
bases before performing such an upgrade, so that you can restore the databases after the upgrade is
completed. It is always recommended that you back up your data before performing any upgrades.

See Section 2.3.15, “Upgrading MySQL on Windows”.

2.3.5. Using the Configuration Wizard

2.3.5.1. Introduction

The MySQL Configuration Wizard helps automate the process of configuring your server under
Windows. The MySQL Configuration Wizard creates a custom my.ini file by asking you a series
of questions and then applying your responses to a template to generate a my.ini file that is tuned
to your installation.

The MySQL Configuration Wizard is included with the MySQL server starting with MySQL ver-
sion 4.1.5, but is designed to work with MySQL servers versions 4.0 and higher. The MySQL Con-

Installing MySQL

63

figuration Wizard is currently available for Windows users only.

MySQL Configuration Wizard is to a large extent the result of feedback MySQL AB has received
from many users over a period of several years. However, if you find it's lacking some feature im-
portant to you, or if you discover a bug, please use our MySQL Bug System [http://bugs.mysql.com]
to request features or report problems.

2.3.5.2. Starting the MySQL Configuration Wizard

The MySQL Configuration Wizard is typically launched from the MySQL Installation Wizard, as
the MySQL Installation Wizard exits. You can also launch the MySQL Configuration Wizard by
clicking the MySQL Server Instance Config Wizard entry in the MySQL section of the Start
menu.

In addition, you can navigate to the bin directory of your MySQL installation and launch the
MySQLInstanceConfig.exe file directly.

2.3.5.3. Choosing a Maintenance Option

If the MySQL Configuration Wizard detects an existing my.ini file, you have the option of either
re-configuring your existing server, or removing the server instance by deleting the my.ini file
and stopping and removing the MySQL service.

To reconfigure an existing server, choose the Re-configure Instance option and click the
Next button. Your existing my.ini file is renamed to my timestamp.ini.bak, where
timestamp is the date and time the existing my.ini file was created. To remove the existing
server instance, choose the Remove Instance option and click the Next button.

If you choose the Remove Instance option, you advance to a confirmation window. Click the
Execute button and the MySQL Configuration Wizard stops and removes the MySQL service and
deletes the my.ini file. The server installation and its data folder are not removed.

If you choose the Re-configure Instance option, you advance to the Configuration
Type dialog where you can choose the type of installation you wish to configure.

2.3.5.4. Choosing a Configuration Type

When you start the MySQL Configuration Wizard for a new MySQL installation, or choose the Re-
configure Instance option for an existing installation, you advance to the Configura-
tion Type dialog.

There are two configuration types available: Detailed Configuration and Standard
Configuration. The Standard Configuration option is intended for new users who
want to get started with MySQL quickly without having to make a lot of decisions in regards to
server configuration. The Detailed Configuration option is intended for advanced users
who want more fine-grained control of server configuration.

If you are new to MySQL and need a server configured as a single-user developer machine the
Standard Configuration should suit your needs. Choosing the Standard Configura-
tion option causes the MySQL Configuration Wizard to automatically set all configuration options
with the exception of the Service Options and Security Options.

The Standard Configuration sets options that may be incompatible with systems where
there are existing MySQL installations. If you have an existing MySQL installation on your system
in addition to the installation you wish to configure, the Detailed Configuration option is
recommended.

To complete the Standard Configuration, please refer to the sections on Service Op-
tions and Security Options, located at Section 2.3.5.11, “The Service Options Dialog” and
Section 2.3.5.12, “The Security Options Dialog” respectively.

2.3.5.5. The Server Type Dialog

Installing MySQL

64

http://bugs.mysql.com

There are three different server types available to choose from, and the server type you choose af-
fects the decisions the MySQL Configuration Wizard makes with regards to memory, disk, and pro-
cessor usage.

• Developer Machine: Choose this option for a typical desktop workstation where MySQL is
intended only for personal use. It is assumed that many other desktop applications are running.
The MySQL server is configured to use minimal system resources.

• Server Machine: Choose this option for a server machine where the MySQL server is run-
ning alongside other server applications such as FTP, email, and web servers. The MySQL serv-
er is configured to use a medium portion of the system resources.

• Dedicated MySQL Server Machine: Choose this option for a server machine that is in-
tended to run only the MySQL server. It is assumed that no other applications are running. The
MySQL server is configured to use all available system resources.

2.3.5.6. The Database Usage Dialog

The Database Usage dialog allows you to indicate the table handlers you expect to use when
creating MySQL tables. The option you choose determines whether the InnoDB table handler is
available and what percentage of the server resources are available to InnoDB.

• Multifunctional Database: This option enables both the InnoDB and MyISAM table
handlers and divides resources evenly between the two. This option is recommended for users
that use both table handlers on a regular basis.

• Transactional Database Only: This option enables both the InnoDB and MyISAM ta-
ble handlers but dedicates most server resources toward the InnoDB table handler. This option is
recommended for users that use InnoDB almost exclusively and make only minimal use of My-
ISAM.

• Non-Transactional Database Only: This option disables the InnoDB table handler
completely and dedicates all server resources to the MyISAM table handler. This option is re-
commended for users who do not use InnoDB.

2.3.5.7. The InnoDB Tablespace Dialog

Some users may want to locate the InnoDB tablespace files in a different location than the MySQL
server data directory. Placing the tablespace files in a separate location can be desirable if your sys-
tem has a higher capacity or higher performance storage device available, such as a RAID storage
system.

To change the default location for the InnoDB tablespace files, choose a new drive from the drop-
down list of drive letters and choose a new path from the drop-down list of paths. To create a cus-
tom path, click the ... button.

If you are modifying the configuration of an existing server, you must click the Modify button be-
fore you change the path. In this situation you have to manually move the existing tablespace files to
the new location before starting the server.

2.3.5.8. The Concurrent Connections Dialog

It is important to set a limit to the number of concurrent connections to the MySQL server that can
be established to prevent the server from running out of resources. The Concurrent Connec-
tions dialog allows you to choose the expected usage of your server, and sets the limit for concur-
rent connections accordingly. It is also possible to manually set the concurrent connection limit.

Installing MySQL

65

• Decision Support (DSS)/OLAP: Choose this option if your server does not require a
large number of concurrent connections. The maximum number of connections is set at 100,
with an average of 20 concurrent connections assumed.

• Online Transaction Processing (OLTP): Choose this option if your server requires
a large number of concurrent connections. The maximum number of connections is set at 500.

• Manual Setting: Choose this option to manually set the maximum number of concurrent
connections to the server. Choose the number of concurrent connections from the drop-down
box provided, or type the maximum number of connections into the drop-down box if the num-
ber you desire is not listed.

2.3.5.9. The Networking Options Dialog

Use the Networking Options dialog to enable or disable TCP/IP networking and to configure
the port number that is used to connect to the MySQL server.

TCP/IP networking is enabled by default. To disable TCP/IP networking, uncheck the box next to
the Enable TCP/IP Networking option.

Port 3306 is used by default. To change the port used to access MySQL, choose a new port number
from the drop-down box or type a new port number directly into the drop-down box. If the port
number you choose is in use you are prompted to confirm your choice of port number.

2.3.5.10. The Character Set Dialog

The MySQL server supports multiple character sets and it is possible to set a default server character
set that is applied to all tables, columns, and databases unless overridden. Use the Character
Set dialog to change the default character set of the MySQL server.

• Standard Character Set: Choose this option if you want to use Latin1 as the default
server character set. Latin1 is used for English and many Western European languages.

• Best Support For Multilingualism: Choose this option if you want to use UTF8 as
the default server character set. UTF8 can store characters from many different languages in a
single character set.

• Manual Selected Default Character Set / Collation: Choose this option if
you want to pick the server's default character set manually. Choose the desired character set
from the provided drop-down list.

2.3.5.11. The Service Options Dialog

On Windows NT based platforms, the MySQL server can be installed as a service. When installed
as a service, the MySQL server can be started automatically during system startup, and even restar-
ted automatically by Windows in the event of a service failure.

The MySQL Configuration Wizard installs the MySQL server as a service by default, using the ser-
vice name MySQL. If you do not wish to install the service, un-check the box next to the Install
As Windows Service option. You can changed the service name by picking a new service
name from the drop-down box provided or by typing a new service name into the drop-down box.

To install the MySQL server as a service but not have it started automatically at startup, un-check
the box next to the Launch the MySQL Server automatically option.

2.3.5.12. The Security Options Dialog

It is strongly recommended that you set a root password for your MySQL server, and the MySQL
Configuration Wizard requires you set a root password by default. If you do not wish to set a

Installing MySQL

66

root password, un-check the box next to the Modify Security Settings option.

To set the root password, type the desired password into both the New root password and
Confirm boxes. If you are re-configuring an existing server, you also need to enter the existing
root password into the Current root password box.

To prevent root logins from across the network, check the box next to the Root may only
connect from localhost option. This increases the security of your root account.

To create an anonymous user account, check the box next to the Create An Anonymous Ac-
count option. Creating an anonymous account can decrease server security and cause login and
permission difficulties and is not recommended.

2.3.5.13. The Confirmation Dialog

The final dialog in the MySQL Configuration Wizard is the Confirmation Dialog. To start
the configuration process, click the Execute button. To return to a previous dialog, click the Back
button. To exit the MySQL Configuration Wizard without configuring the server, click the Cancel
button.

After you click the Execute button, the MySQL Configuration Wizard performs a series of tasks
with progress displayed onscreen as the tasks are performed.

The MySQL Configuration Wizard firsts determines various configuration file options based on
your choices using a template prepared by MySQL AB developers and engineers. This template is
named my-template.ini and is located in your server installation directory.

The MySQL Configuration Wizard then writes these options to a my.ini file. The final location of
the my.ini file is displayed next to the Write configuration file task.

If you chose to create a service for the MySQL server the MySQL Configuration Wizard creates ans
starts the service. If you are re-configuring an existing service, the MySQL Configuration Wizard
restarts the service to apply your configuration changes.

If you chose to set a root password, the MySQL Configuration Wizard connects to the server, sets
your new root password and applies any other security settings you may have selected.

After the MySQL Configuration Wizard has completed its tasks, a summary is shown. Click the
Finish button to exit the MySQL Configuration Wizard.

2.3.5.14. The Location of the my.ini File

In MySQL installations prior to version 4.1.5 it was customary to name the server configuration file
my.cnf or my.ini and locate the file either at c:\my.cnf or c:\Windows\my.ini.

The new MySQL Configuration Wizard places the my.ini file in the installation directory of the
MySQL server. This helps associate configuration files with particular server instances.

To ensure that the MySQL server knows where to look for the my.ini file, an argument similar to
this is passed to the MySQL server as part of the service installation:
--defaults-file="C:\Program Files\MySQL\MySQL Server 4.1\my.ini",
where C:\Program Files\MySQL\MySQL Server 4.1 is replaced with the installation
path to the MySQL Server.

The --defaults-file instructs the MySQL server to read the specified file for configuration
options.

2.3.5.15. Editing The my.ini File

To modify the my.ini file, open it with a text editor and make any necessary changes. You can
also modify the server configuration with the MySQL Administrator
[http://www.mysql.com/products/administrator/] utility.

Installing MySQL

67

http://www.mysql.com/products/administrator/

MySQL clients and utilities such as the mysql command-line client and mysqldump are not able to
locate the my.ini file located in the server installation directory. To configure the client and utility
applications, create a new my.ini file in the c:\Windows directory.

2.3.6. Installing MySQL from a noinstall Zip Archive
Users who are installing from the Noinstall package, or who are installing a version of MySQL prior
to 4.1.5 can use the instructions in this section to manually install MySQL. If you are installing a
version prior to 4.1.5 with an install package that includes a Setup program, substitute running the
Setup program for extracting the archive.

The process for installing MySQL from a Zip archive is as follows:

1. Extract the archive to the desired install directory.

2. Create an option file.

3. Choose a MySQL server type.

4. Start the MySQL server.

5. Secure the default user accounts.

This process is described in the sections that follow.

2.3.7. Extracting the Install Archive
To install MySQL manually, do the following:

1. If you are upgrading from a previous version please refer to Section 2.3.15, “Upgrading
MySQL on Windows” before beginning the upgrade process.

2. If you are using a Windows NT-based operating system such as Windows NT, Windows 2000,
Windows XP, or Windows Server 2003, make sure that you are logged in as a user with admin-
istrator privileges.

3. Choose an installation location. Traditionally the MySQL server is installed at C:\mysql, and
the new MySQL Installation Wizard installs MySQL to C:\Program Files\MySQL. If
you do not install MySQL at C:\mysql, you must specify the path to the install directory dur-
ing startup or in an option file. See Section 2.3.8, “Creating an Option File”.

4. Extract the install archive to the chosen installation location using your preferred Zip archive
tool. Some tools may extract the archive to a folder within your chosen installation location. If
this occurs you can move the contents of the subfolder into the chosen installation location.

2.3.8. Creating an Option File
If you need to specify startup options when you run the server, you can indicate them on the com-
mand line or place them in an option file. For options that are used every time the server starts, you
may find it most convenient to use an option file to specify your MySQL configuration. This is par-
ticularly true under the following circumstances:

• The installation or data directory locations are different from the default locations (C:\mysql
and C:\mysql\data).

• You need to tune the server settings. For example, to use the InnoDB transactional tables in
MySQL 3.23, you must manually add some extra lines to the option file, as described in Sec-

Installing MySQL

68

tion 15.4, “InnoDB Configuration”. (As of MySQL 4.0, InnoDB creates its data files and log
files in the data directory by default. This means you need not configure InnoDB explicitly.
You may still do so if you wish, and an option file is useful in this case, too.)

When the MySQL server starts on Windows, it looks for options in two files: the my.ini file in the
Windows directory, and the C:\my.cnf file. The Windows directory typically is named
something like C:\WINDOWS or C:\WinNT. You can determine its exact location from the value
of the WINDIR environment variable using the following command:

C:\> echo %WINDIR%

MySQL looks for options first in the my.ini file, then in the my.cnf file. However, to avoid con-
fusion, it's best if you use only one file. If your PC uses a boot loader where the C: drive isn't the
boot drive, your only option is to use the my.ini file. Whichever option file you use, it must be a
plain text file.

You can also make use of the example option files included with your MySQL distribution. Look in
your install directory for files such as my-small.cnf, my-medium.cnf, my-large.cnf, etc., which you
can rename and copy to the appropriate location for use as a base configuration file.

An option file can be created and modified with any text editor, such as the Notepad program. For
example, if MySQL is installed at E:\mysql and the data directory is located at
E:\mydata\data, you can create the option file and set up a [mysqld] section to specify val-
ues for the basedir and datadir parameters:

[mysqld]
set basedir to your installation path
basedir=E:/mysql
set datadir to the location of your data directory
datadir=E:/mydata/data

Note that Windows pathnames are specified in option files using forward slashes rather than back-
slashes. If you do use backslashes, you must double them:

[mysqld]
set basedir to your installation path
basedir=E:\\mysql
set datadir to the location of your data directory
datadir=E:\\mydata\\data

On Windows, the MySQL installer places the data directory directly under the directory where you
install MySQL. If you would like to use a data directory in a different location, you should copy the
entire contents of the data directory to the new location. For example, by default, the installer
places MySQL in C:\mysql and the data directory in C:\mysql\data. If you want to use a
data directory of E:\mydata, you must do two things:

• Move the data directory from C:\mysql\data to E:\mydata.

• Use a --datadir option to specify the new data directory location each time you start the
server.

2.3.9. Selecting a MySQL Server type
Starting with MySQL 3.23.38, the Windows distribution includes both the normal and the MySQL-
Max server binaries.

Up through the early releases of MySQL 4.1, the servers included in Windows distributions are
named like this:

Installing MySQL

69

Binary Description

mysqld Compiled with full debugging and automatic memory allocation checking,
symbolic links, and InnoDB and BDB tables.

mysqld-opt Optimized binary. From version 4.0 on, InnoDB is enabled. Before 4.0, this
server includes no transactional table support.

mysqld-nt Optimized binary for Windows NT, 2000, and XP with support for named
pipes.

mysqld-max Optimized binary with support for symbolic links, and InnoDB and BDB
tables.

mysqld-max-nt Like mysqld-max, but compiled with support for named pipes.

We have found that the server with the most generic name (mysqld) is the one that many users are
likely to choose by default. However, that is also the server that results in the highest memory and
CPU use due to the inclusion of full debugging support. The server named mysqld-opt is a better
general-use server choice to make instead if you don't need debugging support and don't want the
maximal feature set offered by the -max servers or named pipe support offered by the -nt servers.

To make it less likely that the debugging server would be chosen inadvertently, some name changes
were made from MySQL 4.1.2 to 4.1.4: mysqld has been renamed to mysqld-debug and mysqld-
opt has been renamed to mysqld. Thus, the server that includes debugging support indicates that in
its name, and the server named mysqld is an efficient default choice. The other servers still have
their same names. The resulting servers are named like this:

Binary Description

mysqld-debug Compiled with full debugging and automatic memory allocation checking,
symbolic links, and InnoDB and BDB tables.

mysqld Optimized binary with InnoDB support.

mysqld-nt Optimized binary for Windows NT, 2000, and XP with support for named
pipes.

mysqld-max Optimized binary with support for symbolic links, and InnoDB and BDB
tables.

mysqld-max-nt Like mysqld-max, but compiled with support for named pipes.

The name changes were not both instituted at the same time. If you have MySQL 4.1.2 or 4.1.3, it
might be that you have a server named mysqld-debug but not one named mysqld. In this case, you
should have a server mysqld-opt, which you should choose as your default server unless you need
maximal features, named pipes, or debugging support.

All of the preceding binaries are optimized for modern Intel processors, but should work on any In-
tel i386-class or higher processor.

MySQL supports TCP/IP on all Windows platforms. The mysqld-nt and mysql-max-nt servers
support named pipes on Windows NT, 2000, XP, and 2003. However, the default is to use TCP/IP
regardless of the platform. (Named pipes are slower than TCP/IP in many Windows configurations.)

Named pipe use is subject to these conditions:

• Starting from MySQL 3.23.50, named pipes are enabled only if you start the server with the -
-enable-named-pipe option. It is necessary to use this option explicitly because some
users have experienced problems shutting down the MySQL server when named pipes were
used.

• Named pipe connections are allowed only by the mysqld-nt or mysqld-max-nt servers, and
only if the server is run on a version of Windows that supports named pipes (NT, 2000, XP,
2003).

Installing MySQL

70

• These servers can be run on Windows 98 or Me, but only if TCP/IP is installed; named pipe con-
nections cannot be used.

• These servers can not be run on Windows 95.

Note: Most of the examples in reference manual use mysqld as the server name. If you choose to
use a different server, such as mysqld-nt, make the appropriate substitutions in the commands that
are shown in the examples.

2.3.10. Starting the Server for the First Time
On Windows 95, 98, or Me, MySQL clients always connect to the server using TCP/IP. (This al-
lows any machine on your network to connect to your MySQL server.) Because of this, you must
make sure that TCP/IP support is installed on your machine before starting MySQL. You can find
TCP/IP on your Windows CD-ROM.

Note that if you are using an old Windows 95 release (for example, OSR2), it's likely that you have
an old Winsock package; MySQL requires Winsock 2! You can get the newest Winsock from ht-
tp://www.microsoft.com/. Windows 98 has the new Winsock 2 library, so it is unnecessary to up-
date the library.

On NT-based systems such as Windows NT, 2000, XP, or 2003, clients have two options. They can
use TCP/IP, or they can use a named pipe if the server supports named pipe connections.

In MySQL versions 4.1 and higher, Windows servers also support shared-memory connections if
started with the --shared-memory option. Clients can connect through shared memory by using
the --protocol=memory option.

For information about which server binary to run, see Section 2.3.9, “Selecting a MySQL Server
type”.

This section gives a general overview of starting the MySQL server. The following sections provide
more specific information for starting the MySQL server from the command line or as a Windows
service.

The examples in these sections assume that MySQL is installed under the default location of
C:\mysql. Adjust the pathnames shown in the examples if you have MySQL installed in a differ-
ent location.

Testing is best done from a command prompt in a console window (a ``DOS window''). This way
you can have the server display status messages in the window where they are easy to see. If
something is wrong with your configuration, these messages make it easier for you to identify and
fix any problems.

To start the server, enter this command:

C:\> C:\mysql\bin\mysqld --console

For servers that include InnoDB support, you should see the following messages as the server
starts:

InnoDB: The first specified datafile c:\ibdata\ibdata1 did not exist:
InnoDB: a new database to be created!
InnoDB: Setting file c:\ibdata\ibdata1 size to 209715200
InnoDB: Database physically writes the file full: wait...
InnoDB: Log file c:\iblogs\ib_logfile0 did not exist: new to be created
InnoDB: Setting log file c:\iblogs\ib_logfile0 size to 31457280
InnoDB: Log file c:\iblogs\ib_logfile1 did not exist: new to be created
InnoDB: Setting log file c:\iblogs\ib_logfile1 size to 31457280
InnoDB: Log file c:\iblogs\ib_logfile2 did not exist: new to be created
InnoDB: Setting log file c:\iblogs\ib_logfile2 size to 31457280
InnoDB: Doublewrite buffer not found: creating new

Installing MySQL

71

http://www.microsoft.com/
http://www.microsoft.com/

InnoDB: Doublewrite buffer created
InnoDB: creating foreign key constraint system tables
InnoDB: foreign key constraint system tables created
011024 10:58:25 InnoDB: Started

When the server finishes its startup sequence, you should see something like this, which indicates
that the server is ready to service client connections:

mysqld: ready for connections
Version: '4.0.14-log' socket: '' port: 3306

The server continues to write to the console any further diagnostic output it produces. You can open
a new console window in which to run client programs.

If you omit the --console option, the server writes diagnostic output to the error log in the data
directory (C:\mysql\data by default). The error log is the file with the .err extension.

Note: The accounts that are listed in the MySQL grant tables initially have no passwords. After
starting the server, you should set up passwords for them using the instructions in Section 2.9,
“Post-Installation Setup and Testing”.

2.3.11. Starting MySQL from the Windows Command
Line

The MySQL server can be started manually from the command line. This can be done on any ver-
sion of Windows.

To start the mysqld server from the command line, you should start a console window (a ``DOS
window'') and enter this command:

C:\> C:\Program Files\MySQL\MySQL Server 4.1\bin\mysqld

The path used in the preceding example may vary depending on the install location of MySQL on
your system.

On non-NT versions of Windows, this starts mysqld in the background. That is, after the server
starts, you should see another command prompt. If you start the server this way on Windows NT,
2000, XP, or 2003, the server runs in the foreground and no command prompt appears until the serv-
er exits. Because of this, you should open another console window to run client programs while the
server is running.

You can stop the MySQL server by executing this command:

C:\> C:\Program Files\MySQL\MySQL Server 4.1\bin\mysqladmin -u root shutdown

This invokes the MySQL administrative utility mysqladmin to connect to the server and tell it to
shut down. The command connects as root, which is the default administrative account in the
MySQL grant system. Note that users in the MySQL grant system are wholly independent from any
login users under Windows.

If mysqld doesn't start, check the error log to see whether the server wrote any messages there to in-
dicate the cause of the problem. The error log is located in the C:\mysql\data directory. It is the
file with a suffix of .err. You can also try to start the server as mysqld --console; in this case, you
may get some useful information on the screen that may help solve the problem.

The last option is to start mysqld with --standalone --debug. In this case, mysqld writes a
log file C:\mysqld.trace that should contain the reason why mysqld doesn't start. See Sec-
tion E.1.2, “Creating Trace Files”.

Installing MySQL

72

Use mysqld --verbose --help to display all the options that mysqld understands. (Prior to MySQL
4.1, omit the --verbose option.)

2.3.12. Starting MySQL as a Windows Service
On the NT family (Windows NT, 2000, XP, 2003), the recommended way to run MySQL is to in-
stall it as a Windows service. When MySQL is installed as a service, Windows starts and stops the
MySQL server automatically when Windows starts and stops. A server installed as a service can
also be controlled from the command line using NET commands, or with the graphical Services
utility.

The Services utility (the Windows Service Control Manager) can be found in the Win-
dows Control Panel (under Administrative Tools on Windows 2000, XP, and Server
2003). It is advisable to close the Services utility while performing server installation or removal
operations from this command line. This prevents some odd errors.

To get MySQL to work with TCP/IP on Windows NT 4, you must install service pack 3 (or newer).

Before installing MySQL as a Windows service, you should first stop the current server if it is run-
ning by using the following command:

C:\> C:\mysql\bin\mysqladmin -u root shutdown

This invokes the MySQL administrative utility mysqladmin to connect to the server and tell it to
shut down. The command connects as root, which is the default administrative account in the
MySQL grant system. Note that users in the MySQL grant system are wholly independent from any
login users under Windows.

Install the server as a service:

C:\> mysqld --install

If you have problems installing mysqld as a service using just the server name, try installing it using
its full pathname:

C:\> C:\mysql\bin\mysqld --install

As of MySQL 4.0.2, you can specify a specific service name after the --install option. As of
MySQL 4.0.3, you can in addition specify a --defaults-file option after the service name to
indicate where the server should obtain options when it starts. The rules that determine the service
name and option files the server uses are as follows:

• If you specify no service name or a name of MySQL, the server uses the default service name of
MySQL and the reads options from the [mysqld] group in the standard option files.

• If you specify a service name other than MySQL after the --install option, the server reads
options from the group that has the same name as the service. The server reads options from the
standard option files.

As of MySQL 4.0.17, the server also reads options from the [mysqld] group from the stand-
ard option files. This allows you to use the [mysqld] group for options that should be used by
all MySQL services, and an option group named after each service for use by the server installed
with that service name.

• If you specify a --defaults-file option after the service name, the server ignores the
standard option files and reads options only from the [mysqld] group of the named file.

Note: Prior to MySQL 4.0.17, a server installed as a Windows service has problems starting if its

Installing MySQL

73

pathname or the service name contains spaces. For this reason, with older versions, avoid installing
MySQL in a directory such as C:\Program Files or using a service name containing spaces.

As a more complex example, consider the following command:

C:\> C:\mysql\bin\mysqld --install MySQL --defaults-file=C:\my-opts.cnf

Here, the default service name (MySQL) is given after the --install option. If no -
-defaults-file option had been given, this command would have the effect of causing the
server to read the [mysqld] group from the standard option files. However, because the -
-defaults-file option is present, the server reads options from the [mysqld] option group,
but only from the named file.

You can also specify options as ``Start parameters'' in the Windows Services utility be-
fore you start the MySQL service.

Once a MySQL server is installed as a service, Windows starts the service automatically whenever
Windows starts. The service also can be started immediately from the Services utility, or by us-
ing the command NET START MySQL. The NET command is not case sensitive.

When run as a service, mysqld has no access to a console window, so no messages can be seen
there. If mysqld doesn't start, check the error log to see whether the server wrote any messages there
to indicate the cause of the problem. The error log is located in the C:\mysql\data directory. It
is the file with a suffix of .err.

When mysqld is running as a service, it can be stopped by using the Services utility, the com-
mand NET STOP MySQL, or the command mysqladmin shutdown. If the service is running
when Windows shuts down, Windows stops the server automatically.

From MySQL 3.23.44 on, you have the choice of installing the server as a Manual service if you
don't wish the service to be started automatically during the boot process. To do this, use the -
-install-manual option rather than the --install option:

C:\> C:\mysql\bin\mysqld --install-manual

To remove a server that is installed as a service, first stop it if it is running. Then use the -
-remove option to remove it:

C:\> C:\mysql\bin\mysqld --remove

For MySQL versions older than 3.23.49, one problem with automatic MySQL service shutdown is
that Windows waited only for a few seconds for the shutdown to complete, then killed the database
server process if the time limit was exceeded. This had the potential to cause problems. (For ex-
ample, the InnoDB storage engine had to perform crash recovery at the next startup.) Starting from
MySQL 3.23.49, Windows waits longer for the MySQL server shutdown to complete. If you notice
this still is not enough for your installation, it is safest not to run the MySQL server as a service. In-
stead, start it from the command-line prompt, and stop it with mysqladmin shutdown.

This change to tell Windows to wait longer when stopping the MySQL server works for Windows
2000 and XP. It does not work for Windows NT, where Windows waits only 20 seconds for a ser-
vice to shut down, and after that kills the service process. You can increase this default by opening
the Registry Editor \winnt\system32\regedt32.exe and editing the value of Wait-
ToKillServiceTimeout at
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control in the Registry tree.
Specify the new larger value in milliseconds. For example, the value 120000 tells Windows NT to
wait up to 120 seconds.

If you don't want to start mysqld as a service, you can start it from the command line. For instruc-
tions, see Section 2.3.11, “Starting MySQL from the Windows Command Line”.

Please see Section 2.3.14, “Troubleshooting a MySQL Installation Under Windows” if you en-
counter difficulties during installation.

Installing MySQL

74

2.3.13. Testing The MySQL Installation
You can test whether the MySQL server is working by executing any of the following commands:

C:\> C:\mysql\bin\mysqlshow
C:\> C:\mysql\bin\mysqlshow -u root mysql
C:\> C:\mysql\bin\mysqladmin version status proc
C:\> C:\mysql\bin\mysql test

If mysqld is slow to respond to TCP/IP connections from client programs on Windows 9x/Me, there
is probably a problem with your DNS. In this case, start mysqld with the -
-skip-name-resolve option and use only localhost and IP numbers in the Host column
of the MySQL grant tables.

You can force a MySQL client to use a named pipe connection rather than TCP/IP by specifying the
--pipe option or by specifying . (period) as the host name. Use the --socket option to specify
the name of the pipe. As of MySQL 4.1, you should use the --protocol=PIPE option.

There are two versions of the MySQL command-line tool:

Binary Description

mysql Compiled on native Windows, offering limited text editing capabilities.

mysqlc Compiled with the Cygnus GNU compiler and libraries, which offers read-
line editing. mysqlc was intended for use primarily with Windows 9x/Me. It
does not support the updated authentication protocol used beginning with
MySQL 4.1, and is not supported in MySQL 4.1 and above. Beginning with
MySQL 4.1.8, it is no longer included in MySQL Windows distributions.

If you want to use mysqlc, you must have a copy of the cygwinb19.dll library installed some-
where that mysqlc can find it. Current distributions of MySQL include this library in the same dir-
ectory as mysqlc (the bin directory under the base directory of your MySQL installation). If your
distribution does not have the cygwinb19.dll library in the bin directory, look for it in the lib
directory and copy it to your Windows system directory (\Windows\system or a similar place).

2.3.14. Troubleshooting a MySQL Installation Under
Windows

When installing and running MySQL for the first time, you may encounter certain errors that pre-
vent the MySQL server from starting. The purpose of this section is to help you diagnose and cor-
rect some of these errors.

Your first resource when troubleshooting server issues is the error log. The MySQL server uses the
error log to record information relevant to the error that is preventing the server from starting. The
error log is located in the data directory specified in your my.ini file. The default data directory
location is C:\mysql\data. See Section 5.9.1, “The Error Log”.

Another source of information regarding possible errors is the console messages displayed when the
MySQL service is starting. Use the NET START mysql command from the command line after in-
stalling mysqld as a service to see any error messages regarding the starting of the MySQL server as
a service. See Section 2.3.12, “Starting MySQL as a Windows Service”.

The following are examples of some of the more common error messages you may encounter when
installing MySQL and starting the server for the first time:

System error 1067 has occurred.
Fatal error: Can't open privilege tables: Table 'mysql.host' doesn't exist

These messages occur when the MySQL server cannot find the mysql privileges database or other

Installing MySQL

75

critical files. This error is often encountered when the MySQL base or data directories are installed
in different locations than the default locations (C:\mysql and C:\mysql\data, respectively).

If you have installed MySQL to a directory other than C:\mysql you need to ensure that the
MySQL server is aware of this through the use of a configuration (my.ini) file. The my.ini file
needs to be located in your Windows directory, typically located at C:\WinNT or C:\WINDOWS.
You can determine its exact location from the value of the WINDIR environment variable by issuing
the following command from the command prompt:

C:\> echo %WINDIR%

An option file can be created and modified with any text editor, such as the Notepad program. For
example, if MySQL is installed at E:\mysql and the data directory is located at D:\MySQLdata,
you can create the option file and set up a [mysqld] section to specify values for the basedir and
datadir parameters:

[mysqld]
set basedir to your installation path
basedir=E:/mysql
set datadir to the location of your data directory
datadir=D:/MySQLdata

Note that Windows pathnames are specified in option files using forward slashes rather than back-
slashes. If you do use backslashes, you must double them:

[mysqld]
set basedir to your installation path
basedir=C:\\Program Files\\mysql
set datadir to the location of your data directory
datadir=D:\\MySQLdata

See Section 2.3.8, “Creating an Option File”.

2.3.15. Upgrading MySQL on Windows
This section lists some of the steps you should take when upgrading MySQL on Windows.

1. You should always back up your current MySQL installation before performing an upgrade.
See Section 5.7.1, “Database Backups”.

2. Download the latest Windows distribution of MySQL from http://dev.mysql.com.

3. Before upgrading MySQL, you must stop the server.

If the server is installed as a service, stop the service with the following command from the
command prompt:

C:\> NET STOP MySQL

If you are not running the MySQL server as a service, use the following command to stop the
server:

C:\> C:\mysql\bin\mysqladmin -u root shutdown

4. Exit the WinMySQLAdmin program if it is running.

5. When upgrading to MySQL 4.1.5 or higher from a previous version, or when upgrading from a
version of MySQL installed from a Zip archive to a version of MySQL installed with the
MySQL Installation Wizard, you must manually remove the previous installation and MySQL
service (if the server is installed as a service).

Installing MySQL

76

http://dev.mysql.com

To remove the MySQL service, use the following command:

C:\> C:\mysql\bin\mysqld --remove

If you do not remove the existing service, the MySQL Installation Wizard may fail to
properly install the new MySQL service.

6. If you are using the MySQL Installation Wizard, start the wizard as described in Section 2.3.4,
“Using the MySQL Installation Wizard”.

7. If you are installing MySQL from a Zip archive, extract the archive. You may either overwrite
your existing MySQL installation (usually located at C:\mysql), or install it into a different
directory, such as C:\mysql4. Overwriting the existing installation is recommended.

8. Restart the server. For example, use NET START MySQL if you run MySQL as a service, or
invoke mysqld directly otherwise.

9. Refer to Section 2.10, “Upgrading MySQL” for additional information on upgrading MySQL
that is not specific to Windows.

10. If you encounter errors, see Section 2.3.14, “Troubleshooting a MySQL Installation Under
Windows”.

2.3.16. MySQL on Windows Compared to MySQL on
Unix

MySQL for Windows has proven itself to be very stable. The Windows version of MySQL has the
same features as the corresponding Unix version, with the following exceptions:

• Windows 95 and threads

Windows 95 leaks about 200 bytes of main memory for each thread creation. Each connection in
MySQL creates a new thread, so you shouldn't run mysqld for an extended time on Windows 95
if your server handles many connections! Other versions of Windows don't suffer from this bug.

• Limited number of ports

Windows systems have about 4,000 ports available for client connections, and after a connection
on a port closes, it takes two to four minutes before the port can be reused. In situations where
clients connect to and disconnect from the server at a high rate, it is possible for all available
ports to be used up before closed ports become available again. If this happens, the MySQL
server appears to be unresponsive even though it is running. Note that ports may be used by oth-
er applications running on the machine as well, in which case the number of ports available to
MySQL is lower.

For more information, see http://support.microsoft.com/default.aspx?scid=kb;en-us;196271.

• Concurrent reads

MySQL depends on the pread() and pwrite() calls to be able to mix INSERT and SE-
LECT. Currently we use mutexes to emulate pread()/pwrite(). We will, in the long run,
replace the file level interface with a virtual interface so that we can use the
readfile()/writefile() interface on NT, 2000, and XP to get more speed. The current
implementation limits the number of open files MySQL can use to 2,048 (1,024 before MySQL
4.0.19), which means that you cannot run as many concurrent threads on NT, 2000, XP, and
2003 as on Unix.

• Blocking read

Installing MySQL

77

http://support.microsoft.com/default.aspx?scid=kb;en-us;196271

MySQL uses a blocking read for each connection, which has the following implications if
named pipe connections are enabled:

• A connection is not disconnected automatically after eight hours, as happens with the Unix
version of MySQL.

• If a connection hangs, it's impossible to break it without killing MySQL.

• mysqladmin kill does not work on a sleeping connection.

• mysqladmin shutdown can't abort as long as there are sleeping connections.

We plan to fix this problem when our Windows developers have figured out a nice workaround.

• ALTER TABLE

While you are executing an ALTER TABLE statement, the table is locked from being used by
other threads. This has to do with the fact that on Windows, you can't delete a file that is in use
by another thread. In the future, we may find some way to work around this problem.

• DROP TABLE

DROP TABLE on a table that is in use by a MERGE table does not work on Windows because
the MERGE handler does the table mapping hidden from the upper layer of MySQL. Because
Windows doesn't allow you to drop files that are open, you first must flush all MERGE tables
(with FLUSH TABLES) or drop the MERGE table before dropping the table. We will fix this at
the same time we introduce views.

• DATA DIRECTORY and INDEX DIRECTORY

The DATA DIRECTORY and INDEX DIRECTORY options for CREATE TABLE are ignored
on Windows, because Windows doesn't support symbolic links. These options also are ignored
on systems that have a non-functional realpath() call.

• DROP DATABASE

You cannot drop a database that is in use by some thread.

• Killing MySQL from the Task Manager

You cannot kill MySQL from the Task Manager or with the shutdown utility in Windows 95.
You must stop it with mysqladmin shutdown.

• Case-insensitive names

Filenames are not case sensitive on Windows, so MySQL database and table names are also not
case sensitive on Windows. The only restriction is that database and table names must be spe-
cified using the same case throughout a given statement. See Section 9.2.2, “Identifier Case
Sensitivity”.

• The '\' pathname separator character

Pathname components in Windows are separated by the '\' character, which is also the escape
character in MySQL. If you are using LOAD DATA INFILE or SELECT ... INTO OUT-
FILE, use Unix-style filenames with '/' characters:

mysql> LOAD DATA INFILE 'C:/tmp/skr.txt' INTO TABLE skr;
mysql> SELECT * INTO OUTFILE 'C:/tmp/skr.txt' FROM skr;

Alternatively, you must double the '\' character:

Installing MySQL

78

mysql> LOAD DATA INFILE 'C:\\tmp\\skr.txt' INTO TABLE skr;
mysql> SELECT * INTO OUTFILE 'C:\\tmp\\skr.txt' FROM skr;

• Problems with pipes.

Pipes do not work reliably from the Windows command-line prompt. If the pipe includes the
character ^Z / CHAR(24), Windows thinks it has encountered end-of-file and aborts the pro-
gram.

This is mainly a problem when you try to apply a binary log as follows:

C:\> mysqlbinlog binary-log-name | mysql --user=root

If you have a problem applying the log and suspect that it is because of a ^Z / CHAR(24) char-
acter, you can use the following workaround:

C:\> mysqlbinlog binary-log-file --result-file=/tmp/bin.sql
C:\> mysql --user=root --execute "source /tmp/bin.sql"

The latter command also can be used to reliably read in any SQL file that may contain binary
data.

• Access denied for user error

If you attempt to run a MySQL client program to connect to a server running on the same ma-
chine, but get the error Access denied for user 'some-user'@'unknown' to
database 'mysql', this means that MySQL cannot resolve your hostname properly.

To fix this, you should create a file named \windows\hosts containing the following in-
formation:

127.0.0.1 localhost

Here are some open issues for anyone who might want to help us improve MySQL on Windows:

PD: Commented this one out as obsolete until I hear otherwise

Installing MySQL

79

• Make a single-user MYSQL.DLL server. This should include everything in a standard MySQL
server, except thread creation. This makes MySQL much easier to use in applications that don't
need a true client/server and don't need to access the server from other hosts.

• Add some nice start and shutdown icons to the MySQL installation.

• It would be really nice to be able to kill mysqld from the Task Manager in Windows 95. For the
moment, you must use mysqladmin shutdown.

• Port readline to Windows for use in the mysql command-line tool.

• GUI versions of the standard MySQL clients (mysql, mysqlshow, mysqladmin, and mysql-
dump) would be nice.

• It would be nice if the socket read and write functions in net.c were interruptible. This would
make it possible to kill open threads with mysqladmin kill on Windows.

• Add macros to use the faster thread-safe increment/decrement methods provided by Windows.

2.4. Installing MySQL on Linux
The recommended way to install MySQL on Linux is by using the RPM packages. The MySQL
RPMs are currently built on a SuSE Linux 7.3 system, but should work on most versions of Linux
that support rpm and use glibc. To obtain RPM packages, see Section 2.1.3, “How to Get
MySQL”.

Note: RPM distributions of MySQL often are provided by other vendors. Be aware that they may
differ in features and capabilities from those built by MySQL AB, and that the instructions in this
manual do not necessarily apply to installing them. The vendor's instructions should be consulted in-
stead.

If you have problems with an RPM file (for example, if you receive the error ``Sorry, the
host 'xxxx' could not be looked up''), see Section 2.12.1.2, “Linux Binary Distribu-
tion Notes”.

In most cases, you only need to install the MySQL-server and MySQL-client packages to get
a functional MySQL installation. The other packages are not required for a standard installation. If
you want to run a MySQL-Max server that has additional capabilities, you should also install the
MySQL-Max RPM. However, you should do so only after installing the MySQL-server RPM.
See Section 5.1.2, “The mysqld-max Extended MySQL Server”.

If you get a dependency failure when trying to install the MySQL 4.0 packages (for example, ``er-
ror: removing these packages would break dependencies: libmysqlcli-
ent.so.10 is needed by ...''), you should also install the package MySQL-
shared-compat, which includes both the shared libraries for backward compatibility
(libmysqlclient.so.12 for MySQL 4.0 and libmysqlclient.so.10 for MySQL 3.23).

Many Linux distributions still ship with MySQL 3.23 and they usually link applications dynamic-
ally to save disk space. If these shared libraries are in a separate package (for example, MySQL-
shared), it is sufficient to simply leave this package installed and just upgrade the MySQL server
and client packages (which are statically linked and do not depend on the shared libraries). For dis-
tributions that include the shared libraries in the same package as the MySQL server (for example,
Red Hat Linux), you could either install our 3.23 MySQL-shared RPM, or use the MySQL-
shared-compat package instead.

The following RPM packages are available:

• MySQL-server-VERSION.i386.rpm

The MySQL server. You need this unless you only want to connect to a MySQL server running

Installing MySQL

80

on another machine. Note: Server RPM files were called MySQL-VERSION.i386.rpm be-
fore MySQL 4.0.10. That is, they did not have -server in the name.

• MySQL-Max-VERSION.i386.rpm

The MySQL-Max server. This server has additional capabilities that the one provided in the
MySQL-server RPM does not. You must install the MySQL-server RPM first, because the
MySQL-Max RPM depends on it.

• MySQL-client-VERSION.i386.rpm

The standard MySQL client programs. You probably always want to install this package.

• MySQL-bench-VERSION.i386.rpm

Tests and benchmarks. Requires Perl and the DBD::mysql module.

• MySQL-devel-VERSION.i386.rpm

The libraries and include files that are needed if you want to compile other MySQL clients, such
as the Perl modules.

• MySQL-shared-VERSION.i386.rpm

This package contains the shared libraries (libmysqlclient.so*) that certain languages
and applications need to dynamically load and use MySQL.

• MySQL-shared-compat-VERSION.i386.rpm

This package includes the shared libraries for both MySQL 3.23 and MySQL 4.0. Install this
package instead of MySQL-shared if you have applications installed that are dynamically
linked against MySQL 3.23 but you want to upgrade to MySQL 4.0 without breaking the library
dependencies. This package has been available since MySQL 4.0.13.

• MySQL-embedded-VERSION.i386.rpm

The embedded MySQL server library (from MySQL 4.0).

• MySQL-VERSION.src.rpm

This contains the source code for all of the previous packages. It can also be used to rebuild the
RPMs on other architectures (for example, Alpha or SPARC).

To see all files in an RPM package (for example, a MySQL-server RPM), run:

shell> rpm -qpl MySQL-server-VERSION.i386.rpm

To perform a standard minimal installation, run:

shell> rpm -i MySQL-server-VERSION.i386.rpm
shell> rpm -i MySQL-client-VERSION.i386.rpm

To install just the client package, run:

shell> rpm -i MySQL-client-VERSION.i386.rpm

RPM provides a feature to verify the integrity and authenticity of packages before installing them. If
you would like to learn more about this feature, see Section 2.1.4, “Verifying Package Integrity Us-
ing MD5 Checksums or GnuPG”.

Installing MySQL

81

The server RPM places data under the /var/lib/mysql directory. The RPM also creates a login
account for a user named mysql (if one does not exist) to use for running the MySQL server, and
creates the appropriate entries in /etc/init.d/ to start the server automatically at boot time.
(This means that if you have performed a previous installation and have made changes to its startup
script, you may want to make a copy of the script so that you don't lose it when you install a newer
RPM.) See Section 2.9.2.2, “Starting and Stopping MySQL Automatically” for more information on
how MySQL can be started automatically on system startup.

If you want to install the MySQL RPM on older Linux distributions that do not support initialization
scripts in /etc/init.d (directly or via a symlink), you should create a symbolic link that points
to the location where your initialization scripts actually are installed. For example, if that location is
/etc/rc.d/init.d, use these commands before installing the RPM to create /etc/init.d
as a symbolic link that points there:

shell> cd /etc
shell> ln -s rc.d/init.d .

However, all current major Linux distributions should support the new directory layout that uses /
etc/init.d, because it is required for LSB (Linux Standard Base) compliance.

If the RPM files that you install include MySQL-server, the mysqld server should be up and run-
ning after installation. You should be able to start using MySQL.

If something goes wrong, you can find more information in the binary installation section. See Sec-
tion 2.7, “Installing MySQL on Other Unix-Like Systems”.

Note: The accounts that are listed in the MySQL grant tables initially have no passwords. After
starting the server, you should set up passwords for them using the instructions in Section 2.9,
“Post-Installation Setup and Testing”.

2.5. Installing MySQL on Mac OS X
Beginning with MySQL 4.0.11, you can install MySQL on Mac OS X 10.2.x (``Jaguar'') and up us-
ing a Mac OS X binary package in PKG format instead of the binary tarball distribution. Please note
that older versions of Mac OS X (for example, 10.1.x) are not supported by this package.

The package is located inside a disk image (.dmg) file that you first need to mount by double-
clicking its icon in the Finder. It should then mount the image and display its contents.

To obtain MySQL, see Section 2.1.3, “How to Get MySQL”.

Note: Before proceeding with the installation, be sure to shut down all running MySQL server in-
stances by either using the MySQL Manager Application (on Mac OS X Server) or via mysqladmin
shutdown on the command line.

To actually install the MySQL PKG file, double-click on the package icon. This launches the Mac
OS X Package Installer, which guides you through the installation of MySQL.

Due to a bug in the Mac OS X package installer, you may see this error message in the destination
disk selection dialog:

You cannot install this software on this disk. (null)

If this error occurs, simply click the Go Back button once to return to the previous screen. Then
click Continue to advance to the destination disk selection again, and you should be able to
choose the destination disk correctly. We have reported this bug to Apple and it is investigating this
problem.

The Mac OS X PKG of MySQL installs itself into /usr/local/mysql-VERSION and also in-
stalls a symbolic link, /usr/local/mysql, pointing to the new location. If a directory named /
usr/local/mysql exists, it is renamed to /usr/local/mysql.bak first. Additionally, the

Installing MySQL

82

installer creates the grant tables in the mysql database by executing mysql_install_db after the in-
stallation.

The installation layout is similar to that of a tar file binary distribution; all MySQL binaries are loc-
ated in the directory /usr/local/mysql/bin. The MySQL socket file is created as /
tmp/mysql.sock by default. See Section 2.1.5, “Installation Layouts”.

MySQL installation requires a Mac OS X user account named mysql. A user account with this
name should exist by default on Mac OS X 10.2 and up.

If you are running Mac OS X Server, you have a version of MySQL installed. The versions of
MySQL that ship with Mac OS X Server versions are shown in the following table:

Mac OS X Server Version MySQL Version

10.2-10.2.2 3.23.51

10.2.3-10.2.6 3.23.53

10.3 4.0.14

10.3.2 4.0.16

This manual section covers the installation of the official MySQL Mac OS X PKG only. Make sure
to read Apple's help information about installing MySQL: Run the ``Help View'' application, select
``Mac OS X Server'' help, do a search for ``MySQL,'' and read the item entitled ``Installing
MySQL.''

For pre-installed versions of MySQL on Mac OS X Server, note especially that you should start
mysqld with safe_mysqld instead of mysqld_safe if MySQL is older than version 4.0.

If you previously used Marc Liyanage's MySQL packages for Mac OS X from ht-
tp://www.entropy.ch, you can simply follow the update instructions for packages using the binary
installation layout as given on his pages.

If you are upgrading from Marc's 3.23.xx versions or from the Mac OS X Server version of MySQL
to the official MySQL PKG, you also need to convert the existing MySQL privilege tables to the
current format, because some new security privileges have been added. See Section 2.10.7,
“Upgrading the Grant Tables”.

If you would like to automatically start up MySQL during system startup, you also need to install
the MySQL Startup Item. Starting with MySQL 4.0.15, it is part of the Mac OS X installation disk
images as a separate installation package. Simply double-click the MySQLStartupItem.pkg
icon and follow the instructions to install it.

Note that the Startup Item need be installed only once! There is no need to install it each time you
upgrade the MySQL package later.

The Startup Item is installed into /Library/StartupItems/MySQLCOM. (Before MySQL
4.1.2, the location was /Library/StartupItems/MySQL, but that collided with the MySQL
Startup Item installed by Mac OS X Server.) Startup Item installation adds a variable MYSQL-
COM=-YES- to the system configuration file /etc/hostconfig. If you would like to disable
the automatic startup of MySQL, simply change this variable to MYSQLCOM=-NO-.

On Mac OS X Server, the default MySQL installation uses the variable MYSQL in the /
etc/hostconfig file. The MySQL AB Startup Item installer disables this variable by setting it
to MYSQL=-NO-. This avoids boot time conflicts with the MYSQLCOM variable used by the MySQL
AB Startup Item. However, it does not shut down a running MySQL server. You should do that
yourself.

After the installation, you can start up MySQL by running the following commands in a terminal
window. You must have administrator privileges to perform this task.

If you have installed the Startup Item:

Installing MySQL

83

http://www.entropy.ch
http://www.entropy.ch

shell> sudo /Library/StartupItems/MySQLCOM/MySQLCOM start
(Enter your password, if necessary)
(Press Control-D or enter "exit" to exit the shell)

For versions of MySQL older than 4.1.3, substitute /Lib-
rary/StartupItems/MySQLCOM/MySQLCOM with /Lib-
rary/StartupItems/MySQL/MySQL above.

If you don't use the Startup Item, enter the following command sequence:

shell> cd /usr/local/mysql
shell> sudo ./bin/mysqld_safe
(Enter your password, if necessary)
(Press Control-Z)
shell> bg
(Press Control-D or enter "exit" to exit the shell)

You should be able to connect to the MySQL server, for example, by running /
usr/local/mysql/bin/mysql.

Note: The accounts that are listed in the MySQL grant tables initially have no passwords. After
starting the server, you should set up passwords for them using the instructions in Section 2.9,
“Post-Installation Setup and Testing”.

You might want to add aliases to your shell's resource file to make it easier to access commonly
used programs such as mysql and mysqladmin from the command line. The syntax for tcsh is:

alias mysql /usr/local/mysql/bin/mysql
alias mysqladmin /usr/local/mysql/bin/mysqladmin

For bash, use:

alias mysql=/usr/local/mysql/bin/mysql
alias mysqladmin=/usr/local/mysql/bin/mysqladmin

Even better, add /usr/local/mysql/bin to your PATH environment variable. For example,
add the following line to your $HOME/.tcshrc file if your shell is tcsh:

setenv PATH ${PATH}:/usr/local/mysql/bin

If no .tcshrc file exists in your home directory, create it with a text editor.

If you are upgrading an existing installation, please note that installing a new MySQL PKG does not
remove the directory of an older installation. Unfortunately, the Mac OS X Installer does not yet of-
fer the functionality required to properly upgrade previously installed packages.

To use your existing databases with the new installation, you'll need to copy the contents of the old
data directory to the new data directory. Make sure that neither the old server nor the new one is
running when you do this. After you have copied over the MySQL database files from the previous
installation and have successfully started the new server, you should consider removing the old in-
stallation files to save disk space. Additionally, you should also remove older versions of the Pack-
age Receipt directories located in /Library/Receipts/mysql-VERSION.pkg.

2.6. Installing MySQL on NetWare
Porting MySQL to NetWare was an effort spearheaded by Novell. Novell customers should be
pleased to note that NetWare 6.5 ships with bundled MySQL binaries, complete with an automatic
commercial use license for all servers running that version of NetWare.

Installing MySQL

84

MySQL for NetWare is compiled using a combination of Metrowerks CodeWarrior for
NetWare and special cross-compilation versions of the GNU autotools.

The latest binary packages for NetWare can be obtained at http://dev.mysql.com/downloads/. See
Section 2.1.3, “How to Get MySQL”.

In order to host MySQL, the NetWare server must meet these requirements:

• NetWare 6.5 Support Pack 2 installed and updated with the latest LibC, or NetWare 6.0 with
Support Pack 4 installed and updated with the latest LibC. NetWare 6.5 Support Pack 2 and oth-
er updates are available at http://support.novell.com/filefinder/18197/index.html. NetWare 6.0
Support Pack 4 and other updates are available at ht-
tp://support.novell.com/filefinder/13659/index.html. The latest LibC is available at ht-
tp://developer.novell.com/ndk/libc.htm. Steps to update LibC can be found here: ht-
tp://developer.novell.com/ndk/doc/libc/index.html?page=/ndk/doc/libc/libc_enu/data/ajjl0r0.htm
l

• The system must meet Novell's minimum requirements to run the respective version of Net-
Ware.

• MySQL data, as well as the binaries themselves, must be installed on an NSS volume; tradition-
al volumes are not supported.

To install MySQL for NetWare, use the following procedure:

1. If you are upgrading from a prior installation, stop the MySQL server. This is done from the
server console, using the following command:

SERVER: mysqladmin -u root shutdown

2. Log on to the target server from a client machine with access to the location where you are in-
stalling MySQL.

3. Extract the binary package Zip file onto the server. Be sure to allow the paths in the Zip file to
be used. It is safe to simply extract the file to SYS:\.

If you are upgrading from a prior installation, you may need to copy the data directory (for ex-
ample, SYS:MYSQL\DATA), as well as my.cnf, if you have customized it. You can then de-
lete the old copy of MySQL.

4. You might want to rename the directory to something more consistent and easy to use. We re-
commend using SYS:MYSQL; examples in this manual use this name to refer to the installation
directory in general.

5. At the server console, add a search path for the directory containing the MySQL NLMs. For
example:

SERVER: SEARCH ADD SYS:MYSQL\BIN

6. Initialize the data directory and the grant tables, if needed, by executing mysql_install_db at
the server console.

7. Start the MySQL server using mysqld_safe at the server console.

8. To finish the installation, you should also add the following commands to autoexec.ncf.
For example, if your MySQL installation is in SYS:MYSQL and you want MySQL to start
automatically, you could add these lines:

#Starts the MySQL 4.0.x database server

Installing MySQL

85

http://dev.mysql.com/downloads/
http://support.novell.com/filefinder/18197/index.html
http://support.novell.com/filefinder/13659/index.html
http://support.novell.com/filefinder/13659/index.html
http://developer.novell.com/ndk/libc.htm
http://developer.novell.com/ndk/libc.htm
http://developer.novell.com/ndk/doc/libc/index.html?page=/ndk/doc/libc/libc_enu/data/ajjl0r0.html
http://developer.novell.com/ndk/doc/libc/index.html?page=/ndk/doc/libc/libc_enu/data/ajjl0r0.html
http://developer.novell.com/ndk/doc/libc/index.html?page=/ndk/doc/libc/libc_enu/data/ajjl0r0.html

SEARCH ADD SYS:MYSQL\BIN
MYSQLD_SAFE

If you are running MySQL on NetWare 6.0, we strongly suggest that you use the -
-skip-external-locking option on the command line:

#Starts the MySQL 4.0.x database server
SEARCH ADD SYS:MYSQL\BIN
MYSQLD_SAFE --skip-external-locking

It is also necessary to use CHECK TABLE and REPAIR TABLE instead of myisamchk, be-
cause myisamchk makes use of external locking. External locking is known to have problems
on NetWare 6.0; the problem has been eliminated in NetWare 6.5.

mysqld_safe on NetWare provides a screen presence. When you unload (shut down) the
mysqld_safe NLM, the screen does not by default go away. Instead, it prompts for user input:

<NLM has terminated; Press any key to close the screen>

If you want NetWare to close the screen automatically instead, use the --autoclose option
to mysqld_safe. For example:

#Starts the MySQL 4.0.x database server
SEARCH ADD SYS:MYSQL\BIN
MYSQLD_SAFE --autoclose

9. When installing the 4.1.x version either for the first time or upgrading the 4.0.x version to
4.1.x, download and install Perl module for MySQL 4.1 from ht-
tp://forge.novell.com/modules/xfmod/project/showfiles.php?group_id=1126 and PHP Exten-
sion for MySQL 4.1 from ht-
tp://forge.novell.com/modules/xfmod/project/showfiles.php?group_id=1078

The behavior of mysqld_safe on NetWare is described further in Section 5.1.3, “The mysqld_safe
Server Startup Script”.

If there was an existing installation of MySQL on the server, be sure to check for existing MySQL
startup commands in autoexec.ncf, and edit or delete them as necessary.

Note: The accounts that are listed in the MySQL grant tables initially have no passwords. After
starting the server, you should set up passwords for them using the instructions in Section 2.9,
“Post-Installation Setup and Testing”.

2.7. Installing MySQL on Other Unix-Like Sys-
tems

This section covers the installation of MySQL binary distributions that are provided for various plat-
forms in the form of compressed tar files (files with a .tar.gz extension). See Section 2.1.2.5,
“MySQL Binaries Compiled by MySQL AB” for a detailed list.

To obtain MySQL, see Section 2.1.3, “How to Get MySQL”.

MySQL tar file binary distributions have names of the form mysql-VERSION-OS.tar.gz,
where VERSION is a number (for example, 4.0.17), and OS indicates the type of operating sys-
tem for which the distribution is intended (for example, pc-linux-i686).

In addition to these generic packages, we also offer binaries in platform-specific package formats
for selected platforms. See Section 2.2, “Standard MySQL Installation Using a Binary Distribution”

Installing MySQL

86

http://forge.novell.com/modules/xfmod/project/showfiles.php?group_id=1126
http://forge.novell.com/modules/xfmod/project/showfiles.php?group_id=1126
http://forge.novell.com/modules/xfmod/project/showfiles.php?group_id=1078
http://forge.novell.com/modules/xfmod/project/showfiles.php?group_id=1078

for more information on how to install these.

You need the following tools to install a MySQL tar file binary distribution:

• GNU gunzip to uncompress the distribution.

• A reasonable tar to unpack the distribution. GNU tar is known to work. Some operating sys-
tems come with a pre-installed version of tar that is known to have problems. For example, Mac
OS X tar and Sun tar are known to have problems with long filenames. On Mac OS X, you can
use the pre-installed gnutar program. On other systems with a deficient tar, you should install
GNU tar first.

If you run into problems, please always use mysqlbug when posting questions to a MySQL mailing
list. Even if the problem isn't a bug, mysqlbug gathers system information that helps others solve
your problem. By not using mysqlbug, you lessen the likelihood of getting a solution to your prob-
lem. You can find mysqlbug in the bin directory after you unpack the distribution. See Sec-
tion 1.4.1.3, “How to Report Bugs or Problems”.

The basic commands you must execute to install and use a MySQL binary distribution are:

shell> groupadd mysql
shell> useradd -g mysql mysql
shell> cd /usr/local
shell> gunzip < /path/to/mysql-VERSION-OS.tar.gz | tar xvf -
shell> ln -s full-path-to-mysql-VERSION-OS mysql
shell> cd mysql
shell> scripts/mysql_install_db --user=mysql
shell> chown -R root .
shell> chown -R mysql data
shell> chgrp -R mysql .
shell> bin/mysqld_safe --user=mysql &

For versions of MySQL older than 4.0, substitute bin/safe_mysqld for bin/mysqld_safe in the final
command.

Note: This procedure does not set up any passwords for MySQL accounts. After following the pro-
cedure, proceed to Section 2.9, “Post-Installation Setup and Testing”.

A more detailed version of the preceding description for installing a binary distribution follows:

1. Add a login user and group for mysqld to run as:

shell> groupadd mysql
shell> useradd -g mysql mysql

These commands add the mysql group and the mysql user. The syntax for useradd and
groupadd may differ slightly on different versions of Unix. They may also be called adduser
and addgroup.

You might want to call the user and group something else instead of mysql. If so, substitute
the appropriate name in the following steps.

2. Pick the directory under which you want to unpack the distribution, and change location into it.
In the following example, we unpack the distribution under /usr/local. (The instructions,
therefore, assume that you have permission to create files and directories in /usr/local. If
that directory is protected, you need to perform the installation as root.)

shell> cd /usr/local

3. Obtain a distribution file from one of the sites listed in Section 2.1.3, “How to Get MySQL”.

Installing MySQL

87

For a given release, binary distributions for all platforms are built from the same MySQL
source distribution.

4. Unpack the distribution, which creates the installation directory. Then create a symbolic link to
that directory:

shell> gunzip < /path/to/mysql-VERSION-OS.tar.gz | tar xvf -
shell> ln -s full-path-to-mysql-VERSION-OS mysql

The tar command creates a directory named mysql-VERSION-OS. The ln command makes
a symbolic link to that directory. This lets you refer more easily to the installation directory as
/usr/local/mysql.

With GNU tar, no separate invocation of gunzip is necessary. You can replace the first line
with the following alternative command to uncompress and extract the distribution:

shell> tar zxvf /path/to/mysql-VERSION-OS.tar.gz

5. Change location into the installation directory:

shell> cd mysql

You can find several files and subdirectories in the mysql directory. The most important for
installation purposes are the bin and scripts subdirectories.

• bin

This directory contains client programs and the server. You should add the full pathname of
this directory to your PATH environment variable so that your shell finds the MySQL pro-
grams properly. See Appendix F, Environment Variables.

• scripts

This directory contains the mysql_install_db script used to initialize the mysql database
containing the grant tables that store the server access permissions.

6. If you haven't installed MySQL before, you must create the MySQL grant tables:

shell> scripts/mysql_install_db --user=mysql

If you run the command as root, you should use the --user option as shown. The value of
the option should be the name of the login account that you created in the first step to use for
running the server. If you run the command while logged in as that user, you can omit the -
-user option.

Note that for MySQL versions older than 3.22.10, mysql_install_db left the server running
after creating the grant tables. This is no longer true; you need to restart the server after per-
forming the remaining steps in this procedure.

7. Change the ownership of program binaries to root and ownership of the data directory to the
user that you run mysqld as. Assuming that you are located in the installation directory (/
usr/local/mysql), the commands look like this:

shell> chown -R root .
shell> chown -R mysql data
shell> chgrp -R mysql .

The first command changes the owner attribute of the files to the root user. The second
changes the owner attribute of the data directory to the mysql user. The third changes the
group attribute to the mysql group.

Installing MySQL

88

8. If you would like MySQL to start automatically when you boot your machine, you can copy
support-files/mysql.server to the location where your system has its startup files.
More information can be found in the support-files/mysql.server script itself and
in Section 2.9.2.2, “Starting and Stopping MySQL Automatically”.

9. You can set up new accounts using the bin/mysql_setpermission script if you install the DBI
and DBD::mysql Perl modules. For instructions, see Section 2.13, “Perl Installation Notes”.

10. If you would like to use mysqlaccess and have the MySQL distribution in some non-standard
place, you must change the location where mysqlaccess expects to find the mysql client. Edit
the bin/mysqlaccess script at approximately line 18. Search for a line that looks like this:

$MYSQL = '/usr/local/bin/mysql'; # path to mysql executable

Change the path to reflect the location where mysql actually is stored on your system. If you
do not do this, you get a Broken pipe error when you run mysqlaccess.

After everything has been unpacked and installed, you should test your distribution.

You can start the MySQL server with the following command:

shell> bin/mysqld_safe --user=mysql &

For versions of MySQL older than 4.0, substitute bin/safe_mysqld for bin/mysqld_safe in the com-
mand.

More information about mysqld_safe is given in Section 5.1.3, “The mysqld_safe Server Startup
Script”.

Note: The accounts that are listed in the MySQL grant tables initially have no passwords. After
starting the server, you should set up passwords for them using the instructions in Section 2.9,
“Post-Installation Setup and Testing”.

2.8. MySQL Installation Using a Source Distri-
bution

Before you proceed with the source installation, check first to see whether our binary is available for
your platform and whether it works for you. We put a lot of effort into making sure that our binaries
are built with the best possible options.

To obtain a source distribution for MySQL, Section 2.1.3, “How to Get MySQL”.

MySQL source distributions are provided as compressed tar archives and have names of the form
mysql-VERSION.tar.gz, where VERSION is a number like 5.0.3-alpha.

You need the following tools to build and install MySQL from source:

• GNU gunzip to uncompress the distribution.

• A reasonable tar to unpack the distribution. GNU tar is known to work. Some operating sys-
tems come with a pre-installed version of tar that is known to have problems. For example, Mac
OS X tar and Sun tar are known to have problems with long filenames. On Mac OS X, you can
use the pre-installed gnutar program. On other systems with a deficient tar, you should install
GNU tar first.

• A working ANSI C++ compiler. gcc 2.95.2 or later, egcs 1.0.2 or later or egcs 2.91.66, SGI
C++, and SunPro C++ are some of the compilers that are known to work. libg++ is not needed
when using gcc. gcc 2.7.x has a bug that makes it impossible to compile some perfectly legal

Installing MySQL

89

C++ files, such as sql/sql_base.cc. If you have only gcc 2.7.x, you must upgrade your gcc
to be able to compile MySQL. gcc 2.8.1 is also known to have problems on some platforms, so
it should be avoided if a new compiler exists for the platform.

gcc 2.95.2 or later is recommended when compiling MySQL 3.23.x.

• A good make program. GNU make is always recommended and is sometimes required. If you
have problems, we recommend trying GNU make 3.75 or newer.

If you are using a version of gcc recent enough to understand the -fno-exceptions option, it is
very important that you use this option. Otherwise, you may compile a binary that crashes ran-
domly. We also recommend that you use -felide-constructors and -fno-rtti along
with -fno-exceptions. When in doubt, do the following:

CFLAGS="-O3" CXX=gcc CXXFLAGS="-O3 -felide-constructors \
-fno-exceptions -fno-rtti" ./configure \
--prefix=/usr/local/mysql --enable-assembler \
--with-mysqld-ldflags=-all-static

On most systems, this gives you a fast and stable binary.

If you run into problems, please always use mysqlbug when posting questions to a MySQL mailing
list. Even if the problem isn't a bug, mysqlbug gathers system information that helps others solve
your problem. By not using mysqlbug, you lessen the likelihood of getting a solution to your prob-
lem. You can find mysqlbug in the scripts directory after you unpack the distribution. See Sec-
tion 1.4.1.3, “How to Report Bugs or Problems”.

2.8.1. Source Installation Overview
The basic commands you must execute to install a MySQL source distribution are:

shell> groupadd mysql
shell> useradd -g mysql mysql
shell> gunzip < mysql-VERSION.tar.gz | tar -xvf -
shell> cd mysql-VERSION
shell> ./configure --prefix=/usr/local/mysql
shell> make
shell> make install
shell> cp support-files/my-medium.cnf /etc/my.cnf
shell> cd /usr/local/mysql
shell> bin/mysql_install_db --user=mysql
shell> chown -R root .
shell> chown -R mysql var
shell> chgrp -R mysql .
shell> bin/mysqld_safe --user=mysql &

For versions of MySQL older than 4.0, substitute bin/safe_mysqld for bin/mysqld_safe in the final
command.

If you start from a source RPM, do the following:

shell> rpmbuild --rebuild --clean MySQL-VERSION.src.rpm

This makes a binary RPM that you can install. For older versions of RPM, you may have to replace
the command rpmbuild with rpm instead.

Note: This procedure does not set up any passwords for MySQL accounts. After following the pro-
cedure, proceed to Section 2.9, “Post-Installation Setup and Testing”, for post-installation setup and
testing.

A more detailed version of the preceding description for installing MySQL from a source distribu-

Installing MySQL

90

tion follows:

1. Add a login user and group for mysqld to run as:

shell> groupadd mysql
shell> useradd -g mysql mysql

These commands add the mysql group and the mysql user. The syntax for useradd and
groupadd may differ slightly on different versions of Unix. They may also be called adduser
and addgroup.

You might want to call the user and group something else instead of mysql. If so, substitute
the appropriate name in the following steps.

2. Pick the directory under which you want to unpack the distribution, and change location into it.

3. Obtain a distribution file from one of the sites listed in Section 2.1.3, “How to Get MySQL”.

4. Unpack the distribution into the current directory:

shell> gunzip < /path/to/mysql-VERSION.tar.gz | tar xvf -

This command creates a directory named mysql-VERSION.

With GNU tar, no separate invocation of gunzip is necessary. You can use the following al-
ternative command to uncompress and extract the distribution:

shell> tar zxvf /path/to/mysql-VERSION-OS.tar.gz

5. Change location into the top-level directory of the unpacked distribution:

shell> cd mysql-VERSION

Note that currently you must configure and build MySQL from this top-level directory. You
cannot build it in a different directory.

6. Configure the release and compile everything:

shell> ./configure --prefix=/usr/local/mysql
shell> make

When you run configure, you might want to specify some options. Run ./configure --help for
a list of options. Section 2.8.2, “Typical configure Options”, discusses some of the more useful
options.

If configure fails and you are going to send mail to a MySQL mailing list to ask for assistance,
please include any lines from config.log that you think can help solve the problem. Also
include the last couple of lines of output from configure. Post the bug report using the mysql-
bug script. See Section 1.4.1.3, “How to Report Bugs or Problems”.

If the compile fails, see Section 2.8.4, “Dealing with Problems Compiling MySQL” for help.

7. Install the distribution:

shell> make install

If you want to set up an option file, use one of those present in the support-files direct-
ory as a template. For example:

Installing MySQL

91

shell> cp support-files/my-medium.cnf /etc/my.cnf

You might need to run these commands as root.

If you want to configure support for InnoDB tables, you should edit the /etc/my.cnf file,
remove the # character before the option lines that start with innodb_..., and modify the
option values to be what you want. See Section 4.3.2, “Using Option Files” and Section 15.4,
“InnoDB Configuration”.

8. Change location into the installation directory:

shell> cd /usr/local/mysql

9. If you haven't installed MySQL before, you must create the MySQL grant tables:

shell> bin/mysql_install_db --user=mysql

If you run the command as root, you should use the --user option as shown. The value of
the option should be the name of the login account that you created in the first step to use for
running the server. If you run the command while logged in as that user, you can omit the -
-user option.

Note that for MySQL versions older than 3.22.10, mysql_install_db left the server running
after creating the grant tables. This is no longer true; you need to restart the server after per-
forming the remaining steps in this procedure.

10. Change the ownership of program binaries to root and ownership of the data directory to the
user that you run mysqld as. Assuming that you are located in the installation directory (/
usr/local/mysql), the commands look like this:

shell> chown -R root .
shell> chown -R mysql var
shell> chgrp -R mysql .

The first command changes the owner attribute of the files to the root user. The second
changes the owner attribute of the data directory to the mysql user. The third changes the
group attribute to the mysql group.

11. If you would like MySQL to start automatically when you boot your machine, you can copy
support-files/mysql.server to the location where your system has its startup files.
More information can be found in the support-files/mysql.server script itself and
in Section 2.9.2.2, “Starting and Stopping MySQL Automatically”.

12. You can set up new accounts using the bin/mysql_setpermission script if you install the DBI
and DBD::mysql Perl modules. For instructions, see Section 2.13, “Perl Installation Notes”.

After everything has been installed, you should initialize and test your distribution using this com-
mand:

shell> /usr/local/mysql/bin/mysqld_safe --user=mysql &

For versions of MySQL older than 4.0, substitute safe_mysqld for mysqld_safe in the command.

If that command fails immediately and prints mysqld ended, you can find some information in
the host_name.err file in the data directory.

More information about mysqld_safe is given in Section 5.1.3, “The mysqld_safe Server Startup
Script”.

Installing MySQL

92

Note: The accounts that are listed in the MySQL grant tables initially have no passwords. After
starting the server, you should set up passwords for them using the instructions in Section 2.9,
“Post-Installation Setup and Testing”.

2.8.2. Typical configure Options
The configure script gives you a great deal of control over how you configure a MySQL source dis-
tribution. Typically you do this using options on the configure command line. You can also affect
configure using certain environment variables. See Appendix F, Environment Variables. For a list
of options supported by configure, run this command:

shell> ./configure --help

Some of the more commonly used configure options are described here:

• To compile just the MySQL client libraries and client programs and not the server, use the -
-without-server option:

shell> ./configure --without-server

If you don't have a C++ compiler, mysql cannot be compiled (it is the one client program that
requires C++). In this case, you can remove the code in configure that tests for the C++ com-
piler and then run ./configure with the --without-server option. The compile step should
still try to build mysql, but you can ignore any warnings about mysql.cc. (If make stops, try
make -k to tell it to continue with the rest of the build even if errors occur.)

• If you want to build the embedded MySQL library (libmysqld.a) you should use the -
-with-embedded-server option.

• If you don't want your log files and database directories located under /usr/local/var, use
a configure command something like one of these:

shell> ./configure --prefix=/usr/local/mysql
shell> ./configure --prefix=/usr/local \

--localstatedir=/usr/local/mysql/data

The first command changes the installation prefix so that everything is installed under /
usr/local/mysql rather than the default of /usr/local. The second command preserves
the default installation prefix, but overrides the default location for database directories
(normally /usr/local/var) and changes it to /usr/local/mysql/data. After you
have compiled MySQL, you can change these options with option files. See Section 4.3.2,
“Using Option Files”.

• If you are using Unix and you want the MySQL socket located somewhere other than the default
location (normally in the directory /tmp or /var/run), use a configure command like this:

shell> ./configure \
--with-unix-socket-path=/usr/local/mysql/tmp/mysql.sock

The socket filename must be an absolute pathname. You can also change the location of
mysql.sock later by using a MySQL option file. See Section A.4.5, “How to Protect or
Change the MySQL Socket File /tmp/mysql.sock”.

• If you want to compile statically linked programs (for example, to make a binary distribution, to
get more speed, or to work around problems with some Red Hat Linux distributions), run con-
figure like this:

shell> ./configure --with-client-ldflags=-all-static \
--with-mysqld-ldflags=-all-static

Installing MySQL

93

• If you are using gcc and don't have libg++ or libstdc++ installed, you can tell configure to
use gcc as your C++ compiler:

shell> CC=gcc CXX=gcc ./configure

When you use gcc as your C++ compiler, it does not attempt to link in libg++ or
libstdc++. This may be a good idea to do even if you have these libraries installed, because
some versions of them have caused strange problems for MySQL users in the past.

The following list indicates some compilers and environment variable settings that are com-
monly used with each one.

• gcc 2.7.2:

CC=gcc CXX=gcc CXXFLAGS="-O3 -felide-constructors"

• egcs 1.0.3a:

CC=gcc CXX=gcc CXXFLAGS="-O3 -felide-constructors \
-fno-exceptions -fno-rtti"

• gcc 2.95.2:

CFLAGS="-O3 -mpentiumpro" CXX=gcc CXXFLAGS="-O3 -mpentiumpro \
-felide-constructors -fno-exceptions -fno-rtti"

• pgcc 2.90.29 or newer:

CFLAGS="-O3 -mpentiumpro -mstack-align-double" CXX=gcc \
CXXFLAGS="-O3 -mpentiumpro -mstack-align-double \
-felide-constructors -fno-exceptions -fno-rtti"

In most cases, you can get a reasonably optimized MySQL binary by using the options from the
preceding list and adding the following options to the configure line:

--prefix=/usr/local/mysql --enable-assembler \
--with-mysqld-ldflags=-all-static

The full configure line would, in other words, be something like the following for all recent gcc
versions:

CFLAGS="-O3 -mpentiumpro" CXX=gcc CXXFLAGS="-O3 -mpentiumpro \
-felide-constructors -fno-exceptions -fno-rtti" ./configure \
--prefix=/usr/local/mysql --enable-assembler \
--with-mysqld-ldflags=-all-static

The binaries we provide on the MySQL Web site at http://www.mysql.com/ are all compiled
with full optimization and should be perfect for most users. See Section 2.1.2.5, “MySQL Binar-
ies Compiled by MySQL AB”. There are some configuration settings you can tweak to make an
even faster binary, but these are only for advanced users. See Section 7.5.4, “How Compiling
and Linking Affects the Speed of MySQL”.

Installing MySQL

94

http://www.mysql.com/

If the build fails and produces errors about your compiler or linker not being able to create the
shared library libmysqlclient.so.# (where '#' is a version number), you can work around
this problem by giving the --disable-shared option to configure. In this case, configure
does not build a shared libmysqlclient.so.# library.

• By default, MySQL uses the latin1 (ISO-8859-1) character set. To change the default set, use
the --with-charset option:

shell> ./configure --with-charset=CHARSET

CHARSET may be one of big5, cp1251, cp1257, czech, danish, dec8, dos, euc_kr,
gb2312, gbk, german1, hebrew, hp8, hungarian, koi8_ru, koi8_ukr, latin1,
latin2, sjis, swe7, tis620, ujis, usa7, or win1251ukr. See Section 5.8.1, “The
Character Set Used for Data and Sorting”.

As of MySQL 4.1.1, the default collation may also be specified. MySQL uses the lat-
in1_swedish_ci collation. To change this, use the --with-collation option:

shell> ./configure --with-collation=COLLATION

To change both the character set and the collation, use both the --with-charset and -
-with-collation options. The collation must be a legal collation for the character set. (Use
the SHOW COLLATION statement to determine which collations are available for each character
set.)

If you want to convert characters between the server and the client, you should take a look at the
SET CHARACTER SET statement. See Section 13.5.3, “SET Syntax”.

Warning: If you change character sets after having created any tables, you have to run myis-
amchk -r -q --set-character-set=charset on every table. Your indexes may be sorted incor-
rectly otherwise. (This can happen if you install MySQL, create some tables, then reconfigure
MySQL to use a different character set and reinstall it.)

With the configure option --with-extra-charsets=LIST, you can define which addi-
tional character sets should be compiled into the server. LIST is either a list of character set
names separated by spaces, complex to include all character sets that can't be dynamically
loaded, or all to include all character sets into the binaries.

• To configure MySQL with debugging code, use the --with-debug option:

shell> ./configure --with-debug

This causes a safe memory allocator to be included that can find some errors and that provides
output about what is happening. See Section E.1, “Debugging a MySQL Server”.

• If your client programs are using threads, you also must compile a thread-safe version of the
MySQL client library with the --enable-thread-safe-client configure option. This
creates a libmysqlclient_r library with which you should link your threaded applications.
See Section 22.2.15, “How to Make a Threaded Client”.

• Options that pertain to particular systems can be found in the system-specific section of this
manual. See Section 2.12, “Operating System-Specific Notes”.

2.8.3. Installing from the Development Source Tree
Caution: You should read this section only if you are interested in helping us test our new code. If
you just want to get MySQL up and running on your system, you should use a standard release dis-
tribution (either a binary or source distribution).

To obtain our most recent development source tree, use these instructions:

Installing MySQL

95

1. Download BitKeeper from http://www.bitmover.com/cgi-bin/download.cgi. You need Bitkeep-
er 3.0 or newer to access our repository.

2. Follow the instructions to install it.

3. After BitKeeper has been installed, first go to the directory you want to work from, and then
use one of the following commands to clone the MySQL version branch of your choice:

To clone the old 3.23 branch, use this command:

shell> bk clone bk://mysql.bkbits.net/mysql-3.23 mysql-3.23

To clone the 4.0 stable (production) branch, use this command:

shell> bk clone bk://mysql.bkbits.net/mysql-4.0 mysql-4.0

To clone the 4.1 stable (production) branch, use this command:

shell> bk clone bk://mysql.bkbits.net/mysql-4.1 mysql-4.1

To clone the 5.0 development branch, use this command:

shell> bk clone bk://mysql.bkbits.net/mysql-5.0 mysql-5.0

In the preceding examples, the source tree is set up in the mysql-3.23/, mysql-4.0/,
mysql-4.1/, or mysql-5.0/ subdirectory of your current directory.

If you are behind a firewall and can only initiate HTTP connections, you can also use BitKeep-
er via HTTP.

If you are required to use a proxy server, set the environment variable http_proxy to point
to your proxy:

shell> export http_proxy="http://your.proxy.server:8080/"

Replace the bk:// with http:// when doing a clone. Example:

shell> bk clone http://mysql.bkbits.net/mysql-4.1 mysql-4.1

The initial download of the source tree may take a while, depending on the speed of your con-
nection. Please be patient.

4. You need GNU make, autoconf 2.58 (or newer), automake 1.8, libtool 1.5, and m4 to run the
next set of commands. Even though many operating systems come with their own implementa-
tion of make, chances are high that the compilation fails with strange error messages. There-
fore, it is highly recommended that you use GNU make (sometimes named gmake) instead.

Fortunately, a large number of operating systems ship with the GNU toolchain preinstalled or
supply installable packages of these. In any case, they can also be downloaded from the follow-
ing locations:

• http://www.gnu.org/software/autoconf/

• http://www.gnu.org/software/automake/

• http://www.gnu.org/software/libtool/

• http://www.gnu.org/software/m4/

Installing MySQL

96

http://www.bitmover.com/cgi-bin/download.cgi
http://www.gnu.org/software/autoconf/
http://www.gnu.org/software/automake/
http://www.gnu.org/software/libtool/
http://www.gnu.org/software/m4/

• http://www.gnu.org/software/make/

If you are trying to configure MySQL 4.1 or later, you also need GNU bison 1.75 or later.
Older versions of bison may report this error:

sql_yacc.yy:#####: fatal error: maximum table size (32767) exceeded

Note: The maximum table size is not actually exceeded; the error is caused by bugs in older
versions of bison.

Versions of MySQL before version 4.1 may also compile with other yacc implementations (for
example, BSD yacc 91.7.30). For later versions, GNU bison is required.

The following example shows the typical commands required to configure a source tree. The
first cd command changes location into the top-level directory of the tree; replace mysql-
4.0 with the appropriate directory name.

shell> cd mysql-4.0
shell> bk -r edit
shell> aclocal; autoheader; autoconf; automake
shell> (cd innobase; aclocal; autoheader; autoconf; automake)
shell> (cd bdb/dist; sh s_all)
shell> ./configure # Add your favorite options here
make

The command lines that change directory into the innobase and bdb/dist directories are
used to configure the InnoDB and Berkeley DB (BDB) storage engines. You can omit these
command lines if you to not require InnoDB or BDB support.

If you get some strange errors during this stage, verify that you really have libtool installed.

A collection of our standard configuration scripts is located in the BUILD/ subdirectory. You
may find it more convenient to use the BUILD/compile-pentium-debug script than the
preceding set of shell commands. To compile on a different architecture, modify the script by
removing flags that are Pentium-specific.

5. When the build is done, run make install. Be careful with this on a production machine; the
command may overwrite your live release installation. If you have another installation of
MySQL, we recommend that you run ./configure with different values for the --prefix, -
-with-tcp-port, and --unix-socket-path options than those used for your produc-
tion server.

6. Play hard with your new installation and try to make the new features crash. Start by running
make test. See Section 25.1.2, “MySQL Test Suite”.

7. If you have gotten to the make stage and the distribution does not compile, please report it in
our bugs database at http://bugs.mysql.com/. If you have installed the latest versions of the re-
quired GNU tools, and they crash trying to process our configuration files, please report that
also. However, if you execute aclocal and get a command not found error or a similar
problem, do not report it. Instead, make sure that all the necessary tools are installed and that
your PATH variable is set correctly so that your shell can find them.

8. After the initial bk clone operation to obtain the source tree, you should run bk pull peri-
odically to get updates.

9. You can examine the change history for the tree with all the diffs by using bk revtool. If
you see some funny diffs or code that you have a question about, do not hesitate to send email
to the MySQL internals mailing list. See Section 1.4.1.1, “The MySQL Mailing Lists”.
Also, if you think you have a better idea on how to do something, send an email message to the
same address with a patch. bk diffs produces a patch for you after you have made changes
to the source. If you do not have the time to code your idea, just send a description.

Installing MySQL

97

http://www.gnu.org/software/make/
http://bugs.mysql.com/

10. BitKeeper has a nice help utility that you can access via bk helptool.

11. Please note that any commits (made via bk ci or bk citool) triggers the posting of a mes-
sage with the changeset to our internals mailing list, as well as the usual openlogging.org sub-
mission with just the changeset comments. Generally, you wouldn't need to use commit (since
the public tree does not allow bk push), but rather use the bk diffs method described pre-
viously.

You can also browse changesets, comments, and source code online. For example, to browse this in-
formation for MySQL 4.1, go to http://mysql.bkbits.net:8080/mysql-4.1.

The manual is in a separate tree that can be cloned with:

shell> bk clone bk://mysql.bkbits.net/mysqldoc mysqldoc

There are also public BitKeeper trees for MySQL Control Center and MyODBC. They can be
cloned respectively as follows.

To clone MySQL Control center, use this command:

shell> bk clone http://mysql.bkbits.net/mysqlcc mysqlcc

To clone MyODBC, use this command:

shell> bk clone http://mysql.bkbits.net/myodbc3 myodbc3

To clone Connector/NET, use this command:

shell> bk clone http://mysql.bkbits.net/connector-net connector-net

2.8.4. Dealing with Problems Compiling MySQL
All MySQL programs compile cleanly for us with no warnings on Solaris or Linux using gcc. On
other systems, warnings may occur due to differences in system include files. See Section 2.8.5,
“MIT-pthreads Notes” for warnings that may occur when using MIT-pthreads. For other problems,
check the following list.

The solution to many problems involves reconfiguring. If you do need to reconfigure, take note of
the following:

• If configure is run after it has previously been run, it may use information that was gathered
during its previous invocation. This information is stored in config.cache. When configure
starts up, it looks for that file and reads its contents if it exists, on the assumption that the in-
formation is still correct. That assumption is invalid when you reconfigure.

• Each time you run configure, you must run make again to recompile. However, you may want
to remove old object files from previous builds first because they were compiled using different
configuration options.

To prevent old configuration information or object files from being used, run these commands be-
fore re-running configure:

shell> rm config.cache
shell> make clean

Alternatively, you can run make distclean.

Installing MySQL

98

http://mysql.bkbits.net:8080/mysql-4.1

The following list describes some of the problems when compiling MySQL that have been found to
occur most often:

• If you get errors such as the ones shown here when compiling sql_yacc.cc, you probably
have run out of memory or swap space:

Internal compiler error: program cc1plus got fatal signal 11
Out of virtual memory
Virtual memory exhausted

The problem is that gcc requires a huge amount of memory to compile sql_yacc.cc with in-
line functions. Try running configure with the --with-low-memory option:

shell> ./configure --with-low-memory

This option causes -fno-inline to be added to the compile line if you are using gcc and -O0
if you are using something else. You should try the --with-low-memory option even if you
have so much memory and swap space that you think you can't possibly have run out. This prob-
lem has been observed to occur even on systems with generous hardware configurations and the
--with-low-memory option usually fixes it.

• By default, configure picks c++ as the compiler name and GNU c++ links with -lg++. If you
are using gcc, that behavior can cause problems during configuration such as this:

configure: error: installation or configuration problem:
C++ compiler cannot create executables.

You might also observe problems during compilation related to g++, libg++, or libstdc++.

One cause of these problems is that you may not have g++, or you may have g++ but not
libg++, or libstdc++. Take a look at the config.log file. It should contain the exact
reason why your C++ compiler didn't work. To work around these problems, you can use gcc as
your C++ compiler. Try setting the environment variable CXX to "gcc -O3". For example:

shell> CXX="gcc -O3" ./configure

This works because gcc compiles C++ sources as well as g++ does, but does not link in
libg++ or libstdc++ by default.

Another way to fix these problems is to install g++, libg++, and libstdc++. We would,
however, like to recommend that you not use libg++ or libstdc++ with MySQL because
this only increases the binary size of mysqld without giving you any benefits. Some versions of
these libraries have also caused strange problems for MySQL users in the past.

Using gcc as the C++ compiler is also required if you want to compile MySQL with RAID func-
tionality (see Section 13.2.6, “CREATE TABLE Syntax” for more info on RAID table type) and
you are using GNU gcc version 3 and above. If you get errors like those following during the
linking stage when you configure MySQL to compile with the option --with-raid, try to use
gcc as your C++ compiler by defining the CXX environment variable:

gcc -O3 -DDBUG_OFF -rdynamic -o isamchk isamchk.o sort.o libnisam.a
../mysys/libmysys.a ../dbug/libdbug.a ../strings/libmystrings.a
-lpthread -lz -lcrypt -lnsl -lm -lpthread
../mysys/libmysys.a(raid.o)(.text+0x79): In function
`my_raid_create':: undefined reference to `operator new(unsigned)'
../mysys/libmysys.a(raid.o)(.text+0xdd): In function
`my_raid_create':: undefined reference to `operator delete(void*)'
../mysys/libmysys.a(raid.o)(.text+0x129): In function
`my_raid_open':: undefined reference to `operator new(unsigned)'
../mysys/libmysys.a(raid.o)(.text+0x189): In function

Installing MySQL

99

`my_raid_open':: undefined reference to `operator delete(void*)'
../mysys/libmysys.a(raid.o)(.text+0x64b): In function
`my_raid_close':: undefined reference to `operator delete(void*)'
collect2: ld returned 1 exit status

• If your compile fails with errors such as any of the following, you must upgrade your version of
make to GNU make:

making all in mit-pthreads
make: Fatal error in reader: Makefile, line 18:
Badly formed macro assignment

Or:

make: file `Makefile' line 18: Must be a separator (:

Or:

pthread.h: No such file or directory

Solaris and FreeBSD are known to have troublesome make programs.

GNU make Version 3.75 is known to work.

• If you want to define flags to be used by your C or C++ compilers, do so by adding the flags to
the CFLAGS and CXXFLAGS environment variables. You can also specify the compiler names
this way using CC and CXX. For example:

shell> CC=gcc
shell> CFLAGS=-O3
shell> CXX=gcc
shell> CXXFLAGS=-O3
shell> export CC CFLAGS CXX CXXFLAGS

See Section 2.1.2.5, “MySQL Binaries Compiled by MySQL AB”, for a list of flag definitions
that have been found to be useful on various systems.

• If you get an error message like this, you need to upgrade your gcc compiler:

client/libmysql.c:273: parse error before `__attribute__'

gcc 2.8.1 is known to work, but we recommend using gcc 2.95.2 or egcs 1.0.3a instead.

• If you get errors such as those shown here when compiling mysqld, configure didn't correctly
detect the type of the last argument to accept(), getsockname(), or getpeername():

cxx: Error: mysqld.cc, line 645: In this statement, the referenced
type of the pointer value ''length'' is ''unsigned long'',
which is not compatible with ''int''.

new_sock = accept(sock, (struct sockaddr *)&cAddr, &length);

To fix this, edit the config.h file (which is generated by configure). Look for these lines:

/* Define as the base type of the last arg to accept */
#define SOCKET_SIZE_TYPE XXX

Change XXX to size_t or int, depending on your operating system. (Note that you have to
do this each time you run configure because configure regenerates config.h.)

Installing MySQL

100

• The sql_yacc.cc file is generated from sql_yacc.yy. Normally the build process doesn't
need to create sql_yacc.cc, because MySQL comes with an pre-generated copy. However,
if you do need to re-create it, you might encounter this error:

"sql_yacc.yy", line xxx fatal: default action causes potential...

This is a sign that your version of yacc is deficient. You probably need to install bison (the
GNU version of yacc) and use that instead.

• On Debian Linux 3.0, you need to install gawk instead of the default mawk if you want to com-
pile MySQL 4.1 or higher with Berkeley DB support.

• If you need to debug mysqld or a MySQL client, run configure with the --with-debug op-
tion, then recompile and link your clients with the new client library. See Section E.2,
“Debugging a MySQL Client”.

• If you get a compilation error on Linux (for example, SuSE Linux 8.1 or Red Hat Linux 7.3)
similar to the following one:

libmysql.c:1329: warning: passing arg 5 of `gethostbyname_r' from
incompatible pointer type
libmysql.c:1329: too few arguments to function `gethostbyname_r'
libmysql.c:1329: warning: assignment makes pointer from integer
without a cast
make[2]: *** [libmysql.lo] Error 1

By default, the configure script attempts to determine the correct number of arguments by using
g++ the GNU C++ compiler. This test yields wrong results if g++ is not installed. There are two
ways to work around this problem:

• Make sure that the GNU C++ g++ is installed. On some Linux distributions, the required
package is called gpp; on others, it is named gcc-c++.

• Use gcc as your C++ compiler by setting the CXX environment variable to gcc:

export CXX="gcc"

Please note that you need to run configure again afterward.

2.8.5. MIT-pthreads Notes
This section describes some of the issues involved in using MIT-pthreads.

On Linux, you should not use MIT-pthreads. Use the installed LinuxThreads implementation in-
stead. See Section 2.12.1, “Linux Notes”.

If your system does not provide native thread support, you need to build MySQL using the MIT-
pthreads package. This includes older FreeBSD systems, SunOS 4.x, Solaris 2.4 and earlier, and
some others. See Section 2.1.1, “Operating Systems Supported by MySQL”.

Beginning with MySQL 4.0.2, MIT-pthreads is no longer part of the source distribution. If you re-
quire this package, you need to download it separately from ht-
tp://www.mysql.com/Downloads/Contrib/pthreads-1_60_beta6-mysql.tar.gz

After downloading, extract this source archive into the top level of the MySQL source directory. It
creates a new subdirectory named mit-pthreads.

• On most systems, you can force MIT-pthreads to be used by running configure with the -
-with-mit-threads option:

Installing MySQL

101

http://www.mysql.com/Downloads/Contrib/pthreads-1_60_beta6-mysql.tar.gz
http://www.mysql.com/Downloads/Contrib/pthreads-1_60_beta6-mysql.tar.gz

shell> ./configure --with-mit-threads

Building in a non-source directory is not supported when using MIT-pthreads because we want
to minimize our changes to this code.

• The checks that determine whether to use MIT-pthreads occur only during the part of the config-
uration process that deals with the server code. If you have configured the distribution using -
-without-server to build only the client code, clients do not know whether MIT-pthreads
is being used and use Unix socket connections by default. Because Unix socket files do not work
under MIT-pthreads on some platforms, this means you need to use -h or --host when you
run client programs.

• When MySQL is compiled using MIT-pthreads, system locking is disabled by default for per-
formance reasons. You can tell the server to use system locking with the -
-external-locking option. This is needed only if you want to be able to run two MySQL
servers against the same data files, which is not recommended.

• Sometimes the pthread bind() command fails to bind to a socket without any error message
(at least on Solaris). The result is that all connections to the server fail. For example:

shell> mysqladmin version
mysqladmin: connect to server at '' failed;
error: 'Can't connect to mysql server on localhost (146)'

The solution to this is to kill the mysqld server and restart it. This has only happened to us when
we have forced down the server and done a restart immediately.

• With MIT-pthreads, the sleep() system call isn't interruptible with SIGINT (break). This is
only noticeable when you run mysqladmin --sleep. You must wait for the sleep() call to ter-
minate before the interrupt is served and the process stops.

• When linking, you may receive warning messages like these (at least on Solaris); they can be ig-
nored:

ld: warning: symbol `_iob' has differing sizes:
(file /my/local/pthreads/lib/libpthread.a(findfp.o) value=0x4;

file /usr/lib/libc.so value=0x140);
/my/local/pthreads/lib/libpthread.a(findfp.o) definition taken

ld: warning: symbol `__iob' has differing sizes:
(file /my/local/pthreads/lib/libpthread.a(findfp.o) value=0x4;

file /usr/lib/libc.so value=0x140);
/my/local/pthreads/lib/libpthread.a(findfp.o) definition taken

• Some other warnings also can be ignored:

implicit declaration of function `int strtoll(...)'
implicit declaration of function `int strtoul(...)'

• We haven't gotten readline to work with MIT-pthreads. (This isn't needed, but may be inter-
esting for someone.)

2.8.6. Installing MySQL from Source on Windows
These instructions describe how to build MySQL binaries from source for versions 4.1 and above on
Windows. Instructions are provided for building binaries from a standard source distribution or from
the BitKeeper tree that contains the latest development source.

Note: The instructions in this document are strictly for users who want to test MySQL on Windows
from the latest source distribution or from the BitKeeper tree. For production use, MySQL AB does

Installing MySQL

102

not advise using a MySQL server built by yourself from source. Normally, it is best to use precom-
piled binary distributions of MySQL that are built specifically for optimal performance on Windows
by MySQL AB. Instructions for installing a binary distributions are available at Section 2.3,
“Installing MySQL on Windows”.

To build MySQL on Windows from source, you need the following compiler and resources avail-
able on your Windows system:

• VC++ 6.0 compiler (updated with 4 or 5 SP and pre-processor package). The pre-processor
package is necessary for the macro assembler. More details can be found at ht-
tp://msdn.microsoft.com/vstudio/downloads/updates/sp/vs6/sp5/faq.aspx.

• Approximately 45MB disk space.

• 64MB RAM.

You'll also need a MySQL source distribution for Windows. There are two ways you can get a
source distribution for MySQL version 4.1 and above:

1. Obtain a source distribution packaged by MySQL AB for the particular version of MySQL in
which you are interested. Prepackaged source distributions are available for released versions
of MySQL and can be obtained from http://dev.mysql.com/downloads/.

2. You can package a source distribution yourself from the latest BitKeeper developer source tree.
If you plan to do this, you must create the package on a Unix system and then transfer it to your
Windows system. (The reason for this is that some of the configuration and build steps require
tools that work only on Unix.) The BitKeeper approach thus requires:

• A system running Unix, or a Unix-like system such as Linux.

• BitKeeper 3.0 installed on that system. You can obtain BitKeeper from ht-
tp://www.bitkeeper.com/.

If you are using a Windows source distribution, you can go directly to Section 2.8.6.1, “Building
MySQL Using VC++”. To build from the BitKeeper tree, proceed to Section 2.8.6.2, “Creating a
Windows Source Package from the Latest Development Source”.

If you find something not working as expected, or you have suggestions about ways to improve the
current build process on Windows, please send a message to the win32 mailing list. See Sec-
tion 1.4.1.1, “The MySQL Mailing Lists”.

2.8.6.1. Building MySQL Using VC++

Note: VC++ workspace files for MySQL 4.1 and above are compatible with Microsoft Visual Stu-
dio 6.0 and above (7.0/.NET) editions and tested by MySQL AB staff before each release.

Follow this procedure to build MySQL:

1. Create a work directory (for example, C:\workdir).

2. Unpack the source distribution in the aforementioned directory using WinZip or other Win-
dows tool that can read .zip files.

3. Start the VC++ 6.0 compiler.

4. In the File menu, select Open Workspace.

5. Open the mysql.dsw workspace you find in the work directory.

6. From the Build menu, select the Set Active Configuration menu.

Installing MySQL

103

http://msdn.microsoft.com/vstudio/downloads/updates/sp/vs6/sp5/faq.aspx
http://msdn.microsoft.com/vstudio/downloads/updates/sp/vs6/sp5/faq.aspx
http://dev.mysql.com/downloads/
http://www.bitkeeper.com/
http://www.bitkeeper.com/

7. Click over the screen selecting mysqld - Win32 Debug and click OK.

8. Press F7 to begin the build of the debug server, libraries, and some client applications.

9. Compile the release versions that you want in the same way.

10. Debug versions of the programs and libraries are placed in the client_debug and
lib_debug directories. Release versions of the programs and libraries are placed in the
client_release and lib_release directories. Note that if you want to build both de-
bug and release versions, you can select the Build All option from the Build menu.

11. Test the server. The server built using the preceding instructions expects that the MySQL base
directory and data directory are C:\mysql and C:\mysql\data by default. If you want to
test your server using the source tree root directory and its data directory as the base directory
and data directory, you need to tell the server their pathnames. You can either do this on the
command line with the --basedir and --datadir options, or place appropriate options in
an option file (the my.ini file in your Windows directory or C:\my.cnf). If you have an
existing data directory elsewhere that you want to use, you can specify its pathname instead.

12. Start your server from the client_release or client_debug directory, depending on
which server you want to use. The general server startup instructions are at Section 2.3,
“Installing MySQL on Windows”. You'll need to adapt the instructions appropriately if you
want to use a different base directory or data directory.

13. When the server is running in standalone fashion or as a service based on your configuration,
try to connect to it from the mysql interactive command-line utility that exists in your cli-
ent_release or client_debug directory.

When you are satisfied that the programs you have built are working correctly, stop the server. Then
install MySQL as follows:

1. Create the directories where you want to install MySQL. For example, to install into
C:\mysql, use these commands:

C:\> mkdir C:\mysql
C:\> mkdir C:\mysql\bin
C:\> mkdir C:\mysql\data
C:\> mkdir C:\mysql\share
C:\> mkdir C:\mysql\scripts

If you want to compile other clients and link them to MySQL, you should also create several
additional directories:

C:\> mkdir C:\mysql\include
C:\> mkdir C:\mysql\lib
C:\> mkdir C:\mysql\lib\debug
C:\> mkdir C:\mysql\lib\opt

If you want to benchmark MySQL, create this directory:

C:\> mkdir C:\mysql\sql-bench

Benchmarking requires Perl support.

2. From the workdir directory, copy into the C:\mysql directory the following directories:

C:\> cd \workdir
C:\workdir> copy client_release*.exe C:\mysql\bin
C:\workdir> copy client_debug\mysqld.exe C:\mysql\bin\mysqld-debug.exe
C:\workdir> xcopy scripts*.* C:\mysql\scripts /E

Installing MySQL

104

C:\workdir> xcopy share*.* C:\mysql\share /E

If you want to compile other clients and link them to MySQL, you should also copy several lib-
raries and header files:

C:\workdir> copy lib_debug\mysqlclient.lib C:\mysql\lib\debug
C:\workdir> copy lib_debug\libmysql.* C:\mysql\lib\debug
C:\workdir> copy lib_debug\zlib.* C:\mysql\lib\debug
C:\workdir> copy lib_release\mysqlclient.lib C:\mysql\lib\opt
C:\workdir> copy lib_release\libmysql.* C:\mysql\lib\opt
C:\workdir> copy lib_release\zlib.* C:\mysql\lib\opt
C:\workdir> copy include*.h C:\mysql\include
C:\workdir> copy libmysql\libmysql.def C:\mysql\include

If you want to benchmark MySQL, you should also do this:

C:\workdir> xcopy sql-bench*.* C:\mysql\bench /E

Set up and start the server in the same way as for the binary Windows distribution. See Section 2.3,
“Installing MySQL on Windows”.

2.8.6.2. Creating a Windows Source Package from the Latest De-
velopment Source

To create a Windows source package from the current BitKeeper source tree, use the following in-
structions. Please note that this procedure must be performed on a system running a Unix or Unix-
like operating system. For example, the procedure is known to work well on Linux.

1. Clone the BitKeeper source tree for MySQL (version 4.1 or above, as desired). For more in-
formation on how to clone the source tree, see the instructions at Section 2.8.3, “Installing from
the Development Source Tree”.

2. Configure and build the distribution so that you have a server binary to work with. One way to
do this is to run the following command in the top-level directory of your source tree:

shell> ./BUILD/compile-pentium-max

3. After making sure that the build process completed successfully, run the following utility script
from top-level directory of your source tree:

shell> ./scripts/make_win_src_distribution

This script creates a Windows source package to be used on your Windows system. You can
supply different options to the script based on your needs. It accepts the following options:

• --help

Display a help message.

• --debug

Print information about script operations, do not create package.

• --tmp

Specify the temporary location.

Installing MySQL

105

• --suffix

Suffix name for the package.

• --dirname

Directory name to copy files (intermediate).

• --silent

Do not print verbose list of files processed.

• --tar

Create tar.gz package instead of .zip package.

By default, make_win_src_distribution creates a Zip-format archive with the name
mysql-VERSION-win-src.zip, where VERSION represents the version of your MySQL
source tree.

4. Copy or upload to your Windows machine the Windows source package that you have just cre-
ated. To compile it, use the instructions in Section 2.8.6.1, “Building MySQL Using VC++”.

2.8.7. Compiling MySQL Clients on Windows
In your source files, you should include my_global.h before mysql.h:

#include <my_global.h>
#include <mysql.h>

my_global.h includes any other files needed for Windows compatibility (such as windows.h)
if you compile your program on Windows.

You can either link your code with the dynamic libmysql.lib library, which is just a wrapper to
load in libmysql.dll on demand, or link with the static mysqlclient.lib library.

The MySQL client libraries are compiled as threaded libraries, so you should also compile your
code to be multi-threaded.

2.9. Post-Installation Setup and Testing
After installing MySQL, there are some issues you should address. For example, on Unix, you
should initialize the data directory and create the MySQL grant tables. On all platforms, an import-
ant security concern is that the initial accounts in the grant tables have no passwords. You should as-
sign passwords to prevent unauthorized access to the MySQL server. For MySQL 4.1.3 and up, you
can create time zone tables to enable recognition of named time zones. (Currently, these tables can
be populated only on Unix. This problem will be addressed soon for Windows.)

The following sections include post-installation procedures that are specific to Windows systems
and to Unix systems. Another section, Section 2.9.2.3, “Starting and Troubleshooting the MySQL
Server”, applies to all platforms; it describes what to do if you have trouble getting the server to
start. Section 2.9.3, “Securing the Initial MySQL Accounts” also applies to all platforms. You
should follow its instructions to make sure that you have properly protected your MySQL accounts
by assigning passwords to them.

When you are ready to create additional user accounts, you can find information on the MySQL ac-
cess control system and account management in Section 5.5, “The MySQL Access Privilege Sys-
tem” and Section 5.6, “MySQL User Account Management”.

Installing MySQL

106

2.9.1. Windows Post-Installation Procedures
On Windows, the data directory and the grant tables do not have to be created. MySQL Windows
distributions include the grant tables with a set of preinitialized accounts in the mysql database un-
der the data directory. You do not run the mysql_install_db script that is used on Unix. However, if
you did not install MySQL using the Windows Installation Wizard, you should assign passwords to
the accounts. See Section 2.3.4.1, “Introduction”. The procedure for this is given in Section 2.9.3,
“Securing the Initial MySQL Accounts”.

Before setting up passwords, you might want to try running some client programs to make sure that
you can connect to the server and that it is operating properly. Make sure the server is running (see
Section 2.3.10, “Starting the Server for the First Time”), then issue the following commands to veri-
fy that you can retrieve information from the server. The output should be similar to what is shown
here:

C:\> C:\mysql\bin\mysqlshow
+-----------+
| Databases |
+-----------+
| mysql |
| test |
+-----------+
C:\> C:\mysql\bin\mysqlshow mysql
Database: mysql
+--------------+
| Tables |
+--------------+
| columns_priv |
| db |
| func |
| host |
| tables_priv |
| user |
+--------------+
C:\> C:\mysql\bin\mysql -e "SELECT Host,Db,User FROM db" mysql
+------+-------+------+
| host | db | user |
+------+-------+------+
| % | test% | |
+------+-------+------+

If you are running a version of Windows that supports services and you want the MySQL server to
run automatically when Windows starts, see Section 2.3.12, “Starting MySQL as a Windows Ser-
vice”.

2.9.2. Unix Post-Installation Procedures
After installing MySQL on Unix, you need to initialize the grant tables, start the server, and make
sure that the server works okay. You may also wish to arrange for the server to be started and
stopped automatically when your system starts and stops. You should also assign passwords to the
accounts in the grant tables.

On Unix, the grant tables are set up by the mysql_install_db program. For some installation meth-
ods, this program is run for you automatically:

• If you install MySQL on Linux using RPM distributions, the server RPM runs
mysql_install_db.

• If you install MySQL on Mac OS X using a PKG distribution, the installer runs
mysql_install_db.

Otherwise, you'll need to run mysql_install_db yourself.

Installing MySQL

107

The following procedure describes how to initialize the grant tables (if that has not previously been
done) and then start the server. It also suggests some commands that you can use to test whether the
server is accessible and working properly. For information about starting and stopping the server
automatically, see Section 2.9.2.2, “Starting and Stopping MySQL Automatically”.

After you complete the procedure and have the server running, you should assign passwords to the
accounts created by mysql_install_db. Instructions for doing so are given in Section 2.9.3,
“Securing the Initial MySQL Accounts”.

In the examples shown here, the server runs under the user ID of the mysql login account. This as-
sumes that such an account exists. Either create the account if it does not exist, or substitute the
name of a different existing login account that you plan to use for running the server.

1. Change location into the top-level directory of your MySQL installation, represented here by
BASEDIR:

shell> cd BASEDIR

BASEDIR is likely to be something like /usr/local/mysql or /usr/local. The fol-
lowing steps assume that you are located in this directory.

2. If necessary, run the mysql_install_db program to set up the initial MySQL grant tables con-
taining the privileges that determine how users are allowed to connect to the server. You'll need
to do this if you used a distribution type that doesn't run the program for you.

Typically, mysql_install_db needs to be run only the first time you install MySQL, so you can
skip this step if you are upgrading an existing installation, However, mysql_install_db does
not overwrite any existing privilege tables, so it should be safe to run in any circumstances.

To initialize the grant tables, use one of the following commands, depending on whether
mysql_install_db is located in the bin or scripts directory:

shell> bin/mysql_install_db --user=mysql
shell> scripts/mysql_install_db --user=mysql

The mysql_install_db script creates the data directory, the mysql database that holds all data-
base privileges, and the test database that you can use to test MySQL. The script also creates
privilege table entries for root accounts and anonymous-user accounts. The accounts have no
passwords initially. A description of their initial privileges is given in Section 2.9.3, “Securing
the Initial MySQL Accounts”. Briefly, these privileges allow the MySQL root user to do any-
thing, and allow anybody to create or use databases with a name of test or starting with
test_.

It is important to make sure that the database directories and files are owned by the mysql lo-
gin account so that the server has read and write access to them when you run it later. To en-
sure this, the --user option should be used as shown if you run mysql_install_db as root.
Otherwise, you should execute the script while logged in as mysql, in which case you can
omit the --user option from the command.

mysql_install_db creates several tables in the mysql database: user, db, host,
tables_priv, columns_priv, func, and possibly others depending on your version of
MySQL.

If you don't want to have the test database, you can remove it with mysqladmin -u root
drop test after starting the server.

If you have problems with mysql_install_db, see Section 2.9.2.1, “Problems Running
mysql_install_db”.

There are some alternatives to running the mysql_install_db script as it is provided in the
MySQL distribution:

Installing MySQL

108

• If you want the initial privileges to be different from the standard defaults, you can modify
mysql_install_db before you run it. However, a preferable technique is to use GRANT and
REVOKE to change the privileges after the grant tables have been set up. In other words,
you can run mysql_install_db, and then use mysql -u root mysql to connect to the
server as the MySQL root user so that you can issue the GRANT and REVOKE statements.

If you want to install MySQL on a lot of machines with the same privileges, you can put
the GRANT and REVOKE statements in a file and execute the file as a script using mysql
after running mysql_install_db. For example:

shell> bin/mysql_install_db --user=mysql
shell> bin/mysql -u root < your_script_file

By doing this, you can avoid having to issue the statements manually on each machine.

• It is possible to re-create the grant tables completely after they have previously been cre-
ated. You might want to do this if you're just learning how to use GRANT and REVOKE and
have made so many modifications after running mysql_install_db that you want to wipe
out the tables and start over.

To re-create the grant tables, remove all the .frm, .MYI, and .MYD files in the directory
containing the mysql database. (This is the directory named mysql under the data direct-
ory, which is listed as the datadir value when you run mysqld --help.) Then run the
mysql_install_db script again.

Note: For MySQL versions older than 3.22.10, you should not delete the .frm files. If you
accidentally do this, you should copy them back into the mysql directory from your
MySQL distribution before running mysql_install_db.

• You can start mysqld manually using the --skip-grant-tables option and add the
privilege information yourself using mysql:

shell> bin/mysqld_safe --user=mysql --skip-grant-tables &
shell> bin/mysql mysql

From mysql, manually execute the SQL commands contained in mysql_install_db. Make
sure that you run mysqladmin flush-privileges or mysqladmin reload afterward to tell the
server to reload the grant tables.

Note that by not using mysql_install_db, you not only have to populate the grant tables
manually, you also have to create them first.

3. Start the MySQL server:

shell> bin/mysqld_safe --user=mysql &

For versions of MySQL older than 4.0, substitute bin/safe_mysqld for bin/mysqld_safe in this
command.

It is important that the MySQL server be run using an unprivileged (non-root) login account.
To ensure this, the --user option should be used as shown if you run mysql_safe as
root. Otherwise, you should execute the script while logged in as mysql, in which case you
can omit the --user option from the command.

Further instructions for running MySQL as an unprivileged user are given in Section A.3.2,
“How to Run MySQL as a Normal User”.

If you neglected to create the grant tables before proceeding to this step, the following message
appears in the error log file when you start the server:

Installing MySQL

109

mysqld: Can't find file: 'host.frm'

If you have other problems starting the server, see Section 2.9.2.3, “Starting and Troubleshoot-
ing the MySQL Server”.

4. Use mysqladmin to verify that the server is running. The following commands provide simple
tests to check whether the server is up and responding to connections:

shell> bin/mysqladmin version
shell> bin/mysqladmin variables

The output from mysqladmin version varies slightly depending on your platform and version
of MySQL, but should be similar to that shown here:

shell> bin/mysqladmin version
mysqladmin Ver 8.40 Distrib 4.0.18, for linux on i586
Copyright (C) 2000 MySQL AB & MySQL Finland AB & TCX DataKonsult AB
This software comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to modify and redistribute it under the GPL license
Server version 4.0.18-log
Protocol version 10
Connection Localhost via Unix socket
TCP port 3306
UNIX socket /tmp/mysql.sock
Uptime: 16 sec
Threads: 1 Questions: 9 Slow queries: 0
Opens: 7 Flush tables: 2 Open tables: 0
Queries per second avg: 0.000
Memory in use: 132K Max memory used: 16773K

To see what else you can do with mysqladmin, invoke it with the --help option.

5. Verify that you can shut down the server:

shell> bin/mysqladmin -u root shutdown

6. Verify that you can restart the server. Do this by using mysqld_safe or by invoking mysqld
directly. For example:

shell> bin/mysqld_safe --user=mysql --log &

If mysqld_safe fails, see Section 2.9.2.3, “Starting and Troubleshooting the MySQL Server”.

7. Run some simple tests to verify that you can retrieve information from the server. The output
should be similar to what is shown here:

shell> bin/mysqlshow
+-----------+
| Databases |
+-----------+
| mysql |
| test |
+-----------+
shell> bin/mysqlshow mysql
Database: mysql
+--------------+
| Tables |
+--------------+
| columns_priv |
| db |
| func |

Installing MySQL

110

| host |
| tables_priv |
| user |
+--------------+
shell> bin/mysql -e "SELECT Host,Db,User FROM db" mysql
+------+--------+------+
| host | db | user |
+------+--------+------+
| % | test | |
| % | test_% | |
+------+--------+------+

8. There is a benchmark suite in the sql-bench directory (under the MySQL installation direct-
ory) that you can use to compare how MySQL performs on different platforms. The benchmark
suite is written in Perl. It uses the Perl DBI module to provide a database-independent interface
to the various databases, and some other additional Perl modules are required to run the bench-
mark suite. You must have the following modules installed:

DBI
DBD::mysql
Data::Dumper
Data::ShowTable

These modules can be obtained from CPAN (http://www.cpan.org/). See Section 2.13.1,
“Installing Perl on Unix”.

The sql-bench/Results directory contains the results from many runs against different
databases and platforms. To run all tests, execute these commands:

shell> cd sql-bench
shell> perl run-all-tests

If you don't have the sql-bench directory, you probably installed MySQL using RPM files
other than the source RPM. (The source RPM includes the sql-bench benchmark directory.)
In this case, you must first install the benchmark suite before you can use it. Beginning with
MySQL 3.22, there are separate benchmark RPM files named mysql-bench-VERSION-
i386.rpm that contain benchmark code and data.

If you have a source distribution, there are also tests in its tests subdirectory that you can
run. For example, to run auto_increment.tst, execute this command from the top-level
directory of your source distribution:

shell> mysql -vvf test < ./tests/auto_increment.tst

The expected result of the test can be found in the ./tests/auto_increment.res file.

9. At this point, you should have the server running. However, none of the initial MySQL ac-
counts have a password, so you should assign passwords using the instructions in Section 2.9.3,
“Securing the Initial MySQL Accounts”.

As of MySQL 4.1.3, the installation procedure creates time zone tables in the mysql database.
However, you must populate the tables manually. Instructions to do this are given in Section 5.8.8,
“MySQL Server Time Zone Support”.

2.9.2.1. Problems Running mysql_install_db

The purpose of the mysql_install_db script is to generate new MySQL privilege tables. It does not
overwrite existing MySQL privilege tables, and it does not affect any other data.

Installing MySQL

111

http://www.cpan.org/

If you want to re-create your privilege tables, first stop the mysqld server if it's running. Then re-
name the mysql directory under the data directory to save it, and then run mysql_install_db. For
example:

shell> mv mysql-data-directory/mysql mysql-data-directory/mysql-old
shell> mysql_install_db --user=mysql

This section lists problems you might encounter when you run mysql_install_db:

• mysql_install_db doesn't install the grant tables

You may find that mysql_install_db fails to install the grant tables and terminates after display-
ing the following messages:

Starting mysqld daemon with databases from XXXXXX
mysqld ended

In this case, you should examine the error log file very carefully. The log should be located in
the directory XXXXXX named by the error message, and should indicate why mysqld didn't start.
If you don't understand what happened, include the log when you post a bug report. See Sec-
tion 1.4.1.3, “How to Report Bugs or Problems”.

• There is a mysqld process running

This indicates that the server is running, in which case the grant tables have probably been cre-
ated. If so, you don't have to run mysql_install_db at all because it need be run only once (when
you install MySQL the first time).

• Installing a second mysqld server doesn't work when one server is running

This can happen when you have an existing MySQL installation, but want to put a new installa-
tion in a different location. For example, you might have a production installation, but you want
to create a second installation for testing purposes. Generally the problem that occurs when you
try to run a second server is that it tries to use a network interface that is in use by the first serv-
er. In this case, you should see one of the following error messages:

Can't start server: Bind on TCP/IP port:
Address already in use
Can't start server: Bind on unix socket...

For instructions on setting up multiple servers, see Section 5.10, “Running Multiple MySQL
Servers on the Same Machine”.

• You don't have write access to /tmp

If you don't have write access to create temporary files or a Unix socket file in the default loca-
tion (the /tmp directory), an error occurs when you run mysql_install_db or the mysqld serv-
er.

You can specify different temporary directory and Unix socket file locations by executing these
commands prior to starting mysql_install_db or mysqld:

shell> TMPDIR=/some_tmp_dir/
shell> MYSQL_UNIX_PORT=/some_tmp_dir/mysql.sock
shell> export TMPDIR MYSQL_UNIX_PORT

Installing MySQL

112

some_tmp_dir should be the full pathname to some directory for which you have write per-
mission.

After this, you should be able to run mysql_install_db and start the server with these com-
mands:

shell> bin/mysql_install_db --user=mysql
shell> bin/mysqld_safe --user=mysql &

If mysql_install_db is located in the scripts directory, modify the first command to use
scripts/mysql_install_db.

See Section A.4.5, “How to Protect or Change the MySQL Socket File /tmp/mysql.sock”.
See Appendix F, Environment Variables.

2.9.2.2. Starting and Stopping MySQL Automatically

Generally, you start the mysqld server in one of these ways:

• By invoking mysqld directly. This works on any platform.

• By running the MySQL server as a Windows service. This can be done on versions of Windows
that support services (such as NT, 2000, XP, and 2003). The service can be set to start the server
automatically when Windows starts, or as a manual service that you start on request. For instruc-
tions, see Section 2.3.12, “Starting MySQL as a Windows Service”.

• By invoking mysqld_safe, which tries to determine the proper options for mysqld and then runs
it with those options. This script is used on systems based on BSD Unix. See Section 5.1.3, “The
mysqld_safe Server Startup Script”.

• By invoking mysql.server. This script is used primarily at system startup and shutdown on sys-
tems that use System V-style run directories, where it usually is installed under the name
mysql. The mysql.server script starts the server by invoking mysqld_safe. See Section 5.1.4,
“The mysql.server Server Startup Script”.

• On Mac OS X, you can install a separate MySQL Startup Item package to enable the automatic
startup of MySQL on system startup. The Startup Item starts the server by invoking
mysql.server. See Section 2.5, “Installing MySQL on Mac OS X” for details.

The mysql.server and mysqld_safe scripts and the Mac OS X Startup Item can be used to start the
server manually, or automatically at system startup time. mysql.server and the Startup Item also can
be used to stop the server.

To start or stop the server manually using the mysql.server script, invoke it with start or stop
arguments:

shell> mysql.server start
shell> mysql.server stop

Before mysql.server starts the server, it changes location to the MySQL installation directory, and
then invokes mysqld_safe. If you want the server to run as some specific user, add an appropriate
user option to the [mysqld] group of the /etc/my.cnf option file, as shown later in this sec-
tion. (It is possible that you'll need to edit mysql.server if you've installed a binary distribution of
MySQL in a non-standard location. Modify it to cd into the proper directory before it runs
mysqld_safe. If you do this, your modified version of mysql.server may be overwritten if you up-
grade MySQL in the future, so you should make a copy of your edited version that you can rein-
stall.)

Installing MySQL

113

mysql.server stop brings down the server by sending a signal to it. You can also stop the server
manually by executing mysqladmin shutdown.

To start and stop MySQL automatically on your server, you need to add start and stop commands to
the appropriate places in your /etc/rc* files.

If you use the Linux server RPM package (MySQL-server-VERSION.rpm), the mysql.server
script is installed in the /etc/init.d directory with the name mysql. You need not install it
manually. See Section 2.4, “Installing MySQL on Linux” for more information on the Linux RPM
packages.

Some vendors provide RPM packages that install a startup script under a different name such as
mysqld.

If you install MySQL from a source distribution or using a binary distribution format that does not
install mysql.server automatically, you can install it manually. The script can be found in the sup-
port-files directory under the MySQL installation directory or in a MySQL source tree.

To install mysql.server manually, copy it to the /etc/init.d directory with the name mysql,
and then make it executable. Do this by changing location into the appropriate directory where
mysql.server is located and executing these commands:

shell> cp mysql.server /etc/init.d/mysql
shell> chmod +x /etc/init.d/mysql

Older Red Hat systems use the /etc/rc.d/init.d directory rather than /etc/init.d. Ad-
just the preceding commands accordingly. Alternatively, first create /etc/init.d as a symbolic
link that points to /etc/rc.d/init.d:

shell> cd /etc
shell> ln -s rc.d/init.d .

After installing the script, the commands needed to activate it to run at system startup depend on
your operating system. On Linux, you can use chkconfig:

shell> chkconfig --add mysql

On some Linux systems, the following command also seems to be necessary to fully enable the
mysql script:

shell> chkconfig --level 345 mysql on

On FreeBSD, startup scripts generally should go in /usr/local/etc/rc.d/. The rc(8)
manual page states that scripts in this directory are executed only if their basename matches the
*.sh shell filename pattern. Any other files or directories present within the directory are silently
ignored. In other words, on FreeBSD, you should install the mysql.server script as /
usr/local/etc/rc.d/mysql.server.sh to enable automatic startup.

As an alternative to the preceding setup, some operating systems also use /etc/rc.local or /
etc/init.d/boot.local to start additional services on startup. To start up MySQL using this
method, you could append a command like the one following to the appropriate startup file:

/bin/sh -c 'cd /usr/local/mysql; ./bin/mysqld_safe --user=mysql &'

For other systems, consult your operating system documentation to see how to install startup scripts.

You can add options for mysql.server in a global /etc/my.cnf file. A typical /etc/my.cnf
file might look like this:

[mysqld]

Installing MySQL

114

datadir=/usr/local/mysql/var
socket=/var/tmp/mysql.sock
port=3306
user=mysql
[mysql.server]
basedir=/usr/local/mysql

The mysql.server script understands the following options: basedir, datadir, and pid-file.
If specified, they must be placed in an option file, not on the command line. mysql.server under-
stands only start and stop as command-line arguments.

The following table shows which option groups the server and each startup script read from option
files:

Script Option Groups

mysqld [mysqld], [server], [mysqld-major-version]

mysql.server [mysqld], [mysql.server]

mysqld_safe [mysqld], [server], [mysqld_safe]

[mysqld-major-version] means that groups with names like [mysqld-4.0],
[mysqld-4.1], and [mysqld-5.0] are read by servers having versions 4.0.x, 4.1.x, 5.0.x, and
so forth. This feature was added in MySQL 4.0.14. It can be used to specify options that can be read
only by servers within a given release series.

For backward compatibility, mysql.server also reads the [mysql_server] group and
mysqld_safe also reads the [safe_mysqld] group. However, you should update your option
files to use the [mysql.server] and [mysqld_safe] groups instead when you begin using
MySQL 4.0 or later.

See Section 4.3.2, “Using Option Files”.

2.9.2.3. Starting and Troubleshooting the MySQL Server

If you have problems starting the server, here are some things you can try:

• Specify any special options needed by the storage engines you are using.

• Make sure that the server knows where to find the data directory.

• Make sure the server can use the data directory. The ownership and permissions of the data dir-
ectory and its contents must be set such that the server can access and modify them.

• Check the error log to see why the server doesn't start.

• Verify that the network interfaces the server wants to use are available.

Some storage engines have options that control their behavior. You can create a my.cnf file and
set startup options for the engines you plan to use. If you are going to use storage engines that sup-
port transactional tables (InnoDB, BDB), be sure that you have them configured the way you want
before starting the server:

• If you are using InnoDB tables, refer to the InnoDB-specific startup options. In MySQL 3.23,
you must configure InnoDB explicitly or the server fails to start. From MySQL 4.0 on, In-
noDB uses default values for its configuration options if you specify none. See Section 15.4,
“InnoDB Configuration”.

• If you are using BDB (Berkeley DB) tables, you should familiarize yourself with the different

Installing MySQL

115

BDB-specific startup options. See Section 14.4.3, “BDB Startup Options”.

When the mysqld server starts, it changes location to the data directory. This is where it expects to
find databases and where it expects to write log files. On Unix, the server also writes the pid
(process ID) file in the data directory.

The data directory location is hardwired in when the server is compiled. This is where the server
looks for the data directory by default. If the data directory is located somewhere else on your sys-
tem, the server does not work properly. You can find out what the default path settings are by invok-
ing mysqld with the --verbose and --help options. (Prior to MySQL 4.1, omit the -
-verbose option.)

If the defaults don't match the MySQL installation layout on your system, you can override them by
specifying options on the command line to mysqld or mysqld_safe. You can also list the options in
an option file.

To specify the location of the data directory explicitly, use the --datadir option. However, nor-
mally you can tell mysqld the location of the base directory under which MySQL is installed and it
looks for the data directory there. You can do this with the --basedir option.

To check the effect of specifying path options, invoke mysqld with those options followed by the -
-verbose and --help options. For example, if you change location into the directory where
mysqld is installed, and then run the following command, it shows the effect of starting the server
with a base directory of /usr/local:

shell> ./mysqld --basedir=/usr/local --verbose --help

You can specify other options such as --datadir as well, but note that --verbose and -
-help must be the last options. (Prior to MySQL 4.1, omit the --verbose option.)

Once you determine the path settings you want, start the server without --verbose and --help.

If mysqld is currently running, you can find out what path settings it is using by executing this com-
mand:

shell> mysqladmin variables

Or:

shell> mysqladmin -h host_name variables

host_name is the name of the MySQL server host.

If you get Errcode 13 (which means Permission denied) when starting mysqld, this
means that the access privileges of the data directory or its contents do not allow the server access.
In this case, you change the permissions for the involved files and directories so that the server has
the right to use them. You can also start the server as root, but this can raise security issues and
should be avoided.

On Unix, change location into the data directory and check the ownership of the data directory and
its contents to make sure the server has access. For example, if the data directory is /
usr/local/mysql/var, use this command:

shell> ls -la /usr/local/mysql/var

If the data directory or its files or subdirectories are not owned by the account that you use for run-
ning the server, change their ownership to that account:

shell> chown -R mysql /usr/local/mysql/var
shell> chgrp -R mysql /usr/local/mysql/var

Installing MySQL

116

If the server fails to start up correctly, check the error log file to see if you can find out why. Log
files are located in the data directory (typically C:\mysql\data on Windows, /
usr/local/mysql/data for a Unix binary distribution, and /usr/local/var for a Unix
source distribution). Look in the data directory for files with names of the form host_name.err
and host_name.log, where host_name is the name of your server host. (Older servers on
Windows use mysql.err as the error log name.) Then check the last few lines of these files. On
Unix, you can use tail to display the last few lines:

shell> tail host_name.err
shell> tail host_name.log

The error log contains information that indicates why the server couldn't start. For example, you
might see something like this in the log:

000729 14:50:10 bdb: Recovery function for LSN 1 27595 failed
000729 14:50:10 bdb: warning: ./test/t1.db: No such file or directory
000729 14:50:10 Can't init databases

This means that you didn't start mysqld with the --bdb-no-recover option and Berkeley DB
found something wrong with its own log files when it tried to recover your databases. To be able to
continue, you should move away the old Berkeley DB log files from the database directory to some
other place, where you can later examine them. The BDB log files are named in sequence beginning
with log.0000000001, where the number increases over time.

If you are running mysqld with BDB table support and mysqld dumps core at startup, this could be
due to problems with the BDB recovery log. In this case, you can try starting mysqld with -
-bdb-no-recover. If that helps, then you should remove all BDB log files from the data direct-
ory and try starting mysqld again without the --bdb-no-recover option.

If either of the following errors occur, it means that some other program (perhaps another mysqld
server) is using the TCP/IP port or Unix socket file that mysqld is trying to use:

Can't start server: Bind on TCP/IP port: Address already in use
Can't start server: Bind on unix socket...

Use ps to determine whether you have another mysqld server running. If so, shut down the server
before starting mysqld again. (If another server is running, and you really want to run multiple serv-
ers, you can find information about how to do so in Section 5.10, “Running Multiple MySQL Serv-
ers on the Same Machine”.)

If no other server is running, try to execute the command telnet your-host-name tcp-
ip-port-number. (The default MySQL port number is 3306.) Then press Enter a couple of
times. If you don't get an error message like telnet: Unable to connect to remote
host: Connection refused, some other program is using the TCP/IP port that mysqld is
trying to use. You'll need to track down what program this is and disable it, or else tell mysqld to
listen to a different port with the --port option. In this case, you'll also need to specify the port
number for client programs when connecting to the server via TCP/IP.

Another reason the port might be inaccessible is that you have a firewall running that blocks connec-
tions to it. If so, modify the firewall settings to allow access to the port.

If the server starts but you can't connect to it, you should make sure that you have an entry in /
etc/hosts that looks like this:

127.0.0.1 localhost

This problem occurs only on systems that don't have a working thread library and for which MySQL
must be configured to use MIT-pthreads.

Installing MySQL

117

If you can't get mysqld to start, you can try to make a trace file to find the problem by using the -
-debug option. See Section E.1.2, “Creating Trace Files”.

See Section 2.3.14, “Troubleshooting a MySQL Installation Under Windows”, for more information
on troubleshooting Windows installations.

2.9.3. Securing the Initial MySQL Accounts
Part of the MySQL installation process is to set up the mysql database containing the grant tables:

• Windows distributions contain preinitialized grant tables that are installed automatically.

• On Unix, the grant tables are populated by the mysql_install_db program. Some installation
methods run this program for you. Others require that you execute it manually. For details, see
Section 2.9.2, “Unix Post-Installation Procedures”.

The grant tables define the initial MySQL user accounts and their access privileges. These accounts
are set up as follows:

• Two accounts are created with a username of root. These are superuser accounts that can do
anything. The initial root account passwords are empty, so anyone can connect to the MySQL
server as root without a password and be granted all privileges.

• On Windows, one root account is for connecting from the local host and the other allows
connections from any host.

• On Unix, both root accounts are for connections from the local host. Connections must be
made from the local host by specifying a hostname of localhost for one account, or the
actual hostname or IP number for the other.

• Two anonymous-user accounts are created, each with an empty username. The anonymous ac-
counts have no passwords, so anyone can use them to connect to the MySQL server.

• On Windows, one anonymous account is for connections from the local host. It has all priv-
ileges, just like the root accounts. The other is for connections from any host and has all
privileges for the test database or other databases with names that start with test.

• On Unix, both anonymous accounts are for connections from the local host. Connections
must be made from the local host by specifying a hostname of localhost for one account,
or the actual hostname or IP number for the other. These accounts have all privileges for the
test database or other databases with names that start with test_.

As noted, none of the initial accounts have passwords. This means that your MySQL installation is
unprotected until you do something about it:

• If you want to prevent clients from connecting as anonymous users without a password, you
should either assign passwords to the anonymous accounts or else remove them.

• You should assign passwords to the MySQL root accounts.

The following instructions describe how to set up passwords for the initial MySQL accounts, first
for the anonymous accounts and then for the root accounts. Replace ``newpwd'' in the examples
with the actual password that you want to use. The instructions also cover how to remove the an-
onymous accounts, should you prefer not to allow anonymous access at all.

You might want to defer setting the passwords until later, so that you don't need to specify them
while you perform additional setup or testing. However, be sure to set them before using your in-

Installing MySQL

118

stallation for any real production work.

To assign passwords to the anonymous accounts, you can use either SET PASSWORD or UPDATE.
In both cases, be sure to encrypt the password using the PASSWORD() function.

To use SET PASSWORD on Windows, do this:

shell> mysql -u root
mysql> SET PASSWORD FOR ''@'localhost' = PASSWORD('newpwd');
mysql> SET PASSWORD FOR ''@'%' = PASSWORD('newpwd');

To use SET PASSWORD on Unix, do this:

shell> mysql -u root
mysql> SET PASSWORD FOR ''@'localhost' = PASSWORD('newpwd');
mysql> SET PASSWORD FOR ''@'host_name' = PASSWORD('newpwd');

In the second SET PASSWORD statement, replace host_name with the name of the server host.
This is the name that is specified in the Host column of the non-localhost record for root in
the user table. If you don't know what hostname this is, issue the following statement before using
SET PASSWORD:

mysql> SELECT Host, User FROM mysql.user;

Look for the record that has root in the User column and something other than localhost in
the Host column. Then use that Host value in the second SET PASSWORD statement.

The other way to assign passwords to the anonymous accounts is by using UPDATE to modify the
user table directly. Connect to the server as root and issue an UPDATE statement that assigns a
value to the Password column of the appropriate user table records. The procedure is the same
for Windows and Unix. The following UPDATE statement assigns a password to both anonymous
accounts at once:

shell> mysql -u root
mysql> UPDATE mysql.user SET Password = PASSWORD('newpwd')

-> WHERE User = '';
mysql> FLUSH PRIVILEGES;

After you update the passwords in the user table directly using UPDATE, you must tell the server
to re-read the grant tables with FLUSH PRIVILEGES. Otherwise, the change goes unnoticed until
you restart the server.

If you prefer to remove the anonymous accounts instead, do so as follows:

shell> mysql -u root
mysql> DELETE FROM mysql.user WHERE User = '';
mysql> FLUSH PRIVILEGES;

The DELETE statement applies both to Windows and to Unix. On Windows, if you want to remove
only the anonymous account that has the same privileges as root, do this instead:

shell> mysql -u root
mysql> DELETE FROM mysql.user WHERE Host='localhost' AND User='';
mysql> FLUSH PRIVILEGES;

This account allows anonymous access but has full privileges, so removing it improves security.

You can assign passwords to the root accounts in several ways. The following discussion demon-
strates three methods:

Installing MySQL

119

• Use the SET PASSWORD statement

• Use the mysqladmin command-line client program

• Use the UPDATE statement

To assign passwords using SET PASSWORD, connect to the server as root and issue two SET
PASSWORD statements. Be sure to encrypt the password using the PASSWORD() function.

For Windows, do this:

shell> mysql -u root
mysql> SET PASSWORD FOR 'root'@'localhost' = PASSWORD('newpwd');
mysql> SET PASSWORD FOR 'root'@'%' = PASSWORD('newpwd');

For Unix, do this:

shell> mysql -u root
mysql> SET PASSWORD FOR 'root'@'localhost' = PASSWORD('newpwd');
mysql> SET PASSWORD FOR 'root'@'host_name' = PASSWORD('newpwd');

In the second SET PASSWORD statement, replace host_name with the name of the server host.
This is the same hostname that you used when you assigned the anonymous account passwords.

To assign passwords to the root accounts using mysqladmin, execute the following commands:

shell> mysqladmin -u root password "newpwd"
shell> mysqladmin -u root -h host_name password "newpwd"

These commands apply both to Windows and to Unix. In the second command, replace
host_name with the name of the server host. The double quotes around the password are not al-
ways necessary, but you should use them if the password contains spaces or other characters that are
special to your command interpreter.

If you are using a server from a very old version of MySQL, the mysqladmin commands to set the
password fail with the message parse error near 'SET password'. The solution to this
problem is to upgrade the server to a newer version of MySQL.

You can also use UPDATE to modify the user table directly. The following UPDATE statement as-
signs a password to both root accounts at once:

shell> mysql -u root
mysql> UPDATE mysql.user SET Password = PASSWORD('newpwd')

-> WHERE User = 'root';
mysql> FLUSH PRIVILEGES;

The UPDATE statement applies both to Windows and to Unix.

After the passwords have been set, you must supply the appropriate password whenever you connect
to the server. For example, if you want to use mysqladmin to shut down the server, you can do so
using this command:

shell> mysqladmin -u root -p shutdown
Enter password: (enter root password here)

Note: If you forget your root password after setting it up, the procedure for resetting it is covered
in Section A.4.1, “How to Reset the Root Password”.

To set up new accounts, you can use the GRANT statement. For instructions, see Section 5.6.2,
“Adding New User Accounts to MySQL”.

Installing MySQL

120

2.10. Upgrading MySQL
As a general rule, we recommend that when upgrading from one release series to another, you
should go to the next series rather than skipping a series. For example, if you currently are running
MySQL 3.23 and wish to upgrade to a newer series, upgrade to MySQL 4.0 rather than to 4.1 or 5.0.

The following items form a checklist of things you should do whenever you perform an upgrade:

• Read the upgrading section for the release series to which you are upgrading. Read the change
notes as well. These provide information about new features you can use. For example, before
upgrading from MySQL 4.1 to 5.0, read the 5.0 upgrading section (see Section 2.10.1,
“Upgrading from Version 4.1 to 5.0”) and read the 5.0 change notes (see Appendix D, MySQL
Change History).

• Before you do an upgrade, back up your databases.

• If you are running MySQL Server on Windows, see Section 2.3.15, “Upgrading MySQL on
Windows”.

• An upgrade may involve changes to the grant tables that are stored in the mysql database. Oc-
casionally new columns or tables are added to support new features. To take advantage of these
features, be sure that your grant tables are up to date. The upgrade procedure is described in Sec-
tion 2.10.7, “Upgrading the Grant Tables”.

• If you are using replication, see Section 6.6, “Upgrading a Replication Setup” for information on
upgrading your replication setup.

• If you install a MySQL-Max distribution that includes a server named mysqld-max, then up-
grade later to a non-Max version of MySQL, mysqld_safe still attempts to run the old mysqld-
max server. If you perform such an upgrade, you should manually remove the old mysqld-max
server to ensure that mysqld_safe runs the new mysqld server.

You can always move the MySQL format files and data files between different versions on the same
architecture as long as you stay within versions for the same release series of MySQL. The current
production release series is 4.1. If you change the character set when running MySQL, you must run
myisamchk -r -q --set-character-set=charset on all MyISAM tables. Otherwise, your indexes
may not be ordered correctly, because changing the character set may also change the sort order.

Normally you can upgrade MySQL to a newer MySQL version without having to do any changes to
your tables. Please confirm if the upgrade notes to the particular version you are upgrading to tells
you anything about this. If there would be any incompatibilities you can use mysqldump to dump
your tables before upgrading. After upgrading, reload the dump file using mysql or mysqlimport
to re-create your tables.

If you are cautious about using new versions, you can always rename your old mysqld before in-
stalling a newer one. For example, if you are using MySQL 4.0.18 and want to upgrade to 4.1.1, re-
name your current server from mysqld to mysqld-4.0.18. If your new mysqld then does something
unexpected, you can simply shut it down and restart with your old mysqld.

If, after an upgrade, you experience problems with recompiled client programs, such as Commands
out of sync or unexpected core dumps, you probably have used old header or library files when
compiling your programs. In this case, you should check the date for your mysql.h file and
libmysqlclient.a library to verify that they are from the new MySQL distribution. If not, re-
compile your programs with the new headers and libraries.

If problems occur, such as that the new mysqld server doesn't want to start or that you can't connect
without a password, verify that you don't have some old my.cnf file from your previous installa-
tion. You can check this with the --print-defaults option (for example, mysqld -
-print-defaults). If this displays anything other than the program name, you have an active my.cnf
file that affects server or client operation.

Installing MySQL

121

It is a good idea to rebuild and reinstall the Perl DBD::mysql module whenever you install a new
release of MySQL. The same applies to other MySQL interfaces as well, such as the PHP mysql
extension and the Python MySQLdb module.

2.10.1. Upgrading from Version 4.1 to 5.0
In general, you should do the following when upgrading to MySQL 5.0 from 4.1:

• Check the items in the change list found later in this section to see whether any of them might
affect your applications.

• Read the 5.0 news items to see what significant new features you can use in 5.0. See Sec-
tion D.1, “Changes in release 5.0.x (Development)”.

• If you are running MySQL Server on Windows, see Section 2.3.15, “Upgrading MySQL on
Windows”. Also, two of the Windows MySQL servers were renamed. See Section 2.3.9,
“Selecting a MySQL Server type”.

• MySQL 5.0 adds support for stored procedures. This support requires the proc table in the
mysql database. To create this file, you should run the mysql_fix_privilege_tables script as
described in Section 2.10.7, “Upgrading the Grant Tables”.

• MySQL 5.0 adds support for views. This support requires the extra privilege columns in the
user and db tables in the mysql database. To create these columns, you should run the
mysql_fix_privilege_tables script as described in Section 2.10.7, “Upgrading the Grant
Tables”.

• If you are using replication, see Section 6.6, “Upgrading a Replication Setup” for information on
upgrading your replication setup.

• MySQL 5.0.2 adds several new SQL modes that allow stricter control over rejecting records that
have invalid or missing values. See Section 5.2.2, “The Server SQL Mode”. See Section 1.5.6.2,
“Constraints on Invalid Data”. If you want to enable this control but continue to use MySQL's
capability for storing incorrect dates such as '2004-02-31', you should start the server with
--sql_mode=TRADITIONAL,ALLOW_INVALID_DATES.

• As of MySQL 5.0.2, the SCHEMA and SCHEMAS keywords are accepted as synonyms for
DATABASE and DATABASES.

• The update log is removed in MySQL 5.0.

The following list describes changes that may affect applications and that you should watch out for
when upgrading to version 5.0:

• The update log is removed, so if you enabled it in the past, you should enable the binary log in-
stead. See Section D.1, “Changes in release 5.0.x (Development)”.

• User variables are not case sensitive. In MySQL 4.1, SET @x = 0; SET @X = 1; SE-
LECT @x; creates two variables and returns 0. In MySQL 5.0, it creates one variable and re-
turns 1.

• API change: the reconnect flag in the MYSQL structure is set to 0 by
mysql_real_connect(). Only those client programs which didn't explicitly set this flag to
0 or 1 after mysql_real_connect() experience a change. Having automatic reconnection
enabled by default was considered too dangerous (after reconnection, table locks, temporary
tables, user and session variables are lost).

2.10.2. Upgrading from Version 4.0 to 4.1

Installing MySQL

122

In general, you should do the following when upgrading to MySQL 4.1 from 4.0:

• Check the items in the change lists found later in this section to see whether any of them might
affect your applications. Some of them result in incompatibilities with earlier versions.

• Read the 4.1 news items to see what significant new features you can use in 4.1. See Sec-
tion D.2, “Changes in release 4.1.x (Production)”.

• Character set support has been improved. The server supports multiple character sets.

• Important note: MySQL 4.1 stores table names and column names in UTF8. If you have table
names or column names that use characters outside of the standard 7-bit US-ASCII range, you
may have to do a mysqldump of your tables in MySQL 4.0 and restore them after upgrading to
MySQL 4.1. The symptom for this problem is that you get a table not found error when
trying to access your tables. In this case, you should be able to downgrade back to MySQL 4.0
and access your data.

• If you are running MySQL Server on Windows, see Section 2.3.15, “Upgrading MySQL on
Windows”.

• After upgrading, update the grant tables to have the new longer Password column that is
needed for more secure handling of passwords. The procedure uses mysql_fix_privilege_tables
and is described in Section 2.10.7, “Upgrading the Grant Tables”. If you don't do this, MySQL
does not use the new more secure protocol to authenticate. Implications of the password-hand-
ling change for applications are given later in this section.

• If you are using replication, see Section 6.6, “Upgrading a Replication Setup” for information on
upgrading your replication setup.

• The Berkeley DB table handler is updated to DB 4.1 (from 3.2) which has a new log format. If
you have to downgrade back to 4.0 you must use mysqldump to dump your BDB tables in text
format and delete all log.XXXXXXXXXX files before you start MySQL 4.0 and reload the data.

• MySQL 4.1.3 introduces support for per-connection time zones. See Section 5.8.8, “MySQL
Server Time Zone Support”. To enable recognition of named time zones, you should create the
time zone tables in the mysql database. For instructions, see Section 2.9, “Post-Installation
Setup and Testing”.

• If you are using an old DBD-mysql module (Msql-MySQL-modules) you have to upgrade
to use the newer DBD-mysql module. Anything above DBD-mysql 2.xx should be fine.

If you don't upgrade, some methods (such as DBI->do()) do not notice error conditions cor-
rectly.

• The --defaults-file=option-file-name option gives an error if the option file
doesn't exist.

• Some notes about upgrading from MySQL 4.0 to MySQL 4.1 on Netware: Make sure to upgrade
Perl and PHP versions. Download Perl 5 for Netware from ht-
tp://forge.novell.com/modules/xfmod/project/?perl5 and PHP from ht-
tp://forge.novell.com/modules/xfmod/project/?php. Download and install Perl module for
MySQL 4.1 from http://forge.novell.com/modules/xfmod/project/showfiles.php?group_id=1126
and PHP Extension for MySQL 4.1 from ht-
tp://forge.novell.com/modules/xfmod/project/showfiles.php?group_id=1078.

Several visible behaviors have changed between MySQL 4.0 and MySQL 4.1 to fix some critical
bugs and make MySQL more compatible with standard SQL. These changes may affect your applic-
ations.

Some of the 4.1 behaviors can be tested in 4.0 before performing a full upgrade to 4.1. We have ad-
ded to later MySQL 4.0 releases (from 4.0.12 on) a --new startup option for mysqld. See Sec-

Installing MySQL

123

http://forge.novell.com/modules/xfmod/project/?perl5
http://forge.novell.com/modules/xfmod/project/?perl5
http://forge.novell.com/modules/xfmod/project/?php
http://forge.novell.com/modules/xfmod/project/?php
http://forge.novell.com/modules/xfmod/project/showfiles.php?group_id=1126
http://forge.novell.com/modules/xfmod/project/showfiles.php?group_id=1078
http://forge.novell.com/modules/xfmod/project/showfiles.php?group_id=1078

tion 5.2.1, “mysqld Command-Line Options”.

This option gives you the 4.1 behavior for the most critical changes. You can also enable these be-
haviors for a given client connection with the SET @@new=1 command, or turn them off if they
are on with SET @@new=0.

If you believe that some of the 4.1 changes affect you, we recommend that before upgrading to 4.1,
you download the latest MySQL 4.0 version and run it with the --new option by adding the follow-
ing to your config file:

[mysqld-4.0]
new

That way you can test the new behaviors in 4.0 to make sure that your applications work with them.
This helps you have a smooth, painless transition when you perform a full upgrade to 4.1 later. Put-
ting the --new option in the [mysqld-4.0] option group ensures that you don't accidentally
later run the 4.1 version with the --new option.

The following lists describe changes that may affect applications and that you should watch out for
when upgrading to version 4.1:

Server Changes:

• All tables and string columns have a character set. See Chapter 10, Character Set Support. Char-
acter set information is displayed by SHOW CREATE TABLE and mysqldump. (MySQL ver-
sions 4.0.6 and above can read the new dump files; older versions cannot.) This change should
not affect applications that use only one character set.

• If you have table columns that store character data represented in a character set that the 4.1
server supports directly, you can convert the columns to the proper character set using the in-
structions in Section 10.10.2, “Converting 4.0 Character Columns to 4.1 Format”. Also, data-
base, table, and column identifiers are stored internally using Unicode (UTF8) regardless of the
default character set. See Section 9.2, “Database, Table, Index, Column, and Alias Names”.

• Incompatible change: There are conditions under which you should rebuild tables. In general,
to rebuild a table, dump it with mysqldump and reload the dump file. Some items in the follow-
ing list indicate alternatives means for rebuilding.

• If you have created or used InnoDB tables with TIMESTAMP columns in MySQL versions
4.1.0 to 4.1.3, you have to rebuild those tables when you upgrade to MySQL 4.1.4 or later.
The storage format in those MySQL versions for a TIMESTAMP column was incorrect. If
you upgrade from MySQL 4.0 to 4.1.4 or later, then no rebuild of tables with TIMESTAMP
columns is needed.

• Starting from MySQL 4.1.3, InnoDB uses the same character set comparison functions as
MySQL for non-latin1_swedish_ci character strings that are not BINARY. This
changes the sorting order of space and characters with a code < ASCII(32) in those character
sets. For latin1_swedish_ci character strings and BINARY strings, InnoDB uses its
own pad-spaces-at-end comparison method, which stays unchanged. If you have an InnoDB
table created with MySQL 4.1.2 or earlier, with an index on a non-latin1 character set (in
the case of 4.1.0 and 4.1.1, with any character set) and the table contains any
CHAR/VARCHAR/or TEXT columns that are not BINARY but may contain characters with a
code < ASCII(32), then you should do ALTER TABLE or OPTIMIZE TABLE on it to re-
generate the index, after upgrading to MySQL 4.1.3 or later. Also, MyISAM tables have to be
rebuilt or repaired in these cases.

• If you have used column prefix indexes on UTF8 columns or other multi-byte character set
columns in MySQL 4.1.0 to 4.1.5, you must rebuild the tables when you upgrade to MySQL
4.1.6 or later.

• If you have used accent characters (characters with byte values of 128 to 255) in database
names, table names, constraint names, or column names in versions of MySQL earlier than

Installing MySQL

124

4.1, you cannot upgrade to MySQL 4.1 directly, because 4.1 uses UTF8 to store metadata
names. Use RENAME TABLE to overcome this if the accent character is in the table name or
the database name, or rebuild the table.

• Incompatible change: MySQL interprets length specifications in character column definitions
in characters. (Earlier versions interpret them in bytes.) For example, CHAR(N) means N char-
acters, not N bytes.

For single-byte character sets, this change makes no difference. However, if you upgrade to
MySQL 4.1 and configure the server to use a multi-byte character set, the apparent length of
character columns changes. Suppose that a 4.0 table contains a CHAR(8) column used to store
ujis characters. Eight bytes can store from two to four ujis characters. If you upgrade to 4.1
and configure the server to use ujis as its default character set, the server interprets character
column lengths based on the maximum size of a ujis character, which is three bytes. The num-
ber of three-byte characters that fit in eight bytes is two. Consequently, if you use SHOW CRE-
ATE TABLE to view the table definition, MySQL displays CHAR(2). You can retrieve existing
data from the table, but you can only store new values containing up to two characters. To cor-
rect this issue, use ALTER TABLE to change the column definition. For example:

ALTER TABLE tbl_name MODIFY col_name CHAR(8);

• The table definition format used in .frm files has changed slightly in 4.1. MySQL 4.0 versions
from 4.0.11 on can read the new .frm format directly, but older versions cannot. If you need to
move tables from 4.1 to a version earlier than 4.0.11, you should use mysqldump. See Sec-
tion 8.8, “The mysqldump Database Backup Program”.

• Important note: If you upgrade to MySQL 4.1.1 or higher, it is difficult to downgrade back to
4.0 or 4.1.0! That is because, for earlier versions, InnoDB is not aware of multiple tablespaces.

• Incompatible change: In connection with the support for per-connection time zones in MySQL
4.1.3, the timezone system variable was renamed to system_time_zone.

• Windows servers support connections from local clients using shared memory if run with the -
-shared-memory option. If you are running multiple servers this way on the same Windows
machine, you should use a different --shared-memory-base-name option for each server.

• The interface to aggregated UDF functions has changed a bit. You must declare a
xxx_clear() function for each aggregate function XXX().

Client Changes:

• mysqldump has the --opt and --quote-names options enabled by default. You can turn
them off with --skip-opt and --skip-quote-names.

SQL Changes:

• Incompatible change: In MySQL 4.1.2, the Type column in the output from SHOW TABLE
STATUS was renamed to Engine.

• Incompatible change: String comparison works according to SQL standard: Instead of strip-
ping end spaces before comparison, we now extend the shorter string with spaces. The problem
with this is that now 'a' > 'a\t', which it wasn't before. If you have any tables where you
have a CHAR or VARCHAR column in which the last character in the column may be less than
ASCII(32), you should use REPAIR TABLE or myisamchk to ensure that the table is cor-
rect.

• When using multiple-table DELETE statements, you should use the alias of the tables from
which you want to delete, not the actual table name. For example, instead of doing this:

Installing MySQL

125

DELETE test FROM test AS t1, test2 WHERE ...

Do this:

DELETE t1 FROM test AS t1, test2 WHERE ...

This corrects a problem that was present in MySQL 4.0.

• Incompatible change: TIMESTAMP is returned as a string in 'YYYY-MM-DD HH:MM:SS'
format (from 4.0.12 the --new option can be used to make a 4.0 server behave as 4.1 in this re-
spect). See Section 11.3.1.2, “TIMESTAMP Properties as of MySQL 4.1”.

If you want to have the value returned as a number (as MySQL 4.0 does) you should add +0 to
TIMESTAMP columns when you retrieve them:

mysql> SELECT ts_col + 0 FROM tbl_name;

Display widths for TIMESTAMP columns are no longer supported. For example, if you declare a
column as TIMESTAMP(10), the (10) is ignored.

These changes were necessary for SQL standards compliance. In a future version, a further
change will be made (backward compatible with this change), allowing the timestamp length to
indicate the desired number of digits for fractions of a second.

• Incompatible change: Binary values such as 0xFFDF are assumed to be strings instead of
numbers. This fixes some problems with character sets where it's convenient to input a string as
a binary value. With this change, you should use CAST() if you want to compare binary values
numerically as integers:

mysql> SELECT CAST(0xFEFF AS UNSIGNED INTEGER)
-> < CAST(0xFF AS UNSIGNED INTEGER);

-> 0

If you don't use CAST(), a lexical string comparison is done:

mysql> SELECT 0xFEFF < 0xFF;
-> 1

Using binary items in a numeric context or comparing them using the = operator should work as
before. (The --new option can be used from 4.0.13 on to make a 4.0 server behave as 4.1 in this
respect.)

• For functions that produce a DATE, DATETIME, or TIME value, the result returned to the client
is fixed up to have a temporal type. For example, in MySQL 4.1, you get this result:

mysql> SELECT CAST('2001-1-1' AS DATETIME);
-> '2001-01-01 00:00:00'

In MySQL 4.0, the result is different:

mysql> SELECT CAST('2001-1-1' AS DATETIME);
-> '2001-01-01'

• DEFAULT values no longer can be specified for AUTO_INCREMENT columns. (In 4.0, a DE-
FAULT value is silently ignored; in 4.1, an error occurs.)

• LIMIT no longer accepts negative arguments. Use some large number (maximum
18446744073709551615) instead of -1.

Installing MySQL

126

• SERIALIZE is no longer a valid mode value for the sql_mode variable. You should use SET
TRANSACTION ISOLATION LEVEL SERIALIZABLE instead. SERIALIZE is no longer
valid for the --sql-mode option for mysqld, either. Use -
-transaction-isolation=SERIALIZABLE instead.

• Incompatible change: Before MySQL 4.1.1, the statement parser was less strict and its string-
to-date conversion would ignore everything up to the first digit. As a result, invalid statements
such as the following were accepted:

INSERT INTO t (datetime_col) VALUES ('stuff 2005-02-11 10:17:01');

As of MySQL 4.1.1, the parser is more strict and treats the string as an invalid date, so the pre-
ceding statement results in a warning.

C API Changes:

• Incompatible change: The mysql_shutdown() C API function has an extra parameter as of
MySQL 4.1.3: SHUTDOWN-level. You should convert any mysql_shutdown(X) call you
have in your application to mysql_shutdown(X,SHUTDOWN_DEFAULT).

• Some C API calls such as mysql_real_query() return 1 on error, not -1. You may have
to change some old applications if they use constructs like this:

if (mysql_real_query(mysql_object, query, query_length) == -1)
{
printf("Got error");

}

Change the call to test for a non-zero value instead:

if (mysql_real_query(mysql_object, query, query_length) != 0)
{
printf("Got error");

}

Password-Handling Changes:

The password hashing mechanism has changed in 4.1 to provide better security, but this may cause
compatibility problems if you still have clients that use the client library from 4.0 or earlier. (It is
very likely that you have 4.0 clients in situations where clients connect from remote hosts that have
not yet upgraded to 4.1.) The following list indicates some possible upgrade strategies. They repres-
ent various tradeoffs between the goal of compatibility with old clients and the goal of security.

• Only upgrade the client to use 4.1 client libraries (not the server). No behavior changes (except
the return value of some API calls), but you cannot use any of the new features provided by the
4.1 client/server protocol, either. (MySQL 4.1 has an extended client/server protocol that offers
such features as prepared statements and multiple result sets.) See Section 22.2.4, “C API Pre-
pared Statements”.

• Upgrade to 4.1 and run the mysql_fix_privilege_tables script to widen the Password column
in the user table so that it can hold long password hashes. But run the server with the -
-old-passwords option to provide backward compatibility that allows pre-4.1 clients to
continue to connect to their short-hash accounts. Eventually, when all your clients are upgraded
to 4.1, you can stop using the --old-passwords server option. You can also change the
passwords for your MySQL accounts to use the new more secure format. A pure-4.1 installation
is the most secure.

Installing MySQL

127

Further background on password hashing with respect to client authentication and password-chan-
ging operations may be found in Section 5.5.9, “Password Hashing in MySQL 4.1” and Sec-
tion A.2.3, “Client does not support authentication protocol”.

2.10.3. Upgrading from Version 3.23 to 4.0
In general, you should do the following when upgrading to MySQL 4.0 from 3.23:

• Check the items in the change lists found later in this section to see whether any of them might
affect your applications.

• Read the 4.0 news items to see what significant new features you can use in 4.0. See Sec-
tion D.3, “Changes in release 4.0.x (Production)”.

• If you are running MySQL Server on Windows, see Section 2.3.15, “Upgrading MySQL on
Windows”.

• After upgrading, update the grant tables to add new privileges and features. The procedure uses
the mysql_fix_privilege_tables script and is described in Section 2.10.7, “Upgrading the Grant
Tables”.

• If you are using replication, see Section 6.6, “Upgrading a Replication Setup” for information on
upgrading your replication setup.

• Edit any MySQL startup scripts or option files to not use any of the deprecated options de-
scribed later in this section.

• Convert your old ISAM files to MyISAM files. One way to do this is with the
mysql_convert_table_format script. (This is a Perl script; it requires that DBI be in-
stalled.) To convert the tables in a given database, use this command:

shell> mysql_convert_table_format database db_name

Note that this should be used only if all tables in the given database are ISAM or MyISAM
tables. To avoid converting tables of other types to MyISAM, you can explicitly list the names of
your ISAM tables after the database name on the command line.

Individual tables can be changed to MyISAM by using the following ALTER TABLE statement
for each table to be converted:

mysql> ALTER TABLE tbl_name TYPE=MyISAM;

If you are not sure of the table type for a given table, use this statement:

mysql> SHOW TABLE STATUS LIKE 'tbl_name';

• Ensure that you don't have any MySQL clients that use shared libraries (like the Perl
DBD::mysql module). If you do, you should recompile them, because the data structures used
in libmysqlclient.so have changed. The same applies to other MySQL interfaces as well,
such as the Python MySQLdb module.

MySQL 4.0 works even if you don't perform the preceding actions, but you cannot use the new se-
curity privileges in MySQL 4.0 and you may run into problems when upgrading later to MySQL 4.1
or newer. The ISAM file format still works in MySQL 4.0, but is deprecated and is not compiled in
by default as of MySQL 4.1. MyISAM tables should be used instead.

Old clients should work with a MySQL 4.0 server without any problems.

Even if you perform the preceding actions, you can still downgrade to MySQL 3.23.52 or newer if

Installing MySQL

128

you run into problems with the MySQL 4.0 series. In this case, you must use mysqldump to dump
any tables that use full-text indexes and reload the dump file into the 3.23 server. This is necessary
because 4.0 uses a new format for full-text indexing.

The following lists describe changes that may affect applications and that you should watch out for
when upgrading to version 4.0:

Server Changes:

• MySQL 4.0 has a lot of new privileges in the mysql.user table. See Section 5.5.3,
“Privileges Provided by MySQL”.

To get these new privileges to work, you must update the grant tables. The procedure is de-
scribed in Section 2.10.7, “Upgrading the Grant Tables”. Until you do this, all accounts have the
SHOW DATABASES, CREATE TEMPORARY TABLES, and LOCK TABLES privileges. SU-
PER and EXECUTE privileges take their value from PROCESS. REPLICATION SLAVE and
REPLICATION CLIENT take their values from FILE.

If you have any scripts that create new MySQL user accounts, you may want to change them to
use the new privileges. If you are not using GRANT commands in the scripts, this is a good time
to change your scripts to use GRANT instead of modifying the grant tables directly.

From version 4.0.2 on, the option --safe-show-database is deprecated (and no longer
does anything). See Section 5.4.3, “Startup Options for mysqld Concerning Security”.

If you get Access denied errors for new users in version 4.0.2 and up, you should check
whether you need some of the new grants that you didn't need before. In particular, you need
REPLICATION SLAVE (instead of FILE) for new slave servers.

• safe_mysqld has been renamed to mysqld_safe. For backward compatibility, binary distribu-
tions will for some time include safe_mysqld as a symlink to mysqld_safe.

• InnoDB support is included by default in binary distributions. If you build MySQL from
source, InnoDB is configured in by default. If you do not use InnoDB and want to save
memory when running a server that has InnoDB support enabled, use the --skip-innodb
server startup option. To compile MySQL without InnoDB support, run configure with the -
-without-innodb option.

• Values for the startup parameters myisam_max_extra_sort_file_size and myis-
am_max_extra_sort_file_size are given in bytes (they were given in megabytes be-
fore 4.0.3).

• mysqld has the option --temp-pool enabled by default because this gives better performance
with some operating systems (most notably Linux).

• The mysqld startup options --skip-locking and --enable-locking were renamed to
--skip-external-locking and --external-locking.

• External system locking of MyISAM/ISAM files is turned off by default. You can turn this on
with --external-locking. (However, this is never needed for most users.)

• The following startup variables and options have been renamed:

Old Name New Name

myisam_bulk_insert_tree_size bulk_insert_buffer_size

query_cache_startup_type query_cache_type

record_buffer read_buffer_size

record_rnd_buffer read_rnd_buffer_size

sort_buffer sort_buffer_size

warnings log-warnings

Installing MySQL

129

--err-log --log-error (for mysqld_safe)

The startup options record_buffer, sort_buffer, and warnings still work in MySQL
4.0 but are deprecated.

SQL Changes:

• The following SQL variables have been renamed:

Old Name New Name

SQL_BIG_TABLES BIG_TABLES

SQL_LOW_PRIORITY_UPDATES LOW_PRIORITY_UPDATES

SQL_MAX_JOIN_SIZE MAX_JOIN_SIZE

SQL_QUERY_CACHE_TYPE QUERY_CACHE_TYPE

The old names still work in MySQL 4.0 but are deprecated.

• You have to use SET GLOBAL SQL_SLAVE_SKIP_COUNTER=skip_count instead of
SET SQL_SLAVE_SKIP_COUNTER=skip_count.

• SHOW MASTER STATUS returns an empty set if binary logging is not enabled.

• SHOW SLAVE STATUS returns an empty set if the slave is not initialized.

• SHOW INDEX has two more columns than it had in 3.23 (Null and Index_type).

• The format of SHOW OPEN TABLES has changed.

• ORDER BY col_name DESC sorts NULL values last, as of MySQL 4.0.11. In 3.23 and in
earlier 4.0 versions, this was not always consistent.

• CHECK, LOCALTIME, and LOCALTIMESTAMP are reserved words.

• DOUBLE and FLOAT columns honor the UNSIGNED flag on storage (before, UNSIGNED was
ignored for these columns).

• The result of all bitwise operators (|, &, <<, >>, and ~) is unsigned. This may cause problems if
you are using them in a context where you want a signed result. See Section 12.7, “Cast Func-
tions and Operators”.

Note: When you use subtraction between integer values where one is of type UNSIGNED, the
result is unsigned. In other words, before upgrading to MySQL 4.0, you should check your ap-
plication for cases in which you are subtracting a value from an unsigned entity and want a neg-
ative answer or subtracting an unsigned value from an integer column. You can disable this be-
havior by using the --sql-mode=NO_UNSIGNED_SUBTRACTION option when starting
mysqld. See Section 5.2.2, “The Server SQL Mode”.

• You should use integers to store values in BIGINT columns (instead of using strings, as you did
in MySQL 3.23). Using strings still works, but using integers is more efficient.

• In MySQL 3.23, INSERT INTO ... SELECT always had IGNORE enabled. As of 4.0.1,
MySQL stops (and possibly rolls back) by default in case of an error unless you specify IG-
NORE.

• You should use TRUNCATE TABLE when you want to delete all rows from a table and you
don't need to obtain a count of the number of rows that were deleted. (DELETE FROM
tbl_name returns a row count in 4.0 and doesn't reset the AUTO_INCREMENT counter, and

Installing MySQL

130

TRUNCATE TABLE is faster.)

• You get an error if you have an active transaction or LOCK TABLES statement when trying to
execute TRUNCATE TABLE or DROP DATABASE.

• To use MATCH ... AGAINST (... IN BOOLEAN MODE) full-text searches with your
tables, you must rebuild their indexes with REPAIR TABLE tbl_name USE_FRM. If you
attempt a boolean full-text search without rebuilding the indexes this way, the search returns in-
correct results. See Section 12.6.4, “Fine-Tuning MySQL Full-Text Search”.

• LOCATE() and INSTR() are case sensitive if one of the arguments is a binary string. Other-
wise they are case insensitive.

• STRCMP() uses the current character set when performing comparisons. This makes the default
comparison behavior not case sensitive unless one or both of the operands are binary strings.

• HEX(str) returns the characters in str converted to hexadecimal. If you want to convert a
number to hexadecimal, you should ensure that you call HEX() with a numeric argument.

• RAND(seed) returns a different random number series in 4.0 than in 3.23; this was done to
further differentiate RAND(seed) and RAND(seed+1).

• The default type returned by IFNULL(A,B) is set to be the more ``general'' of the types of A
and B. (The general-to-specific order is string, REAL, INTEGER).

C API Changes:

• The old C API functions mysql_drop_db(), mysql_create_db(), and
mysql_connect() are no longer supported unless you compile MySQL with
CFLAGS=-DUSE_OLD_FUNCTIONS. However, it is preferable to change client programs to
use the new 4.0 API instead.

• In the MYSQL_FIELD structure, length and max_length have changed from unsigned
int to unsigned long. This should not cause any problems, except that they may generate
warning messages when used as arguments in the printf() class of functions.

• Multi-threaded clients should use mysql_thread_init() and mysql_thread_end().
See Section 22.2.15, “How to Make a Threaded Client”.

Other Changes:

• If you want to recompile the Perl DBD::mysql module, use a recent version. Version 2.9003 is
recommended. Versions older than 1.2218 should not be used because they use the deprecated
mysql_drop_db() call.

2.10.4. Upgrading from Version 3.22 to 3.23
MySQL 3.22 and 3.21 clients work without any problems with a MySQL 3.23 server.

When upgrading to MySQL 3.23 from an earlier version, note the following changes:

Table Changes:

• MySQL 3.23 supports tables of the new MyISAM type and the old ISAM type. By default, all
new tables are created with type MyISAM unless you start mysqld with the -
-default-table-type=isam option. You don't have to convert your old ISAM tables to
use them with MySQL 3.23. You can convert an ISAM table to MyISAM format with ALTER

Installing MySQL

131

TABLE tbl_name TYPE=MyISAM or the Perl script mysql_convert_table_format.

• All tables that use the tis620 character set must be fixed with myisamchk -r or REPAIR
TABLE.

• If you are using the german character sort order for ISAM tables, you must repair them with is-
amchk -r, because we have made some changes in the sort order.

Client Program Changes:

• The MySQL client mysql is by default started with the --no-named-commands (-g) op-
tion. This option can be disabled with --enable-named-commands (-G). This may
cause incompatibility problems in some cases---for example, in SQL scripts that use named
commands without a semicolon. Long format commands still work from the first line.

• If you want your mysqldump files to be compatible between MySQL 3.22 and 3.23, you should
not use the --opt or --all option to mysqldump.

SQL Changes:

• If you do a DROP DATABASE on a symbolically linked database, both the link and the original
database are deleted. This didn't happen in MySQL 3.22 because configure didn't detect the
availability of the readlink() system call.

• OPTIMIZE TABLE works only for MyISAM tables. For other table types, you can use ALTER
TABLE to optimize the table. During OPTIMIZE TABLE, the table is locked to prevent it from
being used by other threads.

• Date functions that work on parts of dates (such as MONTH()) return 0 for 0000-00-00 dates.
In MySQL 3.22, these functions returned NULL.

• The default return type of IF() depends on both arguments, not just the first one.

• AUTO_INCREMENT columns should not be used to store negative numbers. The reason for this
is that negative numbers caused problems when wrapping from #1 to 0. You should not store 0
in AUTO_INCREMENT columns, either; CHECK TABLE complains about 0 values because they
may change if you dump and restore the table. AUTO_INCREMENT for MyISAM tables is
handled at a lower level and is much faster than before. In addition, for MyISAM tables, old
numbers are not reused, even if you delete rows from the table.

• CASE, DELAYED, ELSE, END, FULLTEXT, INNER, RIGHT, THEN, and WHEN are reserved
words.

• FLOAT(p) is a true floating-point type and not a value with a fixed number of decimals.

• When declaring columns using a DECIMAL(length,dec) type, the length argument no
longer includes a place for the sign or the decimal point.

• A TIME string must be of one of the following formats: [[[DAYS]
[H]H:]MM:]SS[.fraction] or [[[[[H]H]H]H]MM]SS[.fraction].

• LIKE compares strings using the same character comparison rules as for the = operator. If you
require the old behavior, you can compile MySQL with the
CXXFLAGS=-DLIKE_CMP_TOUPPER flag.

• REGEXP is case insensitive if neither of the strings is a binary string.

• When you check or repair MyISAM (.MYI) tables, you should use the CHECK TABLE state-
ment or the myisamchk command. For ISAM (.ISM) tables, use the isamchk command.

Installing MySQL

132

• Check all your calls to DATE_FORMAT() to make sure that there is a '%' before each format
character.

• In MySQL 3.22, the output of SELECT DISTINCT ... was almost always sorted. In
MySQL 3.23, you must use GROUP BY or ORDER BY to obtain sorted output.

• SUM() returns NULL instead of 0 if there are no matching rows. This is required by standard
SQL.

• An AND or OR with NULL values returns NULL instead of 0. This mostly affects queries that use
NOT on an AND/OR expression as NOT NULL = NULL.

• LPAD() and RPAD() shorten the result string if it's longer than the length argument.

C API Changes:

• mysql_fetch_fields_direct() is a function instead of a macro. It returns a pointer to a
MYSQL_FIELD instead of a MYSQL_FIELD.

• mysql_num_fields() cannot be used on a MYSQL* object (it's a function that takes a
MYSQL_RES* value as an argument). With a MYSQL* object, you should use
mysql_field_count() instead.

2.10.5. Upgrading from Version 3.21 to 3.22
Nothing that affects compatibility has changed between versions 3.21 and 3.22. The only pitfall is
that new tables that are created with DATE type columns use the new way to store the date. You
can't access these new columns from an old version of mysqld.

When upgrading to MySQL 3.23 from an earlier version, note the following changes:

• After installing MySQL Version 3.22, you should start the new server and then run the
mysql_fix_privilege_tables script. This adds the new privileges that you need to use the GRANT
command. If you forget this, you get Access denied when you try to use ALTER TABLE,
CREATE INDEX, or DROP INDEX. The procedure for updating the grant tables is described in
Section 2.10.7, “Upgrading the Grant Tables”.

• The C API interface to mysql_real_connect() has changed. If you have an old client pro-
gram that calls this function, you must pass a 0 for the new db argument (or recode the client to
send the db element for faster connections). You must also call mysql_init() before calling
mysql_real_connect(). This change was done to allow the new mysql_options()
function to save options in the MYSQL handler structure.

• The mysqld variable key_buffer has been renamed to key_buffer_size, but you can
still use the old name in your startup files.

2.10.6. Upgrading from Version 3.20 to 3.21
If you are running a version older than Version 3.20.28 and want to switch to Version 3.21, you
need to do the following:

You can start the mysqld Version 3.21 server with the --old-protocol option to use it with cli-
ents from a Version 3.20 distribution. In this case, the server uses the old pre-3.21 password()
checking rather than the new method. Also, the new client function mysql_errno() does not re-
turn any server error, only CR_UNKNOWN_ERROR. The function does work for client errors.

If you are not using the --old-protocol option to mysqld, you need to make the following

Installing MySQL

133

changes:

• All client code must be recompiled. If you are using ODBC, you must get the MyODBC 2.x
driver.

• The scripts/add_long_password script must be run to convert the Password field in
the mysql.user table to CHAR(16).

• All passwords must be reassigned in the mysql.user table to get 62-bit rather than 31-bit
passwords.

• The table format hasn't changed, so you don't have to convert any tables.

MySQL 3.20.28 and above can handle the new user table format without affecting clients. If you
have a MySQL version earlier than 3.20.28, passwords no longer work with it if you convert the
user table. So to be safe, you should first upgrade to at least Version 3.20.28 and then upgrade to
Version 3.21.

The new client code works with a 3.20.x mysqld server, so if you experience problems with 3.21.x,
you can use the old 3.20.x server without having to recompile the clients again.

If you are not using the --old-protocol option to mysqld, old clients are unable to connect and
should issue the following error message:

ERROR: Protocol mismatch. Server Version = 10 Client Version = 9

The Perl DBI interface also supports the old mysqlperl interface. The only change you have to
make if you use mysqlperl is to change the arguments to the connect() function. The new ar-
guments are: host, database, user, and password (note that the user and password argu-
ments have changed places).

The following changes may affect queries in old applications:

• HAVING must be specified before any ORDER BY clause.

• The parameters to LOCATE() have been swapped.

• There are some new reserved words. The most noticeable are DATE, TIME, and TIMESTAMP.

2.10.7. Upgrading the Grant Tables
Some releases introduce changes to the structure of the grant tables (the tables in the mysql data-
base) to add new privileges or features. To make sure that your grant tables are current when you
update to a new version of MySQL, you should update your grant tables as well.

On Unix or Unix-like systems, update the grant tables by running the mysql_fix_privilege_tables
script:

shell> mysql_fix_privilege_tables

You must run this script while the server is running. It attempts to connect to the server running on
the local host as root. If your root account requires a password, indicate the password on the
command line. For MySQL 4.1 and up, specify the password like this:

shell> mysql_fix_privilege_tables --password=root_password

Prior to MySQL 4.1, specify the password like this:

Installing MySQL

134

shell> mysql_fix_privilege_tables root_password

The mysql_fix_privilege_tables script performs any actions necessary to convert your grant tables
to the current format. You might see some Duplicate column name warnings as it runs; you
can ignore them.

After running the script, stop the server and restart it.

On Windows systems, there isn't an easy way to update the grant tables until MySQL 4.0.15. From
version 4.0.15 on, MySQL distributions include a mysql_fix_privilege_tables.sql SQL
script that you can run using the mysql client. If your MySQL installation is located at C:\mysql,
the commands look like this:

C:\> C:\mysql\bin\mysql -u root -p mysql
mysql> SOURCE C:\mysql\scripts\mysql_fix_privilege_tables.sql

If your installation is located in some other directory, adjust the pathnames appropriately.

The mysql command will prompt you for the root password; enter it when prompted.

As with the Unix procedure, you might see some Duplicate column name warnings as mysql
processes the statements in the mysql_fix_privilege_tables.sql script; you can ignore
them.

After running the script, stop the server and restart it.

If you are upgrading to MySQL 5.0.1 or later, the grant table upgrade procedure just described adds
view-related columns for the CREATE VIEW and SHOW VIEW privileges. These privileges exist at
the global and database levels. Their initial values are assigned as follows:

• In MySQL 5.0.2 or later, mysql_fix_privilege_tables copies the Create_priv value in the
user table to the Create_view_priv and Show_view_priv columns.

• In 5.0.1, the view-related privileges are not enabled for any accounts, so you cannot immediately
use GRANT to give them to accounts that should have them. To deal with this, first connect to
the server as root and issue the following statements to give the privileges to the root ac-
counts manually with UPDATE:

mysql> UPDATE mysql.user SET Show_view_priv = 'Y', Create_view_priv = 'Y'
-> WHERE User = 'root';

mysql> FLUSH PRIVILEGES;

After this, root can use GRANT to give the view privileges to other accounts. Note: You should
issue the statements just shown, GRANT ALL does not work at the global and database levels,
because GRANT ALL requires that you actually possess all privileges.

2.10.8. Copying MySQL Databases to Another Machine
If you are using MySQL 3.23 or later, you can copy the .frm, .MYI, and .MYD files for MyISAM
tables between different architectures that support the same floating-point format. (MySQL takes
care of any byte-swapping issues.) See Section 14.1, “The MyISAM Storage Engine”.

The MySQL ISAM data and index files (.ISD and *.ISM, respectively) are architecture dependent
and in some cases operating system dependent. If you want to move your applications to another
machine that has a different architecture or operating system than your current machine, you should
not try to move a database by simply copying the files to the other machine. Use mysqldump in-
stead.

By default, mysqldump creates a file containing SQL statements. You can then transfer the file to

Installing MySQL

135

the other machine and feed it as input to the mysql client.

Try mysqldump --help to see what options are available. If you are moving the data to a newer ver-
sion of MySQL, you should use mysqldump --opt to take advantage of any optimizations that res-
ult in a dump file that is smaller and can be processed faster.

The easiest (although not the fastest) way to move a database between two machines is to run the
following commands on the machine on which the database is located:

shell> mysqladmin -h 'other_hostname' create db_name
shell> mysqldump --opt db_name | mysql -h 'other_hostname' db_name

If you want to copy a database from a remote machine over a slow network, you can use:

shell> mysqladmin create db_name
shell> mysqldump -h 'other_hostname' --opt --compress db_name | mysql db_name

You can also store the result in a file, then transfer the file to the target machine and load the file in-
to the database there. For example, you can dump a database to a file on the source machine like
this:

shell> mysqldump --quick db_name | gzip > db_name.contents.gz

(The file created in this example is compressed.) Transfer the file containing the database contents
to the target machine and run these commands there:

shell> mysqladmin create db_name
shell> gunzip < db_name.contents.gz | mysql db_name

You can also use mysqldump and mysqlimport to transfer the database. For big tables, this is
much faster than simply using mysqldump. In the following commands, DUMPDIR represents the
full pathname of the directory you use to store the output from mysqldump.

First, create the directory for the output files and dump the database:

shell> mkdir DUMPDIR
shell> mysqldump --tab=DUMPDIR db_name

Then transfer the files in the DUMPDIR directory to some corresponding directory on the target ma-
chine and load the files into MySQL there:

shell> mysqladmin create db_name # create database
shell> cat DUMPDIR/*.sql | mysql db_name # create tables in database
shell> mysqlimport db_name DUMPDIR/*.txt # load data into tables

Also, don't forget to copy the mysql database because that is where the user, db, and host grant
tables are stored. You might have to run commands as the MySQL root user on the new machine
until you have the mysql database in place.

After you import the mysql database on the new machine, execute mysqladmin flush-privileges
so that the server reloads the grant table information.

2.11. Downgrading MySQL
This section describes what you should do if you are downgrading to an older MySQL version in the
unlikely case that the previous version worked better than the new one.

If you are downgrading within the same release series (for example, from 4.0.20 to 4.0.19) the gen-
eral rule is that you just have to install the new binaries on top of the old ones. There is no need to

Installing MySQL

136

do anything with the databases. As always, however, it's always a good idea to make a backup.

The following items form a checklist of things you should do whenever you perform an downgrade:

• Read the upgrading section for the release series from which you are downgrading to be sure
that it doesn't have any features you really need. Section 2.10, “Upgrading MySQL”.

• If there is a downgrading section for that version, please read it, too!

You can always move the MySQL format files and data files between different versions on the same
architecture as long as you stay within versions for the same release series of MySQL. The current
production release series is 4.1.

If you downgrade from one release series to another, there may be incompatibilities in table storage
formats. In this case, you can use mysqldump to dump your tables before dowgnrading. After
downgrading, reload the dump file using mysql or mysqlimport to re-create your tables. See
Section 2.10.8, “Copying MySQL Databases to Another Machine” for examples.

The normal symptom of a downward-incompatible table format change when you downgrade is that
you can't open tables. In that case, use the following procedure:

1. Stop the older MySQL server that you are trying to downgrade to.

2. Restart the newer MySQL server you are trying to downgrade from.

3. Dump any tables that were inaccessible to the older server by using mysqldump to create a
dump file.

4. Stop the newer MySQL server and restart the older one.

5. Reload the dump file into the older server. Your tables should be accessible.

2.11.1. Downgrading to 4.0
The table format in 4.1 changed to include more and new character set information. Because of this,
you must use mysqldump to dump any tables you have created with the newer MySQL server. For
example, if all the tables in a particular database need to be dumped to be reverted back to MySQL
4.0 format, use this command:

shell> mysqldump --create-options --compatible=mysql40 db_name > dump_file

Then stop the newer server, restart the older server, and read in the dump file:

shell> mysql db_name < dump_file

In the special case that you're downgrading MyISAM tables, no special treatment is necessary if all
columns in the tables contain only numeric columns or string columns (CHAR, VARCHAR, TEXT,
and so forth) that contain only latin1 data. Your 4.1 tables should be directly usable with a 4.0
server.

If you used the mysql_fix_privilege_tables script to upgrade the grant tables, you can
either use the preceding method to convert them to back to MySQL 4.0 or do the following in
MySQL 4.1 (or above):

ALTER TABLE mysql.user CONVERT TO CHARACTER SET latin1 COLLATE latin1_swedish_ci;
ALTER TABLE mysql.db CONVERT TO CHARACTER SET latin1 COLLATE latin1_swedish_ci;
ALTER TABLE mysql.host CONVERT TO CHARACTER SET latin1 COLLATE latin1_swedish_ci;
ALTER TABLE mysql.tables_priv CONVERT TO CHARACTER SET latin1 COLLATE latin1_swedish_ci;

Installing MySQL

137

ALTER TABLE mysql.columns_priv CONVERT TO CHARACTER SET latin1 COLLATE latin1_swedish_ci;
ALTER TABLE mysql.func CONVERT TO CHARACTER SET latin1 COLLATE latin1_swedish_ci;

2.12. Operating System-Specific Notes
2.12.1. Linux Notes

This section discusses issues that have been found to occur on Linux. The first few subsections de-
scribe general operating system-related issues, problems that can occur when using binary or source
distributions, and post-installation issues. The remaining subsections discuss problems that occur
with Linux on specific platforms.

Note that most of these problems occur on older versions of Linux. If you are running a recent ver-
sion, you may see none of them.

2.12.1.1. Linux Operating System Notes

MySQL needs at least Linux Version 2.0.

Warning: We have seen some strange problems with Linux 2.2.14 and MySQL on SMP systems.
We also have reports from some MySQL users that they have encountered serious stability problems
using MySQL with kernel 2.2.14. If you are using this kernel, you should upgrade to 2.2.19 (or new-
er) or to a 2.4 kernel. If you have a multiple-CPU box, then you should seriously consider using 2.4
because it gives you a significant speed boost. Your system should be more stable.

When using LinuxThreads, you should see a minimum of three mysqld processes running. These
are in fact threads. There is one thread for the LinuxThreads manager, one thread to handle connec-
tions, and one thread to handle alarms and signals.

2.12.1.2. Linux Binary Distribution Notes

The Linux-Intel binary and RPM releases of MySQL are configured for the highest possible speed.
We are always trying to use the fastest stable compiler available.

The binary release is linked with -static, which means you do not normally need to worry about
which version of the system libraries you have. You need not install LinuxThreads, either. A pro-
gram linked with -static is slightly larger than a dynamically linked program, but also slightly
faster (3-5%). However, one problem with a statically linked program is that you can't use user-
defined functions (UDFs). If you are going to write or use UDFs (this is something for C or C++
programmers only), you must compile MySQL yourself using dynamic linking.

A known issue with binary distributions is that on older Linux systems that use libc (such as Red
Hat 4.x or Slackware), you get some non-fatal problems with hostname resolution. If your system
uses libc rather than glibc2, you probably will encounter some difficulties with hostname resol-
ution and getpwnam(). This happens because glibc unfortunately depends on some external
libraries to implement hostname resolution and getpwent(), even when compiled with -
static. These problems manifest themselves in two ways:

• You may see the following error message when you run mysql_install_db:

Sorry, the host 'xxxx' could not be looked up

You can deal with this by executing mysql_install_db --force, which does not execute the re-
solveip test in mysql_install_db. The downside is that you can't use hostnames in the grant
tables: Except for localhost, you must use IP numbers instead. If you are using an old ver-
sion of MySQL that doesn't support --force, you must manually remove the resolveip
test in mysql_install using an editor.

Installing MySQL

138

• You also may see the following error when you try to run mysqld with the --user option:

getpwnam: No such file or directory

To work around this, start mysqld by using the su command rather than by specifying the -
-user option. This causes the system itself to change the user ID of the mysqld process so that
mysqld need not do so.

Another solution, which solves both problems, is to not use a binary distribution. Get a MySQL
source distribution (in RPM or tar.gz format) and install that instead.

On some Linux 2.2 versions, you may get the error Resource temporarily unavailable
when clients make a lot of new connections to a mysqld server over TCP/IP. The problem is that
Linux has a delay between the time that you close a TCP/IP socket and the time that the system ac-
tually frees it. There is room for only a finite number of TCP/IP slots, so you encounter the re-
source-unavailable error if clients attempt too many new TCP/IP connections during a short time.
For example, you may see the error when you run the MySQL test-connect benchmark over
TCP/IP.

We have inquired about this problem a few times on different Linux mailing lists but have never
been able to find a suitable resolution. The only known ``fix'' is for the clients to use persistent con-
nections, or, if you are running the database server and clients on the same machine, to use Unix
socket file connections rather than TCP/IP connections.

2.12.1.3. Linux Source Distribution Notes

The following notes regarding glibc apply only to the situation when you build MySQL yourself.
If you are running Linux on an x86 machine, in most cases it is much better for you to just use our
binary. We link our binaries against the best patched version of glibc we can come up with and
with the best compiler options, in an attempt to make it suitable for a high-load server. For a typical
user, even for setups with a lot of concurrent connections or tables exceeding the 2GB limit, our bin-
ary is the best choice in most cases. After reading the following text, if you are in doubt about what
to do, try our binary first to see whether it meets your needs. If you discover that it is not good
enough, then you may want to try your own build. In that case, we would appreciate a note about it
so that we can build a better binary next time.

MySQL uses LinuxThreads on Linux. If you are using an old Linux version that doesn't have
glibc2, you must install LinuxThreads before trying to compile MySQL. You can get
LinuxThreads at http://dev.mysql.com/downloads/os-linux.html.

Note that glibc versions before and including Version 2.1.1 have a fatal bug in
pthread_mutex_timedwait() handling, which is used when you issue INSERT DELAYED
statements. We recommend that you not use INSERT DELAYED before upgrading glibc.

Note that Linux kernel and the LinuxThread library can by default only have 1,024 threads. If you
plan to have more than 1,000 concurrent connections, you need to make some changes to
LinuxThreads:

• Increase PTHREAD_THREADS_MAX in sysdeps/
unix/sysv/linux/bits/local_lim.h to 4096 and decrease STACK_SIZE in
linuxthreads/internals.h to 256KB. The paths are relative to the root of glibc.
(Note that MySQL is not stable with around 600-1000 connections if STACK_SIZE is the de-
fault of 2MB.)

• Recompile LinuxThreads to produce a new libpthread.a library, and relink MySQL against
it.

The page http://www.volano.com/linuxnotes.html contains additional information about circum-
venting thread limits in LinuxThreads.

Installing MySQL

139

http://dev.mysql.com/downloads/os-linux.html
http://www.volano.com/linuxnotes.html

There is another issue that greatly hurts MySQL performance, especially on SMP systems. The mu-
tex implementation in LinuxThreads in glibc 2.1 is very bad for programs with many threads that
hold the mutex only for a short time. This produces a paradoxical result: If you link MySQL against
an unmodified LinuxThreads, removing processors from an SMP actually improves MySQL per-
formance in many cases. We have made a patch available for glibc 2.1.3 to correct this behavior
(http://www.mysql.com/Downloads/Linux/linuxthreads-2.1-patch).

With glibc 2.2.2, MySQL 3.23.36 uses the adaptive mutex, which is much better than even the
patched one in glibc 2.1.3. Be warned, however, that under some conditions, the current mutex
code in glibc 2.2.2 overspins, which hurts MySQL performance. The likelihood that this condi-
tion occurs can be reduced by renicing the mysqld process to the highest priority. We have also
been able to correct the overspin behavior with a patch, available at ht-
tp://www.mysql.com/Downloads/Linux/linuxthreads-2.2.2.patch. It combines the correction of
overspin, maximum number of threads, and stack spacing all in one. You need to apply it in the
linuxthreads directory with patch -p0 </tmp/linuxthreads-2.2.2.patch. We
hope it is included in some form in future releases of glibc 2.2. In any case, if you link against
glibc 2.2.2, you still need to correct STACK_SIZE and PTHREAD_THREADS_MAX. We hope
that the defaults is corrected to some more acceptable values for high-load MySQL setup in the fu-
ture, so that the commands needed to produce your own build can be reduced to ./configure; make;
make install.

We recommend that you use these patches to build a special static version of libpthread.a and
use it only for statically linking against MySQL. We know that the patches are safe for MySQL and
significantly improve its performance, but we cannot say anything about other applications. If you
link other applications that require LinuxThreads against the patched static version of the library, or
build a patched shared version and install it on your system, you do so at your own risk.

If you experience any strange problems during the installation of MySQL, or with some common
utilities hanging, it is very likely that they are either library or compiler related. If this is the case,
using our binary resolves them.

If you link your own MySQL client programs, you may see the following error at runtime:

ld.so.1: fatal: libmysqlclient.so.#:
open failed: No such file or directory

This problem can be avoided by one of the following methods:

• Link clients with the -Wl,r/full/path/to/libmysqlclient.so flag rather than with
-Lpath).

• Copy libmysqclient.so to /usr/lib.

• Add the pathname of the directory where libmysqlclient.so is located to the
LD_RUN_PATH environment variable before running your client.

If you are using the Fujitsu compiler (fcc/FCC), you may have some problems compiling MySQL
because the Linux header files are very gcc oriented. The following configure line should work with
fcc/FCC:

CC=fcc CFLAGS="-O -K fast -K lib -K omitfp -Kpreex -D_GNU_SOURCE \
-DCONST=const -DNO_STRTOLL_PROTO" \

CXX=FCC CXXFLAGS="-O -K fast -K lib \
-K omitfp -K preex --no_exceptions --no_rtti -D_GNU_SOURCE \
-DCONST=const -Dalloca=__builtin_alloca -DNO_STRTOLL_PROTO \
'-D_EXTERN_INLINE=static __inline'" \

./configure \
--prefix=/usr/local/mysql --enable-assembler \
--with-mysqld-ldflags=-all-static --disable-shared \
--with-low-memory

Installing MySQL

140

http://www.mysql.com/Downloads/Linux/linuxthreads-2.1-patch
http://www.mysql.com/Downloads/Linux/linuxthreads-2.2.2.patch
http://www.mysql.com/Downloads/Linux/linuxthreads-2.2.2.patch

2.12.1.4. Linux Post-Installation Notes

mysql.server can be found in the support-files directory under the MySQL installation dir-
ectory or in a MySQL source tree. You can install it as /etc/init.d/mysql for automatic
MySQL startup and shutdown. See Section 2.9.2.2, “Starting and Stopping MySQL Automatically”.

If MySQL can't open enough files or connections, it may be that you haven't configured Linux to
handle enough files.

In Linux 2.2 and onward, you can check the number of allocated file handles as follows:

shell> cat /proc/sys/fs/file-max
shell> cat /proc/sys/fs/dquot-max
shell> cat /proc/sys/fs/super-max

If you have more than 16MB of memory, you should add something like the following to your init
scripts (for example, /etc/init.d/boot.local on SuSE Linux):

echo 65536 > /proc/sys/fs/file-max
echo 8192 > /proc/sys/fs/dquot-max
echo 1024 > /proc/sys/fs/super-max

You can also run the echo commands from the command line as root, but these settings are lost
the next time your computer restarts.

Alternatively, you can set these parameters on startup by using the sysctl tool, which is used by
many Linux distributions (SuSE has added it as well, beginning with SuSE Linux 8.0). Just put the
following values into a file named /etc/sysctl.conf:

Increase some values for MySQL
fs.file-max = 65536
fs.dquot-max = 8192
fs.super-max = 1024

You should also add the following to /etc/my.cnf:

[mysqld_safe]
open-files-limit=8192

This should allow the server a limit of 8,192 for the combined number of connections and open
files.

The STACK_SIZE constant in LinuxThreads controls the spacing of thread stacks in the address
space. It needs to be large enough so that there is plenty of room for each individual thread stack,
but small enough to keep the stack of some threads from running into the global mysqld data. Un-
fortunately, as we have experimentally discovered, the Linux implementation of mmap() success-
fully unmaps a mapped region if you ask it to map out an address currently in use, zeroing out the
data on the entire page instead of returning an error. So, the safety of mysqld or any other threaded
application depends on ``gentlemanly'' behavior of the code that creates threads. The user must take
measures to make sure that the number of running threads at any time is sufficiently low for thread
stacks to stay away from the global heap. With mysqld, you should enforce this behavior by setting
a reasonable value for the max_connections variable.

If you build MySQL yourself, you can patch LinuxThreads for better stack use. See Sec-
tion 2.12.1.3, “Linux Source Distribution Notes”. If you do not want to patch LinuxThreads, you
should set max_connections to a value no higher than 500. It should be even less if you have a
large key buffer, large heap tables, or some other things that make mysqld allocate a lot of memory,
or if you are running a 2.2 kernel with a 2GB patch. If you are using our binary or RPM version
3.23.25 or later, you can safely set max_connections at 1500, assuming no large key buffer or
heap tables with lots of data. The more you reduce STACK_SIZE in LinuxThreads the more threads

Installing MySQL

141

you can safely create. We recommend values between 128KB and 256KB.

If you use a lot of concurrent connections, you may suffer from a ``feature'' in the 2.2 kernel that at-
tempts to prevent fork bomb attacks by penalizing a process for forking or cloning a child. This
causes MySQL not to scale well as you increase the number of concurrent clients. On single-CPU
systems, we have seen this manifested as very slow thread creation: It may take a long time to con-
nect to MySQL (as long as one minute), and it may take just as long to shut it down. On multiple-
CPU systems, we have observed a gradual drop in query speed as the number of clients increases. In
the process of trying to find a solution, we have received a kernel patch from one of our users who
claimed it made a lot of difference for his site. The patch is available at ht-
tp://www.mysql.com/Downloads/Patches/linux-fork.patch. We have done rather extensive testing of
this patch on both development and production systems. It has significantly improved MySQL per-
formance without causing any problems and we recommend it to our users who still run high-load
servers on 2.2 kernels.

This issue has been fixed in the 2.4 kernel, so if you are not satisfied with the current performance
of your system, rather than patching your 2.2 kernel, it might be easier to upgrade to 2.4. On SMP
systems, upgrading also gives you a nice SMP boost in addition to fixing the fairness bug.

We have tested MySQL on the 2.4 kernel on a two-CPU machine and found MySQL scales much
better. There was virtually no slowdown on query throughput all the way up to 1,000 clients, and the
MySQL scaling factor (computed as the ratio of maximum throughput to the throughput for one cli-
ent) was 180%. We have observed similar results on a four-CPU system: Virtually no slowdown as
the number of clients was increased up to 1,000, and a 300% scaling factor. Based on these results,
for a high-load SMP server using a 2.2 kernel, we definitely recommend upgrading to the 2.4 kernel
at this point.

We have discovered that it is essential to run the mysqld process with the highest possible priority
on the 2.4 kernel to achieve maximum performance. This can be done by adding a renice -20
$$ command to mysqld_safe. In our testing on a four-CPU machine, increasing the priority resulted
in a 60% throughput increase with 400 clients.

We are currently also trying to collect more information on how well MySQL performs with a 2.4
kernel on four-way and eight-way systems. If you have access such a system and have done some
benchmarks, please send an email message to <benchmarks@mysql.com> with the results. We
will review them for inclusion in the manual.

If you see a dead mysqld server process with ps, this usually means that you have found a bug in
MySQL or you have a corrupted table. See Section A.4.2, “What to Do If MySQL Keeps Crashing”.

To get a core dump on Linux if mysqld dies with a SIGSEGV signal, you can start mysqld with the
--core-file option. Note that you also probably need to raise the core file size by adding ulimit
-c 1000000 to mysqld_safe or starting mysqld_safe with --core-file-size=1000000. See
Section 5.1.3, “The mysqld_safe Server Startup Script”.

2.12.1.5. Linux x86 Notes

MySQL requires libc Version 5.4.12 or newer. It's known to work with libc 5.4.46. glibc
Version 2.0.6 and later should also work. There have been some problems with the glibc RPMs
from Red Hat, so if you have problems, check whether there are any updates. The glibc 2.0.7-19
and 2.0.7-29 RPMs are known to work.

If you are using Red Hat 8.0 or a new glibc 2.2.x library, you may see mysqld die in gethost-
byaddr(). This happens because the new glibc library requires a stack size greater than 128KB
for this call. To fix the problem, start mysqld with the --thread-stack=192K option. (Use -O
thread_stack=192K before MySQL 4.) This stack size is the default on MySQL 4.0.10 and
above, so you should not see the problem.

If you are using gcc 3.0 and above to compile MySQL, you must install the libstdc++v3 library
before compiling MySQL; if you don't do this, you get an error about a missing
__cxa_pure_virtual symbol during linking.

On some older Linux distributions, configure may produce an error like this:

Installing MySQL

142

http://www.mysql.com/Downloads/Patches/linux-fork.patch
http://www.mysql.com/Downloads/Patches/linux-fork.patch

Syntax error in sched.h. Change _P to __P in the
/usr/include/sched.h file.
See the Installation chapter in the Reference Manual.

Just do what the error message says. Add an extra underscore to the _P macro name that has only
one underscore, then try again.

You may get some warnings when compiling. Those shown here can be ignored:

mysqld.cc -o objs-thread/mysqld.o
mysqld.cc: In function `void init_signals()':
mysqld.cc:315: warning: assignment of negative value `-1' to
`long unsigned int'
mysqld.cc: In function `void * signal_hand(void *)':
mysqld.cc:346: warning: assignment of negative value `-1' to
`long unsigned int'

If mysqld always dumps core when it starts, the problem may be that you have an old /
lib/libc.a. Try renaming it, then remove sql/mysqld and do a new make install and try
again. This problem has been reported on some Slackware installations.

If you get the following error when linking mysqld, it means that your libg++.a is not installed
correctly:

/usr/lib/libc.a(putc.o): In function `_IO_putc':
putc.o(.text+0x0): multiple definition of `_IO_putc'

You can avoid using libg++.a by running configure like this:

shell> CXX=gcc ./configure

If mysqld crashes immediately and you are running Red Hat Version 5.0 with a version of glibc
older than 2.0.7-5, you should make sure that you have installed all glibc patches. There is a lot of
information about this in the MySQL mail archives, available online at http://lists.mysql.com/.

2.12.1.6. Linux SPARC Notes

In some implementations, readdir_r() is broken. The symptom is that the SHOW DATABASES
statement always returns an empty set. This can be fixed by removing HAVE_READDIR_R from
config.h after configuring and before compiling.

2.12.1.7. Linux Alpha Notes

MySQL 3.23.12 is the first MySQL version that is tested on Linux-Alpha. If you plan to use
MySQL on Linux-Alpha, you should ensure that you have this version or newer.

We have tested MySQL on Alpha with our benchmarks and test suite, and it appears to work nicely.

We currently build the MySQL binary packages on SuSE Linux 7.0 for AXP, kernel 2.4.4-SMP,
Compaq C compiler (V6.2-505) and Compaq C++ compiler (V6.3-006) on a Compaq DS20 ma-
chine with an Alpha EV6 processor.

You can find the preceding compilers at http://www.support.compaq.com/alpha-tools/. By using
these compilers rather than gcc, we get about 9-14% better MySQL performance.

Note that until MySQL version 3.23.52 and 4.0.2, we optimized the binary for the current CPU only
(by using the -fast compile option). This means that for older versions, you can use our Alpha
binaries only if you have an Alpha EV6 processor.

For all following releases, we added the -arch generic flag to our compile options, which

Installing MySQL

143

http://lists.mysql.com/
http://www.support.compaq.com/alpha-tools/

makes sure that the binary runs on all Alpha processors. We also compile statically to avoid library
problems. The configure command looks like this:

CC=ccc CFLAGS="-fast -arch generic" CXX=cxx \
CXXFLAGS="-fast -arch generic -noexceptions -nortti" \
./configure --prefix=/usr/local/mysql --disable-shared \

--with-extra-charsets=complex --enable-thread-safe-client \
--with-mysqld-ldflags=-non_shared --with-client-ldflags=-non_shared

If you want to use egcs, the following configure line worked for us:

CFLAGS="-O3 -fomit-frame-pointer" CXX=gcc \
CXXFLAGS="-O3 -fomit-frame-pointer -felide-constructors \

-fno-exceptions -fno-rtti" \
./configure --prefix=/usr/local/mysql --disable-shared

Some known problems when running MySQL on Linux-Alpha:

• Debugging threaded applications like MySQL does not work with gdb 4.18. You should use
gdb 5.1 instead.

• If you try linking mysqld statically when using gcc, the resulting image dumps core at startup
time. In other words, do not use --with-mysqld-ldflags=-all-static with gcc.

2.12.1.8. Linux PowerPC Notes

MySQL should work on MkLinux with the newest glibc package (tested with glibc 2.0.7).

2.12.1.9. Linux MIPS Notes

To get MySQL to work on Qube2 (Linux Mips), you need the newest glibc libraries. glibc-
2.0.7-29C2 is known to work. You must also use the egcs C++ compiler (egcs 1.0.2-9, gcc
2.95.2 or newer).

2.12.1.10. Linux IA-64 Notes

To get MySQL to compile on Linux IA-64, we use the following configure command for building
with gcc 2.96:

CC=gcc \
CFLAGS="-O3 -fno-omit-frame-pointer" \
CXX=gcc \
CXXFLAGS="-O3 -fno-omit-frame-pointer -felide-constructors \

-fno-exceptions -fno-rtti" \
./configure --prefix=/usr/local/mysql \
"--with-comment=Official MySQL binary" \
--with-extra-charsets=complex

On IA-64, the MySQL client binaries use shared libraries. This means that if you install our binary
distribution at a location other than /usr/local/mysql, you need to add the path of the direct-
ory where you have libmysqlclient.so installed either to the /etc/ld.so.conf file or to
the value of your LD_LIBRARY_PATH environment variable.

See Section A.3.1, “Problems Linking to the MySQL Client Library”.

2.12.2. Mac OS X Notes
On Mac OS X, tar cannot handle long filenames. If you need to unpack a .tar.gz distribution,
use gnutar instead.

Installing MySQL

144

2.12.2.1. Mac OS X 10.x (Darwin)

MySQL should work without any problems on Mac OS X 10.x (Darwin).

Our binary for Mac OS X is compiled on Darwin 6.3 with the following configure line:

CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc \
CXXFLAGS="-O3 -fno-omit-frame-pointer -felide-constructors \

-fno-exceptions -fno-rtti" \
./configure --prefix=/usr/local/mysql \
--with-extra-charsets=complex --enable-thread-safe-client \
--enable-local-infile --disable-shared

See Section 2.5, “Installing MySQL on Mac OS X”.

2.12.2.2. Mac OS X Server 1.2 (Rhapsody)

For current versions of Mac OS X Server, no operating system changes are necessary before compil-
ing MySQL. Compiling for the Server platform is the same as for the client version of Mac OS X.
(However, note that MySQL comes preinstalled on Mac OS X Server, so you need not build it your-
self.)

For older versions (Mac OS X Server 1.2, a.k.a. Rhapsody), you must first install a pthread package
before trying to configure MySQL.

See Section 2.5, “Installing MySQL on Mac OS X”.

2.12.3. Solaris Notes
On Solaris, you may run into trouble even before you get the MySQL distribution unpacked! Solaris
tar can't handle long filenames, so you may see an error like this when you unpack MySQL:

x mysql-3.22.12-beta/bench/Results/ATIS-mysql_odbc-NT_4.0-cmp-db2,
informix,ms-sql,mysql,oracle,solid,sybase, 0 bytes, 0 tape blocks
tar: directory checksum error

In this case, you must use GNU tar (gtar) to unpack the distribution. You can find a precompiled
copy for Solaris at http://dev.mysql.com/downloads/os-solaris.html.

Sun native threads work only on Solaris 2.5 and higher. For Version 2.4 and earlier, MySQL auto-
matically uses MIT-pthreads. See Section 2.8.5, “MIT-pthreads Notes”.

If you get the following error from configure, it means that you have something wrong with your
compiler installation:

checking for restartable system calls... configure: error can not
run test programs while cross compiling

In this case, you should upgrade your compiler to a newer version. You may also be able to solve
this problem by inserting the following row into the config.cache file:

ac_cv_sys_restartable_syscalls=${ac_cv_sys_restartable_syscalls='no'}

If you are using Solaris on a SPARC, the recommended compiler is gcc 2.95.2 or 3.2. You can find
this at http://gcc.gnu.org/. Note that egcs 1.1.1 and gcc 2.8.1 don't work reliably on SPARC!

The recommended configure line when using gcc 2.95.2 is:

CC=gcc CFLAGS="-O3" \
CXX=gcc CXXFLAGS="-O3 -felide-constructors -fno-exceptions -fno-rtti" \

Installing MySQL

145

http://dev.mysql.com/downloads/os-solaris.html
http://gcc.gnu.org/

./configure --prefix=/usr/local/mysql --with-low-memory \
--enable-assembler

If you have an UltraSPARC system, you can get 4% better performance by adding -mcpu=v8 -
Wa,-xarch=v8plusa to the CFLAGS and CXXFLAGS environment variables.

If you have Sun's Forte 5.0 (or newer) compiler, you can run configure like this:

CC=cc CFLAGS="-Xa -fast -native -xstrconst -mt" \
CXX=CC CXXFLAGS="-noex -mt" \
./configure --prefix=/usr/local/mysql --enable-assembler

To create a 64-bit binary with Sun's Forte compiler, use the following configuration options:

CC=cc CFLAGS="-Xa -fast -native -xstrconst -mt -xarch=v9" \
CXX=CC CXXFLAGS="-noex -mt -xarch=v9" ASFLAGS="-xarch=v9" \
./configure --prefix=/usr/local/mysql --enable-assembler

To create a 64-bit Solaris binary using gcc, add -m64 to CFLAGS and CXXFLAGS and remove -
-enable-assembler from the configure line. This works only with MySQL 4.0 and up;
MySQL 3.23 does not include the required modifications to support this.

In the MySQL benchmarks, we got a 4% speedup on an UltraSPARC when using Forte 5.0 in 32-bit
mode compared to using gcc 3.2 with the -mcpu flag.

If you create a 64-bit mysqld binary, it is 4% slower than the 32-bit binary, but can handle more
threads and memory.

If you get a problem with fdatasync or sched_yield, you can fix this by adding
LIBS=-lrt to the configure line

For compilers older than WorkShop 5.3, you might have to edit the configure script. Change this
line:

#if !defined(__STDC__) || __STDC__ != 1

To this:

#if !defined(__STDC__)

If you turn on __STDC__ with the -Xc option, the Sun compiler can't compile with the Solaris
pthread.h header file. This is a Sun bug (broken compiler or broken include file).

If mysqld issues the following error message when you run it, you have tried to compile MySQL
with the Sun compiler without enabling the -mt multi-thread option:

libc internal error: _rmutex_unlock: rmutex not held

Add -mt to CFLAGS and CXXFLAGS and recompile.

If you are using the SFW version of gcc (which comes with Solaris 8), you must add /
opt/sfw/lib to the environment variable LD_LIBRARY_PATH before running configure.

If you are using the gcc available from sunfreeware.com, you may have many problems. To
avoid this, you should recompile gcc and GNU binutils on the machine where you are running
them.

If you get the following error when compiling MySQL with gcc, it means that your gcc is not con-
figured for your version of Solaris:

Installing MySQL

146

shell> gcc -O3 -g -O2 -DDBUG_OFF -o thr_alarm ...
./thr_alarm.c: In function `signal_hand':
./thr_alarm.c:556: too many arguments to function `sigwait'

The proper thing to do in this case is to get the newest version of gcc and compile it with your cur-
rent gcc compiler. At least for Solaris 2.5, almost all binary versions of gcc have old, unusable in-
clude files that break all programs that use threads, and possibly other programs!

Solaris doesn't provide static versions of all system libraries (libpthreads and libdl), so you
can't compile MySQL with --static. If you try to do so, you get one of the following errors:

ld: fatal: library -ldl: not found
undefined reference to `dlopen'
cannot find -lrt

If you link your own MySQL client programs, you may see the following error at runtime:

ld.so.1: fatal: libmysqlclient.so.#:
open failed: No such file or directory

This problem can be avoided by one of the following methods:

• Link clients with the -Wl,r/full/path/to/libmysqlclient.so flag rather than with
-Lpath).

• Copy libmysqclient.so to /usr/lib.

• Add the pathname of the directory where libmysqlclient.so is located to the
LD_RUN_PATH environment variable before running your client.

If you have problems with configure trying to link with -lz when you don't have zlib installed,
you have two options:

• If you want to be able to use the compressed communication protocol, you need to get and in-
stall zlib from ftp.gnu.org.

• Run configure with the --with-named-z-libs=no option when building MySQL.

If you are using gcc and have problems with loading user-defined functions (UDFs) into MySQL,
try adding -lgcc to the link line for the UDF.

If you would like MySQL to start automatically, you can copy support-
files/mysql.server to /etc/init.d and create a symbolic link to it named /
etc/rc3.d/S99mysql.server.

If too many processes try to connect very rapidly to mysqld, you should see this error in the
MySQL log:

Error in accept: Protocol error

You might try starting the server with the --back_log=50 option as a workaround for this. (Use
-O back_log=50 before MySQL 4.)

Solaris doesn't support core files for setuid() applications, so you can't get a core file from
mysqld if you are using the --user option.

2.12.3.1. Solaris 2.7/2.8 Notes

Installing MySQL

147

Normally, you can use a Solaris 2.6 binary on Solaris 2.7 and 2.8. Most of the Solaris 2.6 issues also
apply for Solaris 2.7 and 2.8.

MySQL 3.23.4 and above should be able to detect new versions of Solaris automatically and enable
workarounds for the following problems.

Solaris 2.7 / 2.8 has some bugs in the include files. You may see the following error when you use
gcc:

/usr/include/widec.h:42: warning: `getwc' redefined
/usr/include/wchar.h:326: warning: this is the location of the previous
definition

If this occurs, you can fix the problem by copying /usr/include/widec.h to
.../lib/gcc-lib/os/gcc-version/include and changing line 41 from this:

#if !defined(lint) && !defined(__lint)

To this:

#if !defined(lint) && !defined(__lint) && !defined(getwc)

Alternatively, you can edit /usr/include/widec.h directly. Either way, after you make the
fix, you should remove config.cache and run configure again.

If you get the following errors when you run make, it's because configure didn't detect the
curses.h file (probably because of the error in /usr/include/widec.h):

In file included from mysql.cc:50:
/usr/include/term.h:1060: syntax error before `,'
/usr/include/term.h:1081: syntax error before `;'

The solution to this problem is to do one of the following:

• Configure with CFLAGS=-DHAVE_CURSES_H CXXFLAGS=-DHAVE_CURSES_H
./configure.

• Edit /usr/include/widec.h as indicated in the preceding discussion and re-run
configure.

• Remove the #define HAVE_TERM line from the config.h file and run make again.

If your linker can't find -lz when linking client programs, the problem is probably that your
libz.so file is installed in /usr/local/lib. You can fix this problem by one of the following
methods:

• Add /usr/local/lib to LD_LIBRARY_PATH.

• Add a link to libz.so from /lib.

• If you are using Solaris 8, you can install the optional zlib from your Solaris 8 CD distribu-
tion.

• Run configure with the --with-named-z-libs=no option when building MySQL.

2.12.3.2. Solaris x86 Notes

Installing MySQL

148

On Solaris 8 on x86, mysqld dumps core if you remove the debug symbols using strip.

If you are using gcc or egcs on Solaris x86 and you experience problems with core dumps under
load, you should use the following configure command:

CC=gcc CFLAGS="-O3 -fomit-frame-pointer -DHAVE_CURSES_H" \
CXX=gcc \
CXXFLAGS="-O3 -fomit-frame-pointer -felide-constructors \

-fno-exceptions -fno-rtti -DHAVE_CURSES_H" \
./configure --prefix=/usr/local/mysql

This avoids problems with the libstdc++ library and with C++ exceptions.

If this doesn't help, you should compile a debug version and run it with a trace file or under gdb.
See Section E.1.3, “Debugging mysqld under gdb”.

2.12.4. BSD Notes
This section provides information about using MySQL on variants of BSD Unix.

2.12.4.1. FreeBSD Notes

FreeBSD 4.x or newer is recommended for running MySQL, because the thread package is much
more integrated. To get a secure and stable system, you should use only FreeBSD kernels that are
marked -RELEASE.

The easiest (and preferred) way to install MySQL is to use the mysql-server and mysql-client
ports available at http://www.freebsd.org/. Using these ports gives you the following benefits:

• A working MySQL with all optimizations enabled that are known to work on your version of
FreeBSD.

• Automatic configuration and build.

• Startup scripts installed in /usr/local/etc/rc.d.

• The ability to use pkg_info -L to see which files are installed.

• The ability to use pkg_delete to remove MySQL if you no longer want it on your machine.

It is recommended you use MIT-pthreads on FreeBSD 2.x, and native threads on Versions 3 and up.
It is possible to run with native threads on some late 2.2.x versions, but you may encounter prob-
lems shutting down mysqld.

Unfortunately, certain function calls on FreeBSD are not yet fully thread-safe. Most notably, this in-
cludes the gethostbyname() function, which is used by MySQL to convert hostnames into IP
addresses. Under certain circumstances, the mysqld process suddenly causes 100% CPU load and is
unresponsive. If you encounter this problem, try to start MySQL using the -
-skip-name-resolve option.

Alternatively, you can link MySQL on FreeBSD 4.x against the LinuxThreads library, which avoids
a few of the problems that the native FreeBSD thread implementation has. For a very good compar-
ison of LinuxThreads versus native threads, see Jeremy Zawodny's article FreeBSD or Linux for
your MySQL Server? at http://jeremy.zawodny.com/blog/archives/000697.html.

A known problem when using LinuxThreads on FreeBSD is that the wait_timeout value is not
honored (probably a signal handling problem in FreeBSD/LinuxThreads). This is supposed to be
fixed in FreeBSD 5.0. The symptom is that persistent connections can hang for a very long time
without getting closed down.

Installing MySQL

149

http://www.freebsd.org/
http://jeremy.zawodny.com/blog/archives/000697.html

The MySQL build process requires GNU make (gmake) to work. If GNU make is not available,
you must install it first before compiling MySQL.

The recommended way to compile and install MySQL on FreeBSD with gcc (2.95.2 and up) is:

CC=gcc CFLAGS="-O2 -fno-strength-reduce" \
CXX=gcc CXXFLAGS="-O2 -fno-rtti -fno-exceptions \
-felide-constructors -fno-strength-reduce" \
./configure --prefix=/usr/local/mysql --enable-assembler

gmake
gmake install
cd /usr/local/mysql
bin/mysql_install_db --user=mysql
bin/mysqld_safe &

If you notice that configure uses MIT-pthreads, you should read the MIT-pthreads notes. See Sec-
tion 2.8.5, “MIT-pthreads Notes”.

If you get an error from make install that it can't find /usr/include/pthreads, configure
didn't detect that you need MIT-pthreads. To fix this problem, remove config.cache, then re-
run configure with the --with-mit-threads option.

Be sure that your name resolver setup is correct. Otherwise, you may experience resolver delays or
failures when connecting to mysqld. Also make sure that the localhost entry in the /
etc/hosts file is correct. The file should start with a line similar to this:

127.0.0.1 localhost localhost.your.domain

FreeBSD is known to have a very low default file handle limit. See Section A.2.17, “File Not
Found”. Start the server by using the --open-files-limit option for mysqld_safe, or raise
the limits for the mysqld user in /etc/login.conf and rebuild it with cap_mkdb /
etc/login.conf. Also be sure that you set the appropriate class for this user in the password
file if you are not using the default (use chpass mysqld-user-name). See Section 5.1.3, “The
mysqld_safe Server Startup Script”.

If you have a lot of memory, you should consider rebuilding the kernel to allow MySQL to use more
than 512MB of RAM. Take a look at option MAXDSIZ in the LINT config file for more inform-
ation.

If you get problems with the current date in MySQL, setting the TZ variable should help. See Ap-
pendix F, Environment Variables.

2.12.4.2. NetBSD Notes

To compile on NetBSD, you need GNU make. Otherwise, the build process fails when make tries
to run lint on C++ files.

2.12.4.3. OpenBSD 2.5 Notes

On OpenBSD Version 2.5, you can compile MySQL with native threads with the following options:

CFLAGS=-pthread CXXFLAGS=-pthread ./configure --with-mit-threads=no

2.12.4.4. OpenBSD 2.8 Notes

Our users have reported that OpenBSD 2.8 has a threading bug that causes problems with MySQL.
The OpenBSD Developers have fixed the problem, but as of January 25, 2001, it's only available in
the ``-current'' branch. The symptoms of this threading bug are slow response, high load, high CPU
usage, and crashes.

Installing MySQL

150

If you get an error like Error in accept:: Bad file descriptor or error 9 when try-
ing to open tables or directories, the problem is probably that you have not allocated enough file
descriptors for MySQL.

In this case, try starting mysqld_safe as root with the following options:

mysqld_safe --user=mysql --open-files-limit=2048 &

2.12.4.5. BSD/OS Version 2.x Notes

If you get the following error when compiling MySQL, your ulimit value for virtual memory is too
low:

item_func.h: In method
`Item_func_ge::Item_func_ge(const Item_func_ge &)':
item_func.h:28: virtual memory exhausted
make[2]: *** [item_func.o] Error 1

Try using ulimit -v 80000 and run make again. If this doesn't work and you are using bash, try
switching to csh or sh; some BSDI users have reported problems with bash and ulimit.

If you are using gcc, you may also use have to use the --with-low-memory flag for configure
to be able to compile sql_yacc.cc.

If you get problems with the current date in MySQL, setting the TZ variable should help. See Ap-
pendix F, Environment Variables.

2.12.4.6. BSD/OS Version 3.x Notes

Upgrade to BSD/OS Version 3.1. If that is not possible, install BSDIpatch M300-038.

Use the following command when configuring MySQL:

env CXX=shlicc++ CC=shlicc2 \
./configure \

--prefix=/usr/local/mysql \
--localstatedir=/var/mysql \
--without-perl \
--with-unix-socket-path=/var/mysql/mysql.sock

The following is also known to work:

env CC=gcc CXX=gcc CXXFLAGS=-O3 \
./configure \

--prefix=/usr/local/mysql \
--with-unix-socket-path=/var/mysql/mysql.sock

You can change the directory locations if you wish, or just use the defaults by not specifying any
locations.

If you have problems with performance under heavy load, try using the -
-skip-thread-priority option to mysqld. This runs all threads with the same priority. On
BSDI Version 3.1, this gives better performance, at least until BSDI fixes its thread scheduler.

If you get the error virtual memory exhausted while compiling, you should try using ulim-
it -v 80000 and running make again. If this doesn't work and you are using bash, try switching to
csh or sh; some BSDI users have reported problems with bash and ulimit.

2.12.4.7. BSD/OS Version 4.x Notes

Installing MySQL

151

BSDI Version 4.x has some thread-related bugs. If you want to use MySQL on this, you should in-
stall all thread-related patches. At least M400-023 should be installed.

On some BSDI Version 4.x systems, you may get problems with shared libraries. The symptom is
that you can't execute any client programs, for example, mysqladmin. In this case, you need to re-
configure not to use shared libraries with the --disable-shared option to configure.

Some customers have had problems on BSDI 4.0.1 that the mysqld binary after a while can't open
tables. This is because some library/system-related bug causes mysqld to change current directory
without having asked for that to happen.

The fix is to either upgrade MySQL to at least version 3.23.34 or, after running configure, remove
the line #define HAVE_REALPATH from config.h before running make.

Note that this means that you can't symbolically link a database directories to another database dir-
ectory or symbolic link a table to another database on BSDI. (Making a symbolic link to another
disk is okay).

2.12.5. Other Unix Notes

2.12.5.1. HP-UX Version 10.20 Notes

There are a couple of small problems when compiling MySQL on HP-UX. We recommend that you
use gcc instead of the HP-UX native compiler, because gcc produces better code.

We recommend using gcc 2.95 on HP-UX. Don't use high optimization flags (such as -O6) because
they may not be safe on HP-UX.

The following configure line should work with gcc 2.95:

CFLAGS="-I/opt/dce/include -fpic" \
CXXFLAGS="-I/opt/dce/include -felide-constructors -fno-exceptions \
-fno-rtti" \
CXX=gcc \
./configure --with-pthread \

--with-named-thread-libs='-ldce' \
--prefix=/usr/local/mysql --disable-shared

The following configure line should work with gcc 3.1:

CFLAGS="-DHPUX -I/opt/dce/include -O3 -fPIC" CXX=gcc \
CXXFLAGS="-DHPUX -I/opt/dce/include -felide-constructors \

-fno-exceptions -fno-rtti -O3 -fPIC" \
./configure --prefix=/usr/local/mysql \

--with-extra-charsets=complex --enable-thread-safe-client \
--enable-local-infile --with-pthread \
--with-named-thread-libs=-ldce --with-lib-ccflags=-fPIC
--disable-shared

2.12.5.2. HP-UX Version 11.x Notes

For HP-UX Version 11.x, we recommend MySQL 3.23.15 or later.

Because of some critical bugs in the standard HP-UX libraries, you should install the following
patches before trying to run MySQL on HP-UX 11.0:

PHKL_22840 Streams cumulative
PHNE_22397 ARPA cumulative

This solves the problem of getting EWOULDBLOCK from recv() and EBADF from accept() in
threaded applications.

Installing MySQL

152

If you are using gcc 2.95.1 on an unpatched HP-UX 11.x system, you may get the following error:

In file included from /usr/include/unistd.h:11,
from ../include/global.h:125,
from mysql_priv.h:15,
from item.cc:19:

/usr/include/sys/unistd.h:184: declaration of C function ...
/usr/include/sys/pthread.h:440: previous declaration ...
In file included from item.h:306,

from mysql_priv.h:158,
from item.cc:19:

The problem is that HP-UX doesn't define pthreads_atfork() consistently. It has conflicting
prototypes in /usr/include/sys/unistd.h:184 and
/usr/include/sys/pthread.h:440.

One solution is to copy /usr/include/sys/unistd.h into mysql/include and edit un-
istd.h and change it to match the definition in pthread.h. Look for this line:

extern int pthread_atfork(void (*prepare)(), void (*parent)(),
void (*child)());

Change it to look like this:

extern int pthread_atfork(void (*prepare)(void), void (*parent)(void),
void (*child)(void));

After making the change, the following configure line should work:

CFLAGS="-fomit-frame-pointer -O3 -fpic" CXX=gcc \
CXXFLAGS="-felide-constructors -fno-exceptions -fno-rtti -O3" \
./configure --prefix=/usr/local/mysql --disable-shared

If you are using MySQL 4.0.5 with the HP-UX compiler, you can use the following command
(which has been tested with cc B.11.11.04):

CC=cc CXX=aCC CFLAGS=+DD64 CXXFLAGS=+DD64 ./configure \
--with-extra-character-set=complex

You can ignore any errors of the following type:

aCC: warning 901: unknown option: `-3': use +help for online
documentation

If you get the following error from configure, verify that you don't have the path to the K&R com-
piler before the path to the HP-UX C and C++ compiler:

checking for cc option to accept ANSI C... no
configure: error: MySQL requires an ANSI C compiler (and a C++ compiler).
Try gcc. See the Installation chapter in the Reference Manual.

Another reason for not being able to compile is that you didn't define the +DD64 flags as just de-
scribed.

Another possibility for HP-UX 11 is to use MySQL binaries for HP-UX 10.20. We have received
reports from some users that these binaries work fine on HP-UX 11.00. If you encounter problems,
be sure to check your HP-UX patch level.

2.12.5.3. IBM-AIX notes

Installing MySQL

153

Automatic detection of xlC is missing from Autoconf, so a number of variables need to be set be-
fore running configure. The following example uses the IBM compiler:

export CC="xlc_r -ma -O3 -qstrict -qoptimize=3 -qmaxmem=8192 "
export CXX="xlC_r -ma -O3 -qstrict -qoptimize=3 -qmaxmem=8192"
export CFLAGS="-I /usr/local/include"
export LDFLAGS="-L /usr/local/lib"
export CPPFLAGS=$CFLAGS
export CXXFLAGS=$CFLAGS
./configure --prefix=/usr/local \

--localstatedir=/var/mysql \
--sbindir='/usr/local/bin' \
--libexecdir='/usr/local/bin' \
--enable-thread-safe-client \
--enable-large-files

The preceding options are used to compile the MySQL distribution that can be found at ht-
tp://www-frec.bull.com/.

If you change the -O3 to -O2 in the preceding configure line, you must also remove the -
qstrict option. This is a limitation in the IBM C compiler.

If you are using gcc or egcs to compile MySQL, you must use the -fno-exceptions flag, be-
cause the exception handling in gcc/egcs is not thread-safe! (This is tested with egcs 1.1.) There are
also some known problems with IBM's assembler that may cause it to generate bad code when used
with gcc.

We recommend the following configure line with egcs and gcc 2.95 on AIX:

CC="gcc -pipe -mcpu=power -Wa,-many" \
CXX="gcc -pipe -mcpu=power -Wa,-many" \
CXXFLAGS="-felide-constructors -fno-exceptions -fno-rtti" \
./configure --prefix=/usr/local/mysql --with-low-memory

The -Wa,-many option is necessary for the compile to be successful. IBM is aware of this problem
but is in no hurry to fix it because of the workaround that is available. We don't know if the -
fno-exceptions is required with gcc 2.95, but because MySQL doesn't use exceptions and the
option generates faster code, we recommend that you should always use it with egcs / gcc.

If you get a problem with assembler code, try changing the -mcpu=xxx option to match your CPU.
Typically power2, power, or powerpc may need to be used. Alternatively, you might need to
use 604 or 604e. We are not positive but suspect that power would likely be safe most of the
time, even on a power2 machine.

If you don't know what your CPU is, execute a uname -m command. It produces a string that
looks like 000514676700, with a format of xxyyyyyymmss where xx and ss are always 00,
yyyyyy is a unique system ID and mm is the ID of the CPU Planar. A chart of these values can be
found at http://www16.boulder.ibm.com/pseries/en_US/cmds/aixcmds5/uname.htm.

This gives you a machine type and a machine model you can use to determine what type of CPU
you have.

If you have problems with signals (MySQL dies unexpectedly under high load), you may have
found an OS bug with threads and signals. In this case, you can tell MySQL not to use signals by
configuring as follows:

CFLAGS=-DDONT_USE_THR_ALARM CXX=gcc \
CXXFLAGS="-felide-constructors -fno-exceptions -fno-rtti \
-DDONT_USE_THR_ALARM" \
./configure --prefix=/usr/local/mysql --with-debug \

--with-low-memory

This doesn't affect the performance of MySQL, but has the side effect that you can't kill clients that

Installing MySQL

154

http://www-frec.bull.com/
http://www-frec.bull.com/
http://www16.boulder.ibm.com/pseries/en_US/cmds/aixcmds5/uname.htm

are ``sleeping'' on a connection with mysqladmin kill or mysqladmin shutdown. Instead, the client
dies when it issues its next command.

On some versions of AIX, linking with libbind.a makes getservbyname() dump core. This
is an AIX bug and should be reported to IBM.

For AIX 4.2.1 and gcc, you have to make the following changes.

After configuring, edit config.h and include/my_config.h and change the line that says
this:

#define HAVE_SNPRINTF 1

to this:

#undef HAVE_SNPRINTF

And finally, in mysqld.cc, you need to add a prototype for initgroups().

#ifdef _AIX41
extern "C" int initgroups(const char *,int);
#endif

If you need to allocate a lot of memory to the mysqld process, it's not enough to just use ulimit -d
unlimited. You may also have to modify mysqld_safe to add a line something like this:

export LDR_CNTRL='MAXDATA=0x80000000'

You can find more information about using a lot of memory at ht-
tp://publib16.boulder.ibm.com/pseries/en_US/aixprggd/genprogc/lrg_prg_support.htm.

2.12.5.4. SunOS 4 Notes

On SunOS 4, MIT-pthreads is needed to compile MySQL. This in turn means you need GNU make.

Some SunOS 4 systems have problems with dynamic libraries and libtool. You can use the follow-
ing configure line to avoid this problem:

./configure --disable-shared --with-mysqld-ldflags=-all-static

When compiling readline, you may get warnings about duplicate defines. These can be ignored.

When compiling mysqld, there are some implicit declaration of function warnings.
These can be ignored.

2.12.5.5. Alpha-DEC-UNIX Notes (Tru64)

If you are using egcs 1.1.2 on Digital Unix, you should upgrade to gcc 2.95.2, because egcs on DEC
has some serious bugs!

When compiling threaded programs under Digital Unix, the documentation recommends using the -
pthread option for cc and cxx and the -lmach -lexc libraries (in addition to -lpthread).
You should run configure something like this:

CC="cc -pthread" CXX="cxx -pthread -O" \
./configure --with-named-thread-libs="-lpthread -lmach -lexc -lc"

When compiling mysqld, you may see a couple of warnings like this:

Installing MySQL

155

http://publib16.boulder.ibm.com/pseries/en_US/aixprggd/genprogc/lrg_prg_support.htm
http://publib16.boulder.ibm.com/pseries/en_US/aixprggd/genprogc/lrg_prg_support.htm

mysqld.cc: In function void handle_connections()':
mysqld.cc:626: passing long unsigned int *' as argument 3 of
accept(int,sockadddr *, int *)'

You can safely ignore these warnings. They occur because configure can detect only errors, not
warnings.

If you start the server directly from the command line, you may have problems with it dying when
you log out. (When you log out, your outstanding processes receive a SIGHUP signal.) If so, try
starting the server like this:

nohup mysqld [options] &

nohup causes the command following it to ignore any SIGHUP signal sent from the terminal. Al-
ternatively, start the server by running mysqld_safe, which invokes mysqld using nohup for you.
See Section 5.1.3, “The mysqld_safe Server Startup Script”.

If you get a problem when compiling mysys/get_opt.c, just remove the #define
_NO_PROTO line from the start of that file.

If you are using Compaq's CC compiler, the following configure line should work:

CC="cc -pthread"
CFLAGS="-O4 -ansi_alias -ansi_args -fast -inline speed all -arch host"
CXX="cxx -pthread"
CXXFLAGS="-O4 -ansi_alias -ansi_args -fast -inline speed all \

-arch host -noexceptions -nortti"
export CC CFLAGS CXX CXXFLAGS
./configure \

--prefix=/usr/local/mysql \
--with-low-memory \
--enable-large-files \
--enable-shared=yes \
--with-named-thread-libs="-lpthread -lmach -lexc -lc"

gnumake

If you get a problem with libtool when compiling with shared libraries as just shown, when linking
mysql, you should be able to get around this by issuing these commands:

cd mysql
/bin/sh ../libtool --mode=link cxx -pthread -O3 -DDBUG_OFF \

-O4 -ansi_alias -ansi_args -fast -inline speed \
-speculate all \ -arch host -DUNDEF_HAVE_GETHOSTBYNAME_R \
-o mysql mysql.o readline.o sql_string.o completion_hash.o \
../readline/libreadline.a -lcurses \
../libmysql/.libs/libmysqlclient.so -lm

cd ..
gnumake
gnumake install
scripts/mysql_install_db

2.12.5.6. Alpha-DEC-OSF/1 Notes

If you have problems compiling and have DEC CC and gcc installed, try running configure like
this:

CC=cc CFLAGS=-O CXX=gcc CXXFLAGS=-O3 \
./configure --prefix=/usr/local/mysql

If you get problems with the c_asm.h file, you can create and use a 'dummy' c_asm.h file with:

Installing MySQL

156

touch include/c_asm.h
CC=gcc CFLAGS=-I./include \
CXX=gcc CXXFLAGS=-O3 \
./configure --prefix=/usr/local/mysql

Note that the following problems with the ld program can be fixed by downloading the latest DEC
(Compaq) patch kit from: http://ftp.support.compaq.com/public/unix/.

On OSF/1 V4.0D and compiler "DEC C V5.6-071 on Digital Unix V4.0 (Rev. 878)," the compiler
had some strange behavior (undefined asm symbols). /bin/ld also appears to be broken
(problems with _exit undefined errors occurring while linking mysqld). On this system, we
have managed to compile MySQL with the following configure line, after replacing /bin/ld with
the version from OSF 4.0C:

CC=gcc CXX=gcc CXXFLAGS=-O3 ./configure --prefix=/usr/local/mysql

With the Digital compiler "C++ V6.1-029," the following should work:

CC=cc -pthread
CFLAGS=-O4 -ansi_alias -ansi_args -fast -inline speed \

-speculate all -arch host
CXX=cxx -pthread
CXXFLAGS=-O4 -ansi_alias -ansi_args -fast -inline speed \

-speculate all -arch host -noexceptions -nortti
export CC CFLAGS CXX CXXFLAGS
./configure --prefix=/usr/mysql/mysql \

--with-mysqld-ldflags=-all-static --disable-shared \
--with-named-thread-libs="-lmach -lexc -lc"

In some versions of OSF/1, the alloca() function is broken. Fix this by removing the line in
config.h that defines 'HAVE_ALLOCA'.

The alloca() function also may have an incorrect prototype in /usr/include/alloca.h.
This warning resulting from this can be ignored.

configure uses the following thread libraries automatically: -
-with-named-thread-libs="-lpthread -lmach -lexc -lc".

When using gcc, you can also try running configure like this:

CFLAGS=-D_PTHREAD_USE_D4 CXX=gcc CXXFLAGS=-O3 ./configure ...

If you have problems with signals (MySQL dies unexpectedly under high load), you may have
found an OS bug with threads and signals. In this case, you can tell MySQL not to use signals by
configuring with:

CFLAGS=-DDONT_USE_THR_ALARM \
CXXFLAGS=-DDONT_USE_THR_ALARM \
./configure ...

This doesn't affect the performance of MySQL, but has the side effect that you can't kill clients that
are ``sleeping'' on a connection with mysqladmin kill or mysqladmin shutdown. Instead, the client
dies when it issues its next command.

With gcc 2.95.2, you may encounter the following compile error:

sql_acl.cc:1456: Internal compiler error in `scan_region',
at except.c:2566
Please submit a full bug report.

Installing MySQL

157

http://ftp.support.compaq.com/public/unix/

To fix this, you should change to the sql directory and do a cut-and-paste of the last gcc line, but
change -O3 to -O0 (or add -O0 immediately after gcc if you don't have any -O option on your
compile line). After this is done, you can just change back to the top-level directory and run make
again.

2.12.5.7. SGI Irix Notes

If you are using Irix Version 6.5.3 or newer, mysqld is able to create threads only if you run it as a
user that has CAP_SCHED_MGT privileges (such as root) or give the mysqld server this privilege
with the following shell command:

chcap "CAP_SCHED_MGT+epi" /opt/mysql/libexec/mysqld

You may have to undefine some symbols in config.h after running configure and before compil-
ing.

In some Irix implementations, the alloca() function is broken. If the mysqld server dies on some
SELECT statements, remove the lines from config.h that define HAVE_ALLOC and
HAVE_ALLOCA_H. If mysqladmin create doesn't work, remove the line from config.h that
defines HAVE_READDIR_R. You may have to remove the HAVE_TERM_H line as well.

SGI recommends that you install all the patches on this page as a set: ht-
tp://support.sgi.com/surfzone/patches/patchset/6.2_indigo.rps.html

At the very minimum, you should install the latest kernel rollup, the latest rld rollup, and the latest
libc rollup.

You definitely need all the POSIX patches on this page, for pthreads support:

http://support.sgi.com/surfzone/patches/patchset/6.2_posix.rps.html

If you get the something like the following error when compiling mysql.cc:

"/usr/include/curses.h", line 82: error(1084):
invalid combination of type

Type the following in the top-level directory of your MySQL source tree:

extra/replace bool curses_bool < /usr/include/curses.h > include/curses.h
make

There have also been reports of scheduling problems. If only one thread is running, performance is
slow. Avoid this by starting another client. This may lead to a two-to-tenfold increase in execution
speed thereafter for the other thread. This is a poorly understood problem with Irix threads; you may
have to improvise to find solutions until this can be fixed.

If you are compiling with gcc, you can use the following configure command:

CC=gcc CXX=gcc CXXFLAGS=-O3 \
./configure --prefix=/usr/local/mysql --enable-thread-safe-client \

--with-named-thread-libs=-lpthread

On Irix 6.5.11 with native Irix C and C++ compilers ver. 7.3.1.2, the following is reported to work

CC=cc CXX=CC CFLAGS='-O3 -n32 -TARG:platform=IP22 -I/usr/local/include \
-L/usr/local/lib' CXXFLAGS='-O3 -n32 -TARG:platform=IP22 \
-I/usr/local/include -L/usr/local/lib' \
./configure --prefix=/usr/local/mysql --with-innodb --with-berkeley-db \

--with-libwrap=/usr/local \
--with-named-curses-libs=/usr/local/lib/libncurses.a

Installing MySQL

158

http://support.sgi.com/surfzone/patches/patchset/6.2_indigo.rps.html
http://support.sgi.com/surfzone/patches/patchset/6.2_indigo.rps.html
http://support.sgi.com/surfzone/patches/patchset/6.2_posix.rps.html

2.12.5.8. SCO Notes

The current port is tested only on ``sco3.2v5.0.5,'' ``sco3.2v5.0.6,'' and ``sco3.2v5.0.7'' systems.
There has also been a lot of progress on a port to ``sco 3.2v4.2.'' Open Server 5.0.8(Legend) has nat-
ive threads and allows files greater than 2GB. The current maximum file size is 2GB.

We have been able to compile MySQL with the following configure command on OpenServer with
gcc 2.95.3.

CC=gcc CXX=gcc ./configure --prefix=/usr/local/mysql \
--enable-thread-safe-client --with-innodb \
--with-openssl --with-vio --with-extra-charsets=complex

gcc is available at ftp://ftp.sco.com/pub/openserver5/opensrc/gnutools-5.0.7Kj.

This development system requires the OpenServer Execution Environment Supplement oss646B on
OpenServer 5.0.6 and oss656B and The OpenSource libraries found in gwxlibs. All OpenSource
tools are in the opensrc directory. They are available at
ftp://ftp.sco.com/pub/openserver5/opensrc/.

We recommend using the latest production release of MySQL.

SCO provides operating system patches at ftp://ftp.sco.com/pub/openserver5 for OpenServer
5.0.[0-6] and ftp://ftp.sco.com/pub/openserverv5/507 for OpenServer 5.0.7.

SCO provides information about security fixes at ftp://ftp.sco.com/pub/security/OpenServer for
OpenServer 5.0.x.

The maximum file size on an OpenSever 5.0.x system is 2GB.

The total memory which could be allocated for streams buffers, clists and lock records cannot ex-
ceed 60MB on OpenServer 5.0.x.

Streams buffers are allocated in units of 4096 byte pages, clists are 70 bytes each, and lock records
are 64 bytes each, so:

(NSTRPAGES * 4096) + (NCLIST * 70) + (MAX_FLCKREC * 64) <= 62914560

Follow this procedure to configure the Database Services option. If you are unsure whether an ap-
plication requires this, see the documentation provided with the application.

1. Log in as root.

2. Enable the SUDS driver by editing the /etc/conf/sdevice.d/suds file. Change the N
in the second field to a Y.

3. Use mkdev aio or the Hardware/Kernel Manager to enable support for asynchronous I/O
and relink the kernel. To allow users to lock down memory for use with this type of I/O, update
the aiomemlock(F) file. This file should be updated to include the names of users that can use
AIO and the maximum amounts of memory they can lock down.

4. Many applications use setuid binaries so that you need to specify only a single user. See the
documentation provided with the application to see if this is the case for your application.

After you complete this process, reboot the system to create a new kernel incorporating these
changes.

By default, the entries in /etc/conf/cf.d/mtune are set as follows:

Value Default Min Max

Installing MySQL

159

ftp://ftp.sco.com/pub/openserver5/opensrc/gnutools-5.0.7Kj
ftp://ftp.sco.com/pub/openserver5/opensrc/
ftp://ftp.sco.com/pub/openserver5
ftp://ftp.sco.com/pub/openserverv5/507
ftp://ftp.sco.com/pub/security/OpenServer

----- ------- --- ---
NBUF 0 24 450000
NHBUF 0 32 524288
NMPBUF 0 12 512
MAX_INODE 0 100 64000
MAX_FILE 0 100 64000
CTBUFSIZE 128 0 256
MAX_PROC 0 50 16000
MAX_REGION 0 500 160000
NCLIST 170 120 16640
MAXUP 100 15 16000
NOFILES 110 60 11000
NHINODE 128 64 8192
NAUTOUP 10 0 60
NGROUPS 8 0 128
BDFLUSHR 30 1 300
MAX_FLCKREC 0 50 16000
PUTBUFSZ 8000 2000 20000
MAXSLICE 100 25 100
ULIMIT 4194303 2048 4194303
* Streams Parameters
NSTREAM 64 1 32768
NSTRPUSH 9 9 9
NMUXLINK 192 1 4096
STRMSGSZ 16384 4096 524288
STRCTLSZ 1024 1024 1024
STRMAXBLK 524288 4096 524288
NSTRPAGES 500 0 8000
STRSPLITFRAC 80 50 100
NLOG 3 3 3
NUMSP 64 1 256
NUMTIM 16 1 8192
NUMTRW 16 1 8192
* Semaphore Parameters
SEMMAP 10 10 8192
SEMMNI 10 10 8192
SEMMNS 60 60 8192
SEMMNU 30 10 8192
SEMMSL 25 25 150
SEMOPM 10 10 1024
SEMUME 10 10 25
SEMVMX 32767 32767 32767
SEMAEM 16384 16384 16384
* Shared Memory Parameters
SHMMAX 524288 131072 2147483647
SHMMIN 1 1 1
SHMMNI 100 100 2000
FILE 0 100 64000
NMOUNT 0 4 256
NPROC 0 50 16000
NREGION 0 500 160000

We recommend setting these values as follows:

NOFILES should be 4096 or 2048.

MAXUP should be 2048.

To make changes to the kernel, cd to /etc/conf/bin and use ./idtune name parameter to
make the changes. For example, to change SEMMS to 200, execute these commands as root:

cd /etc/conf/bin
./idtune SEMMNS 200

We recommend tuning the system, but the proper parameter values to use depend on the number of
users accessing the application or database and size the of the database (that is, the used buffer

Installing MySQL

160

pool). The following affects the kernel parameters defined in /etc/conf/cf.d/stune:

SHMMAX (recommended setting: 128MB) and SHMSEG (recommended setting: 15). These paramet-
ers have influence on the MySQL database engine to create user buffer pools.

NOFILES and MAXUP should be at to at least 2048.

MAXPROC should be set to at least 3000/4000 (depends on number of users) or more.

Also is recommended to use following formula to count value for SEMMSL, SEMMNS and SEMMNU:

SEMMSL = 13

The 13 is what has been found to be the best for both Progress and MySQL.

SEMMNS = SEMMSL * number of db servers to be run on the system.

Set SEMMNS to the value of SEMMSL multiplied by the number of db servers (maximum) that you
are running on the system at one time.

SEMMNU = SEMMNS

Set the value of SEMMNU to equal the value of SEMMNS. You could probably set this to 75% of
SEMMNS, but this is a conservative estimate.

You need to at least install the "SCO OpenServer Linker and Application Development Libraries" or
the OpenServer Development System to use gcc. You cannot just use the GCC Dev system without
installing one of these.

You should get the FSU Pthreads package and install it first. This can be found at ht-
tp://moss.csc.ncsu.edu/~mueller/ftp/pub/PART/pthreads.tar.gz. You can also get a precompiled
package from ftp://ftp.zenez.com/pub/zenez/prgms/FSU-threads-3.14.tar.gz.

FSU Pthreads can be compiled with SCO Unix 4.2 with tcpip, or using OpenServer 3.0 or Open
Desktop 3.0 (OS 3.0 ODT 3.0) with the SCO Development System installed using a good port of
GCC 2.5.x. For ODT or OS 3.0, you need a good port of GCC 2.5.x. There are a lot of problems
without a good port. The port for this product requires the SCO Unix Development system. Without
it, you are missing the libraries and the linker that is needed. You also need SCO-
3.2v4.2-includes.tar.gz. This file contains the changes to the SCO Development include
files that are needed to get MySQL to build. You need to replace the existing system include files
with these modified header files. They can be obtained from
ftp://ftp.zenez.com/pub/zenez/prgms/SCO-3.2v4.2-includes.tar.gz.

To build FSU Pthreads on your system, all you should need to do is run GNU make. The Make-
file in FSU-threads-3.14.tar.gz is set up to make FSU-threads.

You can run ./configure in the threads/src directory and select the SCO OpenServer option.
This command copies Makefile.SCO5 to Makefile. Then run make.

To install in the default /usr/include directory, log in as root, then cd to the thread/src
directory and run make install.

Remember that you must use GNU make when making MySQL.

Note: If you don't start mysqld_safe as root, you should get only the default 110 open files per
process. mysqld writes a note about this in the log file.

With SCO 3.2V4.2, you should use FSU Pthreads version 3.14 or newer. The following configure
command should work:

CFLAGS="-D_XOPEN_XPG4" CXX=gcc CXXFLAGS="-D_XOPEN_XPG4" \
./configure \

Installing MySQL

161

http://moss.csc.ncsu.edu/~mueller/ftp/pub/PART/pthreads.tar.gz
http://moss.csc.ncsu.edu/~mueller/ftp/pub/PART/pthreads.tar.gz
ftp://ftp.zenez.com/pub/zenez/prgms/FSU-threads-3.14.tar.gz
ftp://ftp.zenez.com/pub/zenez/prgms/SCO-3.2v4.2-includes.tar.gz

--prefix=/usr/local/mysql \
--with-named-thread-libs="-lgthreads -lsocket -lgen -lgthreads" \
--with-named-curses-libs="-lcurses"

You may get some problems with some include files. In this case, you can find new SCO-specific
include files at ftp://ftp.zenez.com/pub/zenez/prgms/SCO-3.2v4.2-includes.tar.gz.

You should unpack this file in the include directory of your MySQL source tree.

SCO development notes:

• MySQL should automatically detect FSU Pthreads and link mysqld with -lgthreads -
lsocket -lgthreads.

• The SCO development libraries are re-entrant in FSU Pthreads. SCO claims that its library func-
tions are re-entrant, so they must be re-entrant with FSU Pthreads. FSU Pthreads on OpenServer
tries to use the SCO scheme to make re-entrant libraries.

• FSU Pthreads (at least the version at ftp::/ftp.zenez.com) comes linked with GNU malloc. If
you encounter problems with memory usage, make sure that gmalloc.o is included in libg-
threads.a and libgthreads.so.

• In FSU Pthreads, the following system calls are pthreads-aware: read(), write(),
getmsg(), connect(), accept(), select(), and wait().

• The CSSA-2001-SCO.35.2 (the patch is listed in custom as erg711905-dscr_remap security
patch (version 2.0.0)) breaks FSU threads and makes mysqld unstable. You have to remove this
one if you want to run mysqld on an OpenServer 5.0.6 machine.

• SCO provides operating system patches at ftp://ftp.sco.com/pub/openserver5 for OpenServer
5.0.x.

• SCO provides security fixes and libsocket.so.2 at
ftp://ftp.sco.com/pub/security/OpenServer and ftp://ftp.sco.com/pub/security/sse for OpenServer
5.0.x.

• Pre-OSR506 security fixes. Also, the telnetd fix at
ftp://stage.caldera.com/pub/security/openserver/ or
ftp://stage.caldera.com/pub/security/openserver/CSSA-2001-SCO.10/ as both libsock-
et.so.2 and libresolv.so.1 with instructions for installing on pre-OSR506 systems.

It's probably a good idea to install these patches before trying to compile/use MySQL.

Beginning with Legend, OpenServer has native threads and no 2GB file size limit.

2.12.5.9. SCO UnixWare Version 7.1.x Notes

We recommend using the latest production release of MySQL. Currently this is MySQL 4.0.x.
Should you choose to use an older release of MySQL on UnixWare 7.1.x, you must use a version of
MySQL at least as recent as 3.22.13 to get fixes for some portability and OS problems.

We have been able to compile MySQL with the following configure command on UnixWare Ver-
sion 7.1.x:

CC="cc" CFLAGS="-I/usr/local/include" \
CXX="CC" CXXFLAGS="-I/usr/local/include" \
./configure --prefix=/usr/local/mysql \

--enable-thread-safe-client --with-berkeley-db=./bdb \
--with-innodb --with-openssl --with-extra-charsets=complex

Installing MySQL

162

ftp://ftp.zenez.com/pub/zenez/prgms/SCO-3.2v4.2-includes.tar.gz
ftp::/ftp.zenez.com
ftp://ftp.sco.com/pub/openserver5
ftp://ftp.sco.com/pub/security/OpenServer
ftp://ftp.sco.com/pub/security/sse
ftp://stage.caldera.com/pub/security/openserver/
ftp://stage.caldera.com/pub/security/openserver/CSSA-2001-SCO.10/

If you want to use gcc, you must use gcc 2.95.3 or newer.

CC=gcc CXX=g++ ./configure --prefix=/usr/local/mysql

SCO provides operating system patches at ftp://ftp.sco.com/pub/unixware7 for UnixWare 7.1.1,
ftp://ftp.sco.com/pub/unixware7/713/ for UnixWare 7.1.3, ftp://ftp.sco.com/pub/unixware7/714/ for
UnixWare 7.1.4, and ftp://ftp.sco.com/pub/openunix8 for OpenUNIX 8.0.0.

SCO provides information about security fixes at ftp://ftp.sco.com/pub/security/OpenUNIX for
OpenUNIX and ftp://ftp.sco.com/pub/security/UnixWare for UnixWare.

By default, the maximum file size on a UnixWare 7 system is 1GB. Many OS utilities have a limita-
tion of 2GB. The maximum possible file size on UnixWare 7 is 1TB with VXFS.

To enable large file support on UnixWare 7.1.x, run fsadm.

fsadm -Fvxfs -o largefiles /
fsadm / * Note
ulimit unlimited
cd /etc/conf/bin
./idtune SFSZLIM 0x7FFFFFFF ** Note
./idtune HFSZLIM 0x7FFFFFFF ** Note
./idbuild -B
* This should report "largefiles".
** 0x7FFFFFFF represents infinity for these values.

Reboot the system using shutdown.

By default, the entries in /etc/conf/cf.d/mtune are set to:

Value Default Min Max
----- ------- --- ---
SVMMLIM 0x9000000 0x1000000 0x7FFFFFFF
HVMMLIM 0x9000000 0x1000000 0x7FFFFFFF
SSTKLIM 0x1000000 0x2000 0x7FFFFFFF
HSTKLIM 0x1000000 0x2000 0x7FFFFFFF

We recommend setting these values as follows:

SDATLIM 0x7FFFFFFF
HDATLIM 0x7FFFFFFF
SSTKLIM 0x7FFFFFFF
HSTKLIM 0x7FFFFFFF
SVMMLIM 0x7FFFFFFF
HVMMLIM 0x7FFFFFFF
SFNOLIM 2048
HFNOLIM 2048

We recommend tuning the system, but the proper parameter values to use depend on the number of
users accessing the application or database and size the of the database (that is, the used buffer
pool). The following affects the kernel parameters defined in /etc/conf/cf.d/stune:

SHMMAX (recommended setting: 128MB) and SHMSEG (recommended setting: 15). These paramet-
ers have influence on the MySQL database engine to create user buffer pools.

SFNOLIM and HFNOLIM should be at maximum 2048.

NPROC should be set to at least 3000/4000 (depends on number of users).

Also is recommended to use following formula to count value for SEMMSL, SEMMNS, and SEMMNU:

SEMMSL = 13

Installing MySQL

163

ftp://ftp.sco.com/pub/unixware7
ftp://ftp.sco.com/pub/unixware7/713/
ftp://ftp.sco.com/pub/unixware7/714/
ftp://ftp.sco.com/pub/openunix8
ftp://ftp.sco.com/pub/security/OpenUNIX
ftp://ftp.sco.com/pub/security/UnixWare

13 is what has been found to be the best for both Progress and MySQL.

SEMMNS = SEMMSL * number of db servers to be run on the system.

Set SEMMNS to the value of SEMMSL multiplied by the number of db servers (maximum) that you
are running on the system at one time.

SEMMNU = SEMMNS

Set the value of SEMMNU to equal the value of SEMMNS. You could probably set this to 75% of
SEMMNS, but this is a conservative estimate.

2.12.6. OS/2 Notes
MySQL uses quite a few open files. Because of this, you should add something like the following to
your CONFIG.SYS file:

SET EMXOPT=-c -n -h1024

If you don't do this, you may encounter the following error:

File 'xxxx' not found (Errcode: 24)

When using MySQL with OS/2 Warp 3, FixPack 29 or above is required. With OS/2 Warp 4, Fix-
Pack 4 or above is required. This is a requirement of the Pthreads library. MySQL must be installed
on a partition with a type that supports long filenames, such as HPFS, FAT32, and so on.

The INSTALL.CMD script must be run from OS/2's own CMD.EXE and may not work with re-
placement shells such as 4OS2.EXE.

The scripts/mysql-install-db script has been renamed. It is called install.cmd and is
a REXX script, which sets up the default MySQL security settings and creates the WorkPlace Shell
icons for MySQL.

Dynamic module support is compiled in but not fully tested. Dynamic modules should be compiled
using the Pthreads runtime library.

gcc -Zdll -Zmt -Zcrtdll=pthrdrtl -I../include -I../regex -I.. \
-o example udf_example.cc -L../lib -lmysqlclient udf_example.def

mv example.dll example.udf

Note: Due to limitations in OS/2, UDF module name stems must not exceed eight characters. Mod-
ules are stored in the /mysql2/udf directory; the safe-mysqld.cmd script puts this directory
in the BEGINLIBPATH environment variable. When using UDF modules, specified extensions are
ignored---it is assumed to be .udf. For example, in Unix, the shared module might be named ex-
ample.so and you would load a function from it like this:

mysql> CREATE FUNCTION metaphon RETURNS STRING SONAME 'example.so';

In OS/2, the module would be named example.udf, but you would not specify the module exten-
sion:

mysql> CREATE FUNCTION metaphon RETURNS STRING SONAME 'example';

2.12.7. BeOS Notes
We have in the past talked with some BeOS developers who have said that MySQL is 80% ported to

Installing MySQL

164

BeOS, but we haven't heard from them in a while.

2.13. Perl Installation Notes
Perl support for MySQL is provided by means of the DBI/DBD client interface. The interface re-
quires Perl Version 5.6.0 or later. It does not work if you have an older version of Perl.

If you want to use transactions with Perl DBI, you need to have DBD::mysql version 1.2216 or
newer. Version 2.9003 or newer is recommended.

If you are using the MySQL 4.1 client library, you must use DBD::mysql 2.9003 or newer.

As of MySQL 3.22.8, Perl support is no longer included with MySQL distributions. You can obtain
the necessary modules from http://search.cpan.org for Unix, or by using the ActiveState ppm pro-
gram on Windows. The following sections describe how to do this.

Perl support for MySQL must be installed if you want to run the MySQL benchmark scripts. See
Section 7.1.4, “The MySQL Benchmark Suite”.

2.13.1. Installing Perl on Unix
MySQL Perl support requires that you've installed MySQL client programming support (libraries
and header files). Most installation methods install the necessary files. However, if you installed
MySQL from RPM files on Linux, be sure that you've installed the developer RPM. The client pro-
grams are in the client RPM, but client programming support is in the developer RPM.

If you want to install Perl support, the files you need can be obtained from the CPAN
(Comprehensive Perl Archive Network) at http://search.cpan.org.

The easiest way to install Perl modules on Unix is to use the CPAN module. For example:

shell> perl -MCPAN -e shell
cpan> install DBI
cpan> install DBD::mysql

The DBD::mysql installation runs a number of tests. These tests require being able to connect to
the local MySQL server as the anonymous user with no password. If you have removed anonymous
accounts or assigned them passwords, the tests fail. You can use force install
DBD::mysql to ignore the failed tests.

DBI requires the Data::Dumper module. It may be installed; if not, you should install it before
installing DBI.

It is also possible to download the module distributions in the form of compressed tar archives and
build the modules manually. For example, to unpack and build a DBI distribution, use a procedure
such as this:

1. Unpack the distribution into the current directory:

shell> gunzip < DBI-VERSION.tar.gz | tar xvf -

This command creates a directory named DBI-VERSION.

2. Change location into the top-level directory of the unpacked distribution:

shell> cd DBI-VERSION

3. Build the distribution and compile everything:

shell> perl Makefile.PL

Installing MySQL

165

http://search.cpan.org
http://search.cpan.org

shell> make
shell> make test
shell> make install

The make test command is important because it verifies that the module is working. Note that when
you run that command during the DBD::mysql installation to exercise the interface code, the
MySQL server must be running or the test fails.

It is a good idea to rebuild and reinstall the DBD::mysql distribution whenever you install a new
release of MySQL, particularly if you notice symptoms such as that all your DBI scripts fail after
you upgrade MySQL.

If you don't have access rights to install Perl modules in the system directory or if you want to install
local Perl modules, the following reference may be useful: ht-
tp://servers.digitaldaze.com/extensions/perl/modules.html#modules

Look under the heading ``Installing New Modules that Require Locally Installed Modules.''

2.13.2. Installing ActiveState Perl on Windows
On Windows, you should do the following to install the MySQL DBD module with ActiveState Perl:

• Get ActiveState Perl from http://www.activestate.com/Products/ActivePerl/ and install it.

• Open a console window (a ``DOS window'').

• If required, set the HTTP_proxy variable. For example, you might try:

set HTTP_proxy=my.proxy.com:3128

• Start the PPM program:

C:\> C:\perl\bin\ppm.pl

• If you have not previously done so, install DBI:

ppm> install DBI

• If this succeeds, run the following command:

install \
ftp://ftp.de.uu.net/pub/CPAN/authors/id/JWIED/DBD-mysql-1.2212.x86.ppd

This procedure should work at least with ActiveState Perl Version 5.6.

If you can't get the procedure to work, you should instead install the MyODBC driver and connect
to the MySQL server through ODBC:

use DBI;
$dbh= DBI->connect("DBI:ODBC:$dsn",$user,$password) ||
die "Got error $DBI::errstr when connecting to $dsn\n";

2.13.3. Problems Using the Perl DBI/DBD Interface

Installing MySQL

166

http://servers.digitaldaze.com/extensions/perl/modules.html#modules
http://servers.digitaldaze.com/extensions/perl/modules.html#modules
http://www.activestate.com/Products/ActivePerl/

If Perl reports that it can't find the ../mysql/mysql.so module, then the problem is probably
that Perl can't locate the shared library libmysqlclient.so.

You should be able to fix this by one of the following methods:

• Compile the DBD::mysql distribution with perl Makefile.PL -static -config
rather than perl Makefile.PL.

• Copy libmysqlclient.so to the directory where your other shared libraries are located
(probably /usr/lib or /lib).

• Modify the -L options used to compile DBD::mysql to reflect the actual location of
libmysqlclient.so.

• On Linux, you can add the pathname of the directory where libmysqlclient.so is located
to the /etc/ld.so.conf file.

• Add the pathname of the directory where libmysqlclient.so is located to the
LD_RUN_PATH environment variable. Some systems use LD_LIBRARY_PATH instead.

Note that you may also need to modify the -L options if there are other libraries that the linker fails
to find. For example, if the linker cannot find libc because it is in /lib and the link command
specifies -L/usr/lib, change the -L option to -L/lib or add -L/lib to the existing link
command.

If you get the following errors from DBD::mysql, you are probably using gcc (or using an old bin-
ary compiled with gcc):

/usr/bin/perl: can't resolve symbol '__moddi3'
/usr/bin/perl: can't resolve symbol '__divdi3'

Add -L/usr/lib/gcc-lib/... -lgcc to the link command when the mysql.so library
gets built (check the output from make for mysql.so when you compile the Perl client). The -L
option should specify the pathname of the directory where libgcc.a is located on your system.

Another cause of this problem may be that Perl and MySQL aren't both compiled with gcc. In this
case, you can solve the mismatch by compiling both with gcc.

You may see the following error from DBD::mysql when you run the tests:

t/00base............install_driver(mysql) failed:
Can't load '../blib/arch/auto/DBD/mysql/mysql.so' for module DBD::mysql:
../blib/arch/auto/DBD/mysql/mysql.so: undefined symbol:
uncompress at /usr/lib/perl5/5.00503/i586-linux/DynaLoader.pm line 169.

This means that you need to include the -lz compression library on the link line. That can be done
by changing the following line in the file lib/DBD/mysql/Install.pm:

$sysliblist .= " -lm";

Change that line to:

$sysliblist .= " -lm -lz";

After this, you must run make realclean and then proceed with the installation from the beginning.

If you want to install DBI on SCO, you have to edit the Makefile in DBI-xxx and each subdir-
ectory. Note that the following assumes gcc 2.95.2 or newer:

Installing MySQL

167

OLD: NEW:
CC = cc CC = gcc
CCCDLFLAGS = -KPIC -W1,-Bexport CCCDLFLAGS = -fpic
CCDLFLAGS = -wl,-Bexport CCDLFLAGS =
LD = ld LD = gcc -G -fpic
LDDLFLAGS = -G -L/usr/local/lib LDDLFLAGS = -L/usr/local/lib
LDFLAGS = -belf -L/usr/local/lib LDFLAGS = -L/usr/local/lib
LD = ld LD = gcc -G -fpic
OPTIMISE = -Od OPTIMISE = -O1
OLD:
CCCFLAGS = -belf -dy -w0 -U M_XENIX -DPERL_SCO5 -I/usr/local/include
NEW:
CCFLAGS = -U M_XENIX -DPERL_SCO5 -I/usr/local/include

These changes are necessary because the Perl dynaloader does not load the DBI modules if they
were compiled with icc or cc.

If you want to use the Perl module on a system that doesn't support dynamic linking (such as SCO),
you can generate a static version of Perl that includes DBI and DBD::mysql. The way this works
is that you generate a version of Perl with the DBI code linked in and install it on top of your current
Perl. Then you use that to build a version of Perl that additionally has the DBD code linked in, and
install that.

On SCO, you must have the following environment variables set:

LD_LIBRARY_PATH=/lib:/usr/lib:/usr/local/lib:/usr/progressive/lib

Or:

LD_LIBRARY_PATH=/usr/lib:/lib:/usr/local/lib:/usr/ccs/lib:\
/usr/progressive/lib:/usr/skunk/lib

LIBPATH=/usr/lib:/lib:/usr/local/lib:/usr/ccs/lib:\
/usr/progressive/lib:/usr/skunk/lib

MANPATH=scohelp:/usr/man:/usr/local1/man:/usr/local/man:\
/usr/skunk/man:

First, create a Perl that includes a statically linked DBI module by running these commands in the
directory where your DBI distribution is located:

shell> perl Makefile.PL -static -config
shell> make
shell> make install
shell> make perl

Then you must install the new Perl. The output of make perl indicates the exact make command
you need to execute to perform the installation. On SCO, this is make -f Makefile.aperl inst_perl
MAP_TARGET=perl.

Next, use the just-created Perl to create another Perl that also includes a statically linked
DBD::mysql by running these commands in the directory where your DBD::mysql distribution
is located:

shell> perl Makefile.PL -static -config
shell> make
shell> make install
shell> make perl

Finally, you should install this new Perl. Again, the output of make perl indicates the command to
use.

Installing MySQL

168

Chapter 3. MySQL Tutorial
This chapter provides a tutorial introduction to MySQL by showing how to use the mysql client
program to create and use a simple database. mysql (sometimes referred to as the ``terminal monit-
or'' or just ``monitor'') is an interactive program that allows you to connect to a MySQL server, run
queries, and view the results. mysql may also be used in batch mode: you place your queries in a
file beforehand, then tell mysql to execute the contents of the file. Both ways of using mysql are
covered here.

To see a list of options provided by mysql, invoke it with the --help option:

shell> mysql --help

This chapter assumes that mysql is installed on your machine and that a MySQL server is available
to which you can connect. If this is not true, contact your MySQL administrator. (If you are the ad-
ministrator, you need to consult other sections of this manual.)

This chapter describes the entire process of setting up and using a database. If you are interested
only in accessing an existing database, you may want to skip over the sections that describe how to
create the database and the tables it contains.

Because this chapter is tutorial in nature, many details are necessarily omitted. Consult the relevant
sections of the manual for more information on the topics covered here.

3.1. Connecting to and Disconnecting from
the Server

To connect to the server, you'll usually need to provide a MySQL username when you invoke mysql
and, most likely, a password. If the server runs on a machine other than the one where you log in,
you'll also need to specify a hostname. Contact your administrator to find out what connection para-
meters you should use to connect (that is, what host, username, and password to use). Once you
know the proper parameters, you should be able to connect like this:

shell> mysql -h host -u user -p
Enter password: ********

host and user represent the hostname where your MySQL server is running and the username of
your MySQL account. Substitute appropriate values for your setup. The ******** represents your
password; enter it when mysql displays the Enter password: prompt.

If that works, you should see some introductory information followed by a mysql> prompt:

shell> mysql -h host -u user -p
Enter password: ********
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 25338 to server version: 4.0.14-log
Type 'help;' or '\h' for help. Type '\c' to clear the buffer.
mysql>

The prompt tells you that mysql is ready for you to enter commands.

Some MySQL installations allow users to connect as the anonymous (unnamed) user to the server
running on the local host. If this is the case on your machine, you should be able to connect to that
server by invoking mysql without any options:

shell> mysql

169

After you have connected successfully, you can disconnect any time by typing QUIT (or \q) at the
mysql> prompt:

mysql> QUIT
Bye

On Unix, you can also disconnect by pressing Control-D.

Most examples in the following sections assume that you are connected to the server. They indicate
this by the mysql> prompt.

3.2. Entering Queries
Make sure that you are connected to the server, as discussed in the previous section. Doing so does
not in itself select any database to work with, but that's okay. At this point, it's more important to
find out a little about how to issue queries than to jump right in creating tables, loading data into
them, and retrieving data from them. This section describes the basic principles of entering com-
mands, using several queries you can try out to familiarize yourself with how mysql works.

Here's a simple command that asks the server to tell you its version number and the current date.
Type it in as shown here following the mysql> prompt and press Enter:

mysql> SELECT VERSION(), CURRENT_DATE;
+--------------+--------------+
| VERSION() | CURRENT_DATE |
+--------------+--------------+
| 3.22.20a-log | 1999-03-19 |
+--------------+--------------+
1 row in set (0.01 sec)
mysql>

This query illustrates several things about mysql:

• A command normally consists of an SQL statement followed by a semicolon. (There are some
exceptions where a semicolon may be omitted. QUIT, mentioned earlier, is one of them. We'll
get to others later.)

• When you issue a command, mysql sends it to the server for execution and displays the results,
then prints another mysql> prompt to indicate that it is ready for another command.

• mysql displays query output in tabular form (rows and columns). The first row contains labels
for the columns. The rows following are the query results. Normally, column labels are the
names of the columns you fetch from database tables. If you're retrieving the value of an expres-
sion rather than a table column (as in the example just shown), mysql labels the column using
the expression itself.

• mysql shows how many rows were returned and how long the query took to execute, which
gives you a rough idea of server performance. These values are imprecise because they represent
wall clock time (not CPU or machine time), and because they are affected by factors such as
server load and network latency. (For brevity, the ``rows in set'' line is not shown in the remain-
ing examples in this chapter.)

Keywords may be entered in any lettercase. The following queries are equivalent:

mysql> SELECT VERSION(), CURRENT_DATE;
mysql> select version(), current_date;
mysql> SeLeCt vErSiOn(), current_DATE;

Here's another query. It demonstrates that you can use mysql as a simple calculator:

MySQL Tutorial

170

mysql> SELECT SIN(PI()/4), (4+1)*5;
+-------------+---------+
| SIN(PI()/4) | (4+1)*5 |
+-------------+---------+
| 0.707107 | 25 |
+-------------+---------+

The queries shown thus far have been relatively short, single-line statements. You can even enter
multiple statements on a single line. Just end each one with a semicolon:

mysql> SELECT VERSION(); SELECT NOW();
+--------------+
| VERSION() |
+--------------+
| 3.22.20a-log |
+--------------+
+---------------------+
| NOW() |
+---------------------+
| 1999-03-19 00:15:33 |
+---------------------+

A command need not be given all on a single line, so lengthy commands that require several lines
are not a problem. mysql determines where your statement ends by looking for the terminating
semicolon, not by looking for the end of the input line. (In other words, mysql accepts free-format
input: it collects input lines but does not execute them until it sees the semicolon.)

Here's a simple multiple-line statement:

mysql> SELECT
-> USER()
-> ,
-> CURRENT_DATE;

+--------------------+--------------+
| USER() | CURRENT_DATE |
+--------------------+--------------+
| joesmith@localhost | 1999-03-18 |
+--------------------+--------------+

In this example, notice how the prompt changes from mysql> to -> after you enter the first line of
a multiple-line query. This is how mysql indicates that it hasn't seen a complete statement and is
waiting for the rest. The prompt is your friend, because it provides valuable feedback. If you use that
feedback, you can always be aware of what mysql is waiting for.

If you decide you don't want to execute a command that you are in the process of entering, cancel it
by typing \c:

mysql> SELECT
-> USER()
-> \c

mysql>

Here, too, notice the prompt. It switches back to mysql> after you type \c, providing feedback to
indicate that mysql is ready for a new command.

The following table shows each of the prompts you may see and summarizes what they mean about
the state that mysql is in:

Prompt Meaning

mysql> Ready for new command.

-> Waiting for next line of multiple-line command.

MySQL Tutorial

171

'> Waiting for next line, collecting a string that begins with a single quote (''').

"> Waiting for next line, collecting a string that begins with a double quote ('"').

`> Waiting for next line, collecting an identifier that begins with a backtick ('`').

Multiple-line statements commonly occur by accident when you intend to issue a command on a
single line, but forget the terminating semicolon. In this case, mysql waits for more input:

mysql> SELECT USER()
->

If this happens to you (you think you've entered a statement but the only response is a -> prompt),
most likely mysql is waiting for the semicolon. If you don't notice what the prompt is telling you,
you might sit there for a while before realizing what you need to do. Enter a semicolon to complete
the statement, and mysql executes it:

mysql> SELECT USER()
-> ;

+--------------------+
| USER() |
+--------------------+
| joesmith@localhost |
+--------------------+

The '> and "> prompts occur during string collection. In MySQL, you can write strings surrounded
by either ''' or '"' characters (for example, 'hello' or "goodbye"), and mysql lets you enter
strings that span multiple lines. When you see a '> or "> prompt, it means that you've entered a line
containing a string that begins with a ''' or '"' quote character, but have not yet entered the matching
quote that terminates the string. That's fine if you really are entering a multiple-line string, but how
likely is that? Not very. More often, the '> and "> prompts indicate that you've inadvertently left
out a quote character. For example:

mysql> SELECT * FROM my_table WHERE name = 'Smith AND age < 30;
'>

If you enter this SELECT statement, then press Enter and wait for the result, nothing happens. In-
stead of wondering why this query takes so long, notice the clue provided by the '> prompt. It tells
you that mysql expects to see the rest of an unterminated string. (Do you see the error in the state-
ment? The string 'Smith is missing the second quote.)

At this point, what do you do? The simplest thing is to cancel the command. However, you cannot
just type \c in this case, because mysql interprets it as part of the string that it is collecting! Instead,
enter the closing quote character (so mysql knows you've finished the string), then type \c:

mysql> SELECT * FROM my_table WHERE name = 'Smith AND age < 30;
'> '\c

mysql>

The prompt changes back to mysql>, indicating that mysql is ready for a new command.

The `> prompt is similar to th '> and "> prompts, but indicates that you have begun but not com-
pleted a backtick-quoted identifier.

It's important to know what the '>, ">, and `> prompts signify, because if you mistakenly enter an
unterminated string, any further lines you type appear to be ignored by mysql---including a line con-
taining QUIT. This can be quite confusing, especially if you don't know that you need to supply the
terminating quote before you can cancel the current command.

3.3. Creating and Using a Database

MySQL Tutorial

172

Once you know how to enter commands, it's time to access a database.

Suppose that you have several pets in your home (your menagerie) and you'd like to keep track of
various types of information about them. You can do so by creating tables to hold your data and
loading them with the desired information. Then you can answer different sorts of questions about
your animals by retrieving data from the tables. This section shows you how to:

• Create a database

• Create a table

• Load data into the table

• Retrieve data from the table in various ways

• Use multiple tables

The menagerie database is simple (deliberately), but it is not difficult to think of real-world situ-
ations in which a similar type of database might be used. For example, a database like this could be
used by a farmer to keep track of livestock, or by a veterinarian to keep track of patient records. A
menagerie distribution containing some of the queries and sample data used in the following sec-
tions can be obtained from the MySQL Web site. It's available in either compressed tar format (ht-
tp://www.mysql.com/Downloads/Contrib/Examples/menagerie.tar.gz) or Zip format (ht-
tp://www.mysql.com/Downloads/Contrib/Examples/menagerie.zip).

Use the SHOW statement to find out what databases currently exist on the server:

mysql> SHOW DATABASES;
+----------+
| Database |
+----------+
| mysql |
| test |
| tmp |
+----------+

The list of databases is probably different on your machine, but the mysql and test databases are
likely to be among them. The mysql database is required because it describes user access priv-
ileges. The test database is often provided as a workspace for users to try things out.

Note that you may not see all databases if you don't have the SHOW DATABASES privilege. See
Section 13.5.1.3, “GRANT and REVOKE Syntax”.

If the test database exists, try to access it:

mysql> USE test
Database changed

Note that USE, like QUIT, does not require a semicolon. (You can terminate such statements with a
semicolon if you like; it does no harm.) The USE statement is special in another way, too: it must be
given on a single line.

You can use the test database (if you have access to it) for the examples that follow, but anything
you create in that database can be removed by anyone else with access to it. For this reason, you
should probably ask your MySQL administrator for permission to use a database of your own. Sup-
pose that you want to call yours menagerie. The administrator needs to execute a command like
this:

mysql> GRANT ALL ON menagerie.* TO 'your_mysql_name'@'your_client_host';

MySQL Tutorial

173

http://www.mysql.com/Downloads/Contrib/Examples/menagerie.tar.gz
http://www.mysql.com/Downloads/Contrib/Examples/menagerie.tar.gz
http://www.mysql.com/Downloads/Contrib/Examples/menagerie.zip
http://www.mysql.com/Downloads/Contrib/Examples/menagerie.zip

where your_mysql_name is the MySQL username assigned to you and your_client_host
is the host from which you connect to the server.

3.3.1. Creating and Selecting a Database
If the administrator creates your database for you when setting up your permissions, you can begin
using it. Otherwise, you need to create it yourself:

mysql> CREATE DATABASE menagerie;

Under Unix, database names are case sensitive (unlike SQL keywords), so you must always refer to
your database as menagerie, not as Menagerie, MENAGERIE, or some other variant. This is
also true for table names. (Under Windows, this restriction does not apply, although you must refer
to databases and tables using the same lettercase throughout a given query.)

Creating a database does not select it for use; you must do that explicitly. To make menagerie the
current database, use this command:

mysql> USE menagerie
Database changed

Your database needs to be created only once, but you must select it for use each time you begin a
mysql session. You can do this by issuing a USE statement as shown in the example. Alternatively,
you can select the database on the command line when you invoke mysql. Just specify its name after
any connection parameters that you might need to provide. For example:

shell> mysql -h host -u user -p menagerie
Enter password: ********

Note that menagerie is not your password on the command just shown. If you want to supply
your password on the command line after the -p option, you must do so with no intervening space
(for example, as -pmypassword, not as -p mypassword). However, putting your password on
the command line is not recommended, because doing so exposes it to snooping by other users
logged in on your machine.

3.3.2. Creating a Table
Creating the database is the easy part, but at this point it's empty, as SHOW TABLES tells you:

mysql> SHOW TABLES;
Empty set (0.00 sec)

The harder part is deciding what the structure of your database should be: what tables you need and
what columns should be in each of them.

You'll want a table that contains a record for each of your pets. This can be called the pet table, and
it should contain, as a bare minimum, each animal's name. Because the name by itself is not very in-
teresting, the table should contain other information. For example, if more than one person in your
family keeps pets, you might want to list each animal's owner. You might also want to record some
basic descriptive information such as species and sex.

How about age? That might be of interest, but it's not a good thing to store in a database. Age
changes as time passes, which means you'd have to update your records often. Instead, it's better to
store a fixed value such as date of birth. Then, whenever you need age, you can calculate it as the
difference between the current date and the birth date. MySQL provides functions for doing date
arithmetic, so this is not difficult. Storing birth date rather than age has other advantages, too:

• You can use the database for tasks such as generating reminders for upcoming pet birthdays. (If

MySQL Tutorial

174

you think this type of query is somewhat silly, note that it is the same question you might ask in
the context of a business database to identify clients to whom you'll soon need to send out birth-
day greetings, for that computer-assisted personal touch.)

• You can calculate age in relation to dates other than the current date. For example, if you store
death date in the database, you can easily calculate how old a pet was when it died.

You can probably think of other types of information that would be useful in the pet table, but the
ones identified so far are sufficient: name, owner, species, sex, birth, and death.

Use a CREATE TABLE statement to specify the layout of your table:

mysql> CREATE TABLE pet (name VARCHAR(20), owner VARCHAR(20),
-> species VARCHAR(20), sex CHAR(1), birth DATE, death DATE);

VARCHAR is a good choice for the name, owner, and species columns because the column val-
ues vary in length. The lengths of those columns need not all be the same, and need not be 20. You
can pick any length from 1 to 255, whatever seems most reasonable to you. (If you make a poor
choice and it turns out later that you need a longer field, MySQL provides an ALTER TABLE state-
ment.)

Several types of values can be chosen to represent sex in animal records, such as 'm' and 'f', or
perhaps 'male' and 'female'. It's simplest to use the single characters 'm' and 'f'.

The use of the DATE data type for the birth and death columns is a fairly obvious choice.

Once you have created a table, SHOW TABLES should produce some output:

mysql> SHOW TABLES;
+---------------------+
| Tables in menagerie |
+---------------------+
| pet |
+---------------------+

To verify that your table was created the way you expected, use a DESCRIBE statement:

mysql> DESCRIBE pet;
+---------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+-------------+------+-----+---------+-------+
name	varchar(20)	YES		NULL	
owner	varchar(20)	YES		NULL	
species	varchar(20)	YES		NULL	
sex	char(1)	YES		NULL	
birth	date	YES		NULL	
death	date	YES		NULL	
+---------+-------------+------+-----+---------+-------+

You can use DESCRIBE any time, for example, if you forget the names of the columns in your table
or what types they have.

3.3.3. Loading Data into a Table
After creating your table, you need to populate it. The LOAD DATA and INSERT statements are
useful for this.

Suppose that your pet records can be described as shown here. (Observe that MySQL expects dates
in 'YYYY-MM-DD' format; this may be different from what you are used to.)

name owner species sex birth death

MySQL Tutorial

175

Fluffy Harold cat f 1993-02-04

Claws Gwen cat m 1994-03-17

Buffy Harold dog f 1989-05-13

Fang Benny dog m 1990-08-27

Bowser Diane dog m 1979-08-31 1995-07-29

Chirpy Gwen bird f 1998-09-11

Whistler Gwen bird 1997-12-09

Slim Benny snake m 1996-04-29

Because you are beginning with an empty table, an easy way to populate it is to create a text file
containing a row for each of your animals, then load the contents of the file into the table with a
single statement.

You could create a text file pet.txt containing one record per line, with values separated by tabs,
and given in the order in which the columns were listed in the CREATE TABLE statement. For
missing values (such as unknown sexes or death dates for animals that are still living), you can use
NULL values. To represent these in your text file, use \N (backslash, capital-N). For example, the
record for Whistler the bird would look like this (where the whitespace between values is a single
tab character):

name owner species sex birth death

Whistler Gwen bird \N 1997-12-09 \N

To load the text file pet.txt into the pet table, use this command:

mysql> LOAD DATA LOCAL INFILE '/path/pet.txt' INTO TABLE pet;

Note that if you created the file on Windows with an editor that uses \r\n as a line terminator, you
should use:

mysql> LOAD DATA LOCAL INFILE '/path/pet.txt' INTO TABLE pet
-> LINES TERMINATED BY '\r\n';

You can specify the column value separator and end of line marker explicitly in the LOAD DATA
statement if you wish, but the defaults are tab and linefeed. These are sufficient for the statement to
read the file pet.txt properly.

If the statement fails, it is likely that your MySQL installation does not have local file capability en-
abled by default. See Section 5.4.4, “Security Issues with LOAD DATA LOCAL” for information on
how to change this.

When you want to add new records one at a time, the INSERT statement is useful. In its simplest
form, you supply values for each column, in the order in which the columns were listed in the CRE-
ATE TABLE statement. Suppose that Diane gets a new hamster named Puffball. You could add a
new record using an INSERT statement like this:

mysql> INSERT INTO pet
-> VALUES ('Puffball','Diane','hamster','f','1999-03-30',NULL);

Note that string and date values are specified as quoted strings here. Also, with INSERT, you can
insert NULL directly to represent a missing value. You do not use \N like you do with LOAD DATA.

From this example, you should be able to see that there would be a lot more typing involved to load
your records initially using several INSERT statements rather than a single LOAD DATA statement.

MySQL Tutorial

176

3.3.4. Retrieving Information from a Table
The SELECT statement is used to pull information from a table. The general form of the statement
is:

SELECT what_to_select
FROM which_table
WHERE conditions_to_satisfy;

what_to_select indicates what you want to see. This can be a list of columns, or * to indicate
``all columns.'' which_table indicates the table from which you want to retrieve data. The
WHERE clause is optional. If it's present, conditions_to_satisfy specifies conditions that
rows must satisfy to qualify for retrieval.

3.3.4.1. Selecting All Data

The simplest form of SELECT retrieves everything from a table:

mysql> SELECT * FROM pet;
+----------+--------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+----------+--------+---------+------+------------+------------+
Fluffy	Harold	cat	f	1993-02-04	NULL
Claws	Gwen	cat	m	1994-03-17	NULL
Buffy	Harold	dog	f	1989-05-13	NULL
Fang	Benny	dog	m	1990-08-27	NULL
Bowser	Diane	dog	m	1979-08-31	1995-07-29
Chirpy	Gwen	bird	f	1998-09-11	NULL
Whistler	Gwen	bird	NULL	1997-12-09	NULL
Slim	Benny	snake	m	1996-04-29	NULL
Puffball	Diane	hamster	f	1999-03-30	NULL
+----------+--------+---------+------+------------+------------+

This form of SELECT is useful if you want to review your entire table, for example, after you've
just loaded it with your initial dataset. For example, you may happen to think that the birth date for
Bowser doesn't seem quite right. Consulting your original pedigree papers, you find that the correct
birth year should be 1989, not 1979.

There are least a couple of ways to fix this:

• Edit the file pet.txt to correct the error, then empty the table and reload it using DELETE and
LOAD DATA:

mysql> DELETE FROM pet;
mysql> LOAD DATA LOCAL INFILE 'pet.txt' INTO TABLE pet;

However, if you do this, you must also re-enter the record for Puffball.

• Fix only the erroneous record with an UPDATE statement:

mysql> UPDATE pet SET birth = '1989-08-31' WHERE name = 'Bowser';

The UPDATE changes only the record in question and does not require you to reload the table.

3.3.4.2. Selecting Particular Rows

As shown in the preceding section, it is easy to retrieve an entire table. Just omit the WHERE clause
from the SELECT statement. But typically you don't want to see the entire table, particularly when it
becomes large. Instead, you're usually more interested in answering a particular question, in which

MySQL Tutorial

177

case you specify some constraints on the information you want. Let's look at some selection queries
in terms of questions about your pets that they answer.

You can select only particular rows from your table. For example, if you want to verify the change
that you made to Bowser's birth date, select Bowser's record like this:

mysql> SELECT * FROM pet WHERE name = 'Bowser';
+--------+-------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+--------+-------+---------+------+------------+------------+
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
+--------+-------+---------+------+------------+------------+

The output confirms that the year is correctly recorded as 1989, not 1979.

String comparisons normally are case-insensitive, so you can specify the name as 'bowser',
'BOWSER', etc. The query result is the same.

You can specify conditions on any column, not just name. For example, if you want to know which
animals were born after 1998, test the birth column:

mysql> SELECT * FROM pet WHERE birth >= '1998-1-1';
+----------+-------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+-------+
| Chirpy | Gwen | bird | f | 1998-09-11 | NULL |
| Puffball | Diane | hamster | f | 1999-03-30 | NULL |
+----------+-------+---------+------+------------+-------+

You can combine conditions, for example, to locate female dogs:

mysql> SELECT * FROM pet WHERE species = 'dog' AND sex = 'f';
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

The preceding query uses the AND logical operator. There is also an OR operator:

mysql> SELECT * FROM pet WHERE species = 'snake' OR species = 'bird';
+----------+-------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+-------+
Chirpy	Gwen	bird	f	1998-09-11	NULL
Whistler	Gwen	bird	NULL	1997-12-09	NULL
Slim	Benny	snake	m	1996-04-29	NULL
+----------+-------+---------+------+------------+-------+

AND and OR may be intermixed, although AND has higher precedence than OR. If you use both oper-
ators, it's a good idea to use parentheses to indicate explicitly how conditions should be grouped:

mysql> SELECT * FROM pet WHERE (species = 'cat' AND sex = 'm')
-> OR (species = 'dog' AND sex = 'f');

+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

3.3.4.3. Selecting Particular Columns

MySQL Tutorial

178

If you don't want to see entire rows from your table, just name the columns in which you're inter-
ested, separated by commas. For example, if you want to know when your animals were born, select
the name and birth columns:

mysql> SELECT name, birth FROM pet;
+----------+------------+
| name | birth |
+----------+------------+
Fluffy	1993-02-04
Claws	1994-03-17
Buffy	1989-05-13
Fang	1990-08-27
Bowser	1989-08-31
Chirpy	1998-09-11
Whistler	1997-12-09
Slim	1996-04-29
Puffball	1999-03-30
+----------+------------+

To find out who owns pets, use this query:

mysql> SELECT owner FROM pet;
+--------+
| owner |
+--------+
| Harold |
| Gwen |
| Harold |
| Benny |
| Diane |
| Gwen |
| Gwen |
| Benny |
| Diane |
+--------+

However, notice that the query simply retrieves the owner field from each record, and some of
them appear more than once. To minimize the output, retrieve each unique output record just once
by adding the keyword DISTINCT:

mysql> SELECT DISTINCT owner FROM pet;
+--------+
| owner |
+--------+
| Benny |
| Diane |
| Gwen |
| Harold |
+--------+

You can use a WHERE clause to combine row selection with column selection. For example, to get
birth dates for dogs and cats only, use this query:

mysql> SELECT name, species, birth FROM pet
-> WHERE species = 'dog' OR species = 'cat';

+--------+---------+------------+
| name | species | birth |
+--------+---------+------------+
Fluffy	cat	1993-02-04
Claws	cat	1994-03-17
Buffy	dog	1989-05-13
Fang	dog	1990-08-27
Bowser	dog	1989-08-31
+--------+---------+------------+

MySQL Tutorial

179

3.3.4.4. Sorting Rows

You may have noticed in the preceding examples that the result rows are displayed in no particular
order. It's often easier to examine query output when the rows are sorted in some meaningful way.
To sort a result, use an ORDER BY clause.

Here are animal birthdays, sorted by date:

mysql> SELECT name, birth FROM pet ORDER BY birth;
+----------+------------+
| name | birth |
+----------+------------+
Buffy	1989-05-13
Bowser	1989-08-31
Fang	1990-08-27
Fluffy	1993-02-04
Claws	1994-03-17
Slim	1996-04-29
Whistler	1997-12-09
Chirpy	1998-09-11
Puffball	1999-03-30
+----------+------------+

On character type columns, sorting---like all other comparison operations---is normally performed
in a case-insensitive fashion. This means that the order is undefined for columns that are identical
except for their case. You can force a case-sensitive sort for a column by using the BINARY cast:
ORDER BY BINARY col_name.

The default sort order is ascending, with smallest values first. To sort in reverse (descending) order,
add the DESC keyword to the name of the column you are sorting by:

mysql> SELECT name, birth FROM pet ORDER BY birth DESC;
+----------+------------+
| name | birth |
+----------+------------+
Puffball	1999-03-30
Chirpy	1998-09-11
Whistler	1997-12-09
Slim	1996-04-29
Claws	1994-03-17
Fluffy	1993-02-04
Fang	1990-08-27
Bowser	1989-08-31
Buffy	1989-05-13
+----------+------------+

You can sort on multiple columns, and you can sort columns in different directions. For example, to
sort by type of animal in ascending order, then by birth date within animal type in descending order
(youngest animals first), use the following query:

mysql> SELECT name, species, birth FROM pet
-> ORDER BY species, birth DESC;

+----------+---------+------------+
| name | species | birth |
+----------+---------+------------+
Chirpy	bird	1998-09-11
Whistler	bird	1997-12-09
Claws	cat	1994-03-17
Fluffy	cat	1993-02-04
Fang	dog	1990-08-27
Bowser	dog	1989-08-31
Buffy	dog	1989-05-13
Puffball	hamster	1999-03-30
Slim	snake	1996-04-29
+----------+---------+------------+

MySQL Tutorial

180

Note that the DESC keyword applies only to the column name immediately preceding it (birth); it
does not affect the species column sort order.

3.3.4.5. Date Calculations

MySQL provides several functions that you can use to perform calculations on dates, for example,
to calculate ages or extract parts of dates.

To determine how many years old each of your pets is, compute the difference in the year part of the
current date and the birth date, then subtract one if the current date occurs earlier in the calendar
year than the birth date. The following query shows, for each pet, the birth date, the current date,
and the age in years.

mysql> SELECT name, birth, CURDATE(),
-> (YEAR(CURDATE())-YEAR(birth))
-> - (RIGHT(CURDATE(),5)<RIGHT(birth,5))
-> AS age
-> FROM pet;

+----------+------------+------------+------+
| name | birth | CURDATE() | age |
+----------+------------+------------+------+
Fluffy	1993-02-04	2003-08-19	10
Claws	1994-03-17	2003-08-19	9
Buffy	1989-05-13	2003-08-19	14
Fang	1990-08-27	2003-08-19	12
Bowser	1989-08-31	2003-08-19	13
Chirpy	1998-09-11	2003-08-19	4
Whistler	1997-12-09	2003-08-19	5
Slim	1996-04-29	2003-08-19	7
Puffball	1999-03-30	2003-08-19	4
+----------+------------+------------+------+

Here, YEAR() pulls out the year part of a date and RIGHT() pulls off the rightmost five characters
that represent the MM-DD (calendar year) part of the date. The part of the expression that compares
the MM-DD values evaluates to 1 or 0, which adjusts the year difference down a year if CURDATE()
occurs earlier in the year than birth. The full expression is somewhat ungainly, so an alias (age)
is used to make the output column label more meaningful.

The query works, but the result could be scanned more easily if the rows were presented in some or-
der. This can be done by adding an ORDER BY name clause to sort the output by name:

mysql> SELECT name, birth, CURDATE(),
-> (YEAR(CURDATE())-YEAR(birth))
-> - (RIGHT(CURDATE(),5)<RIGHT(birth,5))
-> AS age
-> FROM pet ORDER BY name;

+----------+------------+------------+------+
| name | birth | CURDATE() | age |
+----------+------------+------------+------+
Bowser	1989-08-31	2003-08-19	13
Buffy	1989-05-13	2003-08-19	14
Chirpy	1998-09-11	2003-08-19	4
Claws	1994-03-17	2003-08-19	9
Fang	1990-08-27	2003-08-19	12
Fluffy	1993-02-04	2003-08-19	10
Puffball	1999-03-30	2003-08-19	4
Slim	1996-04-29	2003-08-19	7
Whistler	1997-12-09	2003-08-19	5
+----------+------------+------------+------+

To sort the output by age rather than name, just use a different ORDER BY clause:

MySQL Tutorial

181

mysql> SELECT name, birth, CURDATE(),
-> (YEAR(CURDATE())-YEAR(birth))
-> - (RIGHT(CURDATE(),5)<RIGHT(birth,5))
-> AS age
-> FROM pet ORDER BY age;

+----------+------------+------------+------+
| name | birth | CURDATE() | age |
+----------+------------+------------+------+
Chirpy	1998-09-11	2003-08-19	4
Puffball	1999-03-30	2003-08-19	4
Whistler	1997-12-09	2003-08-19	5
Slim	1996-04-29	2003-08-19	7
Claws	1994-03-17	2003-08-19	9
Fluffy	1993-02-04	2003-08-19	10
Fang	1990-08-27	2003-08-19	12
Bowser	1989-08-31	2003-08-19	13
Buffy	1989-05-13	2003-08-19	14
+----------+------------+------------+------+

A similar query can be used to determine age at death for animals that have died. You determine
which animals these are by checking whether the death value is NULL. Then, for those with
non-NULL values, compute the difference between the death and birth values:

mysql> SELECT name, birth, death,
-> (YEAR(death)-YEAR(birth)) - (RIGHT(death,5)<RIGHT(birth,5))
-> AS age
-> FROM pet WHERE death IS NOT NULL ORDER BY age;

+--------+------------+------------+------+
| name | birth | death | age |
+--------+------------+------------+------+
| Bowser | 1989-08-31 | 1995-07-29 | 5 |
+--------+------------+------------+------+

The query uses death IS NOT NULL rather than death <> NULL because NULL is a special
value that cannot be compared using the usual comparison operators. This is discussed later. See
Section 3.3.4.6, “Working with NULL Values”.

What if you want to know which animals have birthdays next month? For this type of calculation,
year and day are irrelevant; you simply want to extract the month part of the birth column.
MySQL provides several date-part extraction functions, such as YEAR(), MONTH(), and DAYOF-
MONTH(). MONTH() is the appropriate function here. To see how it works, run a simple query that
displays the value of both birth and MONTH(birth):

mysql> SELECT name, birth, MONTH(birth) FROM pet;
+----------+------------+--------------+
| name | birth | MONTH(birth) |
+----------+------------+--------------+
Fluffy	1993-02-04	2
Claws	1994-03-17	3
Buffy	1989-05-13	5
Fang	1990-08-27	8
Bowser	1989-08-31	8
Chirpy	1998-09-11	9
Whistler	1997-12-09	12
Slim	1996-04-29	4
Puffball	1999-03-30	3
+----------+------------+--------------+

Finding animals with birthdays in the upcoming month is easy, too. Suppose that the current month
is April. Then the month value is 4 and you look for animals born in May (month 5) like this:

mysql> SELECT name, birth FROM pet WHERE MONTH(birth) = 5;
+-------+------------+
| name | birth |

MySQL Tutorial

182

+-------+------------+
| Buffy | 1989-05-13 |
+-------+------------+

There is a small complication if the current month is December. You don't just add one to the month
number (12) and look for animals born in month 13, because there is no such month. Instead, you
look for animals born in January (month 1).

You can even write the query so that it works no matter what the current month is. That way you
don't have to use a particular month number in the query. DATE_ADD() allows you to add a time
interval to a given date. If you add a month to the value of CURDATE(), then extract the month part
with MONTH(), the result produces the month in which to look for birthdays:

mysql> SELECT name, birth FROM pet
-> WHERE MONTH(birth) = MONTH(DATE_ADD(CURDATE(),INTERVAL 1 MONTH));

A different way to accomplish the same task is to add 1 to get the next month after the current one
(after using the modulo function (MOD) to wrap around the month value to 0 if it is currently 12):

mysql> SELECT name, birth FROM pet
-> WHERE MONTH(birth) = MOD(MONTH(CURDATE()), 12) + 1;

Note that MONTH returns a number between 1 and 12. And MOD(something,12) returns a num-
ber between 0 and 11. So the addition has to be after the MOD(), otherwise we would go from
November (11) to January (1).

3.3.4.6. Working with NULL Values

The NULL value can be surprising until you get used to it. Conceptually, NULL means missing value
or unknown value and it is treated somewhat differently than other values. To test for NULL, you
cannot use the arithmetic comparison operators such as =, <, or <>. To demonstrate this for your-
self, try the following query:

mysql> SELECT 1 = NULL, 1 <> NULL, 1 < NULL, 1 > NULL;
+----------+-----------+----------+----------+
| 1 = NULL | 1 <> NULL | 1 < NULL | 1 > NULL |
+----------+-----------+----------+----------+
| NULL | NULL | NULL | NULL |
+----------+-----------+----------+----------+

Clearly you get no meaningful results from these comparisons. Use the IS NULL and IS NOT
NULL operators instead:

mysql> SELECT 1 IS NULL, 1 IS NOT NULL;
+-----------+---------------+
| 1 IS NULL | 1 IS NOT NULL |
+-----------+---------------+
| 0 | 1 |
+-----------+---------------+

Note that in MySQL, 0 or NULL means false and anything else means true. The default truth value
from a boolean operation is 1.

This special treatment of NULL is why, in the previous section, it was necessary to determine which
animals are no longer alive using death IS NOT NULL instead of death <> NULL.

Two NULL values are regarded as equal in a GROUP BY.

When doing an ORDER BY, NULL values are presented first if you do ORDER BY ... ASC and
last if you do ORDER BY ... DESC.

MySQL Tutorial

183

Note that MySQL 4.0.2 to 4.0.10 incorrectly always sorts NULL values first regardless of the sort
direction.

3.3.4.7. Pattern Matching

MySQL provides standard SQL pattern matching as well as a form of pattern matching based on ex-
tended regular expressions similar to those used by Unix utilities such as vi, grep, and sed.

SQL pattern matching allows you to use '_' to match any single character and '%' to match an arbit-
rary number of characters (including zero characters). In MySQL, SQL patterns are case-insensitive
by default. Some examples are shown here. Note that you do not use = or <> when you use SQL
patterns; use the LIKE or NOT LIKE comparison operators instead.

To find names beginning with 'b':

mysql> SELECT * FROM pet WHERE name LIKE 'b%';
+--------+--------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+------------+
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
+--------+--------+---------+------+------------+------------+

To find names ending with 'fy':

mysql> SELECT * FROM pet WHERE name LIKE '%fy';
+--------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+-------+
| Fluffy | Harold | cat | f | 1993-02-04 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+--------+--------+---------+------+------------+-------+

To find names containing a 'w':

mysql> SELECT * FROM pet WHERE name LIKE '%w%';
+----------+-------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+------------+
Claws	Gwen	cat	m	1994-03-17	NULL
Bowser	Diane	dog	m	1989-08-31	1995-07-29
Whistler	Gwen	bird	NULL	1997-12-09	NULL
+----------+-------+---------+------+------------+------------+

To find names containing exactly five characters, use five instances of the '_' pattern character:

mysql> SELECT * FROM pet WHERE name LIKE '_____';
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

The other type of pattern matching provided by MySQL uses extended regular expressions. When
you test for a match for this type of pattern, use the REGEXP and NOT REGEXP operators (or
RLIKE and NOT RLIKE, which are synonyms).

Some characteristics of extended regular expressions are:

• '.' matches any single character.

MySQL Tutorial

184

• A character class '[...]' matches any character within the brackets. For example, '[abc]'
matches 'a', 'b', or 'c'. To name a range of characters, use a dash. '[a-z]' matches any letter,
whereas '[0-9]' matches any digit.

• '*' matches zero or more instances of the thing preceding it. For example, 'x*' matches any num-
ber of 'x' characters, '[0-9]*' matches any number of digits, and '.*' matches any number of
anything.

• A REGEXP pattern match succeed if the pattern matches anywhere in the value being tested.
(This differs from a LIKE pattern match, which succeeds only if the pattern matches the entire
value.)

• To anchor a pattern so that it must match the beginning or end of the value being tested, use '^'
at the beginning or '$' at the end of the pattern.

To demonstrate how extended regular expressions work, the LIKE queries shown previously are re-
written here to use REGEXP.

To find names beginning with 'b', use '^' to match the beginning of the name:

mysql> SELECT * FROM pet WHERE name REGEXP '^b';
+--------+--------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+------------+
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
+--------+--------+---------+------+------------+------------+

Prior to MySQL Version 3.23.4, REGEXP is case sensitive, and the previous query will return no
rows. In this case, to match either lowercase or uppercase 'b', use this query instead:

mysql> SELECT * FROM pet WHERE name REGEXP '^[bB]';

From MySQL 3.23.4 on, if you really want to force a REGEXP comparison to be case sensitive, use
the BINARY keyword to make one of the strings a binary string. This query matches only lowercase
'b' at the beginning of a name:

mysql> SELECT * FROM pet WHERE name REGEXP BINARY '^b';

To find names ending with 'fy', use '$' to match the end of the name:

mysql> SELECT * FROM pet WHERE name REGEXP 'fy$';
+--------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+-------+
| Fluffy | Harold | cat | f | 1993-02-04 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+--------+--------+---------+------+------------+-------+

To find names containing a 'w', use this query:

mysql> SELECT * FROM pet WHERE name REGEXP 'w';
+----------+-------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+------------+
Claws	Gwen	cat	m	1994-03-17	NULL
Bowser	Diane	dog	m	1989-08-31	1995-07-29
Whistler	Gwen	bird	NULL	1997-12-09	NULL
+----------+-------+---------+------+------------+------------+

MySQL Tutorial

185

Because a regular expression pattern matches if it occurs anywhere in the value, it is not necessary
in the previous query to put a wildcard on either side of the pattern to get it to match the entire value
like it would be if you used an SQL pattern.

To find names containing exactly five characters, use '^' and '$' to match the beginning and end of
the name, and five instances of '.' in between:

mysql> SELECT * FROM pet WHERE name REGEXP '^.....$';
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

You could also write the previous query using the '{n}' ``repeat-n-times'' operator:

mysql> SELECT * FROM pet WHERE name REGEXP '^.{5}$';
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

3.3.4.8. Counting Rows

Databases are often used to answer the question, ``How often does a certain type of data occur in a
table?'' For example, you might want to know how many pets you have, or how many pets each
owner has, or you might want to perform various kinds of census operations on your animals.

Counting the total number of animals you have is the same question as ``How many rows are in the
pet table?'' because there is one record per pet. COUNT(*) counts the number of rows, so the
query to count your animals looks like this:

mysql> SELECT COUNT(*) FROM pet;
+----------+
| COUNT(*) |
+----------+
| 9 |
+----------+

Earlier, you retrieved the names of the people who owned pets. You can use COUNT() if you want
to find out how many pets each owner has:

mysql> SELECT owner, COUNT(*) FROM pet GROUP BY owner;
+--------+----------+
| owner | COUNT(*) |
+--------+----------+
Benny	2
Diane	2
Gwen	3
Harold	2
+--------+----------+

Note the use of GROUP BY to group together all records for each owner. Without it, all you get is
an error message:

mysql> SELECT owner, COUNT(*) FROM pet;
ERROR 1140: Mixing of GROUP columns (MIN(),MAX(),COUNT()...)
with no GROUP columns is illegal if there is no GROUP BY clause

MySQL Tutorial

186

COUNT() and GROUP BY are useful for characterizing your data in various ways. The following
examples show different ways to perform animal census operations.

Number of animals per species:

mysql> SELECT species, COUNT(*) FROM pet GROUP BY species;
+---------+----------+
| species | COUNT(*) |
+---------+----------+
bird	2
cat	2
dog	3
hamster	1
snake	1
+---------+----------+

Number of animals per sex:

mysql> SELECT sex, COUNT(*) FROM pet GROUP BY sex;
+------+----------+
| sex | COUNT(*) |
+------+----------+
NULL	1
f	4
m	4
+------+----------+

(In this output, NULL indicates that the sex is unknown.)

Number of animals per combination of species and sex:

mysql> SELECT species, sex, COUNT(*) FROM pet GROUP BY species, sex;
+---------+------+----------+
| species | sex | COUNT(*) |
+---------+------+----------+
bird	NULL	1
bird	f	1
cat	f	1
cat	m	1
dog	f	1
dog	m	2
hamster	f	1
snake	m	1
+---------+------+----------+

You need not retrieve an entire table when you use COUNT(). For example, the previous query,
when performed just on dogs and cats, looks like this:

mysql> SELECT species, sex, COUNT(*) FROM pet
-> WHERE species = 'dog' OR species = 'cat'
-> GROUP BY species, sex;

+---------+------+----------+
| species | sex | COUNT(*) |
+---------+------+----------+
cat	f	1
cat	m	1
dog	f	1
dog	m	2
+---------+------+----------+

Or, if you wanted the number of animals per sex only for known-sex animals:

mysql> SELECT species, sex, COUNT(*) FROM pet
-> WHERE sex IS NOT NULL

MySQL Tutorial

187

-> GROUP BY species, sex;
+---------+------+----------+
| species | sex | COUNT(*) |
+---------+------+----------+
bird	f	1
cat	f	1
cat	m	1
dog	f	1
dog	m	2
hamster	f	1
snake	m	1
+---------+------+----------+

3.3.4.9. Using More Than one Table

The pet table keeps track of which pets you have. If you want to record other information about
them, such as events in their lives like visits to the vet or when litters are born, you need another ta-
ble. What should this table look like? It needs:

• To contain the pet name so you know which animal each event pertains to.

• A date so you know when the event occurred.

• A field to describe the event.

• An event type field, if you want to be able to categorize events.

Given these considerations, the CREATE TABLE statement for the event table might look like
this:

mysql> CREATE TABLE event (name VARCHAR(20), date DATE,
-> type VARCHAR(15), remark VARCHAR(255));

As with the pet table, it's easiest to load the initial records by creating a tab-delimited text file con-
taining the information:

name date type remark

Fluffy 1995-05-15 litter 4 kittens, 3 female, 1 male

Buffy 1993-06-23 litter 5 puppies, 2 female, 3 male

Buffy 1994-06-19 litter 3 puppies, 3 female

Chirpy 1999-03-21 vet needed beak straightened

Slim 1997-08-03 vet broken rib

Bowser 1991-10-12 kennel

Fang 1991-10-12 kennel

Fang 1998-08-28 birthday Gave him a new chew toy

Claws 1998-03-17 birthday Gave him a new flea collar

Whistler 1998-12-09 birthday First birthday

Load the records like this:

mysql> LOAD DATA LOCAL INFILE 'event.txt' INTO TABLE event;

Based on what you've learned from the queries you've run on the pet table, you should be able to
perform retrievals on the records in the event table; the principles are the same. But when is the

MySQL Tutorial

188

event table by itself insufficient to answer questions you might ask?

Suppose that you want to find out the ages at which each pet had its litters. We saw earlier how to
calculate ages from two dates. The litter date of the mother is in the event table, but to calculate
her age on that date you need her birth date, which is stored in the pet table. This means the query
requires both tables:

mysql> SELECT pet.name,
-> (YEAR(date)-YEAR(birth)) - (RIGHT(date,5)<RIGHT(birth,5)) AS age,
-> remark
-> FROM pet, event
-> WHERE pet.name = event.name AND type = 'litter';

+--------+------+-----------------------------+
| name | age | remark |
+--------+------+-----------------------------+
Fluffy	2	4 kittens, 3 female, 1 male
Buffy	4	5 puppies, 2 female, 3 male
Buffy	5	3 puppies, 3 female
+--------+------+-----------------------------+

There are several things to note about this query:

• The FROM clause lists two tables because the query needs to pull information from both of them.

• When combining (joining) information from multiple tables, you need to specify how records in
one table can be matched to records in the other. This is easy because they both have a name
column. The query uses WHERE clause to match up records in the two tables based on the name
values.

• Because the name column occurs in both tables, you must be specific about which table you
mean when referring to the column. This is done by prepending the table name to the column
name.

You need not have two different tables to perform a join. Sometimes it is useful to join a table to it-
self, if you want to compare records in a table to other records in that same table. For example, to
find breeding pairs among your pets, you can join the pet table with itself to produce candidate
pairs of males and females of like species:

mysql> SELECT p1.name, p1.sex, p2.name, p2.sex, p1.species
-> FROM pet AS p1, pet AS p2
-> WHERE p1.species = p2.species AND p1.sex = 'f' AND p2.sex = 'm';

+--------+------+--------+------+---------+
| name | sex | name | sex | species |
+--------+------+--------+------+---------+
Fluffy	f	Claws	m	cat
Buffy	f	Fang	m	dog
Buffy	f	Bowser	m	dog
+--------+------+--------+------+---------+

In this query, we specify aliases for the table name in order to refer to the columns and keep straight
which instance of the table each column reference is associated with.

3.4. Getting Information About Databases and
Tables

What if you forget the name of a database or table, or what the structure of a given table is (for ex-
ample, what its columns are called)? MySQL addresses this problem through several statements that
provide information about the databases and tables it supports.

You have previously seen SHOW DATABASES, which lists the databases managed by the server. To

MySQL Tutorial

189

find out which database is currently selected, use the DATABASE() function:

mysql> SELECT DATABASE();
+------------+
| DATABASE() |
+------------+
| menagerie |
+------------+

If you haven't selected any database yet, the result is NULL (or the empty string before MySQL
4.1.1).

To find out what tables the current database contains (for example, when you're not sure about the
name of a table), use this command:

mysql> SHOW TABLES;
+---------------------+
| Tables in menagerie |
+---------------------+
| event |
| pet |
+---------------------+

If you want to find out about the structure of a table, the DESCRIBE command is useful; it displays
information about each of a table's columns:

mysql> DESCRIBE pet;
+---------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+-------------+------+-----+---------+-------+
name	varchar(20)	YES		NULL	
owner	varchar(20)	YES		NULL	
species	varchar(20)	YES		NULL	
sex	char(1)	YES		NULL	
birth	date	YES		NULL	
death	date	YES		NULL	
+---------+-------------+------+-----+---------+-------+

Field indicates the column name, Type is the data type for the column, NULL indicates whether
the column can contain NULL values, Key indicates whether the column is indexed, and Default
specifies the column's default value.

If you have indexes on a table, SHOW INDEX FROM tbl_name produces information about
them.

3.5. Using mysql in Batch Mode
In the previous sections, you used mysql interactively to enter queries and view the results. You can
also run mysql in batch mode. To do this, put the commands you want to run in a file, then tell
mysql to read its input from the file:

shell> mysql < batch-file

If you are running mysql under Windows and have some special characters in the file that cause
problems, you can do this:

C:\> mysql -e "source batch-file"

If you need to specify connection parameters on the command line, the command might look like
this:

MySQL Tutorial

190

shell> mysql -h host -u user -p < batch-file
Enter password: ********

When you use mysql this way, you are creating a script file, then executing the script.

If you want the script to continue even if some of the statements in it produce errors, you should use
the --force command-line option.

Why use a script? Here are a few reasons:

• If you run a query repeatedly (say, every day or every week), making it a script allows you to
avoid retyping it each time you execute it.

• You can generate new queries from existing ones that are similar by copying and editing script
files.

• Batch mode can also be useful while you're developing a query, particularly for multiple-line
commands or multiple-statement sequences of commands. If you make a mistake, you don't
have to retype everything. Just edit your script to correct the error, then tell mysql to execute it
again.

• If you have a query that produces a lot of output, you can run the output through a pager rather
than watching it scroll off the top of your screen:

shell> mysql < batch-file | more

• You can catch the output in a file for further processing:

shell> mysql < batch-file > mysql.out

• You can distribute your script to other people so they can run the commands, too.

• Some situations do not allow for interactive use, for example, when you run a query from a cron
job. In this case, you must use batch mode.

The default output format is different (more concise) when you run mysql in batch mode than when
you use it interactively. For example, the output of SELECT DISTINCT species FROM pet
looks like this when mysql is run interactively:

+---------+
| species |
+---------+
| bird |
| cat |
| dog |
| hamster |
| snake |
+---------+

In batch mode, the output looks like this instead:

species
bird
cat
dog
hamster
snake

If you want to get the interactive output format in batch mode, use mysql -t. To echo to the out-

MySQL Tutorial

191

put the commands that are executed, use mysql -vvv.

You can also use scripts from the mysql prompt by using the source or \. command:

mysql> source filename;
mysql> \. filename

3.6. Examples of Common Queries
Here are examples of how to solve some common problems with MySQL.

Some of the examples use the table shop to hold the price of each article (item number) for certain
traders (dealers). Supposing that each trader has a single fixed price per article, then (article,
dealer) is a primary key for the records.

Start the command-line tool mysql and select a database:

shell> mysql your-database-name

(In most MySQL installations, you can use the database name test).

You can create and populate the example table with these statements:

mysql> CREATE TABLE shop (
-> article INT(4) UNSIGNED ZEROFILL DEFAULT '0000' NOT NULL,
-> dealer CHAR(20) DEFAULT '' NOT NULL,
-> price DOUBLE(16,2) DEFAULT '0.00' NOT NULL,
-> PRIMARY KEY(article, dealer));

mysql> INSERT INTO shop VALUES
-> (1,'A',3.45),(1,'B',3.99),(2,'A',10.99),(3,'B',1.45),
-> (3,'C',1.69),(3,'D',1.25),(4,'D',19.95);

After issuing the statements, the table should have the following contents:

mysql> SELECT * FROM shop;
+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
0001	A	3.45
0001	B	3.99
0002	A	10.99
0003	B	1.45
0003	C	1.69
0003	D	1.25
0004	D	19.95
+---------+--------+-------+

3.6.1. The Maximum Value for a Column
``What's the highest item number?''

SELECT MAX(article) AS article FROM shop;
+---------+
| article |
+---------+
| 4 |
+---------+

3.6.2. The Row Holding the Maximum of a Certain

MySQL Tutorial

192

Column
``Find number, dealer, and price of the most expensive article.''

In standard SQL (and as of MySQL 4.1), this is easily done with a subquery:

SELECT article, dealer, price
FROM shop
WHERE price=(SELECT MAX(price) FROM shop);

In MySQL versions prior to 4.1, just do it in two steps:

1. Get the maximum price value from the table with a SELECT statement.

mysql> SELECT MAX(price) FROM shop;
+------------+
| MAX(price) |
+------------+
| 19.95 |
+------------+

2. Using the value 19.95 shown by the previous query to be the maximum article price, write a
query to locate and display the corresponding record:

mysql> SELECT article, dealer, price
-> FROM shop
-> WHERE price=19.95;

+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
| 0004 | D | 19.95 |
+---------+--------+-------+

Another solution is to sort all rows descending by price and only get the first row using the MySQL-
specific LIMIT clause:

SELECT article, dealer, price
FROM shop
ORDER BY price DESC
LIMIT 1;

Note: If there were several most expensive articles, each with a price of 19.95, the LIMIT solution
would show only one of them!

3.6.3. Maximum of Column per Group
``What's the highest price per article?''

SELECT article, MAX(price) AS price
FROM shop
GROUP BY article
+---------+-------+
| article | price |
+---------+-------+
0001	3.99
0002	10.99
0003	1.69
0004	19.95
+---------+-------+

MySQL Tutorial

193

3.6.4. The Rows Holding the Group-wise Maximum of a
Certain Field

``For each article, find the dealer or dealers with the most expensive price.''

In standard SQL (and as of MySQL 4.1), the problem can be solved with a subquery like this:

SELECT article, dealer, price
FROM shop s1
WHERE price=(SELECT MAX(s2.price)

FROM shop s2
WHERE s1.article = s2.article);

In MySQL versions prior to 4.1, it's best do it in several steps:

1. Get the list of (article,maxprice) pairs.

2. For each article, get the corresponding rows that have the stored maximum price.

This can easily be done with a temporary table and a join:

CREATE TEMPORARY TABLE tmp (
article INT(4) UNSIGNED ZEROFILL DEFAULT '0000' NOT NULL,
price DOUBLE(16,2) DEFAULT '0.00' NOT NULL);

LOCK TABLES shop READ;
INSERT INTO tmp SELECT article, MAX(price) FROM shop GROUP BY article;
SELECT shop.article, dealer, shop.price FROM shop, tmp
WHERE shop.article=tmp.article AND shop.price=tmp.price;
UNLOCK TABLES;
DROP TABLE tmp;

If you don't use a TEMPORARY table, you must also lock the tmp table.

``Can it be done with a single query?''

Yes, but only by using a quite inefficient trick called the ``MAX-CONCAT trick'':

SELECT article,
SUBSTRING(MAX(CONCAT(LPAD(price,6,'0'),dealer)), 7) AS dealer,

0.00+LEFT(MAX(CONCAT(LPAD(price,6,'0'),dealer)), 6) AS price
FROM shop
GROUP BY article;
+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
0001	B	3.99
0002	A	10.99
0003	C	1.69
0004	D	19.95
+---------+--------+-------+

The last example can be made a bit more efficient by doing the splitting of the concatenated column
in the client.

3.6.5. Using User Variables
You can use MySQL user variables to remember results without having to store them in temporary
variables in the client. See Section 9.3, “User Variables”.

For example, to find the articles with the highest and lowest price you can do this:

MySQL Tutorial

194

mysql> SELECT @min_price:=MIN(price),@max_price:=MAX(price) FROM shop;
mysql> SELECT * FROM shop WHERE price=@min_price OR price=@max_price;
+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
| 0003 | D | 1.25 |
| 0004 | D | 19.95 |
+---------+--------+-------+

3.6.6. Using Foreign Keys
In MySQL 3.23.44 and up, InnoDB tables support checking of foreign key constraints. See
Chapter 15, The InnoDB Storage Engine. See also Section 1.5.5.5, “Foreign Keys”.

You don't actually need foreign keys to join two tables. For table types other than InnoDB, the only
things MySQL currently doesn't do are 1) CHECK to make sure that the keys you use really exist in
the table or tables you're referencing and 2) automatically delete rows from a table with a foreign
key definition. Using your keys to join tables works just fine:

CREATE TABLE person (
id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
name CHAR(60) NOT NULL,
PRIMARY KEY (id)

);
CREATE TABLE shirt (

id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
style ENUM('t-shirt', 'polo', 'dress') NOT NULL,
color ENUM('red', 'blue', 'orange', 'white', 'black') NOT NULL,
owner SMALLINT UNSIGNED NOT NULL REFERENCES person(id),
PRIMARY KEY (id)

);
INSERT INTO person VALUES (NULL, 'Antonio Paz');
SELECT @last := LAST_INSERT_ID();
INSERT INTO shirt VALUES
(NULL, 'polo', 'blue', @last),
(NULL, 'dress', 'white', @last),
(NULL, 't-shirt', 'blue', @last);
INSERT INTO person VALUES (NULL, 'Lilliana Angelovska');
SELECT @last := LAST_INSERT_ID();
INSERT INTO shirt VALUES
(NULL, 'dress', 'orange', @last),
(NULL, 'polo', 'red', @last),
(NULL, 'dress', 'blue', @last),
(NULL, 't-shirt', 'white', @last);
SELECT * FROM person;
+----+---------------------+
| id | name |
+----+---------------------+
| 1 | Antonio Paz |
| 2 | Lilliana Angelovska |
+----+---------------------+
SELECT * FROM shirt;
+----+---------+--------+-------+
| id | style | color | owner |
+----+---------+--------+-------+
1	polo	blue	1
2	dress	white	1
3	t-shirt	blue	1
4	dress	orange	2
5	polo	red	2
6	dress	blue	2
7	t-shirt	white	2
+----+---------+--------+-------+
SELECT s.* FROM person p, shirt s
WHERE p.name LIKE 'Lilliana%'
AND s.owner = p.id

MySQL Tutorial

195

AND s.color <> 'white';
+----+-------+--------+-------+
| id | style | color | owner |
+----+-------+--------+-------+
4	dress	orange	2
5	polo	red	2
6	dress	blue	2
+----+-------+--------+-------+

3.6.7. Searching on Two Keys
An OR using a single key is well optimized, as is the handling of AND.

The one tricky case is that of searching on two different keys combined with OR:

SELECT field1_index, field2_index FROM test_table
WHERE field1_index = '1' OR field2_index = '1'

This case is optimized from MySQL 5.0.0. See Section 7.2.6, “Index Merge Optimization”.

In MySQL 4.0 and up, you can also solve the problem efficiently by using a UNION that combines
the output of two separate SELECT statements. See Section 13.1.7.2, “UNION Syntax”.

Each SELECT searches only one key and can be optimized:

SELECT field1_index, field2_index
FROM test_table WHERE field1_index = '1'

UNION
SELECT field1_index, field2_index

FROM test_table WHERE field2_index = '1';

Prior to MySQL 4.0, you can achieve the same effect by using a TEMPORARY table and separate
SELECT statements. This type of optimization is also very good if you are using very complicated
queries where the SQL server does the optimizations in the wrong order.

CREATE TEMPORARY TABLE tmp
SELECT field1_index, field2_index

FROM test_table WHERE field1_index = '1';
INSERT INTO tmp
SELECT field1_index, field2_index

FROM test_table WHERE field2_index = '1';
SELECT * from tmp;
DROP TABLE tmp;

This method of solving the problem is in effect a UNION of two queries.

3.6.8. Calculating Visits Per Day
The following example shows how you can use the bit group functions to calculate the number of
days per month a user has visited a Web page.

CREATE TABLE t1 (year YEAR(4), month INT(2) UNSIGNED ZEROFILL,
day INT(2) UNSIGNED ZEROFILL);

INSERT INTO t1 VALUES(2000,1,1),(2000,1,20),(2000,1,30),(2000,2,2),
(2000,2,23),(2000,2,23);

The example table contains year-month-day values representing visits by users to the page. To de-
termine how many different days in each month these visits occur, use this query:

SELECT year,month,BIT_COUNT(BIT_OR(1<<day)) AS days FROM t1

MySQL Tutorial

196

GROUP BY year,month;

Which returns:

+------+-------+------+
| year | month | days |
+------+-------+------+
| 2000 | 01 | 3 |
| 2000 | 02 | 2 |
+------+-------+------+

The query calculates how many different days appear in the table for each year/month combination,
with automatic removal of duplicate entries.

3.6.9. Using AUTO_INCREMENT

The AUTO_INCREMENT attribute can be used to generate a unique identity for new rows:

CREATE TABLE animals (
id MEDIUMINT NOT NULL AUTO_INCREMENT,
name CHAR(30) NOT NULL,
PRIMARY KEY (id)
);

INSERT INTO animals (name) VALUES ('dog'),('cat'),('penguin'),
('lax'),('whale'),('ostrich');

SELECT * FROM animals;

Which returns:

+----+---------+
| id | name |
+----+---------+
1	dog
2	cat
3	penguin
4	lax
5	whale
6	ostrich
+----+---------+

You can retrieve the most recent AUTO_INCREMENT value with the LAST_INSERT_ID() SQL
function or the mysql_insert_id() C API function. These functions are connection-specific,
so their return value is not affected by another connection also doing inserts.

Note: For a multiple-row insert, LAST_INSERT_ID()/mysql_insert_id() actually returns
the AUTO_INCREMENT key from the first of the inserted rows. This allows multiple-row inserts to
be reproduced correctly on other servers in a replication setup.

For MyISAM and BDB tables you can specify AUTO_INCREMENT on a secondary column in a mul-
tiple-column index. In this case, the generated value for the AUTO_INCREMENT column is calcu-
lated as MAX(auto_increment_column)+1 WHERE prefix=given-prefix. This is
useful when you want to put data into ordered groups.

CREATE TABLE animals (
grp ENUM('fish','mammal','bird') NOT NULL,
id MEDIUMINT NOT NULL AUTO_INCREMENT,
name CHAR(30) NOT NULL,
PRIMARY KEY (grp,id)
);

INSERT INTO animals (grp,name) VALUES('mammal','dog'),('mammal','cat'),
('bird','penguin'),('fish','lax'),('mammal','whale'),
('bird','ostrich');

MySQL Tutorial

197

SELECT * FROM animals ORDER BY grp,id;

Which returns:

+--------+----+---------+
| grp | id | name |
+--------+----+---------+
fish	1	lax
mammal	1	dog
mammal	2	cat
mammal	3	whale
bird	1	penguin
bird	2	ostrich
+--------+----+---------+

Note that in this case (when the AUTO_INCREMENT column is part of a multiple-column index),
AUTO_INCREMENT values are reused if you delete the row with the biggest AUTO_INCREMENT
value in any group. This happens even for MyISAM tables, for which AUTO_INCREMENT values
normally are not reused.)

3.7. Queries from the Twin Project
At Analytikerna and Lentus, we have been doing the systems and field work for a big research
project. This project is a collaboration between the Institute of Environmental Medicine at Karolin-
ska Institutet Stockholm and the Section on Clinical Research in Aging and Psychology at the Uni-
versity of Southern California.

The project involves a screening part where all twins in Sweden older than 65 years are interviewed
by telephone. Twins who meet certain criteria are passed on to the next stage. In this latter stage,
twins who want to participate are visited by a doctor/nurse team. Some of the examinations include
physical and neuropsychological examination, laboratory testing, neuroimaging, psychological
status assessment, and family history collection. In addition, data are collected on medical and en-
vironmental risk factors.

More information about Twin studies can be found at: http://www.mep.ki.se/twinreg/index_en.html

The latter part of the project is administered with a Web interface written using Perl and MySQL.

Each night all data from the interviews is moved into a MySQL database.

3.7.1. Find All Non-distributed Twins
The following query is used to determine who goes into the second part of the project:

SELECT
CONCAT(p1.id, p1.tvab) + 0 AS tvid,
CONCAT(p1.christian_name, ' ', p1.surname) AS Name,
p1.postal_code AS Code,
p1.city AS City,
pg.abrev AS Area,
IF(td.participation = 'Aborted', 'A', ' ') AS A,
p1.dead AS dead1,
l.event AS event1,
td.suspect AS tsuspect1,
id.suspect AS isuspect1,
td.severe AS tsevere1,
id.severe AS isevere1,
p2.dead AS dead2,
l2.event AS event2,
h2.nurse AS nurse2,
h2.doctor AS doctor2,
td2.suspect AS tsuspect2,

MySQL Tutorial

198

http://www.mep.ki.se/twinreg/index_en.html

id2.suspect AS isuspect2,
td2.severe AS tsevere2,
id2.severe AS isevere2,
l.finish_date

FROM
twin_project AS tp
/* For Twin 1 */
LEFT JOIN twin_data AS td ON tp.id = td.id

AND tp.tvab = td.tvab
LEFT JOIN informant_data AS id ON tp.id = id.id

AND tp.tvab = id.tvab
LEFT JOIN harmony AS h ON tp.id = h.id

AND tp.tvab = h.tvab
LEFT JOIN lentus AS l ON tp.id = l.id

AND tp.tvab = l.tvab
/* For Twin 2 */
LEFT JOIN twin_data AS td2 ON p2.id = td2.id

AND p2.tvab = td2.tvab
LEFT JOIN informant_data AS id2 ON p2.id = id2.id

AND p2.tvab = id2.tvab
LEFT JOIN harmony AS h2 ON p2.id = h2.id

AND p2.tvab = h2.tvab
LEFT JOIN lentus AS l2 ON p2.id = l2.id

AND p2.tvab = l2.tvab,
person_data AS p1,
person_data AS p2,
postal_groups AS pg

WHERE
/* p1 gets main twin and p2 gets his/her twin. */
/* ptvab is a field inverted from tvab */
p1.id = tp.id AND p1.tvab = tp.tvab AND
p2.id = p1.id AND p2.ptvab = p1.tvab AND
/* Just the screening survey */
tp.survey_no = 5 AND
/* Skip if partner died before 65 but allow emigration (dead=9) */
(p2.dead = 0 OR p2.dead = 9 OR
(p2.dead = 1 AND
(p2.death_date = 0 OR
(((TO_DAYS(p2.death_date) - TO_DAYS(p2.birthday)) / 365)
>= 65))))

AND
(
/* Twin is suspect */
(td.future_contact = 'Yes' AND td.suspect = 2) OR
/* Twin is suspect - Informant is Blessed */
(td.future_contact = 'Yes' AND td.suspect = 1

AND id.suspect = 1) OR
/* No twin - Informant is Blessed */
(ISNULL(td.suspect) AND id.suspect = 1

AND id.future_contact = 'Yes') OR
/* Twin broken off - Informant is Blessed */
(td.participation = 'Aborted'
AND id.suspect = 1 AND id.future_contact = 'Yes') OR
/* Twin broken off - No inform - Have partner */
(td.participation = 'Aborted' AND ISNULL(id.suspect)

AND p2.dead = 0))
AND
l.event = 'Finished'
/* Get at area code */
AND SUBSTRING(p1.postal_code, 1, 2) = pg.code
/* Not already distributed */
AND (h.nurse IS NULL OR h.nurse=00 OR h.doctor=00)
/* Has not refused or been aborted */
AND NOT (h.status = 'Refused' OR h.status = 'Aborted'
OR h.status = 'Died' OR h.status = 'Other')

ORDER BY
tvid;

MySQL Tutorial

199

Some explanations:

• CONCAT(p1.id, p1.tvab) + 0 AS tvid

We want to sort on the concatenated id and tvab in numerical order. Adding 0 to the result
causes MySQL to treat the result as a number.

• column id

This identifies a pair of twins. It is a key in all tables.

• column tvab

This identifies a twin in a pair. It has a value of 1 or 2.

• column ptvab

This is an inverse of tvab. When tvab is 1 this is 2, and vice versa. It exists to save typing
and to make it easier for MySQL to optimize the query.

This query demonstrates, among other things, how to do lookups on a table from the same table with
a join (p1 and p2). In the example, this is used to check whether a twin's partner died before the age
of 65. If so, the row is not returned.

All of the above exist in all tables with twin-related information. We have a key on both id,tvab
(all tables), and id,ptvab (person_data) to make queries faster.

On our production machine (A 200MHz UltraSPARC), this query returns about 150-200 rows and
takes less than one second.

The current number of records in the tables used in the query:

Table Rows

person_data 71074

lentus 5291

twin_project 5286

twin_data 2012

informant_data 663

harmony 381

postal_groups 100

3.7.2. Show a Table of Twin Pair Status
Each interview ends with a status code called event. The query shown here is used to display a ta-
ble over all twin pairs combined by event. This indicates in how many pairs both twins are finished,
in how many pairs one twin is finished and the other refused, and so on.

SELECT
t1.event,
t2.event,
COUNT(*)

FROM
lentus AS t1,
lentus AS t2,
twin_project AS tp

WHERE
/* We are looking at one pair at a time */
t1.id = tp.id

MySQL Tutorial

200

AND t1.tvab=tp.tvab
AND t1.id = t2.id
/* Just the screening survey */
AND tp.survey_no = 5
/* This makes each pair only appear once */
AND t1.tvab='1' AND t2.tvab='2'

GROUP BY
t1.event, t2.event;

3.8. Using MySQL with Apache
There are programs that let you authenticate your users from a MySQL database and also let you
write your log files into a MySQL table.

You can change the Apache logging format to be easily readable by MySQL by putting the follow-
ing into the Apache configuration file:

LogFormat \
"\"%h\",%{%Y%m%d%H%M%S}t,%>s,\"%b\",\"%{Content-Type}o\", \
\"%U\",\"%{Referer}i\",\"%{User-Agent}i\""

To load a log file in that format into MySQL, you can use a statement something like this:

LOAD DATA INFILE '/local/access_log' INTO TABLE tbl_name
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"' ESCAPED BY '\\'

The named table should be created to have columns that correspond to those that the LogFormat
line writes to the log file.

MySQL Tutorial

201

Chapter 4. Using MySQL Programs
This chapter provides a brief overview of the programs provided by MySQL AB and discusses how
to specify options when you run these programs. Most programs have options that are specific to
their own operation, but the syntax for specifying options is similar for all of them. Later chapters
provide more detailed descriptions of individual programs, including which options they recognize.

4.1. Overview of MySQL Programs
MySQL AB provides several types of programs:

• The MYSQL server and server startup scripts:

• mysqld is the MySQL server

• mysqld_safe, mysql.server, and mysqld_multi are server startup scripts

• mysql_install_db initializes the data directory and the initial databases

These programs are discussed further in Chapter 5, Database Administration.

• Client programs that access the server:

• mysql is a command-line client for executing SQL statements interactively or in batch mode

• mysqlcc (MySQL Control Center) is an interactive graphical tool for executing SQL state-
ments and administration

• mysqladmin is an administrative client

• mysqlcheck performs table maintenance operations

• mysqldump and mysqlhotcopy make database backups

• mysqlimport imports data files

• mysqlshow displays information about databases and tables

These programs are discussed further in Chapter 8, MySQL Client and Utility Programs.

• Utility programs that operate independently of the server:

• myisamchk performs table maintenance operations

• myisampack produces compressed, read-only tables

• mysqlbinlog is a tool for processing binary log files

• perror displays error code meanings

myisamchk is discussed further in Chapter 5, Database Administration. The other programs are
further in Chapter 8, MySQL Client and Utility Programs.

Most MySQL distributions include all of these programs, except for those programs that are plat-

202

form-specific. (For example, the server startup scripts are not used on Windows.) The exception is
that RPM distributions are more specialized. There is one RPM for the server, another for the client
programs, and so forth. If you appear to be missing one or more programs, see Chapter 2, Installing
MySQL for information on types of distributions and what they contain. It may be that you need to
install something else.

4.2. Invoking MySQL Programs
To invoke a MySQL program at the command line (that is, from your shell or command prompt),
enter the program name followed by any options or other arguments needed to instruct the program
what you want it to do. The following commands show some sample program invocations.
``shell>'' represents the prompt for your command interpreter; it is not part of what you type. The
particular prompt you see depends on your command interpreter. Typical prompts are $ for sh or
bash, % for csh or tcsh, and C:\> for Windows command.com or cmd.exe.

shell> mysql test
shell> mysqladmin extended-status variables
shell> mysqlshow --help
shell> mysqldump --user=root personnel

Arguments that begin with a dash are option arguments. They typically specify the type of connec-
tion a program should make to the server or affect its operational mode. Options have a syntax that
is described in Section 4.3, “Specifying Program Options”.

Non-option arguments (arguments with no leading dash) provide additional information to the pro-
gram. For example, the mysql program interprets the first non-option argument as a database name,
so the command mysql test indicates that you want to use the test database.

Later sections that describe individual programs indicate which options a program understands and
describe the meaning of any additional non-option arguments.

Some options are common to a number of programs. The most common of these are the --host, -
-user, and --password options that specify connection parameters. They indicate the host
where the MySQL server is running, and the username and password of your MySQL account. All
MySQL client programs understand these options; they allow you to specify which server to con-
nect to and the account to use on that server.

You may find it necessary to invoke MySQL programs using the pathname to the bin directory in
which they are installed. This is likely to be the case if you get a ``program not found'' error
whenever you attempt to run a MySQL program from any directory other than the bin directory.
To make it more convenient to use MySQL, you can add the pathname of the bin directory to your
PATH environment variable setting. Then to run a program you need only type its name, not its en-
tire pathname.

Consult the documentation for your command interpreter for instructions on setting your PATH. The
syntax for setting environment variables is interpreter-specific.

4.3. Specifying Program Options
You can provide options for MySQL programs in several ways:

• On the command line following the program name. This is most common for options that apply
to a specific invocation of the program.

• In an option file that the program reads when it starts. This is common for options that you want
the program to use each time it runs.

• In environment variables. These are useful for options that you want to apply each time the pro-
gram runs, although in practice option files are used more commonly for this purpose. (Sec-
tion 5.10.2, “Running Multiple Servers on Unix” discusses one situation in which environment

Using MySQL Programs

203

variables can be very helpful. It describes a handy technique that uses such variables to specify
the TCP/IP port number and Unix socket file for both the server and client programs.)

MySQL programs determine which options are given first by examining environment variables,
then option files, and then the command line. If an option is specified multiple times, the last occur-
rence takes precedence. This means that environment variables have the lowest precedence and
command-line options the highest.

You can take advantage of the way that MySQL programs process options by specifying the default
values for a program's options in an option file. Then you need not type them each time you run the
program, but can override the defaults if necessary by using command-line options.

4.3.1. Using Options on the Command Line
Program options specified on the command line follow these rules:

• Options are given after the command name.

• An option argument begins with one dash or two dashes, depending on whether it has a short
name or a long name. Many options have both forms. For example, -? and --help are the
short and long forms of the option that instructs a MySQL program to display a help message.

• Option names are case sensitive. -v and -V are both legal and have different meanings. (They
are the corresponding short forms of the --verbose and --version options.)

• Some options take a value following the option name. For example, -h localhost or -
-host=localhost indicate the MySQL server host to a client program. The option value
tells the program the name of the host where the MySQL server is running.

• For a long option that takes a value, separate the option name and the value by an '=' sign. For a
short option that takes a value, the option value can immediately follow the option letter, or
there can be a space between. (-hlocalhost and -h localhost are equivalent.) An ex-
ception to this rule is the option for specifying your MySQL password. This option can be given
in long form as --password=pass_val or as --password. In the latter case (with no
password value given), the program prompts you for the password. The password option also
may be given in short form as -ppass_val or as -p. However, for the short form, if the pass-
word value is given, it must follow the option letter with no intervening space. The reason for
this is that if a space follows the option letter, the program has no way to tell whether a follow-
ing argument is supposed to be the password value or some other kind of argument. Con-
sequently, the following two commands have two completely different meanings:

shell> mysql -ptest
shell> mysql -p test

The first command instructs mysql to use a password value of test, but specifies no default
database. The second instructs mysql to prompt for the password value and to use test as the
default database.

MySQL 4.0 introduced some additional flexibility in the way you specify options. These changes
were made in MySQL 4.0.2. Some of them relate to the way you specify options that have
``enabled'' and ``disabled'' states, and to the use of options that might be present in one version of
MySQL but not another. Those capabilities are discussed in this section. Another change pertains to
the way you use options to set program variables. Section 4.3.4, “Using Options to Set Program
Variables” discusses that topic further.

Some options control behavior that can be turned on or off. For example, the mysql client supports a
--column-names option that determines whether or not to display a row of column names at the
beginning of query results. By default, this option is enabled. However, you may want to disable it
in some instances, such as when sending the output of mysql into another program that expects to

Using MySQL Programs

204

see only data and not an initial header line.

To disable column names, you can specify the option using any of these forms:

--disable-column-names
--skip-column-names
--column-names=0

The --disable and --skip prefixes and the =0 suffix all have the same effect: They turn the
option off.

The ``enabled'' form of the option may be specified in any of these ways:

--column-names
--enable-column-names
--column-names=1

Another change to option processing introduced in MySQL 4.0 is that you can use the --loose
prefix for command-line options. If an option is prefixed by --loose, the program does not exit
with an error if it does not recognize the option, but instead issues only a warning:

shell> mysql --loose-no-such-option
mysql: WARNING: unknown option '--no-such-option'

The --loose prefix can be useful when you run programs from multiple installations of MySQL
on the same machine, at least if all the versions are as recent as 4.0.2. This prefix is particularly use-
ful when you list options in an option file. An option that may not be recognized by all versions of a
program can be given using the --loose prefix (or loose in an option file). Versions of the pro-
gram that do not recognize the option issue a warning and ignore it. This strategy requires that ver-
sions involved be 4.0.2 or later, because earlier versions know nothing of the --loose convention.

4.3.2. Using Option Files
MySQL programs can read startup options from option files (also sometimes called configuration
files). Option files provide a convenient way to specify commonly used options so that they need
not be entered on the command line each time you run a program. Option file capability is available
from MySQL 3.22 on.

The following programs support option files: myisamchk, myisampack, mysql, mysql.server,
mysqladmin, mysqlbinlog, mysqlcc, mysqlcheck, mysqld_safe, mysqldump, mysqld, mysqlhot-
copy, mysqlimport, and mysqlshow.

On Windows, MySQL programs read startup options from the following files:

Filename Purpose

WINDIR\my.ini Global options

C:\my.cnf Global options

WINDIR represents the location of your Windows directory. This is commonly C:\Windows or
C:\WinNT. You can determine its exact location from the value of the WINDIR environment vari-
able using the following command:

C:\> echo %WINDIR%

On Unix, MySQL programs read startup options from the following files:

Filename Purpose

/etc/my.cnf Global options

Using MySQL Programs

205

DATADIR/my.cnf Server-specific options

defaults-extra-file The file specified with --defaults-extra-file=path, if any

~/.my.cnf User-specific options

DATADIR represents the location of the MySQL data directory. Typically this is /
usr/local/mysql/data for a binary installation or /usr/local/var for a source installa-
tion. Note that this is the data directory location that was specified at configuration time, not the one
specified with --datadir when mysqld starts. Use of --datadir at runtime has no effect on
where the server looks for option files, because it looks for them before processing any command-
line arguments.

MySQL looks for option files in the order just described and reads any that exist. If an option file
that you want to use does not exist, create it with a plain text editor. If multiple option files exist, an
option specified in a file read later takes precedence over the same option specified in a file read
earlier.

Any long option that may be given on the command line when running a MySQL program can be
given in an option file as well. To get the list of available options for a program, run it with the -
-help option.

The syntax for specifying options in an option file is similar to command-line syntax, except that
you omit the leading two dashes. For example, --quick or --host=localhost on the com-
mand line should be specified as quick or host=localhost in an option file. To specify an op-
tion of the form --loose-opt_name in an option file, write it as loose-opt_name.

Empty lines in option files are ignored. Non-empty lines can take any of the following forms:

• #comment , ;comment

Comment lines start with '#' or ';'. As of MySQL 4.0.14, a '#'-comment can start in the middle
of a line as well.

• [group]

group is the name of the program or group for which you want to set options. After a group
line, any opt_name or set-variable lines apply to the named group until the end of the
option file or another group line is given.

• opt_name

This is equivalent to --opt_name on the command line.

• opt_name=value

This is equivalent to --opt_name=value on the command line. In an option file, you can
have spaces around the '=' character, something that is not true on the command line. As of
MySQL 4.0.16, you can quote the value with double quotes or single quotes. This is useful if the
value contains a '#' comment character or whitespace.

• set-variable = var_name=value

Set the program variable var_name to the given value. This is equivalent to -
-set-variable=var_name=value on the command line. Spaces are allowed around the
first '=' character but not around the second. This syntax is deprecated as of MySQL 4.0. See
Section 4.3.4, “Using Options to Set Program Variables” for more information on setting pro-
gram variables.

Leading and trailing blanks are automatically deleted from option names and values. You may use
the escape sequences '\b', '\t', '\n', '\r', '\\', and '\s' in option values to represent the backspace,

Using MySQL Programs

206

tab, newline, carriage return, and space characters.

On Windows, if an option value represents a pathname, you should specify the value using '/' rather
than '\' as the pathname separator. If you use '\', you must double it as '\\', because '\' is the escape
character in MySQL.

If an option group name is the same as a program name, options in the group apply specifically to
that program.

The [client] option group is read by all client programs (but not by mysqld). This allows you to
specify options that apply to every client. For example, [client] is the perfect group to use to
specify the password that you use to connect to the server. (But make sure that the option file is
readable and writable only by yourself, so that other people cannot find out your password.) Be sure
not to put an option in the [client] group unless it is recognized by all client programs that you
use. Programs that do not understand the option quit after displaying an error message if you try to
run them.

As of MySQL 4.0.14, if you want to create option groups that should be read only by one specific
mysqld server release series, you can do this by using groups with names of [mysqld-4.0],
[mysqld-4.1], and so forth. The following group indicates that the --new option should be
used only by MySQL servers with 4.0.x version numbers:

[mysqld-4.0]
new

Here is a typical global option file:

[client]
port=3306
socket=/tmp/mysql.sock
[mysqld]
port=3306
socket=/tmp/mysql.sock
key_buffer_size=16M
max_allowed_packet=8M
[mysqldump]
quick

The preceding option file uses var_name=value syntax for the lines that set the
key_buffer_size and max_allowed_packet variables. Prior to MySQL 4.0.2, you would
need to use set-variable syntax instead (described earlier in this section).

Here is a typical user option file:

[client]
The following password will be sent to all standard MySQL clients
password="my_password"
[mysql]
no-auto-rehash
set-variable = connect_timeout=2
[mysqlhotcopy]
interactive-timeout

This option file uses set-variable syntax to set the connect_timeout variable. For
MySQL 4.0.2 and up, you can also set the variable using just connect_timeout=2.

If you have a source distribution, you can find sample option files named my-xxxx.cnf in the
support-files directory. If you have a binary distribution, look in the support-files dir-
ectory under your MySQL installation directory (typically C:\mysql on Windows or /
usr/local/mysql on Unix). On Windows the sample option files may also be located in the
MySQL installation directory. Currently there are sample option files for small, medium, large, and
very large systems. To experiment with one of these files, copy it to C:\my.cnf on Windows or to
.my.cnf in your home directory on Unix.

Using MySQL Programs

207

Note: On Windows, the .cnf option file extension might not be displayed.

All MySQL programs that support option files handle the following command-line options:

• --no-defaults

Don't read any option files.

• --print-defaults

Print the program name and all options that it gets from option files.

• --defaults-file=path_name

Use only the given option file. path_name is the full pathname to the file.

• --defaults-extra-file=path_name

Read this option file after the global option file but before the user option file. path_name is
the full pathname to the file.

To work properly, each of these options must immediately follow the command name on the com-
mand line, with the exception that --print-defaults may be used immediately after -
-defaults-file or --defaults-extra-file.

In shell scripts, you can use the my_print_defaults program to parse option files. The following ex-
ample shows the output that my_print_defaults might produce when asked to show the options
found in the [client] and [mysql] groups:

shell> my_print_defaults client mysql
--port=3306
--socket=/tmp/mysql.sock
--no-auto-rehash

Note for developers: Option file handling is implemented in the C client library simply by pro-
cessing all matching options (that is, options in the appropriate group) before any command-line ar-
guments. This works nicely for programs that use the last instance of an option that is specified mul-
tiple times. If you have a C or C++ program that handles multiply specified options this way but
doesn't read option files, you need add only two lines to give it that capability. Check the source
code of any of the standard MySQL clients to see how to do this.

Several other language interfaces to MySQL are based on the C client library, and some of them
provide a way to access option file contents. These include Perl and Python. See the documentation
for your preferred interface for details.

4.3.3. Using Environment Variables to Specify Options
To specify an option using an environment variable, set the variable using the syntax appropriate for
your comment processor. For example, on Windows or NetWare, you can set the USER variable to
specify your MySQL account name. To do so, use this syntax:

SET USER=your_name

The syntax on Unix depends on your shell. Suppose that you want to specify the TCP/IP port num-
ber using the MYSQL_TCP_PORT variable. The syntax for Bourne shell and variants (sh, bash, zsh,
etc.) is:

MYSQL_TCP_PORT=3306

Using MySQL Programs

208

For csh and tcsh, use this syntax:

setenv MYSQL_TCP_PORT 3306

The commands to set environment variables can be executed at your command prompt to take effect
immediately. These settings persist until you log out. To have the settings take effect each time you
log in, place the appropriate command or commands in a startup file that your command interpreter
reads each time it starts. Typical startup files are AUTOEXEC.BAT for Windows,
.bash_profile for bash, or .tcshrc for tcsh. Consult the documentation for your command
interpreter for specific details.

Appendix F, Environment Variables lists all environment variables that affect MySQL program op-
eration.

4.3.4. Using Options to Set Program Variables
Many MySQL programs have internal variables that can be set at runtime. As of MySQL 4.0.2, pro-
gram variables are set the same way as any other long option that takes a value. For example, mysql
has a max_allowed_packet variable that controls the maximum size of its communication buf-
fer. To set the max_allowed_packet variable for mysql to a value of 16MB, use either of the
following commands:

shell> mysql --max_allowed_packet=16777216
shell> mysql --max_allowed_packet=16M

The first command specifies the value in bytes. The second specifies the value in megabytes. Vari-
able values can have a suffix of K, M, or G (either uppercase or lowercase) to indicate units of kilo-
bytes, megabytes, or gigabytes.

In an option file, the variable setting is given without the leading dashes:

[mysql]
max_allowed_packet=16777216

Or:

[mysql]
max_allowed_packet=16M

If you like, underscores in a variable name can be specified as dashes.

Prior to MySQL 4.0.2, program variable names are not recognized as option names. Instead, use the
--set-variable option to assign a value to a variable:

shell> mysql --set-variable=max_allowed_packet=16777216
shell> mysql --set-variable=max_allowed_packet=16M

In an option file, omit the leading dashes:

[mysql]
set-variable = max_allowed_packet=16777216

Or:

[mysql]
set-variable = max_allowed_packet=16M

With --set-variable, underscores in variable names cannot be given as dashes for versions of

Using MySQL Programs

209

MySQL older than 4.0.2.

The --set-variable option is still recognized in MySQL 4.0.2 and up, but is deprecated.

Some server variables can be set at runtime. For details, see Section 5.2.3.1, “Dynamic System Vari-
ables”.

Using MySQL Programs

210

Chapter 5. Database Administration
This chapter covers topics that deal with administering a MySQL installation, such as configuring
the server, managing user accounts, and performing backups.

5.1. The MySQL Server and Server Startup
Scripts

The MySQL server, mysqld, is the main program that does most of the work in a MySQL installa-
tion. The server is accompanied by several related scripts that perform setup operations when you
install MySQL or that are helper programs to assist you in starting and stopping the server.

This section provides an overview of the server and related programs, and information about server
startup scripts. Information about configuring the server itself is given in Section 5.2, “Configuring
the MySQL Server”.

5.1.1. Overview of the Server-Side Scripts and Utilities
All MySQL programs take many different options. However, every MySQL program provides a -
-help option that you can use to get a description of the program's options. For example, try
mysqld --help.

You can override default options for all standard programs by specifying options on the command
line or in an option file. Section 4.3, “Specifying Program Options”.

The following list briefly describes the MySQL server and server-related programs:

• mysqld

The SQL daemon (that is, the MySQL server). To use client programs, this program must be
running, because clients gain access to databases by connecting to the server. See Section 5.2,
“Configuring the MySQL Server”.

• mysqld-max

A version of the server that includes additional features. See Section 5.1.2, “The mysqld-max
Extended MySQL Server”.

• mysqld_safe

A server startup script. mysqld_safe attempts to start mysqld-max if it exists, and mysqld oth-
erwise. See Section 5.1.3, “The mysqld_safe Server Startup Script”.

• mysql.server

A server startup script. This script is used on systems that use run directories containing scripts
that start system services for particular run levels. It invokes mysqld_safe to start the MySQL
server. See Section 5.1.4, “The mysql.server Server Startup Script”.

• mysqld_multi

A server startup script that can start or stop multiple servers installed on the system. See Sec-
tion 5.1.5, “The mysqld_multi Program for Managing Multiple MySQL Servers”.

211

• mysql_install_db

This script creates the MySQL grant tables with default privileges. It is usually executed only
once, when first installing MySQL on a system.

• mysql_fix_privilege_tables

This script is used after an upgrade install operation, to update the grant tables with any changes
that have been made in newer versions of MySQL.

There are several other programs that also are run on the server host:

• myisamchk

A utility to describe, check, optimize, and repair MyISAM tables. myisamchk is described in
Section 5.7.3, “Table Maintenance and Crash Recovery”.

• make_binary_distribution

This program makes a binary release of a compiled MySQL. This could be sent by FTP to /
pub/mysql/upload/ on ftp.mysql.com for the convenience of other MySQL users.

• mysqlbug

The MySQL bug reporting script. It can be used to send a bug report to the MySQL mailing list.
(You can also visit http://bugs.mysql.com/ to file a bug report online.)

5.1.2. The mysqld-max Extended MySQL Server
A MySQL-Max server is a version of the mysqld MySQL server that has been built to include addi-
tional features.

The distribution to use depends on your platform:

• For Windows, MySQL binary distributions include both the standard server (mysqld.exe)
and the MySQL-Max server (mysqld-max.exe), so you need not get a special distribution. Just
use a regular Windows distribution, available at http://dev.mysql.com/downloads/. See Sec-
tion 2.3, “Installing MySQL on Windows”.

• For Linux, if you install MySQL using RPM distributions, use the regular MySQL-server
RPM first to install a standard server named mysqld. Then use the MySQL-Max RPM to install
a server named mysqld-max. The MySQL-Max RPM presupposes that you have installed the
regular server RPM. See Section 2.4, “Installing MySQL on Linux” for more information on the
Linux RPM packages.

• All other MySQL-Max distributions contain a single server that is named mysqld but that has
the additional features included.

You can find the MySQL-Max binaries on the MySQL AB Web site at ht-
tp://dev.mysql.com/downloads/mysql-4.0.html.

MySQL AB builds the MySQL-Max servers by using the following configure options:

• --with-server-suffix=-max

Database Administration

212

http://bugs.mysql.com/
http://dev.mysql.com/downloads/
http://dev.mysql.com/downloads/mysql-4.0.html
http://dev.mysql.com/downloads/mysql-4.0.html

This option adds a -max suffix to the mysqld version string.

• --with-innodb

This option enables support for the InnoDB storage engine. MySQL-Max servers always in-
clude InnoDB support, but this option actually is needed only for MySQL 3.23. From MySQL
4 on, InnoDB is included by default in binary distributions, so you do not need a MySQL-Max
server to obtain InnoDB support.

• --with-bdb

This option enables support for the Berkeley DB (BDB) storage engine.

• USE_SYMDIR

This define is enabled to turn on database symbolic link support for Windows. (This applies
only before MySQL 4.0. As of MySQL 4.0, symbolic link support is available for all Windows
servers, so a Max server is not needed to take advantage of this feature.)

MySQL-Max binary distributions are a convenience for those who wish to install precompiled pro-
grams. If you build MySQL using a source distribution, you can build your own Max-like server by
enabling the same features at configuration time that the MySQL-Max binary distributions are built
with.

MySQL-Max servers include the BerkeleyDB (BDB) storage engine whenever possible, but not all
platforms support BDB. The following table shows which platforms allow MySQL-Max binaries to
include BDB:

System BDB Support

AIX 4.3 N

HP-UX 11.0 N

Linux-Alpha N

Linux-IA-64 N

Linux-Intel Y

Mac OS X N

NetWare N

SCO OSR5 Y

Solaris-Intel N

Solaris-SPARC Y

UnixWare Y

Windows/NT Y

To find out which storage engines your server supports, issue the following statement:

mysql> SHOW ENGINES;

Before MySQL 4.1.2, SHOW ENGINES is unavailable. Use the following statement instead and
check the value of the variable for the storage engine in which you are interested:

mysql> SHOW VARIABLES LIKE 'have_%';
+------------------+----------+
| Variable_name | Value |
+------------------+----------+
| have_bdb | NO |
| have_crypt | YES |

Database Administration

213

have_innodb	YES
have_isam	NO
have_raid	NO
have_symlink	DISABLED
have_openssl	NO
have_query_cache	YES
+------------------+----------+

The values in the second column indicate the server's level of support for each feature:

Value Meaning

YES The feature is supported and is active.

NO The feature is not supported.

DISABLED The feature is supported but has been disabled.

A value of NO means that the server was compiled without support for the feature, so it cannot be
activated at runtime.

A value of DISABLED occurs either because the server was started with an option that disables the
feature, or because not all options required to enable it were given. In the latter case, the
host_name.err error log file should contain a reason indicating why the option is disabled.

One situation in which you might see DISABLED occurs with MySQL 3.23 when the InnoDB stor-
age engine is compiled in. In MySQL 3.23, you must supply at least the in-
nodb_data_file_path option at runtime to set up the InnoDB tablespace. Without this op-
tion, InnoDB disables itself. See Section 15.3, “InnoDB in MySQL 3.23”. You can specify config-
uration options for the BDB storage engine, too, but BDB does not disable itself if you do not provide
them. See Section 14.4.3, “BDB Startup Options”.

You might also see DISABLED for the InnoDB, BDB, or ISAM storage engines if the server was
compiled to support them, but was started with the --skip-innodb, --skip-bdb, or -
-skip-isam options at runtime.

As of Version 3.23, all MySQL servers support MyISAM tables, because MyISAM is the default
storage engine.

5.1.3. The mysqld_safe Server Startup Script
mysqld_safe is the recommended way to start a mysqld server on Unix and NetWare. mysqld_safe
adds some safety features such as restarting the server when an error occurs and logging runtime in-
formation to an error log file. NetWare-specific behaviors are listed later in this section.

Note: Before MySQL 4.0, mysqld_safe is named safe_mysqld. To preserve backward compatibil-
ity, MySQL binary distributions for some time will include safe_mysqld as a symbolic link to
mysqld_safe.

By default, mysqld_safe tries to start an executable named mysqld-max if it exists, or mysqld oth-
erwise. Be aware of the implications of this behavior:

• On Linux, the MySQL-Max RPM relies on this mysqld_safe behavior. The RPM installs an ex-
ecutable named mysqld-max, which causes mysqld_safe to automatically use that executable
from that point on.

• If you install a MySQL-Max distribution that includes a server named mysqld-max, then up-
grade later to a non-Max version of MySQL, mysqld_safe still attempts to run the old mysqld-
max server. If you perform such an upgrade, you should manually remove the old mysqld-max
server to ensure that mysqld_safe runs the new mysqld server.

Database Administration

214

To override the default behavior and specify explicitly which server you want to run, specify a -
-mysqld or --mysqld-version option to mysqld_safe.

Many of the options to mysqld_safe are the same as the options to mysqld. See Section 5.2.1,
“mysqld Command-Line Options”.

All options specified to mysqld_safe on the command line are passed to mysqld. If you want to use
any options that are specific to mysqld_safe and that mysqld doesn't support, do not specify them
on the command line. Instead, list them in the [mysqld_safe] group of an option file. See Sec-
tion 4.3.2, “Using Option Files”.

mysqld_safe reads all options from the [mysqld], [server], and [mysqld_safe] sections
in option files. For backward compatibility, it also reads [safe_mysqld] sections, although you
should rename such sections to [mysqld_safe] when you begin using MySQL 4.0 or later.

mysqld_safe supports the following options:

• --help

Display a help message and exit. (New in 5.0.3)

• --basedir=path

The path to the MySQL installation directory.

• --core-file-size=size

The size of the core file mysqld should be able to create. The option value is passed to ulimit -c.

• --datadir=path

The path to the data directory.

• --defaults-extra-file=path

The name of an option file to be read in addition to the usual option files.

• --defaults-file=path

The name of an option file to be read instead of the usual option files.

• --err-log=path

The old form of the --log-error option, to be used before MySQL 4.0.

• --ledir=path

The path to the directory containing the mysqld program. Use this option to explicitly indicate
the location of the server.

• --log-error=path

Write the error log to the given file. See Section 5.9.1, “The Error Log”.

• --mysqld=prog_name

The name of the server program (in the ledir directory) that you want to start. This option is
needed if you use the MySQL binary distribution but have the data directory outside of the bin-
ary distribution.

• --mysqld-version=suffix

This option is similar to the --mysqld option, but you specify only the suffix for the server

Database Administration

215

program name. The basename is assumed to be mysqld. For example, if you use -
-mysqld-version=max, mysqld_safe starts the mysqld-max program in the ledir direct-
ory. If the argument to --mysqld-version is empty, mysqld_safe uses mysqld in the
ledir directory.

• --nice=priority

Use the nice program to set the server's scheduling priority to the given value. This option was
added in MySQL 4.0.14.

• --no-defaults

Do not read any option files.

• --open-files-limit=count

The number of files mysqld should be able to open. The option value is passed to ulimit -n.
Note that you need to start mysqld_safe as root for this to work properly!

• --pid-file=path

The path to the process ID file.

• --port=port_num

The port number to use when listening for TCP/IP connections.

• --socket=path

The Unix socket file to use for local connections.

• --timezone=zone

Set the TZ time zone environment variable to the given option value. Consult your operating
system documentation for legal time zone specification formats.

• --user={user_name | user_id}

Run the mysqld server as the user having the name user_name or the numeric user ID
user_id. (``User'' in this context refers to a system login account, not a MySQL user listed in
the grant tables.)

The mysqld_safe script is written so that it normally can start a server that was installed from either
a source or a binary distribution of MySQL, even though these types of distributions typically install
the server in slightly different locations. (See Section 2.1.5, “Installation Layouts”.) mysqld_safe
expects one of the following conditions to be true:

• The server and databases can be found relative to the directory from which mysqld_safe is in-
voked. For binary distributions, mysqld_safe looks under its working directory for bin and
data directories. For source distributions, it looks for libexec and var directories. This con-
dition should be met if you execute mysqld_safe from your MySQL installation directory (for
example, /usr/local/mysql for a binary distribution).

• If the server and databases cannot be found relative to the working directory, mysqld_safe at-
tempts to locate them by absolute pathnames. Typical locations are /usr/local/libexec
and /usr/local/var. The actual locations are determined from the values configured into
the distribution at the time it was built. They should be correct if MySQL is installed in the loca-
tion specified at configuration time.

Because mysqld_safe tries to find the server and databases relative to its own working directory,
you can install a binary distribution of MySQL anywhere, as long as you run mysqld_safe from the

Database Administration

216

MySQL installation directory:

shell> cd mysql_installation_directory
shell> bin/mysqld_safe &

If mysqld_safe fails, even when invoked from the MySQL installation directory, you can specify
the --ledir and --datadir options to indicate the directories in which the server and databases
are located on your system.

Normally, you should not edit the mysqld_safe script. Instead, configure mysqld_safe by using
command-line options or options in the [mysqld_safe] section of a my.cnf option file. In rare
cases, it might be necessary to edit mysqld_safe to get it to start the server properly. However, if
you do this, your modified version of mysqld_safe might be overwritten if you upgrade MySQL in
the future, so you should make a copy of your edited version that you can reinstall.

On NetWare, mysqld_safe is a NetWare Loadable Module (NLM) that is ported from the original
Unix shell script. It does the following:

1. Runs a number of system and option checks.

2. Runs a check on MyISAM and ISAM tables.

3. Provides a screen presence for the MySQL server.

4. Starts mysqld, monitors it, and restarts it if it terminates in error.

5. Sends error messages from mysqld to the host_name.err file in the data directory.

6. Sends mysqld_safe screen output to the host_name.safe file in the data directory.

5.1.4. The mysql.server Server Startup Script
MySQL distributions on Unix include a script named mysql.server. It can be used on systems such
as Linux and Solaris that use System V-style run directories to start and stop system services. It is
also used by the Mac OS X Startup Item for MySQL.

mysql.server can be found in the support-files directory under your MySQL installation dir-
ectory or in a MySQL source tree.

If you use the Linux server RPM package (MySQL-server-VERSION.rpm), the mysql.server
script will be installed in the /etc/init.d directory with the name mysql. You need not install
it manually. See Section 2.4, “Installing MySQL on Linux” for more information on the Linux RPM
packages.

Some vendors provide RPM packages that install a startup script under a different name such as
mysqld.

If you install MySQL from a source distribution or using a binary distribution format that does not
install mysql.server automatically, you can install it manually. Instructions are provided in Sec-
tion 2.9.2.2, “Starting and Stopping MySQL Automatically”.

mysql.server reads options from the [mysql.server] and [mysqld] sections of option files.
(For backward compatibility, it also reads [mysql_server] sections, although you should re-
name such sections to [mysql.server] when you begin using MySQL 4.0 or later.)

5.1.5. The mysqld_multi Program for Managing Mul-
tiple MySQL Servers

mysqld_multi is meant for managing several mysqld processes that listen for connections on differ-
ent Unix socket files and TCP/IP ports. It can start or stop servers, or report their current status.

Database Administration

217

The program searches for groups named [mysqld#] in my.cnf (or in the file named by the -
-config-file option). # can be any positive integer. This number is referred to in the following
discussion as the option group number, or GNR. Group numbers distinguish option groups from one
another and are used as arguments to mysqld_multi to specify which servers you want to start, stop,
or obtain a status report for. Options listed in these groups are the same that you would use in the
[mysqld] group used for starting mysqld. (See, for example, Section 2.9.2.2, “Starting and Stop-
ping MySQL Automatically”.) However, when using multiple servers it is necessary that each one
use its own value for options such as the Unix socket file and TCP/IP port number. For more in-
formation on which options must be unique per server in a multiple-server environment, see Sec-
tion 5.10, “Running Multiple MySQL Servers on the Same Machine”.

To invoke mysqld_multi, use the following syntax:

shell> mysqld_multi [options] {start|stop|report} [GNR[,GNR]...]

start, stop, and report indicate which operation you want to perform. You can perform the
designated operation on a single server or multiple servers, depending on the GNR list that follows
the option name. If there is no list, mysqld_multi performs the operation for all servers in the option
file.

Each GNR value represents an option group number or range of group numbers. The value should be
the number at the end of the group name in the option file. For example, the GNR for a group named
[mysqld17] is 17. To specify a range of numbers, separate the first and last numbers by a dash.
The GNR value 10-13 represents groups [mysqld10] through [mysqld13]. Multiple groups
or group ranges can be specified on the command line, separated by commas. There must be no
whitespace characters (spaces or tabs) in the GNR list; anything after a whitespace character is ig-
nored.

This command starts a single server using option group [mysqld17]:

shell> mysqld_multi start 17

This command stops several servers, using option groups [mysql8] and [mysqld10] through
[mysqld13]:

shell> mysqld_multi stop 8,10-13

For an example of how you might set up an option file, use this command:

shell> mysqld_multi --example

mysqld_multi supports the following options:

• --config-file=name

Specify the name of an alternative option file. This affects where mysqld_multi looks for
[mysqld#] option groups. Without this option, all options are read from the usual my.cnf
file. The option does not affect where mysqld_multi reads its own options, which are always
taken from the [mysqld_multi] group in the usual my.cnf file.

• --example

Display a sample option file.

• --help

Display a help message and exit.

Database Administration

218

• --log=name

Specify the name of the log file. If the file exists, log output is appended to it.

• --mysqladmin=prog_name

The mysqladmin binary to be used to stop servers.

• --mysqld=prog_name

The mysqld binary to be used. Note that you can specify mysqld_safe as the value for this op-
tion also. The options are passed to mysqld. Just make sure that you have the directory where
mysqld is located in your PATH environment variable setting or fix mysqld_safe.

• --no-log

Print log information to stdout rather than to the log file. By default, output goes to the log file.

• --password=password

The password of the MySQL account to use when invoking mysqladmin. Note that the pass-
word value is not optional for this option, unlike for other MySQL programs.

• --silent

Disable warnings. This option was added in MySQL 4.1.6.

• --tcp-ip

Connect to each MySQL server via the TCP/IP port instead of the Unix socket file. (If a socket
file is missing, the server might still be running, but accessible only via the TCP/IP port.) By de-
fault, connections are made using the Unix socket file. This option affects stop and report
operations.

• --user=user_name

The username of the MySQL account to use when invoking mysqladmin.

• --verbose

Be more verbose. This option was added in MySQL 4.1.6.

• --version

Display version information and exit.

Some notes about mysqld_multi:

• Make sure that the MySQL account used for stopping the mysqld servers (with the mysqladmin
program) has the same username and password for each server. Also, make sure that the account
has the SHUTDOWN privilege. If the servers that you want to manage have many different user-
names or passwords for the administrative accounts, you might want to create an account on

Database Administration

219

each server that has the same username and password. For example, you might set up a common
multi_admin account by executing the following commands for each server:

shell> mysql -u root -S /tmp/mysql.sock -proot_password
mysql> GRANT SHUTDOWN ON *.*

-> TO 'multi_admin'@'localhost' IDENTIFIED BY 'multipass';

See Section 5.5.2, “How the Privilege System Works”. You have to do this for each mysqld
server. Change the connection parameters appropriately when connecting to each one. Note that
the host part of the account name must allow you to connect as multi_admin from the host
where you want to run mysqld_multi.

• The --pid-file option is very important if you are using mysqld_safe to start mysqld (for
example, --mysqld=mysqld_safe) Every mysqld should have its own process ID file. The
advantage of using mysqld_safe instead of mysqld is that mysqld_safe ``guards'' its mysqld
process and restarts it if the process terminates due to a signal sent using kill -9 or for other
reasons, such as a segmentation fault. Please note that the mysqld_safe script might require that
you start it from a certain place. This means that you might have to change location to a certain
directory before running mysqld_multi. If you have problems starting, please see the
mysqld_safe script. Check especially the lines:

--
MY_PWD=`pwd`
Check if we are starting this relative (for the binary release)
if test -d $MY_PWD/data/mysql -a -f ./share/mysql/english/errmsg.sys -a \
-x ./bin/mysqld
--

See Section 5.1.3, “The mysqld_safe Server Startup Script”. The test performed by these lines
should be successful, or you might encounter problems.

• The Unix socket file and the TCP/IP port number must be different for every mysqld.

• You might want to use the --user option for mysqld, but in order to do this you need to run
the mysqld_multi script as the Unix root user. Having the option in the option file doesn't
matter; you just get a warning if you are not the superuser and the mysqld processes are started
under your own Unix account.

• Important: Make sure that the data directory is fully accessible to the Unix account that the spe-
cific mysqld process is started as. Do not use the Unix root account for this, unless you know
what you are doing.

• Most important: Before using mysqld_multi be sure that you understand the meanings of the
options that are passed to the mysqld servers and why you would want to have separate mysqld
processes. Beware of the dangers of using multiple mysqld servers with the same data directory.
Use separate data directories, unless you know what you are doing. Starting multiple servers
with the same data directory does not give you extra performance in a threaded system. See Sec-
tion 5.10, “Running Multiple MySQL Servers on the Same Machine”.

The following example shows how you might set up an option file for use with mysqld_multi. The
first and fifth [mysqld#] group were intentionally left out from the example to illustrate that you
can have ``gaps'' in the option file. This gives you more flexibility. The order in which the mysqld
programs are started or stopped depends on the order in which they appear in the option file.

This file should probably be in your home dir (~/.my.cnf)
or /etc/my.cnf
Version 2.1 by Jani Tolonen
[mysqld_multi]
mysqld = /usr/local/bin/mysqld_safe
mysqladmin = /usr/local/bin/mysqladmin
user = multi_admin
password = multipass

Database Administration

220

[mysqld2]
socket = /tmp/mysql.sock2
port = 3307
pid-file = /usr/local/mysql/var2/hostname.pid2
datadir = /usr/local/mysql/var2
language = /usr/local/share/mysql/english
user = john
[mysqld3]
socket = /tmp/mysql.sock3
port = 3308
pid-file = /usr/local/mysql/var3/hostname.pid3
datadir = /usr/local/mysql/var3
language = /usr/local/share/mysql/swedish
user = monty
[mysqld4]
socket = /tmp/mysql.sock4
port = 3309
pid-file = /usr/local/mysql/var4/hostname.pid4
datadir = /usr/local/mysql/var4
language = /usr/local/share/mysql/estonia
user = tonu
[mysqld6]
socket = /tmp/mysql.sock6
port = 3311
pid-file = /usr/local/mysql/var6/hostname.pid6
datadir = /usr/local/mysql/var6
language = /usr/local/share/mysql/japanese
user = jani

See Section 4.3.2, “Using Option Files”.

5.2. Configuring the MySQL Server
This section discusses MySQL server configuration topics:

• Startup options that the server supports

• How to set the server SQL mode

• Server system variables

• Server status variables

5.2.1. mysqld Command-Line Options
When you start the mysqld server, you can specify program options using any of the methods de-
scribed in Section 4.3, “Specifying Program Options”. The most common methods are to provide
options in an option file or on the command line. However, in most cases it is desirable to make sure
that the server uses the same options each time it runs. The best way to ensure this is to list them in
an option file. See Section 4.3.2, “Using Option Files”.

mysqld reads options from the [mysqld] and [server] groups. mysqld_safe reads options
from the [mysqld], [server], [mysqld_safe], and [safe_mysqld] groups.
mysql.server reads options from the [mysqld] and [mysql.server] groups. An embedded
MySQL server usually reads options from the [server], [embedded], and
[xxxxx_SERVER] groups, where xxxxx is the name of the application into which the server is
embedded.

mysqld accepts many command-line options. For a list, execute mysqld --help. Before MySQL
4.1.1, --help prints the full help message. As of 4.1.1, it prints a brief message; to see the full list,
use mysqld --verbose --help.

Database Administration

221

The following list shows some of the most common server options. Additional options are described
elsewhere:

• Options that affect security: See Section 5.4.3, “Startup Options for mysqld Concerning Secur-
ity”.

• SSL-related options: See Section 5.6.7.5, “SSL Command-Line Options”.

• Binary log control options: See Section 5.9.4, “The Binary Log”.

• Replication-related options: See Section 6.8, “Replication Startup Options”.

• Options specific to particular storage engines: See Section 14.1.1, “MyISAM Startup Options”,
Section 14.4.3, “BDB Startup Options”, Section 15.5, “InnoDB Startup Options”.

You can also set the value of a server system variable by using the variable name as an option, as
described later in this section.

• --help, -?

Display a short help message and exit. Before MySQL 4.1.1, --help displays the full help
message. As of 4.1.1, it displays an abbreviated message only. Use both the --verbose and -
-help options to see the full message.

• --ansi

Use standard SQL syntax instead of MySQL syntax. See Section 1.5.3, “Running MySQL in
ANSI Mode”. For more precise control over the server SQL mode, use the --sql-mode op-
tion instead.

• --basedir=path, -b path

The path to the MySQL installation directory. All paths are usually resolved relative to this.

• --big-tables

Allow large result sets by saving all temporary sets in files. This option prevents most ``table
full'' errors, but also slows down queries for which in-memory tables would suffice. Since
MySQL 3.23.2, the server is able to handle large result sets automatically by using memory for
small temporary tables and switching to disk tables where necessary.

• --bind-address=IP

The IP address to bind to.

• --console

Write the error log messages to stderr/stdout even if --log-error is specified. On Windows,
mysqld does not close the console screen if this option is used.

• --character-sets-dir=path

The directory where character sets are installed. See Section 5.8.1, “The Character Set Used for
Data and Sorting”.

• --chroot=path

Put the mysqld server in a closed environment during startup by using the chroot() system
call. This is a recommended security measure as of MySQL 4.0. (MySQL 3.23 is not able to
provide a chroot() jail that is 100% closed.) Note that use of this option somewhat limits
LOAD DATA INFILE and SELECT ... INTO OUTFILE.

Database Administration

222

• --character-set-server=charset

Use charset as the default server character set. This option is available as of MySQL 4.1.3.
See Section 5.8.1, “The Character Set Used for Data and Sorting”.

• --core-file

Write a core file if mysqld dies. For some systems, you must also specify the -
-core-file-size option to mysqld_safe. See Section 5.1.3, “The mysqld_safe Server
Startup Script”. Note that on some systems, such as Solaris, you do not get a core file if you are
also using the --user option.

• --collation-server=collation

Use collation as the default server collation. This option is available as of MySQL 4.1.3.
See Section 5.8.1, “The Character Set Used for Data and Sorting”.

• --datadir=path, -h path

The path to the data directory.

• --debug[=debug_options], -# [debug_options]

If MySQL is configured with --with-debug, you can use this option to get a trace file of
what mysqld is doing. The debug_options string often is 'd:t:o,file_name'. See
Section E.1.2, “Creating Trace Files”.

• --default-character-set=charset

Use charset as the default character set. This option is deprecated in favor of -
-character-set-server as of MySQL 4.1.3. See Section 5.8.1, “The Character Set Used
for Data and Sorting”.

• --default-collation=collation

Use collation as the default collation. This option is deprecated in favor of -
-collation-server as of MySQL 4.1.3. See Section 5.8.1, “The Character Set Used for
Data and Sorting”.

• --default-storage-engine=type

This option is a synonym for --default-table-type. It is available as of MySQL 4.1.2.

• --default-table-type=type

Set the default table type for tables. See Chapter 14, MySQL Storage Engines and Table Types.

• --default-time-zone=type

Set the default server time zone. This option sets the global time_zone system variable. If this
option is not given, the default time zone is the same as the system time zone (given by the value
of the system_time_zone system variable. This option is available as of MySQL 4.1.3.

• --delay-key-write[= OFF | ON | ALL]

How the DELAYED KEYS option should be used. Delayed key writing causes key buffers not to
be flushed between writes for MyISAM tables. OFF disables delayed key writes. ON enables
delayed key writes for those tables that were created with the DELAYED KEYS option. ALL
delays key writes for all MyISAM tables. Available as of MySQL 4.0.3. See Section 7.5.2,
“Tuning Server Parameters”. See Section 14.1.1, “MyISAM Startup Options”.

Note: If you set this variable to ALL, you should not use MyISAM tables from within another
program (such as from another MySQL server or with myisamchk) when the table is in use. Do-
ing so leads to index corruption.

Database Administration

223

• --delay-key-write-for-all-tables

Old form of --delay-key-write=ALL for use prior to MySQL 4.0.3. As of 4.0.3, use -
-delay-key-write instead.

• --des-key-file=file_name

Read the default keys used by DES_ENCRYPT() and DES_DECRYPT() from this file.

• --enable-named-pipe

Enable support for named pipes. This option applies only on Windows NT, 2000, XP, and 2003
systems, and can be used only with the mysqld-nt and mysqld-max-nt servers that support
named pipe connections.

• --exit-info[=flags], -T [flags]

This is a bit mask of different flags you can use for debugging the mysqld server. Do not use
this option unless you know exactly what it does!

• --external-locking

Enable system locking. Note that if you use this option on a system on which lockd does not
fully work (as on Linux), it is easy for mysqld to deadlock. This option previously was named -
-enable-locking.

Note: If you use this option to enable updates to MyISAM tables from many MySQL processes,
you have to ensure that these conditions are satisfied:

• You should not use the query cache for queries that use tables that are updated by another
process.

• You should not use --delay-key-write=ALL or DELAY_KEY_WRITE=1 on any
shared tables.

The easiest way to ensure this is to always use --external-locking together with -
-delay-key-write=OFF --query-cache-size=0.

(This is not done by default because in many setups it's useful to have a mixture of the above op-
tions.)

• --flush

Flush all changes to disk after each SQL statement. Normally MySQL does a write of all
changes to disk only after each SQL statement and lets the operating system handle the synching
to disk. See Section A.4.2, “What to Do If MySQL Keeps Crashing”.

• --init-file=file

Read SQL statements from this file at startup. Each statement must be on a single line and
should not include comments.

• --innodb-safe-binlog

Adds consistency guarantees between the content of InnoDB tables and the binary log. See Sec-
tion 5.9.4, “The Binary Log”.

• --language=lang_name, -L lang_name

Client error messages in given language. lang_name can be given as the language name or as
the full pathname to the directory where the language files are installed. See Section 5.8.2,
“Setting the Error Message Language”.

Database Administration

224

• --large-pages

Some hardware/operating system architectures support memory pages greater than the default
(usually 4 KB). The actual implementation of this support depends on the underlying hardware
and OS. Applications that perform a lot of memory access may obtain performance improve-
ments by using large pages due to reduced Translation Lookaside Buffer (TLB) misses.

Currently, MySQL supports only the Linux implementation of large pages support (which is
called HugeTLB in Linux). We have plans to extend this support to FreeBSD, Solaris and pos-
sibly other platforms.

Before large pages can be used on Linux, it is necessary to configure the HugeTLB memory
pool. For reference, consult the hugetlbpage.txt file in the Linux kernel source.

This option is disabled by default. It was added in MySQL 5.0.3.

• --log[=file], -l [file]

Log connections and queries to this file. See Section 5.9.2, “The General Query Log”. If you
don't specify a filename, MySQL uses host_name.log as the filename.

• --log-bin=[file]

The binary log file. Log all queries that change data to this file. Used for backup and replication.
See Section 5.9.4, “The Binary Log”. It is recommended to specify a filename (see Sec-
tion 1.5.7.3, “Open Bugs and Design Deficiencies in MySQL” for the reason) otherwise MySQL
uses host_name-bin as the log file basename.

• --log-bin-index[=file]

The index file for binary log filenames. See Section 5.9.4, “The Binary Log”. If you don't spe-
cify a filename, and if you didn't specify one in --log-bin, MySQL uses host_name-
bin.index as the filename.

• --log-error[=file]

Log errors and startup messages to this file. See Section 5.9.1, “The Error Log”. If you don't
specify a filename, MySQL uses host_name.err as the filename.

• --log-isam[=file]

Log all ISAM/MyISAM changes to this file (used only when debugging ISAM/MyISAM).

• --log-long-format

Log some extra information to the log files (update log, binary update log, and slow queries log,
whatever log has been activated). For example, username and timestamp are logged for queries.
Before MySQL 4.1, if you are using --log-slow-queries and --log-long-format,
queries that are not using indexes also are logged to the slow query log. -
-log-long-format is deprecated as of MySQL version 4.1, when -
-log-short-format was introduced. (Long log format is the default setting since version
4.1.) Also note that starting with MySQL 4.1, the --log-queries-not-using-indexes
option is available for the purpose of logging queries that do not use indexes to the slow query
log.

• --log-queries-not-using-indexes

If you are using this option with --log-slow-queries, then queries that are not using in-
dexes also are logged to the slow query log. This option is available as of MySQL 4.1. See Sec-
tion 5.9.5, “The Slow Query Log”.

• --log-short-format

Log less information to the log files (update log, binary update log, and slow queries log,

Database Administration

225

whatever log has been activated). For example, username and timestamp are not logged for quer-
ies. This option was introduced in MySQL 4.1.

• --log-slow-queries[=file]

Log all queries that have taken more than long_query_time seconds to execute to this file.
See Section 5.9.5, “The Slow Query Log”. Note that the default for the amount of information
logged has changed in MySQL 4.1. See the --log-long-format and -
-log-short-format options for details.

• --log-update[=file]

Log updates to file# where # is a unique number if not given. See Section 5.9.3, “The Update
Log”. The update log is deprecated and is removed in MySQL 5.0.0; you should use the binary
log instead (--log-bin). See Section 5.9.4, “The Binary Log”. Starting from version 5.0.0,
using --log-update turns on the binary log instead (see Section D.1.4, “Changes in release
5.0.0 (22 Dec 2003: Alpha)”).

• --log-warnings, -W

Print out warnings such as Aborted connection... to the error log. Enabling this option
is recommended, for example, if you use replication (you get more information about what is
happening, such as messages about network failures and reconnections). This option is enabled
by default as of MySQL 4.0.19 and 4.1.2; to disable it, use --skip-log-warnings. As of
MySQL 4.0.21 and 4.1.3, aborted connections are not logged to the error log unless the value is
greater than 1. See Section A.2.10, “Communication Errors and Aborted Connections”.

This option was named --warnings before MySQL 4.0.

• --low-priority-updates

Table-modifying operations (INSERT, REPLACE, DELETE, UPDATE) have lower priority than
selects. This can also be done via {INSERT | REPLACE | DELETE | UPDATE}
LOW_PRIORITY ... to lower the priority of only one query, or by SET
LOW_PRIORITY_UPDATES=1 to change the priority in one thread. See Section 7.3.2, “Table
Locking Issues”.

• --memlock

Lock the mysqld process in memory. This works on systems such as Solaris that support the
mlockall() system call. This might help if you have a problem where the operating system is
causing mysqld to swap on disk. Note that use of this option requires that you run the server as
root, which is normally not a good idea for security reasons.

• --myisam-recover [=option[,option...]]]

Set the MyISAM storage engine recovery mode. The option value is any combination of the val-
ues of DEFAULT, BACKUP, FORCE, or QUICK. If you specify multiple values, separate them by
commas. You can also use a value of "" to disable this option. If this option is used, mysqld,
when it opens a MyISAM table, checks whether the table is marked as crashed or wasn't closed
properly. (The last option works only if you are running with
--skip-external-locking.) If this is the case, mysqld runs a check on the table. If the
table was corrupted, mysqld attempts to repair it.

The following options affect how the repair works:

Option Description

DEFAULT The same as not giving any option to --myisam-recover.

BACKUP If the data file was changed during recovery, save a backup of the
tbl_name.MYD file as tbl_name-datetime.BAK.

FORCE Run recovery even if we would lose more than one row from the .MYD file.

Database Administration

226

QUICK Don't check the rows in the table if there aren't any delete blocks.

Before a table is automatically repaired, MySQL adds a note about this in the error log. If you
want to be able to recover from most problems without user intervention, you should use the op-
tions BACKUP,FORCE. This forces a repair of a table even if some rows would be deleted, but
it keeps the old data file as a backup so that you can later examine what happened.

This option is available as of MySQL 3.23.25.

• --ndb-connectstring=connect_string

When using the NDB storage engine, it is possible to point out the management server that dis-
tributes the cluster configuration by setting the connect string option. See Section 16.3.4.2, “The
MySQL Cluster connectstring” for syntax.

• --ndbcluster

If the binary includes support for the NDB Cluster storage engine (from version 4.1.3, the
MySQL-Max binaries are built with NDB Cluster enabled) the default disabling of support
for the NDB Cluster storage engine can be overruled by using this option. Using the NDB
Cluster storage engine is necessary for using MySQL Cluster. See Chapter 16, MySQL
Cluster.

• --new

The --new option can be used to make the server behave as 4.1 in certain respects, easing a 4.0
to 4.1 upgrade:

• Hexadecimal strings such as 0xFF are treated as strings by default rather than as numbers.
(Works in 4.0.12 and up.)

• TIMESTAMP is returned as a string with the format 'YYYY-MM-DD HH:MM:SS'. (Works
in 4.0.13 and up.) See Chapter 11, Column Types.

This option can be used to help you see how your applications behave in MySQL 4.1, without
actually upgrading to 4.1.

• --old-passwords

Force the server to generate short (pre-4.1) password hashes for new passwords. This is useful
for compatibility when the server must support older client programs. See Section 5.5.9,
“Password Hashing in MySQL 4.1”.

• --old-protocol, -o

Use the 3.20 protocol for compatibility with some very old clients. See Section 2.10.6,
“Upgrading from Version 3.20 to 3.21”.

• --one-thread

Only use one thread (for debugging under Linux). This option is available only if the server is
built with debugging enabled. See Section E.1, “Debugging a MySQL Server”.

• --open-files-limit=count

To change the number of file descriptors available to mysqld. If this is not set or set to 0, then
mysqld uses this value to reserve file descriptors to use with setrlimit(). If this value is 0
then mysqld reserves max_connections*5 or max_connections + ta-
ble_cache*2 (whichever is larger) number of files. You should try increasing this if mysqld
gives you the error "Too many open files."

Database Administration

227

• --pid-file=path

The path to the process ID file used by mysqld_safe.

• --port=port_num, -P port_num

The port number to use when listening for TCP/IP connections.

• --safe-mode

Skip some optimization stages.

• --safe-show-database

With this option, the SHOW DATABASES statement displays only the names of those databases
for which the user has some kind of privilege. As of MySQL 4.0.2, this option is deprecated and
doesn't do anything (it is enabled by default), because there is a SHOW DATABASES privilege
that can be used to control access to database names on a per-account basis. See Section 5.5.3,
“Privileges Provided by MySQL”.

• --safe-user-create

If this is enabled, a user can't create new users with the GRANT statement, if the user doesn't
have the INSERT privilege for the mysql.user table or any column in the table.

• --secure-auth

Disallow authentication for accounts that have old (pre-4.1) passwords. This option is available
as of MySQL 4.1.1.

• --shared-memory

Enable shared-memory connections by local clients. This option is available only on Windows.
It was added in MySQL 4.1.0.

• --shared-memory-base-name=name

The name to use for shared-memory connections. This option is available only on Windows. It
was added in MySQL 4.1.0.

• --skip-bdb

Disable the BDB storage engine. This saves memory and might speed up some operations. Do
not use this option if you require BDB tables.

• --skip-concurrent-insert

Turn off the ability to select and insert at the same time on MyISAM tables. (This is to be used
only if you think you have found a bug in this feature.)

• --skip-delay-key-write

Ignore the DELAY_KEY_WRITE option for all tables. As of MySQL 4.0.3, you should use -
-delay-key-write=OFF instead. See Section 7.5.2, “Tuning Server Parameters”.

• --skip-external-locking

Don't use system locking. To use isamchk or myisamchk, you must shut down the server. See
Section 1.2.3, “MySQL Stability”. In MySQL 3.23, you can use CHECK TABLE and REPAIR
TABLE to check and repair MyISAM tables. This option previously was named -
-skip-locking.

• --skip-grant-tables

Database Administration

228

This option causes the server not to use the privilege system at all. This gives everyone full ac-
cess to all databases! (You can tell a running server to start using the grant tables again by ex-
ecuting a mysqladmin flush-privileges or mysqladmin reload command, or by issuing a
FLUSH PRIVILEGES statement.)

• --skip-host-cache

Do not use the internal hostname cache for faster name-to-IP resolution. Instead, query the DNS
server every time a client connects. See Section 7.5.6, “How MySQL Uses DNS”.

• --skip-innodb

Disable the InnoDB storage engine. This saves memory and disk space and might speed up
some operations. Do not use this option if you require InnoDB tables.

• --skip-isam

Disable the ISAM storage engine. As of MySQL 4.1, ISAM is disabled by default, so this option
applies only if the server was configured with support for ISAM. This option was added in
MySQL 4.1.1.

• --skip-name-resolve

Do not resolve hostnames when checking client connections. Use only IP numbers. If you use
this option, all Host column values in the grant tables must be IP numbers or localhost. See
Section 7.5.6, “How MySQL Uses DNS”.

• --skip-ndbcluster

Disable the NDB Cluster storage engine. This is the default for binaries that were built with
NDB Cluster storage engine support, this means that the system only allocates memory and
other resources for this storage engine if it is explicitly enabled.

• --skip-networking

Don't listen for TCP/IP connections at all. All interaction with mysqld must be made via named
pipes or shared memory (on Windows) or Unix socket files (on Unix). This option is highly re-
commended for systems where only local clients are allowed. See Section 7.5.6, “How MySQL
Uses DNS”.

• --skip-new

Don't use new, possibly wrong routines.

• --skip-symlink

This is the old form of --skip-symbolic-links, for use before MySQL 4.0.13.

• --symbolic-links, --skip-symbolic-links

Enable or disable symbolic link support. This option has different effects on Windows and Unix:

• On Windows, enabling symbolic links allows you to establish a symbolic link to a database
directory by creating a directory.sym file that contains the path to the real directory.
See Section 7.6.1.3, “Using Symbolic Links for Databases on Windows”.

• On Unix, enabling symbolic links means that you can link a MyISAM index file or data file
to another directory with the INDEX DIRECTORY or DATA DIRECTORY options of the
CREATE TABLE statement. If you delete or rename the table, the files that its symbolic
links point to also are deleted or renamed. See Section 13.2.6, “CREATE TABLE Syntax”.

This option was added in MySQL 4.0.13.

Database Administration

229

• --skip-safemalloc

If MySQL is configured with --with-debug=full, all MySQL programs check for memory
overruns during each memory allocation and memory freeing operation. This checking is very
slow, so for the server you can avoid it when you don't need it by using the -
-skip-safemalloc option.

• --skip-show-database

With this option, the SHOW DATABASES statement is allowed only to users who have the
SHOW DATABASES privilege, and the statement displays all database names. Without this op-
tion, SHOW DATABASES is allowed to all users, but displays each database name only if the
user has the SHOW DATABASES privilege or some privilege for the database.

• --skip-stack-trace

Don't write stack traces. This option is useful when you are running mysqld under a debugger.
On some systems, you also must use this option to get a core file. See Section E.1, “Debugging a
MySQL Server”.

• --skip-thread-priority

Disable using thread priorities for faster response time.

• --socket=path

On Unix, this option specifies the Unix socket file to use for local connections. The default
value is /tmp/mysql.sock. On Windows, the option specifies the pipe name to use for local
connections that use a named pipe. The default value is MySQL.

• --sql-mode=value[,value[,value...]]

Set the SQL mode for MySQL. See Section 5.2.2, “The Server SQL Mode”. This option was ad-
ded in 3.23.41.

• --temp-pool

This option causes most temporary files created by the server to use a small set of names, rather
than a unique name for each new file. This works around a problem in the Linux kernel dealing
with creating many new files with different names. With the old behavior, Linux seems to
``leak'' memory, because it's being allocated to the directory entry cache rather than to the disk
cache.

• --transaction-isolation=level

Sets the default transaction isolation level, which can be READ-UNCOMMITTED, READ-
COMMITTED, REPEATABLE-READ, or SERIALIZABLE. See Section 13.4.6, “SET TRANS-
ACTION Syntax”.

• --tmpdir=path, -t path

The path of the directory to use for creating temporary files. It might be useful if your default /
tmp directory resides on a partition that is too small to hold temporary tables. Starting from
MySQL 4.1, this option accepts several paths that are used in round-robin fashion. Paths should
be separated by colon characters (':') on Unix and semicolon characters (';') on Windows, Net-
Ware, and OS/2. If the MySQL server is acting as a replication slave, you should not set -
-tmpdir to point to a directory on a memory-based filesystem or to a directory that is cleared
when the server host restarts. A replication slave needs some of its temporary files to survive a
machine restart so that it can replicate temporary tables or LOAD DATA INFILE operations. If
files in the temporary file directory are lost when the server restarts, replication fails.

Database Administration

230

• --user={user_name | user_id}, -u {user_name | user_id}

Run the mysqld server as the user having the name user_name or the numeric user ID
user_id. (``User'' in this context refers to a system login account, not a MySQL user listed in
the grant tables.)

This option is mandatory when starting mysqld as root. The server changes its user ID during
its startup sequence, causing it to run as that particular user rather than as root. See Sec-
tion 5.4.1, “General Security Guidelines”.

Starting from MySQL 3.23.56 and 4.0.12: To avoid a possible security hole where a user adds a
--user=root option to some my.cnf file (thus causing the server to run as root), mysqld
uses only the first --user option specified and produces a warning if there are multiple -
-user options. Options in /etc/my.cnf and datadir/my.cnf are processed before
command-line options, so it is recommended that you put a --user option in /etc/my.cnf
and specify a value other than root. The option in /etc/my.cnf is found before any other -
-user options, which ensures that the server runs as a user other than root, and that a warning
results if any other --user option is found.

• --version, -V

Display version information and exit.

As of MySQL 4.0, you can assign a value to a server system variable by using an option of the form
--var_name=value. For example, --key_buffer_size=32M sets the
key_buffer_size variable to a value of 32MB.

Note that when setting a variable to a value, MySQL might automatically correct it to stay within a
given range, or adjust the value to the closest allowable value if only certain values are allowed.

It is also possible to set variables by using --set-variable=var_name=value or -O
var_name=value syntax. However, this syntax is deprecated as of MySQL 4.0.

You can find a full description for all variables in Section 5.2.3, “Server System Variables”. The
section on tuning server parameters includes information on how to optimize them. See Sec-
tion 7.5.2, “Tuning Server Parameters”.

You can change the values of most system variables for a running server with the SET statement.
See Section 13.5.3, “SET Syntax”.

If you want to restrict the maximum value that a startup option can be set to with SET, you can
define this by using the --maximum-var_name command-line option.

5.2.2. The Server SQL Mode
The MySQL server can operate in different SQL modes, and (as of MySQL 4.1) can apply these
modes differentially for different clients. This allows an application to tailor server operation to its
own requirements.

Modes define what SQL syntax MySQL should support and what kind of data validation checks it
should perform. This makes it easier to use MySQL in different environments and to use MySQL
together with other database servers.

You can set the default SQL mode by starting mysqld with the --sql-mode="modes" option.
The value also can be empty (--sql-mode="") if you want to reset it.

Beginning with MySQL 4.1, you can also change the SQL mode after startup time by setting the
sql_mode variable with a SET [SESSION|GLOBAL] sql_mode='modes' statement. Set-
ting the GLOBAL variable requires the SUPER privilege and affects the operation of all clients that
connect from that time on. Setting the SESSION variable affects only the current client. Any client
can change its session sql_mode value.

Database Administration

231

modes is a list of different modes separated by comma (',') characters. You can retrieve the current
mode by issuing a SELECT @@sql_mode statement. The default value is empty (no modes set).

The most important sql_mode values are probably these:

• ANSI

Change syntax and behavior to be more conformant to standard SQL. (New in MySQL 4.1.1)

• STRICT_TRANS_TABLES

If a value could not be inserted as given into a transactional table, abort the statement. For a non-
transactional table, abort the statement if the value occurs in a single-row statement or the first
row of a multiple-row statement. More detail is given later in this section. (New in MySQL
5.0.2)

• TRADITIONAL

Make MySQL behave like a ``traditional'' SQL database system. A simple description of this
mode is ``give an error instead of a warning'' when inserting an incorrect value into a column.
Note: The INSERT/UPDATE aborts as soon as the error is noticed. This may not be what you
want if you are using a non-transactional storage engine, because data changes made prior to the
error are not be rolled back, resulting in a ``partially-done'' update. (New in MySQL 5.0.2)

When this manual refers to ``strict mode,'' it means a mode where at least one of
STRICT_TRANS_TABLES or STRICT_ALL_TABLES is enabled.

The following list describes all the supported modes:

• ALLOW_INVALID_DATES

Don't do full checking of dates in strict mode. Check only that the month is in the range from 1
to 12 and the day is in the range from 1 to 31. This is very convenient for Web applications
where you obtain year, month, and day in three different fields and you want to store exactly
what the user inserted (without date validation). This mode applies to DATE and DATETIME
columns. It does not apply TIMESTAMP columns, which always require a valid date.

This mode is new in MySQL 5.0.2. Before 5.0.2, this was the default MySQL date-handling
mode. As of 5.0.2, enabling strict mode causes the server to require that month and day values
be legal, not just in the range from 1 to 12 and 1 to 31. For example, '2004-04-31' is legal
with strict mode disabled, but illegal with strict mode enabled. To allow such dates in strict
mode, enable ALLOW_INVALID_DATES as well.

• ANSI_QUOTES

Treat '"' as an identifier quote character (like the '`' quote character) and not as a string quote
character. You can still use '`' to quote identifiers in ANSI mode. With ANSI_QUOTES en-
abled, you cannot use double quotes to quote a literal string, because it is interpreted as an iden-
tifier. (New in MySQL 4.0.0)

• ERROR_FOR_DIVISION_BY_ZERO

Produce an error in strict mode (otherwise a warning) when we encounter a division by zero (or
MOD(X,0)) during an INSERT/ UPDATE. If this mode is not given, MySQL instead returns
NULL for divisions by zero. If used with IGNORE, MySQL generates a warning for divisions by
zero, but the result of the operation is NULL. (New in MySQL 5.0.2)

Database Administration

232

• HIGH_NOT_PRECEDENCE

From MySQL 5.0.2 on, the NOT operator precedence is handled so that expressions such as NOT
a BETWEEN b AND c are parsed as NOT (a BETWEEN b AND c). Before MySQL
5.0.2, the expression is parsed as (NOT a) BETWEEN b AND c. The old higher-precedence
behavior can be obtained by enabling the HIGH_NOT_PRECEDENCE SQL mode. (New in
MySQL 5.0.2)

mysql> SET sql_mode = '';
mysql> SELECT NOT 1 BETWEEN -5 AND 5;

-> 0
mysql> SET sql_mode = 'broken_not';
mysql> SELECT NOT 1 BETWEEN -5 AND 5;

-> 1

• IGNORE_SPACE

Allow spaces between a function name and the '(' character. This forces all function names to be
treated as reserved words. As a result, if you want to access any database, table, or column name
that is a reserved word, you must quote it. For example, because there is a USER() function, the
name of the user table in the mysql database and the User column in that table become re-
served, so you must quote them:

SELECT "User" FROM mysql."user";

(New in MySQL 4.0.0)

• NO_AUTO_CREATE_USER

Prevent GRANT from automatically creating new users if it would otherwise do so, unless a
password also is specified. (New in MySQL 5.0.2)

• NO_AUTO_VALUE_ON_ZERO

NO_AUTO_VALUE_ON_ZERO affects handling of AUTO_INCREMENT columns. Normally,
you generate the next sequence number for the column by inserting either NULL or 0 into it.
NO_AUTO_VALUE_ON_ZERO suppresses this behavior for 0 so that only NULL generates the
next sequence number. (New in MySQL 4.1.1)

This mode can be useful if 0 has been stored in a table's AUTO_INCREMENT column. (This is
not a recommended practice, by the way.) For example, if you dump the table with mysqldump
and then reload it, MySQL normally generates new sequence numbers when it encounters the 0
values, resulting in a table with different contents than the one that was dumped. Enabling
NO_AUTO_VALUE_ON_ZERO before reloading the dump file solves this problem. As of
MySQL 4.1.1, mysqldump automatically includes a statement in the dump output to enable
NO_AUTO_VALUE_ON_ZERO.

• NO_BACKSLASH_ESCAPES

Disable the use of the backslash character ('\') as an escape character within strings. With this
mode enabled, backslash becomes any ordinary character like any other. (New in MySQL 5.0.1)

• NO_DIR_IN_CREATE

Database Administration

233

When creating a table, ignore all INDEX DIRECTORY and DATA DIRECTORY directives.
This option is useful on slave replication servers. (New in MySQL 4.0.15)

• NO_FIELD_OPTIONS

Don't print MySQL-specific column options in the output of SHOW CREATE TABLE. This
mode is used by mysqldump in portability mode. (New in MySQL 4.1.1)

• NO_KEY_OPTIONS

Don't print MySQL-specific index options in the output of SHOW CREATE TABLE. This mode
is used by mysqldump in portability mode. (New in MySQL 4.1.1)

• NO_TABLE_OPTIONS

Don't print MySQL-specific table options (such as ENGINE) in the output of SHOW CREATE
TABLE. This mode is used by mysqldump in portability mode. (New in MySQL 4.1.1)

• NO_UNSIGNED_SUBTRACTION

In subtraction operations, don't mark the result as UNSIGNED if one of the operands is unsigned.
Note that this makes UNSIGNED BIGINT not 100% usable in all contexts. See Section 12.7,
“Cast Functions and Operators”. (New in MySQL 4.0.2)

• NO_ZERO_DATE

Don't allow '0000-00-00' as a valid date. You can still insert zero dates with the IGNORE
option. (New in MySQL 5.0.2)

• NO_ZERO_IN_DATE

Don't accept dates where the month or day part is 0. If used with the IGNORE option, we insert a
'0000-00-00' date for any such date. (New in MySQL 5.0.2)

• ONLY_FULL_GROUP_BY

Don't allow queries that in the GROUP BY part refer to a not selected column. (New in MySQL
4.0.0)

• PIPES_AS_CONCAT

Treat || as a string concatenation operator (same as CONCAT()) rather than as a synonym for
OR. (New in MySQL 4.0.0)

• REAL_AS_FLOAT

Treat REAL as a synonym for FLOAT rather than as a synonym for DOUBLE. (New in MySQL
4.0.0)

• STRICT_ALL_TABLES

Enable strict mode for all storage engines. Invalid data values are rejected. Additional detail fol-
lows. (New in MySQL 5.0.2)

Database Administration

234

• STRICT_TRANS_TABLES

Enable strict mode for transactional storage engines, and when possible for non-transactional
storage engines. Additional detail follows. (New in MySQL 5.0.2)

Strict mode controls how MySQL handles values that are invalid or missing. A value can be invalid
for several reasons. For example, it might have the wrong data type for the column, or it might be
out of range. A value is missing when a new row to be inserted does not contain a value for a
column that has no explicit DEFAULT clause in its definition.

For transactional tables, an error occurs for invalid or missing values in a statement when either of
the STRICT_ALL_TABLES or STRICT_TRANS_TABLES modes are enabled. The statement is
aborted and rolled back.

For non-transactional tables, the behavior is the same for either mode, if the bad value occurs in the
first row to be inserted or updated. The statement is aborted and the table remains unchanged. If the
statement inserts or modifies multiple rows and the bad value occurs in the second or later row, the
result depends on which strict option is enabled:

• For STRICT_ALL_TABLES, MySQL returns an error and ignores the rest of the rows.
However, in this case, the earlier rows still have been inserted or updated. This means that you
might get a partial update, which might not be what you want. To avoid this, it's best to use
single-row statements because these can be aborted without changing the table.

• For STRICT_TRANS_TABLES, MySQL converts an invalid value to the closest valid value for
the column and insert the adjusted value. If a value is missing, MySQL inserts the implicit de-
fault value for the column data type. In either case, MySQL generates a warning rather than an
error and continues processing the statement. Implicit defaults are described in Section 13.2.6,
“CREATE TABLE Syntax”.

Strict mode disallows invalid date values such as '2004-04-31'. It does not disallow dates with
zero parts such as 2004-04-00' or ``zero'' dates. To disallow these as well, enable the
NO_ZERO_IN_DATE and NO_ZERO_DATE SQL modes in addition to strict mode.

If you are not using strict mode (that is, neither STRICT_TRANS_TABLES nor
STRICT_ALL_TABLES is enabled), MySQL inserts adjusted values for invalid or missing values
and produces warnings. In strict mode, you can produce this behavior by using INSERT IGNORE
or UPDATE IGNORE. See Section 13.5.4.20, “SHOW WARNINGS Syntax”.

The following special modes are provided as shorthand for combinations of mode values from the
preceding list. All are available as of MySQL 4.1.1, except TRADITIONAL (5.0.2).

The descriptions include all mode values that are available in the most recent version of MySQL.
For older versions, a combination mode does not include individual mode values that are not avail-
able except in newer versions.

• ANSI

Equivalent to REAL_AS_FLOAT, PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE,
ONLY_FULL_GROUP_BY. See Section 1.5.3, “Running MySQL in ANSI Mode”.

• DB2

Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS.

Database Administration

235

• MAXDB

Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS, NO_AUTO_CREATE_USER.

• MSSQL

Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS.

• MYSQL323

Equivalent to NO_FIELD_OPTIONS, HIGH_NOT_PRECEDENCE.

• MYSQL40

Equivalent to NO_FIELD_OPTIONS, HIGH_NOT_PRECEDENCE.

• ORACLE

Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS, NO_AUTO_CREATE_USER.

• POSTGRESQL

Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS.

• TRADITIONAL

Equivalent to STRICT_TRANS_TABLES, STRICT_ALL_TABLES, NO_ZERO_IN_DATE,
NO_ZERO_DATE, ERROR_FOR_DIVISION_BY_ZERO, NO_AUTO_CREATE_USER.

5.2.3. Server System Variables
The server maintains many system variables that indicate how it is configured. All of them have de-
fault values. They can be set at server startup using options on the command line or in option files.
Most of them can be set at runtime using the SET statement.

Beginning with MySQL 4.0.3, the mysqld server maintains two kinds of variables. Global variables
affect the overall operation of the server. Session variables affect its operation for individual client
connections.

When the server starts, it initializes all global variables to their default values. These defaults can be
changed by options specified in option files or on the command line. After the server starts, those
global variables that are dynamic can be changed by connecting to the server and issuing a SET
GLOBAL var_name statement. To change a global variable, you must have the SUPER privilege.

The server also maintains a set of session variables for each client that connects. The client's session
variables are initialized at connect time using the current values of the corresponding global vari-
ables. For those session variables that are dynamic, the client can change them by issuing a SET
SESSION var_name statement. Setting a session variable requires no special privilege, but a cli-
ent can change only its own session variables, not those of any other client.

A change to a global variable is visible to any client that accesses that global variable. However, it
affects the corresponding session variable that is initialized from the global variable only for clients
that connect after the change. It does not affect the session variable for any client that is currently

Database Administration

236

connected (not even that of the client that issues the SET GLOBAL statement).

When setting a variable using a startup option, variable values can be given with a suffix of K, M, or
G to indicate kilobytes, megabytes, or gigabytes, respectively. For example, the following command
starts the server with a key buffer size of 16 megabytes:

mysqld --key_buffer_size=16M

Before MySQL 4.0, use this syntax instead:

mysqld --set-variable=key_buffer_size=16M

The lettercase of suffix letters does not matter; 16M and 16m are equivalent.

At runtime, use the SET statement to set system variables. In this context, suffix letters cannot be
used, but the value can take the form of an expression:

mysql> SET sort_buffer_size = 10 * 1024 * 1024;

To specify explicitly whether to set the global or session variable, use the GLOBAL or SESSION op-
tions:

mysql> SET GLOBAL sort_buffer_size = 10 * 1024 * 1024;
mysql> SET SESSION sort_buffer_size = 10 * 1024 * 1024;

Without either option, the statement sets the session variable.

The variables that can be set at runtime are listed in Section 5.2.3.1, “Dynamic System Variables”.

If you want to restrict the maximum value to which a system variable can be set with the SET state-
ment, you can specify this maximum by using an option of the form --maximum-var_name at
server startup. For example, to prevent the value of query_cache_size from being increased to
more than 32MB at runtime, use the option --maximum-query_cache_size=32M. This fea-
ture is available as of MySQL 4.0.2.

You can view system variables and their values by using the SHOW VARIABLES statement. See
Section 9.4, “System Variables” for more information.

mysql> SHOW VARIABLES;
+---------------------------------+------------------------------+
| Variable_name | Value |
+---------------------------------+------------------------------|
back_log	50
basedir	/usr/local/mysql
bdb_cache_size	8388572
bdb_home	/usr/local/mysql
bdb_log_buffer_size	32768
bdb_logdir	
bdb_max_lock	10000
bdb_shared_data	OFF
bdb_tmpdir	/tmp/
bdb_version	Sleepycat Software: ...
binlog_cache_size	32768
bulk_insert_buffer_size	8388608
character_set	latin1
character_sets	latin1 big5 czech euc_kr
concurrent_insert	ON
connect_timeout	5
convert_character_set	
datadir	/usr/local/mysql/data/
default_week_format	0
delay_key_write	ON
delayed_insert_limit	100

Database Administration

237

delayed_insert_timeout	300	
delayed_queue_size	1000	
flush	OFF	
flush_time	0	
ft_boolean_syntax	+ -><()~*:""&	
ft_max_word_len	84	
ft_min_word_len	4	
ft_query_expansion_limit	20	
ft_stopword_file	(built-in)	
have_bdb	YES	
have_innodb	YES	
have_isam	YES	
have_openssl	YES	
have_query_cache	YES	
have_raid	NO	
have_symlink	DISABLED	
init_file		
innodb_additional_mem_pool_size	1048576	
innodb_buffer_pool_size	8388608	
innodb_data_file_path	ibdata1:10M:autoextend	
innodb_data_home_dir		
innodb_fast_shutdown	ON	
innodb_file_io_threads	4	
innodb_flush_log_at_trx_commit	1	
innodb_flush_method		
innodb_force_recovery	0	
innodb_lock_wait_timeout	50	
innodb_log_arch_dir		
innodb_log_archive	OFF	
innodb_log_buffer_size	1048576	
innodb_log_file_size	5242880	
innodb_log_files_in_group	2	
innodb_log_group_home_dir	./	
innodb_mirrored_log_groups	1	
innodb_thread_concurrency	8	
interactive_timeout	28800	
join_buffer_size	131072	
key_buffer_size	16773120	
key_cache_age_threshold	300	
key_cache_block_size	1024	
key_cache_division_limit	100	
language	/usr/local/mysql/share/...	
large_files_support	ON	
local_infile	ON	
locked_in_memory	OFF	
log	OFF	
log_bin	OFF	
log_slave_updates	OFF	
log_slow_queries	OFF	
log_update	OFF	
log_warnings	1	
long_query_time	10	
low_priority_updates	OFF	
lower_case_table_names	0	
max_allowed_packet	1047552	
max_binlog_cache_size	4294967295	
max_binlog_size	1073741824	
max_connect_errors	10	
max_connections	100	
max_delayed_threads	20	
max_error_count	64	
max_heap_table_size	16777216	
max_join_size	4294967295	
max_relay_log_size	0	
max_sort_length	1024	
max_tmp_tables	32	
max_user_connections	0	
max_write_lock_count	4294967295	
myisam_max_extra_sort_file_size	268435456	

Database Administration

238

myisam_max_sort_file_size	2147483647
myisam_recover_options	force
myisam_repair_threads	1
myisam_sort_buffer_size	8388608
net_buffer_length	16384
net_read_timeout	30
net_retry_count	10
net_write_timeout	60
open_files_limit	1024
pid_file	/usr/local/mysql/name.pid
port	3306
protocol_version	10
query_cache_limit	1048576
query_cache_size	0
query_cache_type	ON
read_buffer_size	131072
read_rnd_buffer_size	262144
rpl_recovery_rank	0
server_id	0
skip_external_locking	ON
skip_networking	OFF
skip_show_database	OFF
slave_net_timeout	3600
slow_launch_time	2
socket	/tmp/mysql.sock
sort_buffer_size	2097116
sql_mode	
table_cache	64
table_type	MYISAM
thread_cache_size	3
thread_stack	131072
timezone	EEST
tmp_table_size	33554432
tmpdir	/tmp/:/mnt/hd2/tmp/
tx_isolation	READ-COMMITTED
version	4.0.4-beta
wait_timeout	28800
+---------------------------------+------------------------------+

Most system variables are described here. Variables with no version indicated have been present
since at least MySQL 3.22. InnoDB system variables are listed at Section 15.5, “InnoDB Startup
Options”.

Values for buffer sizes, lengths, and stack sizes are given in bytes unless otherwise specified.

Information on tuning these variables can be found in Section 7.5.2, “Tuning Server Parameters”.

• ansi_mode

This is ON if mysqld was started with --ansi. See Section 1.5.3, “Running MySQL in ANSI
Mode”. This variable was added in MySQL 3.23.6 and removed in 3.23.41. See the description
for sql_mode.

• back_log

The number of outstanding connection requests MySQL can have. This comes into play when
the main MySQL thread gets very many connection requests in a very short time. It then takes
some time (although very little) for the main thread to check the connection and start a new
thread. The back_log value indicates how many requests can be stacked during this short time
before MySQL momentarily stops answering new requests. You need to increase this only if you
expect a large number of connections in a short period of time.

In other words, this value is the size of the listen queue for incoming TCP/IP connections. Your
operating system has its own limit on the size of this queue. The manual page for the Unix
listen() system call should have more details. Check your OS documentation for the max-

Database Administration

239

imum value for this variable. Attempting to set back_log higher than your operating system
limit is ineffective.

• basedir

The MySQL installation base directory. This variable can be set with the --basedir option.

• bdb_cache_size

The size of the buffer that is allocated for caching indexes and rows for BDB tables. If you don't
use BDB tables, you should start mysqld with --skip-bdb to not waste memory for this
cache. This variable was added in MySQL 3.23.14.

• bdb_home

The base directory for BDB tables. This should be assigned the same value as the datadir
variable. This variable was added in MySQL 3.23.14.

• bdb_log_buffer_size

The size of the buffer that is allocated for caching indexes and rows for BDB tables. If you don't
use BDB tables, you should set this to 0 or start mysqld with --skip-bdb to not waste
memory for this cache. This variable was added in MySQL 3.23.31.

• bdb_logdir

The directory where the BDB storage engine writes its log files. This variable can be set with the
--bdb-logdir option. This variable was added in MySQL 3.23.14.

• bdb_max_lock

The maximum number of locks you can have active on a BDB table (10,000 by default). You
should increase this if errors such as the following occur when you perform long transactions or
when mysqld has to examine many rows to calculate a query:

bdb: Lock table is out of available locks
Got error 12 from ...

This variable was added in MySQL 3.23.29.

• bdb_shared_data

This is ON if you are using --bdb-shared-data. This variable was added in MySQL
3.23.29.

• bdb_tmpdir

The value of the --bdb-tmpdir option. This variable was added in MySQL 3.23.14.

• bdb_version

See the description for version_bdb.

• binlog_cache_size

The size of the cache to hold the SQL statements for the binary log during a transaction. A bin-
ary log cache is allocated for each client if the server supports any transactional storage engines
and, starting from MySQL 4.1.2, if the server has binary log enabled (--log-bin option). If
you often use big, multiple-statement transactions, you can increase this to get more perform-
ance. The Binlog_cache_use and Binlog_cache_disk_use status variables can be
useful for tuning the size of this variable. This variable was added in MySQL 3.23.29. See Sec-
tion 5.9.4, “The Binary Log”.

Database Administration

240

• bulk_insert_buffer_size

MyISAM uses a special tree-like cache to make bulk inserts faster for INSERT ... SELECT,
INSERT ... VALUES (...), (...), ..., and LOAD DATA INFILE. This variable
limits the size of the cache tree in bytes per thread. Setting it to 0 disables this optimization.
Note: This cache is used only when adding data to a non-empty table. The default value is 8MB.
This variable was added in MySQL 4.0.3. This variable previously was named myis-
am_bulk_insert_tree_size.

• character_set

The default character set. This variable was added in MySQL 3.23.3, then removed in MySQL
4.1.1 and replaced by the various character_set_xxx variables.

• character_set_client

The character set for statements that arrive from the client. This variable was added in MySQL
4.1.1.

• character_set_connection

The character set used for literals that do not have a character set introducer and for number-
to-string conversion. This variable was added in MySQL 4.1.1.

• character_set_database

The character set used by the default database. The server sets this variable whenever the default
database changes. If there is no default database, the variable has the same value as charac-
ter_set_server. This variable was added in MySQL 4.1.1.

• character_set_results

The character set used for returning query results to the client. This variable was added in
MySQL 4.1.1.

• character_set_server

The server default character set. This variable was added in MySQL 4.1.1.

• character_set_system

The character set used by the server for storing identifiers. The value is always utf8. This vari-
able was added in MySQL 4.1.1.

• character_sets

The supported character sets. This variable was added in MySQL 3.23.15 and removed in
MySQL 4.1.1. (Use SHOW CHARACTER SET for a list of character sets.)

• character_sets_dir

The directory where character sets are installed. This variable was added in MySQL 4.1.2.

• collation_connection

The collation of the connection character set. This variable was added in MySQL 4.1.1.

• collation_database

The collation used by the default database. The server sets this variable whenever the default
database changes. If there is no default database, the variable has the same value as colla-
tion_server. This variable was added in MySQL 4.1.1.

• collation_server

Database Administration

241

The server default collation. This variable was added in MySQL 4.1.1.

• concurrent_insert

If ON (the default), MySQL allows INSERT and SELECT statements to run concurrently for
MyISAM tables that have no free blocks in the middle. You can turn this option off by starting
mysqld with --safe or --skip-new. This variable was added in MySQL 3.23.7.

• connect_timeout

The number of seconds the mysqld server waits for a connect packet before responding with
Bad handshake.

• convert_character_set

The current character set mapping that was set by SET CHARACTER SET. This variable was
removed in MySQL 4.1.

• datadir

The MySQL data directory. This variable can be set with the --datadir option.

• default_week_format

The default mode value to use for the WEEK() function. This variable is available as of MySQL
4.0.14.

• delay_key_write

This option applies only to MyISAM tables. It can have one of the following values to affect
handling of the DELAY_KEY_WRITE table option that can be used in CREATE TABLE state-
ments.

Op-
tion

Description

OFF DELAYED_KEY_WRITE is ignored.

ON MySQL honors the DELAY_KEY_WRITE option for CREATE TABLE. This is the
default value.

ALL All new opened tables are treated as if they were created with the
DELAY_KEY_WRITE option enabled.

If DELAY_KEY_WRITE is enabled, this means that the key buffer for tables with this option are
not flushed on every index update, but only when a table is closed. This speeds up writes on
keys a lot, but if you use this feature, you should add automatic checking of all MyISAM tables
by starting the server with the --myisam-recover option (for example, -
-myisam-recover=BACKUP,FORCE). See Section 5.2.1, “mysqld Command-Line Op-
tions” and Section 14.1.1, “MyISAM Startup Options”.

Note that --external-locking doesn't offer any protection against index corruption for
tables that use delayed key writes.

This variable was added in MySQL 3.23.8.

• delayed_insert_limit

Database Administration

242

After inserting delayed_insert_limit delayed rows, the INSERT DELAYED handler
thread checks whether there are any SELECT statements pending. If so, it allows them to ex-
ecute before continuing to insert delayed rows.

• delayed_insert_timeout

How long an INSERT DELAYED handler thread should wait for INSERT statements before
terminating.

• delayed_queue_size

This is a per-table limit on the number of rows to queue when handling INSERT DELAYED
statements. If the queue becomes full, any client that issues an INSERT DELAYED statement
waits until there is room in the queue again.

• expire_logs_days

The number of days for automatic binary log removal. The default is 0, which means ``no auto-
matic removal''. Possible removals happen at startup and at binary log rotation. This variable
was added in MySQL 4.1.0.

• flush

This is ON if you have started mysqld with the --flush option. This variable was added in
MySQL 3.22.9.

• flush_time

If this is set to a non-zero value, all tables are closed every flush_time seconds to free up re-
sources and sync unflushed data to disk. We recommend this option only on Windows 9x or Me,
or on systems with minimal resources available. This variable was added in MySQL 3.22.18.

• ft_boolean_syntax

The list of operators supported by boolean full-text searches performed using IN BOOLEAN
MODE. This variable was added in MySQL 4.0.1. See Section 12.6.1, “Boolean Full-Text
Searches”.

The default variable value is '+ -><()~*:""&|'. The rules for changing the value are as
follows:

• Operator function is determined by position within the string.

• The replacement value must be 14 characters.

• Each character must be an ASCII non-alphanumeric character.

• Either the first or second character must be a space.

• No duplicates are allowed except the phrase quoting operators in positions 11 and 12. These
two characters are not required to be the same, but they are the only two that may be.

• Positions 10, 13, and 14 (which by default are set to ':', '&', and '|') are reserved for future
extensions.

• ft_max_word_len

The maximum length of the word to be included in a FULLTEXT index. This variable was added
in MySQL 4.0.0.

Note: FULLTEXT indexes must be rebuilt after changing this variable. Use REPAIR TABLE
tbl_name QUICK.

Database Administration

243

• ft_min_word_len

The minimum length of the word to be included in a FULLTEXT index. This variable was added
in MySQL 4.0.0.

Note: FULLTEXT indexes must be rebuilt after changing this variable. Use REPAIR TABLE
tbl_name QUICK.

• ft_query_expansion_limit

The number of top matches to use for full-text searches performed using WITH QUERY EX-
PANSION. This variable was added in MySQL 4.1.1.

• ft_stopword_file

The file from which to read the list of stopwords for full-text searches. All the words from the
file are used; comments are not honored. By default, a built-in list of stopwords is used (as
defined in the myisam/ft_static.c file). Setting this variable to the empty string ('') dis-
ables stopword filtering. This variable was added in MySQL 4.0.10.

Note: FULLTEXT indexes must be rebuilt after changing this variable. Use REPAIR TABLE
tbl_name QUICK.

• group_concat_max_len

The maximum allowed result length for the GROUP_CONCAT() function. This variable was ad-
ded in MySQL 4.1.0.

• have_archive

YES if mysqld supports ARCHIVE tables, NO if not. This variable was added in MySQL 4.1.3.

• have_bdb

YES if mysqld supports BDB tables. DISABLED if --skip-bdb is used. This variable was ad-
ded in MySQL 3.23.30.

• have_compress

Whether the zlib compression library is available to the server. If not, the COMPRESS() and
UNCOMPRESS() functions cannot be used. This variable was added in MySQL 4.1.1.

• have_crypt

Whether the crypt() system call is available to the server. If not, the CRYPT() function can-
not be used. This variable was added in MySQL 4.0.10.

• have_csv

YES if mysqld supports ARCHIVE tables, NO if not. This variable was added in MySQL 4.1.4.

• have_example_engine

YES if mysqld supports EXAMPLE tables, NO if not. This variable was added in MySQL 4.1.4.

• have_geometry

Whether the server supports spatial data types. This variable was added in MySQL 4.1.3.

• have_innodb

Database Administration

244

YES if mysqld supports InnoDB tables. DISABLED if --skip-innodb is used. This vari-
able was added in MySQL 3.23.37.

• have_isam

YES if mysqld supports ISAM tables. DISABLED if --skip-isam is used. This variable was
added in MySQL 3.23.30.

• have_ndbcluster

YES if mysqld supports NDB Cluster tables. DISABLED if --skip-ndbcluster is
used. This variable was added in MySQL 4.1.2.

• have_openssl

YES if mysqld supports SSL (encryption) of the client/server protocol. This variable was added
in MySQL 3.23.43.

• have_query_cache

YES if mysqld supports the query cache. This variable was added in MySQL 4.0.2.

• have_raid

YES if mysqld supports the RAID option. This variable was added in MySQL 3.23.30.

• have_rtree_keys

Whether RTREE indexes are available. (These are used for spatial indexed in MyISAM tables.)
This variable was added in MySQL 4.1.3.

• have_symlink

Whether symbolic link support is enabled. This is required on Unix for support of the DATA
DIRECTORY and INDEX DIRECTORY table options.

This variable was added in MySQL 4.0.0.

• init_connect

A string to be executed by the server for each client that connects. The string consists of one or
more SQL statements. To specify multiple statements, separate them by semicolon characters.
For example, each client begins by default with autocommit mode enabled. There is no global
server variable to specify that autocommit should be disabled by default, but init_connect
can be used to achieve the same effect:

SET GLOBAL init_connect='SET AUTOCOMMIT=0';

This variable can also be set on the command line or in an option file. To set the variable as just
shown using an option file, include these lines:

[mysqld]
init_connect='SET AUTOCOMMIT=0'

Note that the content of init_connect is not executed for users having the SUPER privilege;
this is in case that content has been wrongly set (contains a wrong query, for example with a
syntax error), thus making all connections fail. Not executing it for SUPER users enables those

Database Administration

245

to open a connection and fix init_connect. This variable was added in MySQL 4.1.2.

• init_file

The name of the file specified with the --init-file option when you start the server. This is
a file containing SQL statements that you want the server to execute when it starts. Each state-
ment must be on a single line and should not include comments. This variable was added in
MySQL 3.23.2.

• init_slave

This variable is similar to init_connect, but is a string to be executed by a slave server each
time the SQL thread starts. The format of the string is the same as for the init_connect vari-
able. This variable was added in MySQL 4.1.2.

• innodb_xxx

The InnoDB system variables are listed at Section 15.5, “InnoDB Startup Options”.

• interactive_timeout

The number of seconds the server waits for activity on an interactive connection before closing
it. An interactive client is defined as a client that uses the CLIENT_INTERACTIVE option to
mysql_real_connect(). See also wait_timeout.

• join_buffer_size

The size of the buffer that is used for full joins (joins that do not use indexes). Normally the best
way to get fast joins is to add indexes. Increase the value of join_buffer_size to get a
faster full join when adding indexes is not possible. One join buffer is allocated for each full join
between two tables. For a complex join between several tables for which indexes are not used,
multiple join buffers might be necessary.

• key_buffer_size

Index blocks for MyISAM and ISAM tables are buffered and are shared by all threads.
key_buffer_size is the size of the buffer used for index blocks. The key buffer is also
known as the key cache.

The maximum allowable setting for key_buffer_size is 4GB. The effective maximum size
might be less, depending on your available physical RAM and per-process RAM limits imposed
by your operating system or hardware platform.

Increase the value to get better index handling (for all reads and multiple writes) to as much as
you can afford. Using a value that is 25% of total memory on a machine that mainly runs
MySQL is quite common. However, if you make the value too large (for example, more than
50% of your total memory) your system might start to page and become extremely slow.
MySQL relies on the operating system to perform filesystem caching for data reads, so you must
leave some room for the filesystem cache.

For even more speed when writing many rows at the same time, use LOCK TABLES. See Sec-
tion 13.4.5, “LOCK TABLES and UNLOCK TABLES Syntax”.

You can check the performance of the key buffer by issuing a SHOW STATUS statement and
examining the Key_read_requests, Key_reads, Key_write_requests, and
Key_writes status variables. See Section 13.5.4, “SHOW Syntax”.

The Key_reads/Key_read_requests ratio should normally be less than 0.01. The
Key_writes/Key_write_requests ratio is usually near 1 if you are using mostly up-
dates and deletes, but might be much smaller if you tend to do updates that affect many rows at
the same time or if you are using the DELAY_KEY_WRITE table option.

Database Administration

246

The fraction of the key buffer in use can be determined using key_buffer_size in conjunc-
tion with the Key_blocks_unused status variable and the buffer block size. From MySQL
4.1.1 on, the buffer block size is available from the key_cache_block_size server vari-
able. The fraction of the buffer in use is:

1 - ((Key_blocks_unused * key_cache_block_size) / key_buffer_size)

This value is an approximation because some space in the key buffer may be allocated internally
for administrative structures.

Before MySQL 4.1.1, key cache blocks are 1024 bytes, and before MySQL 4.1.2,
Key_blocks_unused is unavailable. The Key_blocks_used variable can be used as fol-
lows to determine the fraction of the key buffer in use:

(Key_blocks_used * 1024) / key_buffer_size

However, Key_blocks_used indicates the maximum number of blocks that have ever been
in use at once, so this formula does not necessary represent the current fraction of the buffer that
is in use.

See Section 7.4.6, “The MyISAM Key Cache”.

• key_cache_age_threshold

This value controls the demotion of buffers from the hot sub-chain of a key cache to the warm
sub-chain. Lower values cause demotion to happen more quickly. The minimum value is 100.
The default value is 300. This variable was added in MySQL 4.1.1. See Section 7.4.6, “The My-
ISAM Key Cache”.

• key_cache_block_size

The size in bytes of blocks in the key cache. The default value is 1024. This variable was added
in MySQL 4.1.1. See Section 7.4.6, “The MyISAM Key Cache”.

• key_cache_division_limit

The division point between the hot and warm sub-chains of the key cache buffer chain. The
value is the percentage of the buffer chain to use for the warm sub-chain. Allowable values
range from 1 to 100. The default value is 100. This variable was added in MySQL 4.1.1. See
Section 7.4.6, “The MyISAM Key Cache”.

• language

The language used for error messages.

• large_file_support

Whether mysqld was compiled with options for large file support. This variable was added in
MySQL 3.23.28.

• large_pages

Indicates whether large page support is enabled. This variable was added in MySQL 5.0.3.

• license

The type of license the server has. This variable was added in MySQL 4.0.19.

• local_infile

Database Administration

247

Whether LOCAL is supported for LOAD DATA INFILE statements. This variable was added in
MySQL 4.0.3.

• locked_in_memory

Whether mysqld was locked in memory with --memlock. This variable was added in MySQL
3.23.25.

• log

Whether logging of all queries to the general query log is enabled. See Section 5.9.2, “The Gen-
eral Query Log”.

• log_bin

Whether the binary log is enabled. This variable was added in MySQL 3.23.14. See Sec-
tion 5.9.4, “The Binary Log”.

• log_error

The location of the error log. This variable was added in MySQL 4.0.10.

• log_slave_updates

Whether updates received by a slave server from a master server should be logged to the slave's
own binary log. Binary logging must be enabled on the slave for this to have any effect. This
variable was added in MySQL 3.23.17. See Section 6.8, “Replication Startup Options”.

• log_slow_queries

Whether slow queries should be logged. ``Slow'' is determined by the value of the
long_query_time variable. This variable was added in MySQL 4.0.2. See Section 5.9.5,
“The Slow Query Log”.

• log_update

Whether the update log is enabled. This variable was added in MySQL 3.22.18. Note that the
binary log is preferable to the update log, which is unavailable as of MySQL 5.0. See Sec-
tion 5.9.3, “The Update Log”.

• log_warnings

Whether to produce additional warning messages. This variable was added in MySQL 4.0.3. It is
enabled by default as of MySQL 4.0.19 and 4.1.2. As of MySQL 4.0.21 and 4.1.3, aborted con-
nections are not logged to the error log unless the value is greater than 1.

• long_query_time

If a query takes longer than this many seconds, the Slow_queries status variable is incre-
mented. If you are using the --log-slow-queries option, the query is logged to the slow
query log file. This value is measured in real time, not CPU time, so a query that is under the
threshold on a lightly loaded system might be above the threshold on a heavily loaded one. See
Section 5.9.5, “The Slow Query Log”.

• low_priority_updates

If set to 1, all INSERT, UPDATE, DELETE, and LOCK TABLE WRITE statements wait until
there is no pending SELECT or LOCK TABLE READ on the affected table. This variable previ-
ously was named sql_low_priority_updates. It was added in MySQL 3.22.5.

• lower_case_file_system

This variable indicates whether the filesystem where the data directory is located has case in-

Database Administration

248

sensitive filenames. ON means filenames are case insensitive, OFF means they are case sensitive.
This variable was added in MySQL 4.0.19.

• lower_case_table_names

If set to 1, table names are stored in lowercase on disk and table name comparisons are not case
sensitive. This variable was added in MySQL 3.23.6. If set to 2 (new in 4.0.18), table names are
stored as given but compared in lowercase. From MySQL 4.0.2, this option also applies to data-
base names. From 4.1.1, it also applies to table aliases. See Section 9.2.2, “Identifier Case Sens-
itivity”.

You should not set this variable to 0 if you are running MySQL on a system that does not have
case-sensitive filenames (such as Windows or Mac OS X). New in 4.0.18: If this variable is not
set at startup and the filesystem on which the data directory is located does not have case-
sensitive filenames, MySQL automatically sets lower_case_table_names to 2.

• max_allowed_packet

The maximum size of one packet or any generated/intermediate string.

The packet message buffer is initialized to net_buffer_length bytes, but can grow up to
max_allowed_packet bytes when needed. This value by default is small, to catch big
(possibly wrong) packets.

You must increase this value if you are using big BLOB columns or long strings. It should be as
big as the biggest BLOB you want to use. The protocol limit for max_allowed_packet is
16MB before MySQL 4.0 and 1GB thereafter.

• max_binlog_cache_size

If a multiple-statement transaction requires more than this amount of memory, you get the error
Multi-statement transaction required more than
'max_binlog_cache_size' bytes of storage. This variable was added in MySQL
3.23.29.

• max_binlog_size

If a write to the binary log exceeds the given value, rotate the binary logs. You cannot set this
variable to more than 1GB or to less than 4096 bytes. (The minimum before MYSQL 4.0.14 is
1024 bytes.) The default value is 1GB. This variable was added in MySQL 3.23.33.

Note if you are using transactions: A transaction is written in one chunk to the binary log, hence
it is never split between several binary logs. Therefore, if you have big transactions, you might
see binary logs bigger than max_binlog_size.

If max_relay_log_size is 0, the value of max_binlog_size applies to relay logs as
well. max_relay_log_size was added in MySQL 4.0.14.

• max_connect_errors

If there are more than this number of interrupted connections from a host, that host is blocked
from further connections. You can unblock blocked hosts with the FLUSH HOSTS statement.

• max_connections

The number of simultaneous client connections allowed. Increasing this value increases the
number of file descriptors that mysqld requires. See Section 7.4.8, “How MySQL Opens and
Closes Tables” for comments on file descriptor limits. Also see Section A.2.6, “Too many
connections”.

• max_delayed_threads

Don't start more than this number of threads to handle INSERT DELAYED statements. If you

Database Administration

249

try to insert data into a new table after all INSERT DELAYED threads are in use, the row is in-
serted as if the DELAYED attribute wasn't specified. If you set this to 0, MySQL never creates a
thread to handle DELAYED rows; in effect, this disables DELAYED entirely. This variable was
added in MySQL 3.23.0.

• max_error_count

The maximum number of error, warning, and note messages to be stored for display by SHOW
ERRORS or SHOW WARNINGS. This variable was added in MySQL 4.1.0.

• max_heap_table_size

This variable sets the maximum size to which MEMORY (HEAP) tables are allowed to grow. The
value of the variable is used to calculate MEMORY table MAX_ROWS values. Setting this variable
has no effect on any existing MEMORY table, unless the table is re-created with a statement such
as CREATE TABLE or TRUNCATE TABLE, or altered with ALTER TABLE. This variable was
added in MySQL 3.23.0.

• max_insert_delayed_threads

This variable is a synonym for max_delayed_threads. It was added in MySQL 4.0.19.

• max_join_size

Don't allow SELECT statements that probably need to examine more than max_join_size
row combinations or are likely to do more than max_join_size disk seeks. By setting this
value, you can catch SELECT statements where keys are not used properly and that would prob-
ably take a long time. Set it if your users tend to perform joins that lack a WHERE clause, that
take a long time, or that return millions of rows.

Setting this variable to a value other than DEFAULT resets the SQL_BIG_SELECTS value to 0.
If you set the SQL_BIG_SELECTS value again, the max_join_size variable is ignored.

If a query result is in the query cache, no result size check is performed, because the result has
previously been computed and it does not burden the server to send it to the client.

This variable previously was named sql_max_join_size.

• max_length_for_sort_data

The cutoff on the size of index values that determines which filesort algorithm to use. See
Section 7.2.10, “How MySQL Optimizes ORDER BY”. This variable was added in MySQL
4.1.1

• max_relay_log_size

If a write by a replication slave to its relay log exceeds the given value, rotate the relay log. This
variable enables you to put different size constraints on relay logs and binary logs. However, set-
ting the variable to 0 makes MySQL use max_binlog_size for both binary logs and relay
logs. You must set max_relay_log_size to between 4096 bytes and 1GB (inclusive), or to
0. The default value is 0. This variable was added in MySQL 4.0.14. See Section 6.3,
“Replication Implementation Details”.

• max_seeks_for_key

Limit the assumed maximum number of seeks when looking up rows based on a key. The
MySQL optimizer assumes that no more than this number of key seeks are required when
searching for matching rows in a table by scanning a key, regardless of the actual cardinality of
the key (see Section 13.5.4.11, “SHOW INDEX Syntax”). By setting this to a low value (100?),
you can force MySQL to prefer keys instead of table scans.

This variable was added in MySQL 4.0.14.

• max_sort_length

Database Administration

250

The number of bytes to use when sorting BLOB or TEXT values. Only the first
max_sort_length bytes of each value are used; the rest are ignored.

• max_tmp_tables

The maximum number of temporary tables a client can keep open at the same time. (This option
doesn't yet do anything.)

• max_user_connections

The maximum number of simultaneous connections allowed to any given MySQL account. A
value of 0 means ``no limit.'' This variable was added in MySQL 3.23.34.

Before MySQL 5.0.3, this variable has only a global form. Beginning with MySQL 5.0.3, it also
has a read-only session form. The session variable has the same value as the global variable un-
less the current account has a non-zero MAX_USER_CONNECTIONS resource limit. In that case,
the session value reflects the account limit.

• max_write_lock_count

After this many write locks, allow some read locks to run in between. This variable was added in
MySQL 3.23.7.

• multi_read_range

Specifies the maximum number of ranges to send to a storage engine during range selects. The
default value is 256. Sending multiple ranges to an engine is a feature that can improve the per-
formance of certain selects dramatically, particularly for NDBCLUSTER. This engine needs to
send the range requests to all nodes, and sending many of those requests at once reduces the
communication costs significantly. This variable was added in MySQL 5.0.3.

• myisam_data_pointer_size

The default pointer size in bytes, to be used by CREATE TABLE for MyISAM tables when no
MAX_ROWS option is specified. This variable cannot be less than 2 or larger than 8. The default
value is 4. This variable was added in MySQL 4.1.2. See Section A.2.11, “The table is
full”.

• myisam_max_extra_sort_file_size

If the temporary file used for fast MyISAM index creation would be larger than using the key
cache by the amount specified here, prefer the key cache method. This is mainly used to force
long character keys in large tables to use the slower key cache method to create the index. This
variable was added in MySQL 3.23.37. Note: The value is given in megabytes before 4.0.3 and
in bytes thereafter.

• myisam_max_sort_file_size

The maximum size of the temporary file MySQL is allowed to use while re-creating a MyISAM
index (during REPAIR TABLE, ALTER TABLE, or LOAD DATA INFILE). If the file size
would be bigger than this value, the index is created using the key cache instead, which is
slower. This variable was added in MySQL 3.23.37. Note: The value is given in megabytes be-
fore 4.0.3 and in bytes thereafter.

• myisam_recover_options

The value of the --myisam-recover option. This variable was added in MySQL 3.23.36.

• myisam_repair_threads

If this value is greater than 1, MyISAM table indexes are created in parallel (each index in its
own thread) during the Repair by sorting process. The default value is 1. Note: Multi-
threaded repair is still alpha quality code. This variable was added in MySQL 4.0.13.

Database Administration

251

• myisam_sort_buffer_size

The buffer that is allocated when sorting MyISAM indexes during a REPAIR TABLE or when
creating indexes with CREATE INDEX or ALTER TABLE. This variable was added in MySQL
3.23.16.

• named_pipe

On Windows, indicates whether the server supports connections over named pipes. This variable
was added in MySQL 3.23.50.

• net_buffer_length

The communication buffer is reset to this size between queries. This should not normally be
changed, but if you have very little memory, you can set it to the expected length of SQL state-
ments sent by clients. If statements exceed this length, the buffer is automatically enlarged, up to
max_allowed_packet bytes.

• net_read_timeout

The number of seconds to wait for more data from a connection before aborting the read. When
the server is reading from the client, net_read_timeout is the timeout value controlling
when to abort. When the server is writing to the client, net_write_timeout is the timeout
value controlling when to abort. See also slave_net_timeout. This variable was added in
MySQL 3.23.20.

• net_retry_count

If a read on a communication port is interrupted, retry this many times before giving up. This
value should be set quite high on FreeBSD because internal interrupts are sent to all threads.
This variable was added in MySQL 3.23.7.

• net_write_timeout

The number of seconds to wait for a block to be written to a connection before aborting the
write. See also net_read_timeout. This variable was added in MySQL 3.23.20.

• new

This variable is used in MySQL 4.0 to turn on some 4.1 behaviors. This variable was added in
MySQL 4.0.12.

• old_passwords

Whether the server should use pre-4.1-style passwords for MySQL user accounts. This variable
was added in MySQL 4.1.1.

• open_files_limit

The number of files that the operating system allows mysqld to open. This is the real value al-
lowed by the system and might be different from the value you gave mysqld as a startup option.
The value is 0 on systems where MySQL can't change the number of open files. This variable
was added in MySQL 3.23.20.

• optimizer_prune_level

Controls the heuristics applied during query optimization to prune less-promising partial plans
from the optimizer search space. A value of 0 disables heuristics so that the optimizer performs
an exhaustive search. A value of 1 causes the optimizer to prune plans based on the number of
rows retrieved by intermediate plans. This variable was added in MySQL 5.0.1.

• optimizer_search_depth

The maximum depth of search performed by the query optimizer. Values larger than the number

Database Administration

252

of relations in a query result in better query plans, but take longer to generate an execution plan
for a query. Values smaller than the number of relations in a query return an execution plan
quicker, but the resulting plan may be far from being optimal. If set to 0, the system automatic-
ally picks a reasonable value. If set to the maximum number of tables used in a query plus 2, the
optimizer switches to the original algorithm used before MySQL 5.0.1 that performs an exhaust-
ive search. This variable was added in MySQL 5.0.1.

• pid_file

The pathname of the process ID (PID) file. This variable can be set with the --pid-file op-
tion. This variable was added in MySQL 3.23.23.

• port

The port on which the server listens for TCP/IP connections. This variable can be set with the -
-port option.

• preload_buffer_size

The size of the buffer that is allocated when preloading indexes. This variable was added in
MySQL 4.1.1.

• protocol_version

The version of the client/server protocol used by the MySQL server. This variable was added in
MySQL 3.23.18.

• query_alloc_block_size

The allocation size of memory blocks that are allocated for objects created during query parsing
and execution. If you have problems with memory fragmentation, it might help to increase this a
bit. This variable was added in MySQL 4.0.16.

• query_cache_limit

Don't cache results that are bigger than this. The default value is 1MB. This variable was added
in MySQL 4.0.1.

• query_cache_min_res_unit

The minimum size for blocks allocated by the query cache. The default value is 4KB. Tuning in-
formation for this variable is given in Section 5.11.3, “Query Cache Configuration”. This vari-
able is present from MySQL 4.1.

• query_cache_size

The amount of memory allocated for caching query results. The default value is 0, which dis-
ables the query cache. Note that this amount of memory is allocated even if
query_cache_type is set to 0. This variable was added in MySQL 4.0.1.

• query_cache_type

Set query cache type. Setting the GLOBAL value sets the type for all clients that connect there-
after. Individual clients can set the SESSION value to affect their own use of the query cache.

Option Description

0 or OFF Don't cache or retrieve results. Note that this does not deallocate the query
cache buffer. To do that, you should set query_cache_size to 0.

1 or ON Cache all query results except for those that begin with SELECT
SQL_NO_CACHE.

2 or DE-
MAND

Cache results only for queries that begin with SELECT SQL_CACHE.

Database Administration

253

This variable was added in MySQL 4.0.3.

• query_cache_wlock_invalidate

Normally, when one client acquires a WRITE lock on a MyISAM table, other clients are not
blocked from issuing queries for the table if the query results are present in the query cache. Set-
ting this variable to 1 causes acquisition of a WRITE lock for a table to invalidate any queries in
the query cache that refer to the table. This forces other clients that attempt to access the table to
wait while the lock is in effect. This variable was added in MySQL 4.0.19.

• query_prealloc_size

The size of the persistent buffer used for query parsing and execution. This buffer is not freed
between queries. If you are running complex queries, a larger query_prealloc_size value
might be helpful in improving performance, because it can reduce the need for the server to per-
form memory allocation during query execution operations.

This variable was added in MySQL 4.0.16.

• range_alloc_block_size

The size of blocks that are allocated when doing range optimization. This variable was added in
MySQL 4.0.16.

• read_buffer_size

Each thread that does a sequential scan allocates a buffer of this size for each table it scans. If
you do many sequential scans, you might want to increase this value. This variable was added in
MySQL 4.0.3. Previously, it was named record_buffer.

• read_only

When the variable is set to ON for a replication slave server, it causes the slave to allow no up-
dates except from slave threads or from users with the SUPER privilege. This can be useful to
ensure that a slave server accepts no updates from clients. This variable was added in MySQL
4.0.14.

• relay_log_purge

Disables or enables automatic purging of relay logs as soon as they are not needed any more.
The default value is 1 (enabled). This variable was added in MySQL 4.1.1.

• read_rnd_buffer_size

When reading rows in sorted order after a sort, the rows are read through this buffer to avoid
disk seeks. Setting the variable to a large value can improve ORDER BY performance by a lot.
However, this is a buffer allocated for each client, so you should not set the global variable to a
large value. Instead, change the session variable only from within those clients that need to run
large queries. This variable was added in MySQL 4.0.3. Previously, it was named re-
cord_rnd_buffer.

• safe_show_database

Don't show databases for which the user has no database or table privileges. This can improve
security if you're concerned about people being able to see what databases other users have. See
also skip_show_database.

This variable was removed in MySQL 4.0.5. Instead, use the SHOW DATABASES privilege to
control access by MySQL accounts to database names.

• secure_auth

Database Administration

254

If the MySQL server has been started with the --secure-auth option, it blocks connections
from all accounts that have passwords stored in the old (pre-4.1) format. In that case, the value
of this variable is ON, otherwise it is OFF.

You should enable this option if you want to prevent all usage of passwords in old format (and
hence insecure communication over the network). This variable was added in MySQL 4.1.1.

Server startup fails with an error if this option is enabled and the privilege tables are in pre-4.1
format.

When used as a client-side option, the client refuses to connect to a server if the server requires a
password in old format for the client account.

• server_id

The value of the --server-id option. It is used for master and slave replication servers. This
variable was added in MySQL 3.23.26.

• shared_memory

Whether or not the server allows shared-memory connections. Currently, only Windows servers
support this. This variable was added in MySQL 4.1.1.

• shared_memory_base_name

Indicates whether or not the server allows shared-memory connections, and sets the identifier for
the shared memory. This is useful when running multiple MYSQL instances on a single physical
machine. Currently, only Windows servers support this. This variable was added in MySQL
4.1.0.

• skip_external_locking

This is OFF if mysqld uses external locking. This variable was added in MySQL 4.0.3. Previ-
ously, it was named skip_locking.

• skip_networking

This is ON if the server allows only local (non-TCP/IP) connections. On Unix, local connections
use a Unix socket file. On Windows, local connections use a named pipe or shared memory. On
NetWare, only TCP/IP connections are supported, so do not set this variable to ON. This variable
was added in MySQL 3.22.23.

• skip_show_database

This prevents people from using the SHOW DATABASES statement if they don't have the SHOW
DATABASES privilege. This can improve security if you're concerned about people being able
to see what databases other users have. See also safe_show_database. This variable was
added in MySQL 3.23.4. As of MySQL 4.0.2, its effect also depends on the SHOW DATA-
BASES privilege: If the variable value is ON, the SHOW DATABASES statement is allowed only
to users who have the SHOW DATABASES privilege, and the statement displays all database
names. If the value is OFF, SHOW DATABASES is allowed to all users, but displays each data-
base name only if the user has the SHOW DATABASES privilege or some privilege for the data-
base.

• slave_compressed_protocol

Whether to use compression of the slave/master protocol if both the slave and the master support
it. This variable was added in MySQL 4.0.3.

• slave_net_timeout

The number of seconds to wait for more data from a master/slave connection before aborting the

Database Administration

255

read. This variable was added in MySQL 3.23.40.

• slow_launch_time

If creating a thread takes longer than this many seconds, the server increments the
Slow_launch_threads status variable. This variable was added in MySQL 3.23.15.

• socket

On Unix, this is the Unix socket file used for local client connections. On Windows, this is the
name of the named pipe used for local client connections.

• sort_buffer_size

Each thread that needs to do a sort allocates a buffer of this size. Increase this value for faster
ORDER BY or GROUP BY operations. See Section A.4.4, “Where MySQL Stores Temporary
Files”.

• sql_mode

The current server SQL mode. This variable was added in MySQL 3.23.41. It can be set dynam-
ically as of MySQL 4.1.1. See Section 5.2.2, “The Server SQL Mode”.

• sql_slave_skip_counter

The number of events from the master that a slave server should skip. It was added in MySQL
3.23.33.

• storage_engine

This variable is a synonym for table_type. It was added in MySQL 4.1.2.

• sync_binlog

If positive, the MySQL server synchronizes its binary log to disk (fdatasync()) after every
sync_binlog'th write to this binary log. Note that there is one write to the binary log per
statement if in autocommit mode, and otherwise one write per transaction. The default value is 0
which does no sync'ing to disk. A value of 1 is the safest choice, because in case of crash you
lose at most one statement/transaction from the binary log; but it is also the slowest choice
(unless the disk has a battery-backed cache, which makes sync'ing very fast). This variable was
added in MySQL 4.1.3.

• sync_frm

This was added as a command-line option in MySQL 4.0.18, and is also a settable global vari-
able since MySQL 4.1.3. If set to 1, when a non-temporary table is created it synchronizes its
.frm file to disk (fdatasync()); this is slower but safer in case of crash. Default is 1.

• system_time_zone

The server system time zone. When the server begins executing, it inherits a time zone setting
from the machine defaults, possibly modified by the environment of the account used for run-
ning the server or the startup script. The value is used to set system_time_zone. Typically
the time zone is specified by the TZ environment variable. It also can be specified using the -
-timezone option of the mysqld_safe script. This variable was added in MySQL 4.1.3.

• table_cache

The number of open tables for all threads. Increasing this value increases the number of file
descriptors that mysqld requires. You can check whether you need to increase the table cache by
checking the Opened_tables status variable. See Section 5.2.4, “Server Status Variables”. If
the value of Opened_tables is large and you don't do FLUSH TABLES a lot (which just
forces all tables to be closed and reopened), then you should increase the value of the ta-

Database Administration

256

ble_cache variable.

For more information about the table cache, see Section 7.4.8, “How MySQL Opens and Closes
Tables”.

• table_type

The default table type (storage engine). To set the table type at server startup, use the -
-default-table-type option. This variable was added in MySQL 3.23.0. See Sec-
tion 5.2.1, “mysqld Command-Line Options”.

• thread_cache_size

How many threads the server should cache for reuse. When a client disconnects, the client's
threads are put in the cache if there are fewer than thread_cache_size threads there. Re-
quests for threads are satisfied by reusing threads taken from the cache if possible, and only
when the cache is empty is a new thread created. This variable can be increased to improve per-
formance if you have a lot of new connections. (Normally this doesn't give a notable perform-
ance improvement if you have a good thread implementation.) By examining the difference
between the Connections and Threads_created status variables (see Section 5.2.4,
“Server Status Variables” for details) you can see how efficient the thread cache is. This variable
was added in MySQL 3.23.16.

• thread_concurrency

On Solaris, mysqld calls thr_setconcurrency() with this value. This function allows ap-
plications to give the threads system a hint about the desired number of threads that should be
run at the same time. This variable was added in MySQL 3.23.7.

• thread_stack

The stack size for each thread. Many of the limits detected by the crash-me test are dependent
on this value. The default is large enough for normal operation. See Section 7.1.4, “The MySQL
Benchmark Suite”.

• time_zone

The current time zone. The initial value of this is 'SYSTEM' (use the value of sys-
tem_time_zone), but can be specified explicitly at server startup time with the -
-default-time-zone option. This variable was added in MySQL 4.1.3.

• timezone

The time zone for the server. This is set from the TZ environment variable when mysqld is star-
ted. The time zone also can be set by giving a --timezone argument to mysqld_safe. This
variable was added in MySQL 3.23.15. As of MySQL 4.1.3, it is obsolete and has been replaced
by the system_time_zone variable. See Section A.4.6, “Time Zone Problems”.

• tmp_table_size

If an in-memory temporary table exceeds this size, MySQL automatically converts it to an on-
disk MyISAM table. Increase the value of tmp_table_size if you do many advanced GROUP
BY queries and you have lots of memory.

• tmpdir

The directory used for temporary files and temporary tables. Starting from MySQL 4.1, this
variable can be set to a list of several paths that are used in round-robin fashion. Paths should be
separated by colon characters (':') on Unix and semicolon characters (';') on Windows, Net-
Ware, and OS/2.

Database Administration

257

This feature can be used to spread the load between several physical disks. If the MySQL server
is acting as a replication slave, you should not set tmpdir to point to a directory on a memory-
based filesystem or to a directory that is cleared when the server host restarts. A replication slave
needs some of its temporary files to survive a machine restart so that it can replicate temporary
tables or LOAD DATA INFILE operations. If files in the temporary file directory are lost when
the server restarts, replication fails.

This variable was added in MySQL 3.22.4.

• transaction_alloc_block_size

The allocation size of memory blocks that are allocated for storing queries that are part of a
transaction to be stored in the binary log when doing a commit. This variable was added in
MySQL 4.0.16.

• transaction_prealloc_size

The size of the persistent buffer for transaction_alloc_blocks that is not freed
between queries. By making this big enough to fit all queries in a common transaction, you can
avoid a lot of malloc() calls. This variable was added in MySQL 4.0.16.

• tx_isolation

The default transaction isolation level. This variable was added in MySQL 4.0.3.

• updatable_views_with_limit

This variable controls whether updates can be made using a view that does not contain a primary
key in the underlying table, if the update contains a LIMIT clause. (Such updates often are gen-
erated by GUI tools.) An update is an UPDATE or DELETE statement. Primary key here means a
PRIMARY KEY, or a UNIQUE index in which no column can contain NULL.

The variable can have two values:

• 1 or YES: Issue a warning only (not an error message). This is the default value.

• 0 or NO: Prohibit the update.

This variable was added in MySQL 5.0.2.

• version

The version number for the server.

• version_bdb

The BDB storage engine version. This variable was added in MySQL 3.23.31 with the name
bdb_version and renamed to version_bdb in MySQL 4.1.1.

• version_comment

The configure script has a --with-comment option that allows a comment to be specified
when building MySQL. This variable contains the value of that comment. This variable was ad-
ded in MySQL 4.0.17.

• version_compile_machine

The type of machine MySQL was built on. This variable was added in MySQL 4.1.1.

• version_compile_os

The type of operating system MySQL was built on. This variable was added in MySQL 4.0.19.

Database Administration

258

• wait_timeout

The number of seconds the server waits for activity on a non-interactive connection before clos-
ing it.

On thread startup, the session wait_timeout value is initialized from the global
wait_timeout value or from the global interactive_timeout value, depending on the
type of client (as defined by the CLIENT_INTERACTIVE connect option to
mysql_real_connect()). See also interactive_timeout.

5.2.3.1. Dynamic System Variables

Beginning with MySQL 4.0.3, many server system variables are dynamic and can be set at runtime
using SET GLOBAL or SET SESSION. You can also select their values using SELECT. See Sec-
tion 9.4, “System Variables”.

The following table shows the full list of all dynamic system variables. The last column indicates for
each variable whether GLOBAL or SESSION (or both) apply.

Variable Name Value Type Type

autocommit boolean SESSION

big_tables boolean SESSION

binlog_cache_size numeric GLOBAL

bulk_insert_buffer_size numeric GLOBAL | SESSION

character_set_client string GLOBAL | SESSION

character_set_connection string GLOBAL | SESSION

character_set_results string GLOBAL | SESSION

character_set_server string GLOBAL | SESSION

collation_connection string GLOBAL | SESSION

collation_server string GLOBAL | SESSION

concurrent_insert boolean GLOBAL

connect_timeout numeric GLOBAL

convert_character_set string GLOBAL | SESSION

default_week_format numeric GLOBAL | SESSION

delay_key_write OFF | ON | ALL GLOBAL

delayed_insert_limit numeric GLOBAL

delayed_insert_timeout numeric GLOBAL

delayed_queue_size numeric GLOBAL

error_count numeric SESSION

expire_logs_days numeric GLOBAL

flush boolean GLOBAL

flush_time numeric GLOBAL

foreign_key_checks boolean SESSION

ft_boolean_syntax numeric GLOBAL

group_concat_max_len numeric GLOBAL | SESSION

identity numeric SESSION

innodb_autoextend_increment numeric GLOBAL

innodb_concurrency_tickets numeric GLOBAL

innodb_max_dirty_pages_pct numeric GLOBAL

innodb_max_purge_lag numeric GLOBAL

Database Administration

259

innodb_sync_spin_loops numeric GLOBAL

innodb_table_locks boolean GLOBAL | SESSION

innodb_thread_concurrency numeric GLOBAL

innodb_thread_sleep_delay numeric GLOBAL

insert_id boolean SESSION

interactive_timeout numeric GLOBAL | SESSION

join_buffer_size numeric GLOBAL | SESSION

key_buffer_size numeric GLOBAL

last_insert_id numeric SESSION

local_infile boolean GLOBAL

log_warnings numeric GLOBAL

long_query_time numeric GLOBAL | SESSION

low_priority_updates boolean GLOBAL | SESSION

max_allowed_packet numeric GLOBAL | SESSION

max_binlog_cache_size numeric GLOBAL

max_binlog_size numeric GLOBAL

max_connect_errors numeric GLOBAL

max_connections numeric GLOBAL

max_delayed_threads numeric GLOBAL

max_error_count numeric GLOBAL | SESSION

max_heap_table_size numeric GLOBAL | SESSION

max_insert_delayed_threads numeric GLOBAL

max_join_size numeric GLOBAL | SESSION

max_relay_log_size numeric GLOBAL

max_seeks_for_key numeric GLOBAL | SESSION

max_sort_length numeric GLOBAL | SESSION

max_tmp_tables numeric GLOBAL | SESSION

max_user_connections numeric GLOBAL

max_write_lock_count numeric GLOBAL

multi_read_range numeric GLOBAL | SESSION

myisam_data_pointer_size numeric GLOBAL

myis-
am_max_extra_sort_file_size

numeric GLOBAL | SESSION

myisam_max_sort_file_size numeric GLOBAL | SESSION

myisam_repair_threads numeric GLOBAL | SESSION

myisam_sort_buffer_size numeric GLOBAL | SESSION

net_buffer_length numeric GLOBAL | SESSION

net_read_timeout numeric GLOBAL | SESSION

net_retry_count numeric GLOBAL | SESSION

net_write_timeout numeric GLOBAL | SESSION

old_passwords numeric GLOBAL | SESSION

optimizer_prune_level numeric GLOBAL | SESSION

optimizer_search_depth numeric GLOBAL | SESSION

preload_buffer_size numeric GLOBAL | SESSION

query_alloc_block_size numeric GLOBAL | SESSION

Database Administration

260

query_cache_limit numeric GLOBAL

query_cache_size numeric GLOBAL

query_cache_type enumeration GLOBAL | SESSION

query_cache_wlock_invalidate boolean GLOBAL | SESSION

query_prealloc_size numeric GLOBAL | SESSION

range_alloc_block_size numeric GLOBAL | SESSION

read_buffer_size numeric GLOBAL | SESSION

read_only numeric GLOBAL

read_rnd_buffer_size numeric GLOBAL | SESSION

rpl_recovery_rank numeric GLOBAL

safe_show_database boolean GLOBAL

secure_auth boolean GLOBAL

server_id numeric GLOBAL

slave_compressed_protocol boolean GLOBAL

slave_net_timeout numeric GLOBAL

slow_launch_time numeric GLOBAL

sort_buffer_size numeric GLOBAL | SESSION

sql_auto_is_null boolean SESSION

sql_big_selects boolean SESSION

sql_big_tables boolean SESSION

sql_buffer_result boolean SESSION

sql_log_bin boolean SESSION

sql_log_off boolean SESSION

sql_log_update boolean SESSION

sql_low_priority_updates boolean GLOBAL | SESSION

sql_max_join_size numeric GLOBAL | SESSION

sql_mode enumeration GLOBAL | SESSION

sql_quote_show_create boolean SESSION

sql_safe_updates boolean SESSION

sql_select_limit numeric SESSION

sql_slave_skip_counter numeric GLOBAL

updatable_views_with_limit enumeration GLOBAL | SESSION

sql_warnings boolean SESSION

sync_binlog numeric GLOBAL

sync_frm boolean GLOBAL

storage_engine enumeration GLOBAL | SESSION

table_cache numeric GLOBAL

table_type enumeration GLOBAL | SESSION

thread_cache_size numeric GLOBAL

time_zone string GLOBAL | SESSION

timestamp boolean SESSION

tmp_table_size enumeration GLOBAL | SESSION

transaction_alloc_block_size numeric GLOBAL | SESSION

transaction_prealloc_size numeric GLOBAL | SESSION

tx_isolation enumeration GLOBAL | SESSION

Database Administration

261

unique_checks boolean SESSION

wait_timeout numeric GLOBAL | SESSION

warning_count numeric SESSION

Variables that are marked as ``string'' take a string value. Variables that are marked as ``numeric''
take a numeric value. Variables that are marked as ``boolean'' can be set to 0, 1, ON or OFF. Vari-
ables that are marked as ``enumeration'' normally should be set to one of the available values for the
variable, but can also be set to the number that corresponds to the desired enumeration value. For
enumeration-valued system variables, the first enumeration value corresponds to 0. This differs from
ENUM columns, for which the first enumeration value corresponds to 1.

5.2.4. Server Status Variables
The server maintains many status variables that provide information about its operations. You can
view these variables and their values by using the SHOW STATUS statement:

mysql> SHOW STATUS;
+--------------------------+------------+
| Variable_name | Value |
+--------------------------+------------+
Aborted_clients	0
Aborted_connects	0
Bytes_received	155372598
Bytes_sent	1176560426
Connections	30023
Created_tmp_disk_tables	0
Created_tmp_files	60
Created_tmp_tables	8340
Delayed_errors	0
Delayed_insert_threads	0
Delayed_writes	0
Flush_commands	1
Handler_delete	462604
Handler_read_first	105881
Handler_read_key	27820558
Handler_read_next	390681754
Handler_read_prev	6022500
Handler_read_rnd	30546748
Handler_read_rnd_next	246216530
Handler_update	16945404
Handler_write	60356676
Key_blocks_used	14955
Key_read_requests	96854827
Key_reads	162040
Key_write_requests	7589728
Key_writes	3813196
Max_used_connections	0
Not_flushed_delayed_rows	0
Not_flushed_key_blocks	0
Open_files	2
Open_streams	0
Open_tables	1
Opened_tables	44600
Qcache_free_blocks	36
Qcache_free_memory	138488
Qcache_hits	79570
Qcache_inserts	27087
Qcache_lowmem_prunes	3114
Qcache_not_cached	22989
Qcache_queries_in_cache	415
Qcache_total_blocks	912
Questions	2026873
Select_full_join	0
Select_full_range_join	0

Database Administration

262

Select_range	99646
Select_range_check	0
Select_scan	30802
Slave_open_temp_tables	0
Slave_running	OFF
Slow_launch_threads	0
Slow_queries	0
Sort_merge_passes	30
Sort_range	500
Sort_rows	30296250
Sort_scan	4650
Table_locks_immediate	1920382
Table_locks_waited	0
Threads_cached	0
Threads_connected	1
Threads_created	30022
Threads_running	1
Uptime	80380
+--------------------------+------------+

Many status variables are reset to 0 by the FLUSH STATUS statement.

The status variables have the following meanings. The Com_xxx statement counter variables were
added beginning with MySQL 3.23.47. The Qcache_xxx query cache variables were added begin-
ning with MySQL 4.0.1. Otherwise, variables with no version indicated have been present since at
least MySQL 3.22.

• Aborted_clients

The number of connections that were aborted because the client died without closing the connec-
tion properly. See Section A.2.10, “Communication Errors and Aborted Connections”.

• Aborted_connects

The number of tries to connect to the MySQL server that failed. See Section A.2.10,
“Communication Errors and Aborted Connections”.

• Binlog_cache_disk_use

The number of transactions that used the temporary binary log cache but that exceeded the value
of binlog_cache_size and used a temporary file to store statements from the transaction.
This variable was added in MySQL 4.1.2.

• Binlog_cache_use

The number of transactions that used the temporary binary log cache. This variable was added in
MySQL 4.1.2.

• Bytes_received

The number of bytes received from all clients. This variable was added in MySQL 3.23.7.

• Bytes_sent

The number of bytes sent to all clients. This variable was added in MySQL 3.23.7.

• Com_xxx

The number of times each xxx statement has been executed. There is one status variable for
each type of statement. For example, Com_delete and Com_insert count DELETE and
INSERT statements.

• Connections

Database Administration

263

The number of connection attempts (successful or not) to the MySQL server.

• Created_tmp_disk_tables

The number of temporary tables on disk created automatically by the server while executing
statements. This variable was added in MySQL 3.23.24.

• Created_tmp_files

How many temporary files mysqld has created. This variable was added in MySQL 3.23.28.

• Created_tmp_tables

The number of in-memory temporary tables created automatically by the server while executing
statements. If Created_tmp_disk_tables is big, you may want to increase the
tmp_table_size value to cause temporary tables to be memory-based instead of disk-based.

• Delayed_errors

The number of rows written with INSERT DELAYED for which some error occurred (probably
duplicate key).

• Delayed_insert_threads

The number of INSERT DELAYED handler threads in use.

• Delayed_writes

The number of INSERT DELAYED rows written.

• Flush_commands

The number of executed FLUSH statements.

• Handler_commit

The number of internal COMMIT statements. This variable was added in MySQL 4.0.2.

• Handler_discover

The MySQL server can ask the NDB Cluster storage engine if it knows about a table with a
given name. This is called discovery. Handler_discover indicates the number of time
tables have been discovered. This variable was added in MySQL 4.1.2.

• Handler_delete

The number of times a row was deleted from a table.

• Handler_read_first

The number of times the first entry was read from an index. If this is high, it suggests that the
server is doing a lot of full index scans; for example, SELECT col1 FROM foo, assuming
that col1 is indexed.

• Handler_read_key

The number of requests to read a row based on a key. If this is high, it is a good indication that
your queries and tables are properly indexed.

• Handler_read_next

The number of requests to read the next row in key order. This is incremented if you are query-
ing an index column with a range constraint or if you are doing an index scan.

Database Administration

264

• Handler_read_prev

The number of requests to read the previous row in key order. This read method is mainly used
to optimize ORDER BY ... DESC. This variable was added in MySQL 3.23.6.

• Handler_read_rnd

The number of requests to read a row based on a fixed position. This is high if you are doing a
lot of queries that require sorting of the result. You probably have a lot of queries that require
MySQL to scan whole tables or you have joins that don't use keys properly.

• Handler_read_rnd_next

The number of requests to read the next row in the data file. This is high if you are doing a lot of
table scans. Generally this suggests that your tables are not properly indexed or that your queries
are not written to take advantage of the indexes you have.

• Handler_rollback

The number of internal ROLLBACK statements. This variable was added in MySQL 4.0.2.

• Handler_update

The number of requests to update a row in a table.

• Handler_write

The number of requests to insert a row in a table.

• Innodb_buffer_pool_pages_data

The number of pages containing data (dirty or clean). Added in MySQL 5.0.2.

• Innodb_buffer_pool_pages_dirty

The number of pages currently dirty. Added in MySQL 5.0.2.

• Innodb_buffer_pool_pages_flushed

The number of buffer pool pages that have been requested to be flushed. Added in MySQL
5.0.2.

• Innodb_buffer_pool_pages_free

The number of free pages. Added in MySQL 5.0.2.

• Innodb_buffer_pool_pages_latched

The number of latched pages in InnoDB buffer pool. These are pages currently being read or
written or that can't be flushed or removed for some other reason. Added in MySQL 5.0.2.

• Innodb_buffer_pool_pages_misc

The number of pages busy because they have been allocated for administrative overhead such as
row locks or the adaptive hash index. This value can also be calculated as In-
nodb_buffer_pool_pages_total - Innodb_buffer_pool_pages_free - In-
nodb_buffer_pool_pages_data. Added in MySQL 5.0.2.

• Innodb_buffer_pool_pages_total

Total size of buffer pool, in pages. Added in MySQL 5.0.2.

• Innodb_buffer_pool_read_ahead_rnd

Database Administration

265

The number of ``random'' read-aheads InnoDB initiated. This happens when a query is to scan a
large portion of a table but in random order. Added in MySQL 5.0.2.

• Innodb_buffer_pool_read_ahead_seq

The number of sequential read-aheads InnoDB initiated. This happens when InnoDB does a
sequential full table scan. Added in MySQL 5.0.2.

• Innodb_buffer_pool_read_requests

The number of logical read requests InnoDB has done. Added in MySQL 5.0.2.

• Innodb_buffer_pool_reads

The number of logical reads that InnoDB could not satisfy from buffer pool and had to do a
single-page read. Added in MySQL 5.0.2.

• Innodb_buffer_pool_wait_free

Normally, writes to the InnoDB buffer pool happen in the background. However, if it's neces-
sary to read or create a page and no clean pages are available, it's necessary to wait for pages to
be flushed first. This counter counts instances of these waits. If the buffer pool size was set prop-
erly, this value should be small. Added in MySQL 5.0.2.

• Innodb_buffer_pool_write_requests

The number writes done to the InnoDB buffer pool. Added in MySQL 5.0.2.

• Innodb_data_fsyncs

The number of fsync() operations so far. Added in MySQL 5.0.2.

• Innodb_data_pending_fsyncs

The current number of pending fsync() operations. Added in MySQL 5.0.2.

• Innodb_data_pending_reads

The current number of pending reads. Added in MySQL 5.0.2.

• Innodb_data_pending_writes

The current number of pending writes. Added in MySQL 5.0.2.

• Innodb_data_read

The amount of data read so far, in bytes. Added in MySQL 5.0.2.

• Innodb_data_reads

The total number of data reads. Added in MySQL 5.0.2.

• Innodb_data_writes

The total number of data writes. Added in MySQL 5.0.2.

• Innodb_data_written

The amount of data written so far, in bytes. Added in MySQL 5.0.2.

• Innodb_dblwr_writes , Innodb_dblwr_pages_written

The number of doublewrite writes that have been performed and the number of pages that have
been written for this purpose. Added in MySQL 5.0.2.

Database Administration

266

• Innodb_log_waits

The number of waits we had because log buffer was too small and we had to wait for it to be
flushed before continuing. Added in MySQL 5.0.2.

• Innodb_log_write_requests

The number of log write requests. Added in MySQL 5.0.2.

• Innodb_log_writes

The number of physical writes to the log file. Added in MySQL 5.0.2.

• Innodb_os_log_fsyncs

The number of fsyncs writes done to the log file. Added in MySQL 5.0.2.

• Innodb_os_log_pending_fsyncs

The number of pending log file fsyncs. Added in MySQL 5.0.2.

• Innodb_os_log_pending_writes

Pending log file writes. Added in MySQL 5.0.2.

• Innodb_os_log_written

The number of bytes written to the log file. Added in MySQL 5.0.2.

• Innodb_page_size

The compiled-in InnoDB page size (default 16KB). Many values are counted in pages; the page
size allows them to be easily converted to bytes. Added in MySQL 5.0.2.

• Innodb_pages_created

The number of pages created. Added in MySQL 5.0.2.

• Innodb_pages_read

The number of pages read. Added in MySQL 5.0.2.

• Innodb_pages_written

The number of pages written. Added in MySQL 5.0.2.

• Innodb_row_lock_current_waits

The number of row locks currently being waited for. Added in MySQL 5.0.3.

• Innodb_row_lock_time

The total time spent in acquiring row locks, in milliseconds. Added in MySQL 5.0.3.

• Innodb_row_lock_time_avg

The average time to acquire a row lock, in milliseconds. Added in MySQL 5.0.3.

• Innodb_row_lock_time_max

The maximum time to acquire a row lock, in milliseconds. Added in MySQL 5.0.3.

• Innodb_row_lock_waits

The number of times a row lock had to be waited for. Added in MySQL 5.0.3.

Database Administration

267

• Innodb_rows_deleted

The number of rows deleted from InnoDB tables. Added in MySQL 5.0.2.

• Innodb_rows_inserted

The number of rows inserted in InnoDB tables. Added in MySQL 5.0.2.

• Innodb_rows_read

The number of rows read from InnoDB tables. Added in MySQL 5.0.2.

• Innodb_rows_updated

The number of rows updated in InnoDB tables. Added in MySQL 5.0.2.

• Key_blocks_not_flushed

The number of key blocks in the key cache that have changed but haven't yet been flushed to
disk. This variable was added in MySQL 4.1.1. It used to be known as
Not_flushed_key_blocks.

• Key_blocks_unused

The number of unused blocks in the key cache. You can use this value to determine how much
of the key cache is in use; see the discussion of key_buffer_size in Section 5.2.3, “Server
System Variables”. This variable was added in MySQL 4.1.2. Section 5.2.3, “Server System
Variables”.

• Key_blocks_used

The number of used blocks in the key cache. This value is a high-water mark that indicates the
maximum number of blocks that have ever been in use at one time.

• Key_read_requests

The number of requests to read a key block from the cache.

• Key_reads

The number of physical reads of a key block from disk. If Key_reads is big, then your
key_buffer_size value is probably too small. The cache miss rate can be calculated as
Key_reads/Key_read_requests.

• Key_write_requests

The number of requests to write a key block to the cache.

• Key_writes

The number of physical writes of a key block to disk.

• Last_query_cost

The total cost of the last compiled query as computed by the query optimizer. Useful for com-
paring the cost of different query plans for the same query. The default value of #1 means that
no query has been compiled yet. This variable was added in MySQL 5.0.1.

• Max_used_connections

The maximum number of connections that have been in use simultaneously since the server star-
ted.

• Not_flushed_delayed_rows

Database Administration

268

The number of rows waiting to be written in INSERT DELAY queues.

• Not_flushed_key_blocks

The old name for Key_blocks_not_flushed before MySQL 4.1.1.

• Open_files

The number of files that are open.

• Open_streams

The number of streams that are open (used mainly for logging).

• Open_tables

The number of tables that are open.

• Opened_tables

The number of tables that have been opened. If Opened_tables is big, your table_cache
value is probably too small.

• Qcache_free_blocks

The number of free memory blocks in query cache.

• Qcache_free_memory

The amount of free memory for query cache.

• Qcache_hits

The number of cache hits.

• Qcache_inserts

The number of queries added to the cache.

• Qcache_lowmem_prunes

The number of queries that were deleted from the cache because of low memory.

• Qcache_not_cached

The number of non-cached queries (not cachable, or due to query_cache_type).

• Qcache_queries_in_cache

The number of queries registered in the cache.

• Qcache_total_blocks

The total number of blocks in the query cache.

• Questions

The number of queries that have been sent to the server.

• Rpl_status

The status of failsafe replication (not yet implemented).

• Select_full_join

Database Administration

269

The number of joins that do not use indexes. If this value is not 0, you should carefully check the
indexes of your tables. This variable was added in MySQL 3.23.25.

• Select_full_range_join

The number of joins that used a range search on a reference table. This variable was added in
MySQL 3.23.25.

• Select_range

The number of joins that used ranges on the first table. (It's normally not critical even if this is
big.) This variable was added in MySQL 3.23.25.

• Select_range_check

The number of joins without keys that check for key usage after each row. (If this is not 0, you
should carefully check the indexes of your tables.) This variable was added in MySQL 3.23.25.

• Select_scan

The number of joins that did a full scan of the first table. This variable was added in MySQL
3.23.25.

• Slave_open_temp_tables

The number of temporary tables currently open by the slave SQL thread. This variable was ad-
ded in MySQL 3.23.29.

• Slave_running

This is ON if this server is a slave that is connected to a master. This variable was added in
MySQL 3.23.16.

• Slow_launch_threads

The number of threads that have taken more than slow_launch_time seconds to create.
This variable was added in MySQL 3.23.15.

• Slow_queries

The number of queries that have taken more than long_query_time seconds. See Sec-
tion 5.9.5, “The Slow Query Log”.

• Sort_merge_passes

The number of merge passes the sort algorithm has had to do. If this value is large, you should
consider increasing the value of the sort_buffer_size system variable. This variable was
added in MySQL 3.23.28.

• Sort_range

The number of sorts that were done with ranges. This variable was added in MySQL 3.23.25.

• Sort_rows

The number of sorted rows. This variable was added in MySQL 3.23.25.

• Sort_scan

The number of sorts that were done by scanning the table. This variable was added in MySQL
3.23.25.

Database Administration

270

• Ssl_xxx

Variables used for SSL connections. These variables were added in MySQL 4.0.0.

• Table_locks_immediate

The number of times that a table lock was acquired immediately. This variable was added as of
MySQL 3.23.33.

• Table_locks_waited

The number of times that a table lock could not be acquired immediately and a wait was needed.
If this is high, and you have performance problems, you should first optimize your queries, and
then either split your table or tables or use replication. This variable was added as of MySQL
3.23.33.

• Threads_cached

The number of threads in the thread cache. This variable was added in MySQL 3.23.17.

• Threads_connected

The number of currently open connections.

• Threads_created

The number of threads created to handle connections. If Threads_created is big, you may
want to increase the thread_cache_size value. The cache hit rate can be calculated as
Threads_created/Connections. This variable was added in MySQL 3.23.31.

• Threads_running

The number of threads that are not sleeping.

• Uptime

The number of seconds the server has been up.

5.3. The MySQL Server Shutdown Process
The server shutdown process can be summarized like this:

1. The shutdown process is initiated

2. The server creates a shutdown thread if necessary

3. The server stops accepting new connections

4. The server terminates current activity

5. Storage engines are shut down or closed

6. The server exits

A more detailed description of the process follows:

1. The shutdown process is initiated.

Server shutdown can be initiated several ways. For example, a user with the SHUTDOWN priv-
ilege can execute a mysqladmin shutdown command. mysqladmin can be used on any plat-

Database Administration

271

form supported by MySQL. Other operating system-specific shutdown initiation methods are
possible as well: The server shuts down on Unix when it receives a SIGTERM signal. A server
running as a service on Windows shuts down when the services manager tells it to.

2. The server creates a shutdown thread if necessary.

Depending on how shutdown was initiated, the server might create a thread to handle the shut-
down process. If shutdown was requested by a client, a shutdown thread is created. If shutdown
is the result of receiving a SIGTERM signal, the signal thread might handle shutdown itself, or
it might create a separate thread to do so. If the server tries to create a shutdown thread and
cannot (for example, if memory is exhausted), it issues a diagnostic message that appears in the
error log:

Error: Can't create thread to kill server

3. The server stops accepting new connections.

To prevent new activity from being initiated during shutdown, the server stops accepting new
client connections. It does this by closing the network connections to which it normally listens
for connections: the TCP/IP port, the Unix socket file, the Windows named pipe, and shared
memory on Windows.

4. The server terminates current activity.

For each thread that is associated with a client connection, the connection to the client is
broken and the thread is marked as killed. Threads die when they notice that they are so
marked. Threads for idle connections die quickly. Threads that currently are processing queries
check their state periodically and take longer to die. For additional information about thread
termination, see Section 13.5.5.3, “KILL Syntax”, in particular for the instructions about killed
REPAIR TABLE or OPTIMIZE TABLE operations on MyISAM tables.

For threads that have an open transaction, the transaction is rolled back. Note that if a thread is
updating a non-transactional table, an operation such as a multiple-row UPDATE or INSERT
may leave the table partially updated, because the operation can terminate before completion.

If the server is a master replication server, threads associated with currently connected slaves
are treated like other client threads. That is, each one is marked as killed and exits when it next
checks its state.

If the server is a slave replication server, the I/O and SQL threads, if active, are stopped before
client threads are marked as killed. The SQL thread is allowed to finish its current statement (to
avoid causing replication problems) then stops. If the SQL thread was in the middle of a trans-
action at this point, the transaction is rolled back.

5. Storage engines are shut down or closed.

At this stage, the table cache is flushed and all open tables are closed.

Each storage engine performs any actions necessary for tables that it manages. For example,
MyISAM flushes any pending index writes for a table. InnoDB flushes its buffer pool to disk,
writes the current LSN to the tablespace, and terminates its own internal threads.

6. The server exits.

5.4. General Security Issues
This section describes some general security issues to be aware of and what you can do to make
your MySQL installation more secure against attack or misuse. For information specifically about
the access control system that MySQL uses for setting up user accounts and checking database ac-
cess, see Section 5.5, “The MySQL Access Privilege System”.

Database Administration

272

5.4.1. General Security Guidelines
Anyone using MySQL on a computer connected to the Internet should read this section to avoid the
most common security mistakes.

In discussing security, we emphasize the necessity of fully protecting the entire server host (not just
the MySQL server) against all types of applicable attacks: eavesdropping, altering, playback, and
denial of service. We do not cover all aspects of availability and fault tolerance here.

MySQL uses security based on Access Control Lists (ACLs) for all connections, queries, and other
operations that users can attempt to perform. There is also some support for SSL-encrypted connec-
tions between MySQL clients and servers. Many of the concepts discussed here are not specific to
MySQL at all; the same general ideas apply to almost all applications.

When running MySQL, follow these guidelines whenever possible:

• Do not ever give anyone (except MySQL root accounts) access to the user table in the
mysql database! This is critical. The encrypted password is the real password in MySQL.
Anyone who knows the password that is listed in the user table and has access to the host lis-
ted for the account can easily log in as that user.

• Learn the MySQL access privilege system. The GRANT and REVOKE statements are used for
controlling access to MySQL. Do not grant any more privileges than necessary. Never grant
privileges to all hosts.

Checklist:

• Try mysql -u root. If you are able to connect successfully to the server without being
asked for a password, you have problems. Anyone can connect to your MySQL server as the
MySQL root user with full privileges! Review the MySQL installation instructions, paying
particular attention to the information about setting a root password. See Section 2.9.3,
“Securing the Initial MySQL Accounts”.

• Use the SHOW GRANTS statement and check to see who has access to what. Then use the
REVOKE statement to remove those privileges that are not necessary.

• Do not store any plain-text passwords in your database. If your computer becomes comprom-
ised, the intruder can take the full list of passwords and use them. Instead, use MD5(), SHA1(),
or some other one-way hashing function.

• Do not choose passwords from dictionaries. There are special programs to break them. Even
passwords like ``xfish98'' are very bad. Much better is ``duag98'' which contains the same word
``fish'' but typed one key to the left on a standard QWERTY keyboard. Another method is to use
``Mhall'' which is taken from the first characters of each word in the sentence ``Mary had a little
lamb.'' This is easy to remember and type, but difficult to guess for someone who does not know
it.

• Invest in a firewall. This protects you from at least 50% of all types of exploits in any software.
Put MySQL behind the firewall or in a demilitarized zone (DMZ).

Checklist:

• Try to scan your ports from the Internet using a tool such as nmap. MySQL uses port 3306
by default. This port should not be accessible from untrusted hosts. Another simple way to
check whether or not your MySQL port is open is to try the following command from some
remote machine, where server_host is the host on which your MySQL server runs:

shell> telnet server_host 3306

If you get a connection and some garbage characters, the port is open, and should be closed
on your firewall or router, unless you really have a good reason to keep it open. If telnet
just hangs or the connection is refused, everything is OK; the port is blocked.

Database Administration

273

• Do not trust any data entered by users of your applications. They can try to trick your code by
entering special or escaped character sequences in Web forms, URLs, or whatever application
you have built. Be sure that your application remains secure if a user enters something like ``;
DROP DATABASE mysql;''. This is an extreme example, but large security leaks and data
loss might occur as a result of hackers using similar techniques, if you do not prepare for them.

A common mistake is to protect only string data values. Remember to check numeric data as
well. If an application generates a query such as SELECT * FROM table WHERE ID=234
when a user enters the value 234, the user can enter the value 234 OR 1=1 to cause the ap-
plication to generate the query SELECT * FROM table WHERE ID=234 OR 1=1. As a
result, the server retrieves every record in the table. This exposes every record and causes ex-
cessive server load. The simplest way to protect from this type of attack is to use apostrophes
around the numeric constants: SELECT * FROM table WHERE ID='234'. If the user
enters extra information, it all becomes part of the string. In numeric context, MySQL automat-
ically converts this string to a number and strips any trailing non-numeric characters from it.

Sometimes people think that if a database contains only publicly available data, it need not be
protected. This is incorrect. Even if it is allowable to display any record in the database, you
should still protect against denial of service attacks (for example, those that are based on the
technique in the preceding paragraph that causes the server to waste resources). Otherwise, your
server becomes unresponsive to legitimate users.

Checklist:

• Try to enter ''' and '"' in all your Web forms. If you get any kind of MySQL error, investig-
ate the problem right away.

• Try to modify any dynamic URLs by adding %22 ('"'), %23 ('#'), and %27 (''') in the URL.

• Try to modify data types in dynamic URLs from numeric ones to character ones containing
characters from previous examples. Your application should be safe against this and similar
attacks.

• Try to enter characters, spaces, and special symbols rather than numbers in numeric fields.
Your application should remove them before passing them to MySQL or else generate an er-
ror. Passing unchecked values to MySQL is very dangerous!

• Check data sizes before passing them to MySQL.

• Consider having your application connect to the database using a different username than the
one you use for administrative purposes. Do not give your applications any access privileges
they do not need.

• Many application programming interfaces provide a means of escaping special characters in data
values. Properly used, this prevents application users from entering values that cause the applic-
ation to generate statements that have a different effect than you intend:

• MySQL C API: Use the mysql_real_escape_string() API call.

• MySQL++: Use the escape and quote modifiers for query streams.

• PHP: Use the mysql_escape_string() function, which is based on the function of the
same name in the MySQL C API. Prior to PHP 4.0.3, use addslashes() instead.

• Perl DBI: Use the quote() method or use placeholders.

• Java JDBC: Use a PreparedStatement object and placeholders.

Other programming interfaces might have similar capabilities.

• Do not transmit plain (unencrypted) data over the Internet. This information is accessible to
everyone who has the time and ability to intercept it and use it for their own purposes. Instead,
use an encrypted protocol such as SSL or SSH. MySQL supports internal SSL connections as of

Database Administration

274

Version 4.0.0. SSH port-forwarding can be used to create an encrypted (and compressed) tunnel
for the communication.

• Learn to use the tcpdump and strings utilities. For most cases, you can check whether
MySQL data streams are unencrypted by issuing a command like the following:

shell> tcpdump -l -i eth0 -w - src or dst port 3306 | strings

(This works under Linux and should work with small modifications under other systems.) Warn-
ing: If you do not see plaintext data, this doesn't always mean that the information actually is en-
crypted. If you need high security, you should consult with a security expert.

5.4.2. Making MySQL Secure Against Attackers
When you connect to a MySQL server, you should use a password. The password is not transmitted
in clear text over the connection. Password handling during the client connection sequence was up-
graded in MySQL 4.1.1 to be very secure. If you are using an older version of MySQL, or are still
using pre-4.1.1-style passwords, the encryption algorithm is less strong and with some effort a clev-
er attacker who can sniff the traffic between the client and the server can crack the password. (See
Section 5.5.9, “Password Hashing in MySQL 4.1” for a discussion of the different password hand-
ling methods.) If the connection between the client and the server goes through an untrusted net-
work, you should use an SSH tunnel to encrypt the communication.

All other information is transferred as text that can be read by anyone who is able to watch the con-
nection. If you are concerned about this, you can use the compressed protocol (in MySQL 3.22 and
above) to make traffic much more difficult to decipher. To make the connection even more secure,
you should use SSH to get an encrypted TCP/IP connection between a MySQL server and a MySQL
client. You can find an Open Source SSH client at http://www.openssh.org/, and a commercial SSH
client at http://www.ssh.com/.

If you are using MySQL 4.0 or newer, you can also use internal OpenSSL support. See Sec-
tion 5.6.7, “Using Secure Connections”.

To make a MySQL system secure, you should strongly consider the following suggestions:

• Use passwords for all MySQL users. A client program does not necessarily know the identity of
the person running it. It is common for client/server applications that the user can specify any
username to the client program. For example, anyone can use the mysql program to connect as
any other person simply by invoking it as mysql -u other_user db_name if oth-
er_user has no password. If all users have a password, connecting using another user's ac-
count becomes much more difficult.

To change the password for a user, use the SET PASSWORD statement. It is also possible to up-
date the user table in the mysql database directly. For example, to change the password of all
MySQL accounts that have a username of root, do this:

shell> mysql -u root
mysql> UPDATE mysql.user SET Password=PASSWORD('newpwd')

-> WHERE User='root';
mysql> FLUSH PRIVILEGES;

• Don't run the MySQL server as the Unix root user. This is very dangerous, because any user
with the FILE privilege is able to create files as root (for example, ~root/.bashrc). To
prevent this, mysqld refuses to run as root unless that is specified explicitly using a -
-user=root option.

mysqld can be run as an ordinary unprivileged user instead. You can also create a separate Unix
account named mysql to make everything even more secure. Use the account only for adminis-
tering MySQL. To start mysqld as another Unix user, add a user option that specifies the user-

Database Administration

275

http://www.openssh.org/
http://www.ssh.com/

name to the [mysqld] group of the /etc/my.cnf option file or the my.cnf option file in
the server's data directory. For example:

[mysqld]
user=mysql

This causes the server to start as the designated user whether you start it manually or by using
mysqld_safe or mysql.server. For more details, see Section A.3.2, “How to Run MySQL as a
Normal User”.

Running mysqld as a Unix user other than root does not mean that you need to change the
root username in the user table. Usernames for MySQL accounts have nothing to do with
usernames for Unix accounts.

• Don't allow the use of symlinks to tables. (This can be disabled with the -
-skip-symbolic-links option.) This is especially important if you run mysqld as root,
because anyone that has write access to the server's data directory then could delete any file in
the system! See Section 7.6.1.2, “Using Symbolic Links for Tables on Unix”.

• Make sure that the only Unix user with read or write privileges in the database directories is the
user that mysqld runs as.

• Don't grant the PROCESS or SUPER privilege to non-administrative users. The output of mysql-
admin processlist shows the text of the currently executing queries, so any user who is allowed
to execute that command might be able to see if another user issues an UPDATE user SET
password=PASSWORD('not_secure') query.

mysqld reserves an extra connection for users who have the SUPER privilege (PROCESS before
MySQL 4.0.2), so that a MySQL root user can log in and check server activity even if all nor-
mal connections are in use.

The SUPER privilege can be used to terminate client connections, change server operation by
changing the value of system variables, and control replication servers.

• Don't grant the FILE privilege to non-administrative users. Any user that has this privilege can
write a file anywhere in the filesystem with the privileges of the mysqld daemon! To make this
a bit safer, files generated with SELECT ... INTO OUTFILE do not overwrite existing files
and are writable by everyone.

The FILE privilege may also be used to read any file that is world-readable or accessible to the
Unix user that the server runs as. With this privilege, you can read any file into a database table.
This could be abused, for example, by using LOAD DATA to load /etc/passwd into a table,
which then can be displayed with SELECT.

• If you don't trust your DNS, you should use IP numbers rather than hostnames in the grant
tables. In any case, you should be very careful about creating grant table entries using hostname
values that contain wildcards!

• If you want to restrict the number of connections allowed to a single account, you can do so by
setting the max_user_connections variable in mysqld. The GRANT statement also sup-
ports resource control options for limiting the extent of server use allowed to an account.

5.4.3. Startup Options for mysqld Concerning Security
The following mysqld options affect security:

• --local-infile[={0|1}]

If you start the server with --local-infile=0, clients cannot use LOCAL in LOAD DATA
statements. See Section 5.4.4, “Security Issues with LOAD DATA LOCAL”.

Database Administration

276

• --old-passwords

Force the server to generate short (pre-4.1) password hashes for new passwords. This is useful
for compatibility when the server must support older client programs. See Section 5.5.9,
“Password Hashing in MySQL 4.1”.

• --safe-show-database

With this option, the SHOW DATABASES statement displays the names of only those databases
for which the user has some kind of privilege. As of MySQL 4.0.2, this option is deprecated and
doesn't do anything (it is enabled by default), because there is a SHOW DATABASES privilege
that can be used to control access to database names on a per-account basis. See Sec-
tion 13.5.1.3, “GRANT and REVOKE Syntax”.

• --safe-user-create

If this is enabled, a user cannot create new users with the GRANT statement unless the user has
the INSERT privilege for the mysql.user table. If you want a user to have the ability to cre-
ate new users with those privileges that the user has right to grant, you should grant the user the
following privilege:

mysql> GRANT INSERT(user) ON mysql.user TO 'user_name'@'host_name';

This ensures that the user can't change any privilege columns directly, but has to use the GRANT
statement to give privileges to other users.

• --secure-auth

Disallow authentication for accounts that have old (pre-4.1) passwords. This option is available
as of MySQL 4.1.1.

• --skip-grant-tables

This option causes the server not to use the privilege system at all. This gives everyone full ac-
cess to all databases! (You can tell a running server to start using the grant tables again by ex-
ecuting a mysqladmin flush-privileges or mysqladmin reload command, or by issuing a
FLUSH PRIVILEGES statement.)

• --skip-name-resolve

Hostnames are not resolved. All Host column values in the grant tables must be IP numbers or
localhost.

• --skip-networking

Don't allow TCP/IP connections over the network. All connections to mysqld must be made via
Unix socket files. This option is unsuitable when using a MySQL version prior to 3.23.27 with
the MIT-pthreads package, because Unix socket files were not supported by MIT-pthreads at
that time.

• --skip-show-database

With this option, the SHOW DATABASES statement is allowed only to users who have the
SHOW DATABASES privilege, and the statement displays all database names. Without this op-
tion, SHOW DATABASES is allowed to all users, but displays each database name only if the
user has the SHOW DATABASES privilege or some privilege for the database.

5.4.4. Security Issues with LOAD DATA LOCAL

The LOAD DATA statement can load a file that is located on the server host, or it can load a file that

Database Administration

277

is located on the client host when the LOCAL keyword is specified.

There are two potential security issues with supporting the LOCAL version of LOAD DATA state-
ments:

• The transfer of the file from the client host to the server host is initiated by the MySQL server.
In theory, a patched server could be built that would tell the client program to transfer a file of
the server's choosing rather than the file named by the client in the LOAD DATA statement. Such
a server could access any file on the client host to which the client user has read access.

• In a Web environment where the clients are connecting from a Web server, a user could use
LOAD DATA LOCAL to read any files that the Web server process has read access to (assuming
that a user could run any command against the SQL server). In this environment, the client with
respect to the MySQL server actually is the Web server, not the program being run by the user
connecting to the Web server.

To deal with these problems, we changed how LOAD DATA LOCAL is handled as of MySQL
3.23.49 and MySQL 4.0.2 (4.0.13 on Windows):

• By default, all MySQL clients and libraries in binary distributions are compiled with the -
-enable-local-infile option, to be compatible with MySQL 3.23.48 and before.

• If you build MySQL from source but don't use the --enable-local-infile option to
configure, LOAD DATA LOCAL cannot be used by any client unless it is written explicitly to
invoke mysql_options(... MYSQL_OPT_LOCAL_INFILE, 0). See Section 22.2.3.43,
“mysql_options()”.

• You can disable all LOAD DATA LOCAL commands from the server side by starting mysqld
with the --local-infile=0 option.

• For the mysql command-line client, LOAD DATA LOCAL can be enabled by specifying the -
-local-infile[=1] option, or disabled with the --local-infile=0 option. Similarly,
for mysqlimport, the --local or -L option enables local data file loading. In any case, suc-
cessful use of a local loading operation requires that the server is enabled to allow it.

• If you use LOAD DATA LOCAL in Perl scripts or other programs that read the [client]
group from option files, you can add the local-infile=1 option to that group. However, to
keep this from causing problems for programs that do not understand local-infile, specify
it using the loose- prefix:

[client]
loose-local-infile=1

The loose- prefix can be used as of MySQL 4.0.2.

• If LOAD DATA LOCAL INFILE is disabled, either in the server or the client, a client that at-
tempts to issue such a statement receives the following error message:

ERROR 1148: The used command is not allowed with this MySQL version

5.5. The MySQL Access Privilege System
MySQL has an advanced but non-standard security and privilege system. This section describes how
it works.

5.5.1. What the Privilege System Does

Database Administration

278

The primary function of the MySQL privilege system is to authenticate a user connecting from a
given host, and to associate that user with privileges on a database such as SELECT, INSERT, UP-
DATE, and DELETE.

Additional functionality includes the ability to have anonymous users and to grant privileges for
MySQL-specific functions such as LOAD DATA INFILE and administrative operations.

5.5.2. How the Privilege System Works
The MySQL privilege system ensures that all users may perform only the operations allowed to
them. As a user, when you connect to a MySQL server, your identity is determined by the host from
which you connect and the username you specify. When you issue requests after connecting, the sys-
tem grants privileges according to your identity and what you want to do.

MySQL considers both your hostname and username in identifying you because there is little reason
to assume that a given username belongs to the same person everywhere on the Internet. For ex-
ample, the user joe who connects from office.com need not be the same person as the user
joe who connects from elsewhere.com. MySQL handles this by allowing you to distinguish
users on different hosts that happen to have the same name: You can grant one set of privileges for
connections by joe from office.com, and a different set of privileges for connections by joe
from elsewhere.com.

MySQL access control involves two stages:

• Stage 1: The server checks whether it should allow you to connect.

• Stage 2: Assuming that you can connect, the server checks each statement you issue to see
whether you have sufficient privileges to perform it. For example, if you try to select rows from
a table in a database or drop a table from the database, the server verifies that you have the SE-
LECT privilege for the table or the DROP privilege for the database.

If your privileges are changed (either by yourself or someone else) while you are connected, those
changes do not necessarily take effect immediately for the next statement you issue. See Sec-
tion 5.5.7, “When Privilege Changes Take Effect” for details.

The server stores privilege information in the grant tables of the mysql database (that is, in the
database named mysql). The MySQL server reads the contents of these tables into memory when it
starts and re-reads them under the circumstances indicated in Section 5.5.7, “When Privilege
Changes Take Effect”. Access-control decisions are based on the in-memory copies of the grant
tables.

Normally, you manipulate the contents of the grant tables indirectly by using the GRANT and RE-
VOKE statements to set up accounts and control the privileges available to each one. See Sec-
tion 13.5.1.3, “GRANT and REVOKE Syntax”. The discussion here describes the underlying structure
of the grant tables and how the server uses their contents when interacting with clients.

The server uses the user, db, and host tables in the mysql database at both stages of access con-
trol. The columns in these grant tables are shown here:

Table Name user db host

Scope columns Host Host Host

User Db Db

Password User

Privilege columns Select_priv Select_priv Select_priv

Insert_priv Insert_priv Insert_priv

Update_priv Update_priv Update_priv

Delete_priv Delete_priv Delete_priv

Database Administration

279

Index_priv Index_priv Index_priv

Alter_priv Alter_priv Alter_priv

Create_priv Create_priv Create_priv

Drop_priv Drop_priv Drop_priv

Grant_priv Grant_priv Grant_priv

Create_view_priv Create_view_priv Create_view_priv

Show_view_priv Show_view_priv Show_view_priv

Cre-
ate_routine_priv

Cre-
ate_routine_priv

Al-
ter_routine_priv

Al-
ter_routine_priv

References_priv References_priv References_priv

Reload_priv

Shutdown_priv

Process_priv

File_priv

Show_db_priv

Super_priv

Cre-
ate_tmp_table_pr
iv

Cre-
ate_tmp_table_pr
iv

Cre-
ate_tmp_table_pr
iv

Lock_tables_priv Lock_tables_priv Lock_tables_priv

Execute_priv

Repl_slave_priv

Repl_client_priv

Security columns ssl_type

ssl_cipher

x509_issuer

x509_subject

Resource control
columns

max_questions

max_updates

max_connections

max_user_connect
ions

The ssl_type, ssl_cipher, x509_issuer, and x509_subject columns were added in
MySQL 4.0.0.

The Create_tmp_table_priv, Execute_priv, Lock_tables_priv,
Repl_client_priv, Repl_slave_priv, Show_db_priv, Super_priv,
max_questions, max_updates, and max_connections columns were added in MySQL
4.0.2. Execute_priv is not operational until MySQL 5.0.3, however.

The Create_view_priv and Show_view_priv columns were added in MySQL 5.0.1.

The Create_routine_priv, Alter_routine_priv, and max_user_connections
columns were added in MySQL 5.0.3.

During the second stage of access control, the server performs request verification to make sure that

Database Administration

280

each client has sufficient privileges for each request that it issues. In addition to the user, db, and
host grant tables, the server may also consult the tables_priv and columns_priv tables for
requests that involve tables. The tables_priv and columns_priv tables provide finer priv-
ilege control at the table and column levels. They have the following columns:

Table Name tables_priv columns_priv

Scope columns Host Host

Db Db

User User

Table_name Table_name

Column_name

Privilege columns Table_priv Column_priv

Column_priv

Other columns Timestamp Timestamp

Grantor

The Timestamp and Grantor columns currently are unused and are discussed no further here.

For verification of requests that involve stored routines, the server may consult the procs_priv
table. This table exists as of MySQL 5.0.3 and has the following columns:

Table Name procs_priv

Scope columns Host

Db

User

Routine_name

Privilege columns Proc_priv

Other columns Timestamp

Grantor

The Timestamp and Grantor columns currently are unused and are discussed no further here.

Each grant table contains scope columns and privilege columns:

• Scope columns determine the scope of each entry (row) in the tables; that is, the context in
which the row applies. For example, a user table row with Host and User values of
'thomas.loc.gov' and 'bob' would be used for authenticating connections made to the
server from the host thomas.loc.gov by a client that specifies a username of bob. Simil-
arly, a db table row with Host, User, and Db column values of 'thomas.loc.gov',
'bob' and 'reports' would be used when bob connects from the host thomas.loc.gov
to access the reports database. The tables_priv and columns_priv tables contain
scope columns indicating tables or table/column combinations to which each row applies. The
procs_priv scope columns indicate the store routine to which each row applies.

• Privilege columns indicate which privileges are granted by a table row; that is, what operations
can be performed. The server combines the information in the various grant tables to form a
complete description of a user's privileges. The rules used to do this are described in Sec-
tion 5.5.6, “Access Control, Stage 2: Request Verification”.

Scope columns contain strings. They are declared as shown here; the default value for each is the
empty string:

Database Administration

281

Column Name Type

Host CHAR(60)

User CHAR(16)

Password CHAR(16)

Db CHAR(64)

Table_name CHAR(64)

Column_name CHAR(64)

Routine_name CHAR(64)

Before MySQL 3.23, the Db column is CHAR(32) in some tables and CHAR(60) in others.

For access-checking purposes, comparisons of Host values are case-insensitive. User,
Password, Db, and Table_name values are case sensitive. Column_name values are case in-
sensitive in MySQL 3.22.12 or later.

In the user, db, and host tables, each privilege is listed in a separate column that is declared as
ENUM('N','Y') DEFAULT 'N'. In other words, each privilege can be disabled or enabled,
with the default being disabled.

In the tables_priv, columns_priv, and procs_priv tables, the privilege columns are de-
clared as SET columns. Values in these columns can contain any combination of the privileges con-
trolled by the table:

Table Name Column Name Possible Set Elements

tables_priv Table_priv 'Select', 'Insert', 'Update', 'Delete',
'Create', 'Drop', 'Grant', 'References',
'Index', 'Alter'

tables_priv Column_priv 'Select', 'Insert', 'Update', 'References'

columns_pri
v

Column_priv 'Select', 'Insert', 'Update', 'References'

procs_priv Proc_priv 'Execute', 'Alter Routine', 'Grant'

Briefly, the server uses the grant tables as follows:

• The user table scope columns determine whether to reject or allow incoming connections. For
allowed connections, any privileges granted in the user table indicate the user's global
(superuser) privileges. These privileges apply to all databases on the server.

• The db table scope columns determine which users can access which databases from which
hosts. The privilege columns determine which operations are allowed. A privilege granted at the
database level applies to the database and to all its tables.

• The host table is used in conjunction with the db table when you want a given db table row to
apply to several hosts. For example, if you want a user to be able to use a database from several
hosts in your network, leave the Host value empty in the user's db table row, then populate the
host table with a row for each of those hosts. This mechanism is described more detail in Sec-
tion 5.5.6, “Access Control, Stage 2: Request Verification”.

Note: The host table is not affected by the GRANT and REVOKE statements. Most MySQL in-
stallations need not use this table at all.

• The tables_priv and columns_priv tables are similar to the db table, but are more fine-
grained: They apply at the table and column levels rather than at the database level. A privilege
granted at the table level applies to the table and to all its columns. A privilege granted at the
column level applies only to a specific column.

Database Administration

282

• The procs_priv table applies to stored routines. A privilege granted at the routine level ap-
plies only to a single routine.

Administrative privileges (such as RELOAD or SHUTDOWN) are specified only in the user table.
This is because administrative operations are operations on the server itself and are not database-spe-
cific, so there is no reason to list these privileges in the other grant tables. In fact, to determine
whether you can perform an administrative operation, the server need consult only the user table.

The FILE privilege also is specified only in the user table. It is not an administrative privilege as
such, but your ability to read or write files on the server host is independent of the database you are
accessing.

The mysqld server reads the contents of the grant tables into memory when it starts. You can tell it
to re-read the tables by issuing a FLUSH PRIVILEGES statement or executing a mysqladmin
flush-privileges or mysqladmin reload command. Changes to the grant tables take effect as indic-
ated in Section 5.5.7, “When Privilege Changes Take Effect”.

When you modify the contents of the grant tables, it is a good idea to make sure that your changes
set up privileges the way you want. To check the privileges for a given account, use the SHOW
GRANTS statement. For example, to determine the privileges that are granted to an account with
Host and User values of pc84.example.com and bob, issue this statement:

mysql> SHOW GRANTS FOR 'bob'@'pc84.example.com';

A useful diagnostic tool is the mysqlaccess script, which Yves Carlier has provided for the MySQL
distribution. Invoke mysqlaccess with the --help option to find out how it works. Note that
mysqlaccess checks access using only the user, db, and host tables. It does not check table,
column, or routine privileges specified in the tables_priv, columns_priv, or procs_priv
tables.

For additional help in diagnosing privilege-related problems, see Section 5.5.8, “Causes of Access
denied Errors”. For general advice on security issues, see Section 5.4, “General Security Issues”.

5.5.3. Privileges Provided by MySQL
Information about account privileges is stored in the user, db, host, tables_priv,
columns_priv, and procs_priv tables in the mysql database. The MySQL server reads the
contents of these tables into memory when it starts and re-reads them under the circumstances indic-
ated in Section 5.5.7, “When Privilege Changes Take Effect”. Access-control decisions are based on
the in-memory copies of the grant tables.

The names used in the GRANT and REVOKE statements to refer to privileges are shown in the fol-
lowing table, along with the column name associated with each privilege in the grant tables and the
context in which the privilege applies. Further information about the meaning of each privilege may
be found at Section 13.5.1.3, “GRANT and REVOKE Syntax”.

Privilege Column Context

CREATE Create_priv databases, tables, or indexes

DROP Drop_priv databases or tables

GRANT Grant_priv databases, tables, or stored routines

REFERENCES References_priv databases or tables

ALTER Alter_priv tables

DELETE Delete_priv tables

INDEX Index_priv tables

INSERT Insert_priv tables

SELECT Select_priv tables

UPDATE Update_priv tables

Database Administration

283

CREATE VIEW Create_view_priv views

SHOW VIEW Show_view_priv views

ALTER ROUTINE Alter_routine_priv stored routines

CREATE
ROUTINE

Cre-
ate_routine_priv

stored routines

EXECUTE Execute_priv stored routines

CREATE TEM-
PORARY TABLES

Cre-
ate_tmp_table_priv

server administration

FILE File_priv file access on server host

LOCK TABLES Lock_tables_priv server administration

PROCESS Process_priv server administration

RELOAD Reload_priv server administration

REPLICATION
CLIENT

Repl_client_priv server administration

REPLICATION
SLAVE

Repl_slave_priv server administration

SHOW DATA-
BASES

Show_db_priv server administration

SHUTDOWN Shutdown_priv server administration

SUPER Super_priv server administration

The CREATE TEMPORARY TABLES, EXECUTE, LOCK TABLES, REPLICATION CLIENT,
REPLICATION SLAVE, SHOW DATABASES, and SUPER privileges were added in MySQL
4.0.2. (EXECUTE is not operational until MySQL 5.0.3.) CREATE VIEW and SHOW VIEW were
added in MySQL 5.0.1. CREATE ROUTINE and ALTER ROUTINE were added in MySQL 5.0.3.
To use these privileges when upgrading from an earlier version of MySQL that does not have them,
, you must upgrade your grant tables. See Section 2.10.7, “Upgrading the Grant Tables”.

The CREATE and DROP privileges allow you to create new databases and tables, or to drop
(remove) existing databases and tables. If you grant the DROP privilege for the mysql database to a
user, that user can drop the database in which the MySQL access privileges are stored!

The SELECT, INSERT, UPDATE, and DELETE privileges allow you to perform operations on rows
in existing tables in a database.

SELECT statements require the SELECT privilege only if they actually retrieve rows from a table.
Some SELECT statements do not access tables and can be executed without permission for any
database. For example, you can use the mysql client as a simple calculator to evaluate expressions
that make no reference to tables:

mysql> SELECT 1+1;
mysql> SELECT PI()*2;

The INDEX privilege allows you to create or drop (remove) indexes. INDEX applies to existing
tables. If you have the CREATE privilege for a table, you can include index definitions in the CRE-
ATE TABLE statement.

The ALTER privilege allows you to use ALTER TABLE to change the structure of or rename tables.

The CREATE ROUTINE privilege is needed for creating stored routines (functions and procedures).
ALTER ROUTINE privilege is needed for altering or dropping stored routines, and EXECUTE is
needed for executing stored routines.

The GRANT privilege allows you to give to other users those privileges that you yourself possess. It
can be used for databases, tables, and stored routines.

Database Administration

284

The FILE privilege gives you permission to read and write files on the server host using the LOAD
DATA INFILE and SELECT ... INTO OUTFILE statements. A user who has the FILE priv-
ilege can read any file on the server host that is either world-readable or readable by the MySQL
server. (This implies the user can read any file in any database directory, because the server can ac-
cess any of those files.) The FILE privilege also allows the user to create new files in any directory
where the MySQL server has write access. Existing files cannot be overwritten.

The remaining privileges are used for administrative operations. Many of them can be performed by
using the mysqladmin program or by issuing SQL statements. The following table shows which
mysqladmin commands each administrative privilege allows you to execute:

Privilege Commands Permitted to Privilege Holders

RELOAD flush-hosts, flush-logs, flush-privileges, flush-status,
flush-tables, flush-threads, refresh, reload

SHUTDOWN shutdown

PROCESS processlist

SUPER kill

The reload command tells the server to re-read the grant tables into memory. flush-
privileges is a synonym for reload. The refresh command closes and reopens the log files
and flushes all tables. The other flush-xxx commands perform functions similar to refresh,
but are more specific and may be preferable in some instances. For example, if you want to flush
just the log files, flush-logs is a better choice than refresh.

The shutdown command shuts down the server. This command can be issued only from mysqlad-
min. There is no corresponding SQL statement.

The processlist command displays information about the threads executing within the server
(that is, about the statements being executed by clients associated with other accounts). The kill
command terminates server threads. You can always display or kill your own threads, but you need
the PROCESS privilege to display threads initiated by other users and the SUPER privilege to kill
them. See Section 13.5.5.3, “KILL Syntax”. Prior to MySQL 4.0.2 when SUPER was introduced,
the PROCESS privilege controls the ability to both see and terminate threads for other clients.

The CREATE TEMPORARY TABLES privilege allows the use of the keyword TEMPORARY in
CREATE TABLE statements.

The LOCK TABLES privilege allows the use of explicit LOCK TABLES statements to lock tables
for which you have the SELECT privilege. This includes the use of write locks, which prevents any-
one else from reading the locked table.

The REPLICATION CLIENT privilege allows the use of SHOW MASTER STATUS and SHOW
SLAVE STATUS.

The REPLICATION SLAVE privilege should be granted to accounts that are used by slave servers
to connect to the current server as their master. Without this privilege, the slave cannot request up-
dates that have been made to databases on the master server.

The SHOW DATABASES privilege allows the account to see database names by issuing the SHOW
DATABASE statement. Accounts that do not have this privilege see only databases for which they
have some privileges, and cannot use the statement at all if the server was started with the -
-skip-show-database option.

It is a good idea in general to grant to an account only those privileges that it needs. You should ex-
ercise particular caution in granting the FILE and administrative privileges:

• The FILE privilege can be abused to read into a database table any files that the MySQL server
can read on the server host. This includes all world-readable files and files in the server's data
directory. The table can then be accessed using SELECT to transfer its contents to the client

Database Administration

285

host.

• The GRANT privilege allows users to give their privileges to other users. Two users with differ-
ent privileges and with the GRANT privilege are able to combine privileges.

• The ALTER privilege may be used to subvert the privilege system by renaming tables.

• The SHUTDOWN privilege can be abused to deny service to other users entirely by terminating
the server.

• The PROCESS privilege can be used to view the plain text of currently executing queries, in-
cluding queries that set or change passwords.

• The SUPER privilege can be used to terminate other clients or change how the server operates.

• Privileges granted for the mysql database itself can be used to change passwords and other ac-
cess privilege information. Passwords are stored encrypted, so a malicious user cannot simply
read them to know the plain text password. However, a user with write access to the user table
Password column can change an account's password, and then connect to the MySQL server
using that account.

There are some things that you cannot do with the MySQL privilege system:

• You cannot explicitly specify that a given user should be denied access. That is, you cannot ex-
plicitly match a user and then refuse the connection.

• You cannot specify that a user has privileges to create or drop tables in a database but not to cre-
ate or drop the database itself.

5.5.4. Connecting to the MySQL Server
MySQL client programs generally expect you to specify connection parameters when you want to
access a MySQL server:

• The name of the host where the MySQL server is running

• Your username

• Your password

For example, the mysql client can be started as follows from a command-line prompt (indicated
here by shell>):

shell> mysql -h host_name -u user_name -pyour_pass

Alternate forms of the -h, -u, and -p options are --host=host_name, --user=user_name,
and --password=your_pass. Note that there is no space between -p or --password= and
the password following it.

If you use a -p or --password option but do not specify the password value, the client program
prompts you to enter the password. The password is not displayed as you enter it. This is more se-
cure than giving the password on the command line. Any user on your system may be able to see a
password specified on the command line by executing a command such as ps auxww. See Sec-
tion 5.6.6, “Keeping Your Password Secure”.

MySQL client programs use default values for any connection parameter option that you do not spe-
cify:

Database Administration

286

• The default hostname is localhost.

• The default username is ODBC on Windows and your Unix login name on Unix.

• No password is supplied if -p is missing.

Thus, for a Unix user with a login name of joe, all of the following commands are equivalent:

shell> mysql -h localhost -u joe
shell> mysql -h localhost
shell> mysql -u joe
shell> mysql

Other MySQL clients behave similarly.

You can specify different default values to be used when you make a connection so that you need
not enter them on the command line each time you invoke a client program. This can be done in a
couple of ways:

• You can specify connection parameters in the [client] section of an option file. The relevant
section of the file might look like this:

[client]
host=host_name
user=user_name
password=your_pass

Option files are discussed further in Section 4.3.2, “Using Option Files”.

• You can specify some connection parameters using environment variables. The host can be spe-
cified for mysql using MYSQL_HOST. The MySQL username can be specified using USER (this
is for Windows and NetWare only). The password can be specified using MYSQL_PWD, al-
though this is insecure; see Section 5.6.6, “Keeping Your Password Secure”. For a list of vari-
ables, see Appendix F, Environment Variables.

5.5.5. Access Control, Stage 1: Connection Verification
When you attempt to connect to a MySQL server, the server accepts or rejects the connection based
on your identity and whether you can verify your identity by supplying the correct password. If not,
the server denies access to you completely. Otherwise, the server accepts the connection, then enters
Stage 2 and waits for requests.

Your identity is based on two pieces of information:

• The client host from which you connect

• Your MySQL username

Identity checking is performed using the three user table scope columns (Host, User, and
Password). The server accepts the connection only if the Host and User columns in some user
table record match the client hostname and username, and the client supplies the password specified
in that record.

Host values in the user table may be specified as follows:

• A Host value may be a hostname or an IP number, or 'localhost' to indicate the local

Database Administration

287

host.

• You can use the wildcard characters '%' and '_' in Host column values. These have the same
meaning as for pattern-matching operations performed with the LIKE operator. For example, a
Host value of '%' matches any hostname, whereas a value of '%.mysql.com' matches any
host in the mysql.com domain.

• As of MySQL 3.23, for Host values specified as IP numbers, you can specify a netmask indic-
ating how many address bits to use for the network number. For example:

mysql> GRANT ALL PRIVILEGES ON db.*
-> TO david@'192.58.197.0/255.255.255.0';

This allows david to connect from any client host having an IP number client_ip for
which the following condition is true:

client_ip & netmask = host_ip

That is, for the GRANT statement just shown:

client_ip & 255.255.255.0 = 192.58.197.0

IP numbers that satisfy this condition and can connect to the MySQL server are those that lie in
the range from 192.58.197.0 to 192.58.197.255.

• A blank Host value in a db table record means that its privileges should be combined with
those in the row in the host table that matches the client hostname. The privileges are com-
bined using an AND (intersection) operation, not OR (union). You can find more information
about the host table in Section 5.5.6, “Access Control, Stage 2: Request Verification”.

A blank Host value in the other grant tables is the same as '%'.

Because you can use IP wildcard values in the Host column (for example, '144.155.166.%' to
match every host on a subnet), someone could try to exploit this capability by naming a host
144.155.166.somewhere.com. To foil such attempts, MySQL disallows matching on host-
names that start with digits and a dot. Thus, if you have a host named something like
1.2.foo.com, its name never matches the Host column of the grant tables. An IP wildcard value
can match only IP numbers, not hostnames.

In the User column, wildcard characters are not allowed, but you can specify a blank value, which
matches any name. If the user table row that matches an incoming connection has a blank user-
name, the user is considered to be an anonymous user with no name, not a user with the name that
the client actually specified. This means that a blank username is used for all further access check-
ing for the duration of the connection (that is, during Stage 2).

The Password column can be blank. This is not a wildcard and does not mean that any password
matches. It means that the user must connect without specifying a password.

Non-blank Password values in the user table represent encrypted passwords. MySQL does not
store passwords in plaintext form for anyone to see. Rather, the password supplied by a user who is
attempting to connect is encrypted (using the PASSWORD() function). The encrypted password
then is used during the connection process when checking whether the password is correct. (This is
done without the encrypted password ever traveling over the connection.) From MySQL's point of
view, the encrypted password is the REAL password, so you should not give anyone access to it! In
particular, don't give non-administrative users read access to the tables in the mysql database!

From version 4.1 on, MySQL employs a stronger authentication method that has better password
protection during the connection process than in earlier versions. It is secure even if TCP/IP packets
are sniffed or the mysql database is captured. Password encryption is discussed further in Sec-
tion 5.5.9, “Password Hashing in MySQL 4.1”.

Database Administration

288

The following examples show how various combinations of Host and User values in the user ta-
ble apply to incoming connections:

Host Value User Value Connections Matched by Entry

'thomas.loc.gov' 'fred' fred, connecting from thomas.loc.gov

'thomas.loc.gov' '' Any user, connecting from thomas.loc.gov

'%' 'fred' fred, connecting from any host

'%' '' Any user, connecting from any host

'%.loc.gov' 'fred' fred, connecting from any host in the
loc.gov domain

'x.y.%' 'fred' fred, connecting from x.y.net, x.y.com,
x.y.edu, and so on. (this is probably not use-
ful)

'144.155.166.177' 'fred' fred, connecting from the host with IP address
144.155.166.177

'144.155.166.%' 'fred' fred, connecting from any host in the
144.155.166 class C subnet

'144.155.166.0/255.255
.255.0'

'fred' Same as previous example

It is possible for the client hostname and username of an incoming connection to match more than
one row in the user table. The preceding set of examples demonstrates this: Several of the entries
shown match a connection from thomas.loc.gov by fred.

When multiple matches are possible, the server must determine which of them to use. It resolves
this issue as follows:

• Whenever the server reads the user table into memory, it sorts the entries.

• When a client attempts to connect, the server looks through the entries in sorted order.

• The server uses the first row that matches the client hostname and username.

To see how this works, suppose that the user table looks like this:

+-----------+----------+-
| Host | User | ...
+-----------+----------+-
| % | root | ...
| % | jeffrey | ...
| localhost | root | ...
| localhost | | ...
+-----------+----------+-

When the server reads in the table, it orders the entries with the most-specific Host values first. Lit-
eral hostnames and IP numbers are the most specific. The pattern '%' means ``any host'' and is least
specific. Entries with the same Host value are ordered with the most-specific User values first (a
blank User value means ``any user'' and is least specific). For the user table just shown, the result
after sorting looks like this:

+-----------+----------+-
| Host | User | ...
+-----------+----------+-
| localhost | root | ...
| localhost | | ...
| % | jeffrey | ...
| % | root | ...

Database Administration

289

+-----------+----------+-

When a client attempts to connect, the server looks through the sorted entries and uses the first
match found. For a connection from localhost by jeffrey, two of the entries in the table
match: the one with Host and User values of 'localhost' and '', and the one with values of
'%' and 'jeffrey'. The 'localhost' row appears first in sorted order, so that is the one the
server uses.

Here is another example. Suppose that the user table looks like this:

+----------------+----------+-
| Host | User | ...
+----------------+----------+-
| % | jeffrey | ...
| thomas.loc.gov | | ...
+----------------+----------+-

The sorted table looks like this:

+----------------+----------+-
| Host | User | ...
+----------------+----------+-
| thomas.loc.gov | | ...
| % | jeffrey | ...
+----------------+----------+-

A connection by jeffrey from thomas.loc.gov is matched by the first row, whereas a con-
nection by jeffrey from whitehouse.gov is matched by the second.

It is a common misconception to think that, for a given username, all entries that explicitly name
that user are used first when the server attempts to find a match for the connection. This is simply
not true. The previous example illustrates this, where a connection from thomas.loc.gov by
jeffrey is first matched not by the row containing 'jeffrey' as the User column value, but
by the row with no username. As a result, jeffrey is authenticated as an anonymous user, even
though he specified a username when connecting.

If you are able to connect to the server, but your privileges are not what you expect, you probably
are being authenticated as some other account. To find out what account the server used to authen-
ticate you, use the CURRENT_USER() function. It returns a value in user_name@host_name
format that indicates the User and Host values from the matching user table record. Suppose
that jeffrey connects and issues the following query:

mysql> SELECT CURRENT_USER();
+----------------+
| CURRENT_USER() |
+----------------+
| @localhost |
+----------------+

The result shown here indicates that the matching user table row had a blank User column value.
In other words, the server is treating jeffrey as an anonymous user.

The CURRENT_USER() function is available as of MySQL 4.0.6. See Section 12.8.3, “Information
Functions”. Another thing you can do to diagnose authentication problems is to print out the user
table and sort it by hand to see where the first match is being made.

5.5.6. Access Control, Stage 2: Request Verification
Once you establish a connection, the server enters Stage 2 of access control. For each request that
comes in on the connection, the server determines what operation you want to perform, then checks
whether you have sufficient privileges to do so. This is where the privilege columns in the grant

Database Administration

290

tables come into play. These privileges can come from any of the user, db, host,
tables_priv, or columns_priv tables. (You may find it helpful to refer to Section 5.5.2,
“How the Privilege System Works”, which lists the columns present in each of the grant tables.)

The user table grants privileges that are assigned to you on a global basis and that apply no matter
what the current database is. For example, if the user table grants you the DELETE privilege, you
can delete rows from any table in any database on the server host! In other words, user table priv-
ileges are superuser privileges. It is wise to grant privileges in the user table only to superusers
such as database administrators. For other users, you should leave the privileges in the user table
set to 'N' and grant privileges at more specific levels only. You can grant privileges for particular
databases, tables, or columns.

The db and host tables grant database-specific privileges. Values in the scope columns of these
tables can take the following forms:

• The wildcard characters '%' and '_' can be used in the Host and Db columns of either table.
These have the same meaning as for pattern-matching operations performed with the LIKE op-
erator. If you want to use either character literally when granting privileges, you must escape it
with a backslash. For example, to include '_' character as part of a database name, specify it as
'_' in the GRANT statement.

• A '%' Host value in the db table means ``any host.'' A blank Host value in the db table
means ``consult the host table for further information'' (a process that is described later in this
section).

• A '%' or blank Host value in the host table means ``any host.''

• A '%' or blank Db value in either table means ``any database.''

• A blank User value in either table matches the anonymous user.

The server reads in and sorts the db and host tables at the same time that it reads the user table.
The server sorts the db table based on the Host, Db, and User scope columns, and sorts the host
table based on the Host and Db scope columns. As with the user table, sorting puts the most-
specific values first and least-specific values last, and when the server looks for matching entries, it
uses the first match that it finds.

The tables_priv and columns_priv tables grant table-specific and column-specific priv-
ileges. Values in the scope columns of these tables can take the following form:

• The wildcard characters '%' and '_' can be used in the Host column of either table. These have
the same meaning as for pattern-matching operations performed with the LIKE operator.

• A '%' or blank Host value in either table means ``any host.''

• The Db, Table_name, and Column_name columns cannot contain wildcards or be blank in
either table.

The server sorts the tables_priv and columns_priv tables based on the Host, Db, and
User columns. This is similar to db table sorting, but simpler because only the Host column can
contain wildcards.

The request verification process is described here. (If you are familiar with the access-checking
source code, you may notice that the description here differs slightly from the algorithm used in the
code. The description is equivalent to what the code actually does; it differs only to make the ex-
planation simpler.)

For requests that require administrative privileges such as SHUTDOWN or RELOAD, the server
checks only the user table row because that is the only table that specifies administrative priv-
ileges. Access is granted if the row allows the requested operation and denied otherwise. For ex-

Database Administration

291

ample, if you want to execute mysqladmin shutdown but your user table row doesn't grant the
SHUTDOWN privilege to you, the server denies access without even checking the db or host tables.
(They contain no Shutdown_priv column, so there is no need to do so.)

For database-related requests (INSERT, UPDATE, and so on), the server first checks the user's glob-
al (superuser) privileges by looking in the user table row. If the row allows the requested opera-
tion, access is granted. If the global privileges in the user table are insufficient, the server determ-
ines the user's database-specific privileges by checking the db and host tables:

1. The server looks in the db table for a match on the Host, Db, and User columns. The Host
and User columns are matched to the connecting user's hostname and MySQL username. The
Db column is matched to the database that the user wants to access. If there is no row for the
Host and User, access is denied.

2. If there is a matching db table row and its Host column is not blank, that row defines the
user's database-specific privileges.

3. If the matching db table row's Host column is blank, it signifies that the host table enumer-
ates which hosts should be allowed access to the database. In this case, a further lookup is done
in the host table to find a match on the Host and Db columns. If no host table row
matches, access is denied. If there is a match, the user's database-specific privileges are com-
puted as the intersection (not the union!) of the privileges in the db and host table entries;
that is, the privileges that are 'Y' in both entries. (This way you can grant general privileges in
the db table row and then selectively restrict them on a host-by-host basis using the host table
entries.)

After determining the database-specific privileges granted by the db and host table entries, the
server adds them to the global privileges granted by the user table. If the result allows the reques-
ted operation, access is granted. Otherwise, the server successively checks the user's table and
column privileges in the tables_priv and columns_priv tables, adds those to the user's priv-
ileges, and allows or denies access based on the result.

Expressed in boolean terms, the preceding description of how a user's privileges are calculated may
be summarized like this:

global privileges
OR (database privileges AND host privileges)
OR table privileges
OR column privileges

It may not be apparent why, if the global user row privileges are initially found to be insufficient
for the requested operation, the server adds those privileges to the database, table, and column priv-
ileges later. The reason is that a request might require more than one type of privilege. For example,
if you execute an INSERT INTO ... SELECT statement, you need both the INSERT and the
SELECT privileges. Your privileges might be such that the user table row grants one privilege and
the db table row grants the other. In this case, you have the necessary privileges to perform the re-
quest, but the server cannot tell that from either table by itself; the privileges granted by the entries
in both tables must be combined.

The host table is not affected by the GRANT or REVOKE statements, so it is unused in most
MySQL installations. If you modify it directly, you can use it for some specialized purposes, such as
to maintain a list of secure servers. For example, at TcX, the host table contains a list of all ma-
chines on the local network. These are granted all privileges.

You can also use the host table to indicate hosts that are not secure. Suppose that you have a ma-
chine public.your.domain that is located in a public area that you do not consider secure.
You can allow access to all hosts on your network except that machine by using host table entries
like this:

+--------------------+----+-
| Host | Db | ...
+--------------------+----+-

Database Administration

292

| public.your.domain | % | ... (all privileges set to 'N')
| %.your.domain | % | ... (all privileges set to 'Y')
+--------------------+----+-

Naturally, you should always test your entries in the grant tables (for example, by using SHOW
GRANTS or mysqlaccess) to make sure that your access privileges are actually set up the way you
think they are.

5.5.7. When Privilege Changes Take Effect
When mysqld starts, all grant table contents are read into memory and become effective for access
control at that point.

When the server reloads the grant tables, privileges for existing client connections are affected as
follows:

• Table and column privilege changes take effect with the client's next request.

• Database privilege changes take effect at the next USE db_name statement.

• Changes to global privileges and passwords take effect the next time the client connects.

If you modify the grant tables using GRANT, REVOKE, or SET PASSWORD, the server notices these
changes and reloads the grant tables into memory again immediately.

If you modify the grant tables directly using statements such as INSERT, UPDATE, or DELETE,
your changes have no effect on privilege checking until you either restart the server or tell it to re-
load the tables. To reload the grant tables manually, issue a FLUSH PRIVILEGES statement or ex-
ecute a mysqladmin flush-privileges or mysqladmin reload command.

If you change the grant tables directly but forget to reload them, your changes have no effect until
you restart the server. This may leave you wondering why your changes don't seem to make any dif-
ference!

5.5.8. Causes of Access denied Errors
If you encounter problems when you try to connect to the MySQL server, the following items de-
scribe some courses of action you can take to correct the problem.

• Make sure that the server is running. If it is not running, you cannot connect to it. For example,
if you attempt to connect to the server and see a message such as one of those following, one
cause might be that the server is not running:

shell> mysql
ERROR 2003: Can't connect to MySQL server on 'host_name' (111)
shell> mysql
ERROR 2002: Can't connect to local MySQL server through socket
'/tmp/mysql.sock' (111)

It might also be that the server is running, but you are trying to connect using a TCP/IP port,
named pipe, or Unix socket file different from those on which the server is listening. To correct
this when you invoke a client program, specify a --port option to indicate the proper port, or a
--socket option to indicate the proper named pipe or Unix socket file. To find out what port
is used, and where the socket is, you can do:

shell> netstat -l | grep mysql

Database Administration

293

• The grant tables must be properly set up so that the server can use them for access control. For
some distribution types (such as binary distributions on Windows on RPM distributions on
Linux), the installation process initializes the mysql database containing the grant tables. For
distributions that do not do this, you should initialize the grant tables manually by running the
mysql_install_db script. For details, see Section 2.9.2, “Unix Post-Installation Procedures”.

One way to determine whether you need to initialize the grant tables is to look for a mysql dir-
ectory under the data directory. (The data directory normally is named data or var and is loc-
ated under your MySQL installation directory.) Make sure that you have a file named
user.MYD in the mysql database directory. If you do not, execute the mysql_install_db
script. After running this script and starting the server, test the initial privileges by executing this
command:

shell> mysql -u root test

The server should let you connect without error.

• After a fresh installation, you should connect to the server and set up your users and their access
permissions:

shell> mysql -u root mysql

The server should let you connect because the MySQL root user has no password initially.
That is also a security risk, so setting the password for the root accounts is something you
should do while you're setting up your other MySQL users. For instructions on setting the initial
passwords, see Section 2.9.3, “Securing the Initial MySQL Accounts”.

• If you have updated an existing MySQL installation to a newer version, did you run the
mysql_fix_privilege_tables script? If not, do so. The structure of the grant tables changes occa-
sionally when new capabilities are added, so after an upgrade you should always make sure that
your tables have the current structure. For instructions, see Section 2.10.7, “Upgrading the Grant
Tables”.

• If a client program receives the following error message when it tries to connect, it means that
the server expects passwords in a newer format than the client is capable of generating:

shell> mysql
Client does not support authentication protocol requested
by server; consider upgrading MySQL client

For information on how to deal with this, see Section 5.5.9, “Password Hashing in MySQL 4.1”
and Section A.2.3, “Client does not support authentication protocol”.

• If you try to connect as root and get the following error, it means that you don't have an row in
the user table with a User column value of 'root' and that mysqld cannot resolve the host-
name for your client:

Access denied for user ''@'unknown' to database mysql

In this case, you must restart the server with the --skip-grant-tables option and edit
your /etc/hosts or \windows\hosts file to add an entry for your host.

• Remember that client programs use connection parameters specified in option files or environ-
ment variables. If a client program seems to be sending incorrect default connection parameters
when you don't specify them on the command line, check your environment and any applicable
option files. For example, if you get Access denied when you run a client without any op-
tions, make sure that you haven't specified an old password in any of your option files!

You can suppress the use of option files by a client program by invoking it with the -
-no-defaults option. For example:

Database Administration

294

shell> mysqladmin --no-defaults -u root version

The option files that clients use are listed in Section 4.3.2, “Using Option Files”. Environment
variables are listed in Appendix F, Environment Variables.

• If you get the following error, it means that you are using an incorrect root password:

shell> mysqladmin -u root -pxxxx ver
Access denied for user 'root'@'localhost' (using password: YES)

If the preceding error occurs even when you haven't specified a password, it means that you
have an incorrect password listed in some option file. Try the --no-defaults option as de-
scribed in the previous item.

For information on changing passwords, see Section 5.6.5, “Assigning Account Passwords”.

If you have lost or forgotten the root password, you can restart mysqld with -
-skip-grant-tables to change the password. See Section A.4.1, “How to Reset the Root
Password”.

• If you change a password by using SET PASSWORD, INSERT, or UPDATE, you must encrypt
the password using the PASSWORD() function. If you do not use PASSWORD() for these state-
ments, the password does not work. For example, the following statement sets a password, but
fails to encrypt it, so the user is not able to connect afterward:

mysql> SET PASSWORD FOR 'abe'@'host_name' = 'eagle';

Instead, set the password like this:

mysql> SET PASSWORD FOR 'abe'@'host_name' = PASSWORD('eagle');

The PASSWORD() function is unnecessary when you specify a password using the GRANT
statement or the mysqladmin password command, both of which automatically use PASS-
WORD() to encrypt the password. See Section 5.6.5, “Assigning Account Passwords”.

• localhost is a synonym for your local hostname, and is also the default host to which clients
try to connect if you specify no host explicitly. However, connections to localhost on Unix
systems do not work if you are using a MySQL version older than 3.23.27 that uses MIT-
pthreads: localhost connections are made using Unix socket files, which were not supported
by MIT-pthreads at that time.

To avoid this problem on such systems, you can use a --host=127.0.0.1 option to name
the server host explicitly. This will make a TCP/IP connection to the local mysqld server. You
can also use TCP/IP by specifying a --host option that uses the actual hostname of the local
host. In this case, the hostname must be specified in a user table row on the server host, even
though you are running the client program on the same host as the server.

• If you get an Access denied error when trying to connect to the database with mysql -u
user_name, you may have a problem with the user table. Check this by executing mysql -
u root mysql and issuing this SQL statement:

mysql> SELECT * FROM user;

The result should include an row with the Host and User columns matching your computer's
hostname and your MySQL username.

• The Access denied error message tells you who you are trying to log in as, the client host
from which you are trying to connect, and whether or not you were using a password. Normally,
you should have one row in the user table that exactly matches the hostname and username

Database Administration

295

that were given in the error message. For example, if you get an error message that contains us-
ing password: NO, it means that you tried to log in without an password.

• If the following error occurs when you try to connect from a host other than the one on which
the MySQL server is running, it means that there is no row in the user table with a Host value
that matches the client host:

Host ... is not allowed to connect to this MySQL server

You can fix this by setting up an account for the combination of client hostname and username
that you are using when trying to connect.

If you don't know the IP number or hostname of the machine from which you are connecting,
you should put an row with '%' as the Host column value in the user table and restart
mysqld with the --log option on the server machine. After trying to connect from the client
machine, the information in the MySQL log indicates how you really did connect. (Then change
the '%' in the user table row to the actual hostname that shows up in the log. Otherwise, you'll
have a system that is insecure because it allows connections from any host for the given user-
name.)

On Linux, another reason that this error might occur is that you are using a binary MySQL ver-
sion that is compiled with a different version of the glibc library than the one you are using. In
this case, you should either upgrade your operating system or glibc, or download a source dis-
tribution of MySQL version and compile it yourself. A source RPM is normally trivial to com-
pile and install, so this isn't a big problem.

• If you specify a hostname when trying to connect, but get an error message where the hostname
is not shown or is an IP number, it means that the MySQL server got an error when trying to re-
solve the IP number of the client host to a name:

shell> mysqladmin -u root -pxxxx -h some-hostname ver
Access denied for user 'root'@'' (using password: YES)

This indicates a DNS problem. To fix it, execute mysqladmin flush-hosts to reset the internal
DNS hostname cache. See Section 7.5.6, “How MySQL Uses DNS”.

Some permanent solutions are:

• Try to find out what is wrong with your DNS server and fix it.

• Specify IP numbers rather than hostnames in the MySQL grant tables.

• Put an entry for the client machine name in /etc/hosts.

• Start mysqld with the --skip-name-resolve option.

• Start mysqld with the --skip-host-cache option.

• On Unix, if you are running the server and the client on the same machine, connect to loc-
alhost. Unix connections to localhost use a Unix socket file rather than TCP/IP.

• On Windows, if you are running the server and the client on the same machine and the server
supports named pipe connections, connect to the hostname . (period). Connections to . use
a named pipe rather than TCP/IP.

• If mysql -u root test works but mysql -h your_hostname -u root test
results in Access denied (where your_hostname is the actual hostname of the local
host), you may not have the correct name for your host in the user table. A common problem
here is that the Host value in the user table row specifies an unqualified hostname, but your
system's name resolution routines return a fully qualified domain name (or vice versa). For ex-
ample, if you have an entry with host 'tcx' in the user table, but your DNS tells MySQL that
your hostname is 'tcx.subnet.se', the entry does not work. Try adding an entry to the

Database Administration

296

user table that contains the IP number of your host as the Host column value. (Alternatively,
you could add an entry to the user table with a Host value that contains a wildcard; for ex-
ample, 'tcx.%'. However, use of hostnames ending with '%' is insecure and is not recommen-
ded!)

• If mysql -u user_name test works but mysql -u user_name other_db_name
does not, you have not granted database access for other_db_name to the given user.

• If mysql -u user_name works when executed on the server host, but mysql -h
host_name -u user_name doesn't work when executed on a remote client host, you have
not enabled access to the server for the given username from the remote host.

• If you can't figure out why you get Access denied, remove from the user table all entries
that have Host values containing wildcards (entries that contain '%' or '_'). A very common er-
ror is to insert a new entry with Host='%' and User='some_user', thinking that this al-
lows you to specify localhost to connect from the same machine. The reason that this
doesn't work is that the default privileges include an entry with Host='localhost' and
User=''. Because that entry has a Host value 'localhost' that is more specific than
'%', it is used in preference to the new entry when connecting from localhost! The correct
procedure is to insert a second entry with Host='localhost' and User='some_user',
or to delete the entry with Host='localhost' and User=''. After deleting the entry, re-
member to issue a FLUSH PRIVILEGES statement to reload the grant tables.

• If you get the following error, you may have a problem with the db or host table:

Access to database denied

If the entry selected from the db table has an empty value in the Host column, make sure that
there are one or more corresponding entries in the host table specifying which hosts the db ta-
ble entry applies to.

• If you are able to connect to the MySQL server, but get an Access denied message whenev-
er you issue a SELECT ... INTO OUTFILE or LOAD DATA INFILE statement, your
entry in the user table doesn't have the FILE privilege enabled.

• If you change the grant tables directly (for example, by using INSERT, UPDATE, or DELETE
statements) and your changes seem to be ignored, remember that you must execute a FLUSH
PRIVILEGES statement or a mysqladmin flush-privileges command to cause the server to re-
read the privilege tables. Otherwise, your changes have no effect until the next time the server is
restarted. Remember that after you change the root password with an UPDATE command, you
won't need to specify the new password until after you flush the privileges, because the server
won't know you've changed the password yet!

• If your privileges seem to have changed in the middle of a session, it may be that a MySQL ad-
ministrator has changed them. Reloading the grant tables affects new client connections, but it
also affects existing connections as indicated in Section 5.5.7, “When Privilege Changes Take
Effect”.

• If you have access problems with a Perl, PHP, Python, or ODBC program, try to connect to the
server with mysql -u user_name db_name or mysql -u user_name
-pyour_pass db_name. If you are able to connect using the mysql client, the problem lies
with your program, not with the access privileges. (There is no space between -p and the pass-
word; you can also use the --password=your_pass syntax to specify the password. If you
use the -p option alone, MySQL prompts you for the password.)

• For testing, start the mysqld server with the --skip-grant-tables option. Then you can
change the MySQL grant tables and use the mysqlaccess script to check whether your modifica-
tions have the desired effect. When you are satisfied with your changes, execute mysqladmin
flush-privileges to tell the mysqld server to start using the new grant tables. (Reloading the
grant tables overrides the --skip-grant-tables option. This allows you to tell the server
to begin using the grant tables again without stopping and restarting it.)

Database Administration

297

• If everything else fails, start the mysqld server with a debugging option (for example, -
-debug=d,general,query). This prints host and user information about attempted con-
nections, as well as information about each command issued. See Section E.1.2, “Creating Trace
Files”.

• If you have any other problems with the MySQL grant tables and feel you must post the problem
to the mailing list, always provide a dump of the MySQL grant tables. You can dump the tables
with the mysqldump mysql command. As always, post your problem using the mysqlbug
script. See Section 1.4.1.3, “How to Report Bugs or Problems”. In some cases, you may need to
restart mysqld with --skip-grant-tables to run mysqldump.

5.5.9. Password Hashing in MySQL 4.1
MySQL user accounts are listed in the user table of the mysql database. Each MySQL account is
assigned a password, although what is stored in the Password column of the user table is not the
plaintext version of the password, but a hash value computed from it. Password hash values are
computed by the PASSWORD() function.

MySQL uses passwords in two phases of client/server communication:

• When a client attempts to connect to the server, there is an initial authentication step in which
the client must present a password that has a hash value matching the hash value stored in the
user table for the account that the client wants to use.

• After the client connects, it can (if it has sufficient privileges) set or change the password hashes
for accounts listed in the user table. The client can do this by using the PASSWORD() function
to generate a password hash, or by using the GRANT or SET PASSWORD statements.

In other words, the server uses hash values during authentication when a client first attempts to con-
nect. The server generates hash values if a connected client invokes the PASSWORD() function or
uses a GRANT or SET PASSWORD statement to set or change a password.

The password hashing mechanism was updated in MySQL 4.1 to provide better security and to re-
duce the risk of passwords being intercepted. However, this new mechanism is understood only by
the 4.1 server and 4.1 clients, which can result in some compatibility problems. A 4.1 client can
connect to a pre-4.1 server, because the client understands both the old and new password hashing
mechanisms. However, a pre-4.1 client that attempts to connect to a 4.1 server may run into diffi-
culties. For example, a 4.0 mysql client that attempts to connect to a 4.1 server may fail with the fol-
lowing error message:

shell> mysql -h localhost -u root
Client does not support authentication protocol requested
by server; consider upgrading MySQL client

The following discussion describes the differences between the old and new password mechanisms,
and what you should do if you upgrade your server to 4.1 but need to maintain backward compatib-
ility with pre-4.1 clients. Additional information can be found in Section A.2.3, “Client does
not support authentication protocol”.

Note: This discussion contrasts 4.1 behavior with pre-4.1 behavior, but the 4.1 behavior described
here actually begins with 4.1.1. MySQL 4.1.0 is an ``odd'' release because it has a slightly different
mechanism than that implemented in 4.1.1 and up. Differences between 4.1.0 and more recent ver-
sions are described further in Section 5.5.9.2, “Password Hashing in MySQL 4.1.0”.

Prior to MySQL 4.1, password hashes computed by the PASSWORD() function are 16 bytes long.
Such hashes look like this:

mysql> SELECT PASSWORD('mypass');
+--------------------+

Database Administration

298

| PASSWORD('mypass') |
+--------------------+
| 6f8c114b58f2ce9e |
+--------------------+

The Password column of the user table (in which these hashes are stored) also is 16 bytes long
before MySQL 4.1.

As of MySQL 4.1, the PASSWORD() function has been modified to produce a longer 41-byte hash
value:

mysql> SELECT PASSWORD('mypass');
+---+
| PASSWORD('mypass') |
+---+
| *43c8aa34cdc98eddd3de1fe9a9c2c2a9f92bb2098d75 |
+---+

Accordingly, the Password column in the user table also must be 41 bytes long to store these
values:

• If you perform a new installation of MySQL 4.1, the Password column is made 41 bytes long
automatically.

• If you upgrade an older installation to 4.1, you should run the mysql_fix_privilege_tables script
to increase the length of the Password column from 16 to 41 bytes. (The script does not
change existing password values, which remain 16 bytes long.)

A widened Password column can store password hashes in both the old and new formats. The
format of any given password hash value can be determined two ways:

• The obvious difference is the length (16 bytes versus 41 bytes).

• A second difference is that password hashes in the new format always begin with a '*' character,
whereas passwords in the old format never do.

The longer password hash format has better cryptographic properties, and client authentication
based on long hashes is more secure than that based on the older short hashes.

The differences between short and long password hashes are relevant both for how the server uses
passwords during authentication and for how it generates password hashes for connected clients that
perform password-changing operations.

The way in which the server uses password hashes during authentication is affected by the width of
the Password column:

• If the column is short, only short-hash authentication is used.

• If the column is long, it can hold either short or long hashes, and the server can use either
format:

• Pre-4.1 clients can connect, although because they know only about the old hashing mechan-
ism, they can authenticate only for accounts that have short hashes.

• 4.1 clients can authenticate for accounts that have short or long hashes.

For short-hash accounts, the authentication process is actually a bit more secure for 4.1 clients than

Database Administration

299

for older clients. In terms of security, the gradient from least to most secure is:

• Pre-4.1 client authenticating for account with short password hash

• 4.1 client authenticating for account with short password hash

• 4.1 client authenticating for account with long password hash

The way in which the server generates password hashes for connected clients is affected by the
width of the Password column and by the --old-passwords option. A 4.1 server generates
long hashes only if certain conditions are met: The Password column must be wide enough to
hold long values and the --old-passwords option must not be given. These conditions apply as
follows:

• The Password column must be wide enough to hold long hashes (41 bytes). If the column has
not been updated and still has the pre-4.1 width of 16 bytes, the server notices that long hashes
cannot fit into it and generates only short hashes when a client performs password-changing op-
erations using PASSWORD(), GRANT, or SET PASSWORD. This is the behavior that occurs if
you have upgraded to 4.1 but have not yet run the mysql_fix_privilege_tables script to widen
the Password column.

• If the Password column is wide, it can store either short or long password hashes. In this case,
PASSWORD(), GRANT, and SET PASSWORD generate long hashes unless the server was star-
ted with the --old-passwords option. That option forces the server to generate short pass-
word hashes instead.

The purpose of the --old-passwords option is to allow you to maintain backward compatibility
with pre-4.1 clients under circumstances where the server would otherwise generate long password
hashes. The option doesn't affect authentication (4.1 clients can still use accounts that have long
password hashes), but it does prevent creation of a long password hash in the user table as the res-
ult of a password-changing operation. Were that to occur, the account no longer could be used by
pre-4.1 clients. Without the --old-passwords option, the following undesirable scenario is pos-
sible:

• An old client connects to an account that has a short password hash.

• The client changes its own password. Without --old-passwords, this results in the account
having a long password hash.

• The next time the old client attempts to connect to the account, it cannot, because the account
has a long password hash that requires the new hashing mechanism during authentication. (Once
an account has a long password hash in the user table, only 4.1 clients can authenticate for it, be-
cause pre-4.1 clients do not understand long hashes.)

This scenario illustrates that, if you must support older pre-4.1 clients, it is dangerous to run a 4.1
server without using the --old-passwords option. By running the server with -
-old-passwords, password-changing operations do not generate long password hashes and thus
do not cause accounts to become inaccessible to older clients. (Those clients cannot inadvertently
lock themselves out by changing their password and ending up with a long password hash.)

The downside of the --old-passwords option is that any passwords you create or change use
short hashes, even for 4.1 clients. Thus, you lose the additional security provided by long password
hashes. If you want to create an account that has a long hash (for example, for use by 4.1 clients),
you must do so while running the server without --old-passwords.

The following scenarios are possible for running a 4.1 server:

Scenario 1: Short Password column in user table:

Database Administration

300

• Only short hashes can be stored in the Password column.

• The server uses only short hashes during client authentication.

• For connected clients, password hash-generating operations involving PASSWORD(), GRANT,
or SET PASSWORD use short hashes exclusively. Any change to an account's password results
in that account having a short password hash.

• The --old-passwords option can be used but is superfluous because with a short Pass-
word column, the server generates only short password hashes anyway.

Scenario 2: Long Password column; server not started with --old-passwords option:

• Short or long hashes can be stored in the Password column.

• 4.1 clients can authenticate for accounts that have short or long hashes.

• Pre-4.1 clients can authenticate only for accounts that have short hashes.

• For connected clients, password hash-generating operations involving PASSWORD(), GRANT,
or SET PASSWORD use long hashes exclusively. A change to an account's password results in
that account having a long password hash.

As indicated earlier, a danger in this scenario is that it is possible for accounts that have a short pass-
word hash to become inaccessible to pre-4.1 clients. A change to such an account's password made
via GRANT, PASSWORD(), or SET PASSWORD results in the account being given a long password
hash. From that point on, no pre-4.1 client can authenticate to that account until the client upgrades
to 4.1.

To deal with this problem, you can change a password in a special way. For example, normally you
use SET PASSWORD as follows to change an account password:

mysql> SET PASSWORD FOR 'some_user'@'some_host' = PASSWORD('mypass');

To change the password but create a short hash, use the OLD_PASSWORD() function instead:

mysql> SET PASSWORD FOR 'some_user'@'some_host' = OLD_PASSWORD('mypass');

OLD_PASSWORD() is useful for situations in which you explicitly want to generate a short hash.

Scenario 3: Long Password column; server started with --old-passwords option:

• Short or long hashes can be stored in the Password column.

• 4.1 clients can authenticate for accounts that have short or long hashes (but note that it is pos-
sible to create long hashes only when the server is started without --old-passwords).

• Pre-4.1 clients can authenticate only for accounts that have short hashes.

• For connected clients, password hash-generating operations involving PASSWORD(), GRANT,
or SET PASSWORD use short hashes exclusively. Any change to an account's password results
in that account having a short password hash.

In this scenario, you cannot create accounts that have long password hashes, because the -
-old-passwords option prevents generation of long hashes. Also, if you create an account with
a long hash before using the --old-passwords option, changing the account's password while -
-old-passwords is in effect results in the account being given a short password, causing it to
lose the security benefits of a longer hash.

Database Administration

301

The disadvantages for these scenarios may be summarized as follows:

In scenario 1, you cannot take advantage of longer hashes that provide more secure authentication.

In scenario 2, accounts with short hashes become inaccessible to pre-4.1 clients if you change their
passwords without explicitly using OLD_PASSWORD().

In scenario 3, --old-passwords prevents accounts with short hashes from becoming inaccess-
ible, but password-changing operations cause accounts with long hashes to revert to short hashes,
and you cannot change them back to long hashes while --old-passwords is in effect.

5.5.9.1. Implications of Password Hashing Changes for Applica-
tion Programs

An upgrade to MySQL 4.1 can cause a compatibility issue for applications that use PASSWORD()
to generate passwords for their own purposes. Applications really should not do this, because
PASSWORD() should be used only to manage passwords for MySQL accounts. But some applica-
tions use PASSWORD() for their own purposes anyway.

If you upgrade to 4.1 and run the server under conditions where it generates long password hashes,
an application that uses PASSWORD() for its own passwords breaks. The recommended course of
action is to modify the application to use another function, such as SHA1() or MD5(), to produce
hashed values. If that is not possible, you can use the OLD_PASSWORD() function, which is
provided to generate short hashes in the old format. But note that OLD_PASSWORD() may one day
no longer be supported.

If the server is running under circumstances where it generates short hashes, OLD_PASSWORD() is
available but is equivalent to PASSWORD().

5.5.9.2. Password Hashing in MySQL 4.1.0

Password hashing in MySQL 4.1.0 differs from hashing in 4.1.1 and up. The 4.1.0 differences are:

• Password hashes are 45 bytes long rather than 41 bytes.

• The PASSWORD() function is non-repeatable. That is, with a given argument X, successive
calls to PASSWORD(X) generate different results.

These differences make authentication in 4.1.0 incompatible with that of releases that follow it. If
you have upgraded to MySQL 4.1.0, it is recommended that you upgrade to a newer version as soon
as possible. After you do, reassign any long passwords in the user table so that they are compatible
with the 41-byte format.

5.6. MySQL User Account Management
This section describes how to set up accounts for clients of your MySQL server. It discusses the fol-
lowing topics:

• The meaning of account names and passwords as used in MySQL and how that compares to
names and passwords used by your operating system

• How to set up new accounts and remove existing accounts

• How to change passwords

• Guidelines for using passwords securely

• How to use secure connections with SSL

Database Administration

302

5.6.1. MySQL Usernames and Passwords
A MySQL account is defined in terms of a username and the client host or hosts from which the
user can connect to the server. The account also has a password. There are several distinctions
between the way usernames and passwords are used by MySQL and the way they are used by your
operating system:

• Usernames, as used by MySQL for authentication purposes, have nothing to do with usernames
(login names) as used by Windows or Unix. On Unix, most MySQL clients by default try to log
in using the current Unix username as the MySQL username, but that is for convenience only.
The default can be overridden easily, because client programs allow any username to be spe-
cified with a -u or --user option. Because this means that anyone can attempt to connect to
the server using any username, you can't make a database secure in any way unless all MySQL
accounts have passwords. Anyone who specifies a username for an account that has no password
is able to connect successfully to the server.

• MySQL usernames can be up to 16 characters long. Operating system usernames might have a
different maximum length. For example, Unix usernames typically are limited to eight charac-
ters.

• MySQL passwords have nothing to do with passwords for logging in to your operating system.
There is no necessary connection between the password you use to log in to a Windows or Unix
machine and the password you use to access the MySQL server on that machine.

• MySQL encrypts passwords using its own algorithm. This encryption is different from that used
during the Unix login process. MySQL password encryption is the same as that implemented by
the PASSWORD() SQL function. Unix password encryption is the same as that implemented by
the ENCRYPT() SQL function. See the descriptions of the PASSWORD() and ENCRYPT()
functions in Section 12.8.2, “Encryption Functions”. From version 4.1 on, MySQL employs a
stronger authentication method that has better password protection during the connection pro-
cess than in earlier versions. It is secure even if TCP/IP packets are sniffed or the mysql data-
base is captured. (In earlier versions, even though passwords are stored in encrypted form in the
user table, knowledge of the encrypted password value could be used to connect to the
MySQL server.)

When you install MySQL, the grant tables are populated with an initial set of accounts. These ac-
counts have names and access privileges that are described in Section 2.9.3, “Securing the Initial
MySQL Accounts”, which also discusses how to assign passwords to them. Thereafter, you nor-
mally set up, modify, and remove MySQL accounts using the GRANT and REVOKE statements. See
Section 13.5.1.3, “GRANT and REVOKE Syntax”.

When you connect to a MySQL server with a command-line client, you should specify the username
and password for the account that you want to use:

shell> mysql --user=monty --password=guess db_name

If you prefer short options, the command looks like this:

shell> mysql -u monty -pguess db_name

There must be no space between the -p option and the following password value. See Section 5.5.4,
“Connecting to the MySQL Server”.

The preceding commands include the password value on the command line, which can be a security
risk. See Section 5.6.6, “Keeping Your Password Secure”. To avoid this, specify the --password
or -p option without any following password value:

shell> mysql --user=monty --password db_name
shell> mysql -u monty -p db_name

Database Administration

303

Then the client program prints a prompt and waits for you to enter the password. (In these examples,
db_name is not interpreted as a password, because it is separated from the preceding password op-
tion by a space.)

On some systems, the library call that MySQL uses to prompt for a password automatically limits
the password to eight characters. That is a problem with the system library, not with MySQL. In-
ternally, MySQL doesn't have any limit for the length of the password. To work around the problem,
change your MySQL password to a value that is eight or fewer characters long, or put your pass-
word in an option file.

5.6.2. Adding New User Accounts to MySQL
You can create MySQL accounts in two ways:

• By using GRANT statements

• By manipulating the MySQL grant tables directly

The preferred method is to use GRANT statements, because they are more concise and less error-
prone. GRANT is available as of MySQL 3.22.11; its syntax is described in Section 13.5.1.3,
“GRANT and REVOKE Syntax”.

Another option for creating accounts is to use one of several available third-party programs that of-
fer capabilities for MySQL account administration. phpMyAdmin is one such program.

The following examples show how to use the mysql client program to set up new users. These ex-
amples assume that privileges are set up according to the defaults described in Section 2.9.3,
“Securing the Initial MySQL Accounts”. This means that to make changes, you must connect to the
MySQL server as the MySQL root user, and the root account must have the INSERT privilege
for the mysql database and the RELOAD administrative privilege.

First, use the mysql program to connect to the server as the MySQL root user:

shell> mysql --user=root mysql

If you have assigned a password to the root account, you'll also need to supply a --password or
-p option for this mysql command and also for those later in this section.

After connecting to the server as root, you can add new accounts. The following statements use
GRANT to set up four new accounts:

mysql> GRANT ALL PRIVILEGES ON *.* TO 'monty'@'localhost'
-> IDENTIFIED BY 'some_pass' WITH GRANT OPTION;

mysql> GRANT ALL PRIVILEGES ON *.* TO 'monty'@'%'
-> IDENTIFIED BY 'some_pass' WITH GRANT OPTION;

mysql> GRANT RELOAD,PROCESS ON *.* TO 'admin'@'localhost';
mysql> GRANT USAGE ON *.* TO 'dummy'@'localhost';

The accounts created by these GRANT statements have the following properties:

• Two of the accounts have a username of monty and a password of some_pass. Both accounts
are superuser accounts with full privileges to do anything. One account
('monty'@'localhost') can be used only when connecting from the local host. The other
('monty'@'%') can be used to connect from any other host. Note that it is necessary to have
both accounts for monty to be able to connect from anywhere as monty. Without the local-
host account, the anonymous-user account for localhost that is created by
mysql_install_db would take precedence when monty connects from the local host. As a res-
ult, monty would be treated as an anonymous user. The reason for this is that the anonymous-
user account has a more specific Host column value than the 'monty'@'%' account and thus

Database Administration

304

comes earlier in the user table sort order. (user table sorting is discussed in Section 5.5.5,
“Access Control, Stage 1: Connection Verification”.)

• One account has a username of admin and no password. This account can be used only by con-
necting from the local host. It is granted the RELOAD and PROCESS administrative privileges.
These privileges allow the admin user to execute the mysqladmin reload, mysqladmin re-
fresh, and mysqladmin flush-xxx commands, as well as mysqladmin processlist . No priv-
ileges are granted for accessing any databases. You could add such privileges later by issuing
additional GRANT statements.

• One account has a username of dummy and no password. This account can be used only by con-
necting from the local host. No privileges are granted. The USAGE privilege in the GRANT state-
ment allows you to create an account without giving it any privileges. It has the effect of setting
all the global privileges to 'N'. It is assumed that you will grant specific privileges to the ac-
count later.

As an alternative to GRANT, you can create the same accounts directly by issuing INSERT state-
ments and then telling the server to reload the grant tables:

shell> mysql --user=root mysql
mysql> INSERT INTO user

-> VALUES('localhost','monty',PASSWORD('some_pass'),
-> 'Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y');

mysql> INSERT INTO user
-> VALUES('%','monty',PASSWORD('some_pass'),
-> 'Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y');

mysql> INSERT INTO user SET Host='localhost',User='admin',
-> Reload_priv='Y', Process_priv='Y';

mysql> INSERT INTO user (Host,User,Password)
-> VALUES('localhost','dummy','');

mysql> FLUSH PRIVILEGES;

The reason for using FLUSH PRIVILEGES when you create accounts with INSERT is to tell the
server to re-read the grant tables. Otherwise, the changes go unnoticed until you restart the server.
With GRANT, FLUSH PRIVILEGES is unnecessary.

The reason for using the PASSWORD() function with INSERT is to encrypt the password. The
GRANT statement encrypts the password for you, so PASSWORD() is unnecessary.

The 'Y' values enable privileges for the accounts. Depending on your MySQL version, you may
have to use a different number of 'Y' values in the first two INSERT statements. (Versions prior to
3.22.11 have fewer privilege columns, and versions from 4.0.2 on have more.) For the admin ac-
count, the more readable extended INSERT syntax using SET that is available starting with MySQL
3.22.11 is used.

In the INSERT statement for the dummy account, only the Host, User, and Password columns
in the user table record are assigned values. None of the privilege columns are set explicitly, so
MySQL assigns them all the default value of 'N'. This is equivalent to what GRANT USAGE does.

Note that to set up a superuser account, it is necessary only to create a user table entry with the
privilege columns set to 'Y'. user table privileges are global, so no entries in any of the other
grant tables are needed.

The next examples create three accounts and give them access to specific databases. Each of them
has a username of custom and password of obscure.

To create the accounts with GRANT, use the following statements:

shell> mysql --user=root mysql
mysql> GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP

-> ON bankaccount.*
-> TO 'custom'@'localhost'
-> IDENTIFIED BY 'obscure';

Database Administration

305

mysql> GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP
-> ON expenses.*
-> TO 'custom'@'whitehouse.gov'
-> IDENTIFIED BY 'obscure';

mysql> GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP
-> ON customer.*
-> TO 'custom'@'server.domain'
-> IDENTIFIED BY 'obscure';

The three accounts can be used as follows:

• The first account can access the bankaccount database, but only from the local host.

• The second account can access the expenses database, but only from the host white-
house.gov.

• The third account can access the customer database, but only from the host serv-
er.domain.

To set up the custom accounts without GRANT, use INSERT statements as follows to modify the
grant tables directly:

shell> mysql --user=root mysql
mysql> INSERT INTO user (Host,User,Password)

-> VALUES('localhost','custom',PASSWORD('obscure'));
mysql> INSERT INTO user (Host,User,Password)

-> VALUES('whitehouse.gov','custom',PASSWORD('obscure'));
mysql> INSERT INTO user (Host,User,Password)

-> VALUES('server.domain','custom',PASSWORD('obscure'));
mysql> INSERT INTO db

-> (Host,Db,User,Select_priv,Insert_priv,
-> Update_priv,Delete_priv,Create_priv,Drop_priv)
-> VALUES('localhost','bankaccount','custom',
-> 'Y','Y','Y','Y','Y','Y');

mysql> INSERT INTO db
-> (Host,Db,User,Select_priv,Insert_priv,
-> Update_priv,Delete_priv,Create_priv,Drop_priv)
-> VALUES('whitehouse.gov','expenses','custom',
-> 'Y','Y','Y','Y','Y','Y');

mysql> INSERT INTO db
-> (Host,Db,User,Select_priv,Insert_priv,
-> Update_priv,Delete_priv,Create_priv,Drop_priv)
-> VALUES('server.domain','customer','custom',
-> 'Y','Y','Y','Y','Y','Y');

mysql> FLUSH PRIVILEGES;

The first three INSERT statements add user table entries that allow the user custom to connect
from the various hosts with the given password, but grant no global privileges (all privileges are set
to the default value of 'N'). The next three INSERT statements add db table entries that grant priv-
ileges to custom for the bankaccount, expenses, and customer databases, but only when
accessed from the proper hosts. As usual when you modify the grant tables directly, you tell the
server to reload them with FLUSH PRIVILEGES so that the privilege changes take effect.

If you want to give a specific user access from all machines in a given domain (for example, mydo-
main.com), you can issue a GRANT statement that uses the '%' wildcard character in the host part
of the account name:

mysql> GRANT ...
-> ON *.*
-> TO 'myname'@'%.mydomain.com'
-> IDENTIFIED BY 'mypass';

Database Administration

306

To do the same thing by modifying the grant tables directly, do this:

mysql> INSERT INTO user (Host,User,Password,...)
-> VALUES('%.mydomain.com','myname',PASSWORD('mypass'),...);

mysql> FLUSH PRIVILEGES;

5.6.3. Removing User Accounts from MySQL
To remove an account, use the DROP USER statement, which was added in MySQL 4.1.1. For
older versions of MySQL, use DELETE instead. The account removal procedure is described in Sec-
tion 13.5.1.2, “DROP USER Syntax”.

5.6.4. Limiting Account Resources
Before MySQL 4.0.2, the only available method for limiting use of MySQL server resources is to
set the max_user_connections system variable to a non-zero value. But that method is strictly
global. It does not allow for management of individual accounts. Also, it limits only the number of
simultaneous connections made using a single account, not what a client can do once connected.
Both types of control are interest to many MySQL administrators, particularly those for Internet Ser-
vice Providers.

Starting from MySQL 4.0.2, you can limit the following server resources for individual accounts:

• The number of queries that an account can issue per hour

• The number of updates that an account can issue per hour

• The number of times an account can connect to the server per hour

Any statement that a client can issue counts against the query limit. Only statements that modify
databases or tables count against the update limit.

From MySQL 5.0.3 on, it is also possible to limit the number of simultaneous connection to the
server on a per-account basis.

An account in this context is a single record in the user table. Each account is uniquely identified
by its User and Host column values.

As a prerequisite for using this feature, the user table in the mysql database must contain the re-
source-related columns. Resource limits are stored in the max_questions, max_updates,
max_connections, and max_user_connections columns. If your user table doesn't have
these columns, it must be upgraded; see Section 2.10.7, “Upgrading the Grant Tables”.

To set resource limits with a GRANT statement, use a WITH clause that names each resource to be
limited and a per-hour count indicating the limit value. For example, to create a new account that
can access the customer database, but only in a limited fashion, issue this statement:

mysql> GRANT ALL ON customer.* TO 'francis'@'localhost'
-> IDENTIFIED BY 'frank'
-> WITH MAX_QUERIES_PER_HOUR 20
-> MAX_UPDATES_PER_HOUR 10
-> MAX_CONNECTIONS_PER_HOUR 5
-> MAX_USER_CONNECTIONS 2;

The limit types need not all be named in the WITH clause, but those named can be present in any or-
der. The value for each per-hour limit should be an integer representing a count per hour. If the
GRANT statement has no WITH clause, the limits are each set to the default value of zero (that is, no
limit). For MAX_USER_CONNECTIONS, the limit is an integer indicating the maximum number of
simultaneous connections the account can make at any one time. If the limit is set to the default

Database Administration

307

value of zero, the max_user_connections system variable determines the number of simultan-
eous connections for the account.

To set or change limits for an existing account, use a GRANT USAGE statement at the global level
(ON *.*). The following statement changes the query limit for francis to 100:

mysql> GRANT USAGE ON *.* TO 'francis'@'localhost'
-> WITH MAX_QUERIES_PER_HOUR 100;

This statement leaves the account's existing privileges unchanged and modifies only the limit values
specified.

To remove an existing limit, set its value to zero. For example, to remove the limit on how many
times per hour francis can connect, use this statement:

mysql> GRANT USAGE ON *.* TO 'francis'@'localhost'
-> WITH MAX_CONNECTIONS_PER_HOUR 0;

Resource-use counting takes place when any account has a non-zero limit placed on its use of any of
the resources.

As the server runs, it counts the number of times each account uses resources. If an account reaches
its limit on number of connections within the last hour, further connections for the account are rejec-
ted until that hour is up. Similarly, if the account reaches its limit on the number of queries or up-
dates, further queries or updates are rejected until the hour is up. In all such cases, an appropriate er-
ror message is issued.

Resource counting is done per account, not per client. For example, if your account has a query limit
of 50, you cannot increase your limit to 100 by making two simultaneous client connections to the
server. Queries issued on both connections are counted together.

The current per-hour resource-use counts can be reset globally for all accounts, or individually for a
given account:

• To reset the current counts to zero for all accounts, issue a FLUSH USER_RESOURCES state-
ment. The counts also can be reset by reloading the grant tables (for example, with a FLUSH
PRIVILEGES statement or a mysqladmin reload command).

• The counts for an individual account can be set to zero by re-granting it any of its limits. To do
this, use GRANT USAGE as described earlier and specify a limit value equal to the value that the
account currently has.

Counter resets do not affect the MAX_USER_CONNECTIONS limit.

All counts begin at zero when the server starts; counts are not carried over through a restart.

5.6.5. Assigning Account Passwords
Passwords may be assigned from the command line by using the mysqladmin command:

shell> mysqladmin -u user_name -h host_name password "newpwd"

The account for which this command resets the password is the one with a user table record that
matches user_name in the User column and the client host from which you connect in the Host
column.

Another way to assign a password to an account is to issue a SET PASSWORD statement:

mysql> SET PASSWORD FOR 'jeffrey'@'%' = PASSWORD('biscuit');

Database Administration

308

Only users such as root with update access to the mysql database can change the password for
other users. If you are not connected as an anonymous user, you can change your own password by
omitting the FOR clause:

mysql> SET PASSWORD = PASSWORD('biscuit');

You can also use a GRANT USAGE statement at the global level (ON *.*) to assign a password to
an account without affecting the account's current privileges:

mysql> GRANT USAGE ON *.* TO 'jeffrey'@'%' IDENTIFIED BY 'biscuit';

Although it is generally preferable to assign passwords using one of the preceding methods, you can
also do so by modifying the user table directly:

• To establish a password when creating a new account, provide a value for the Password
column:

shell> mysql -u root mysql
mysql> INSERT INTO user (Host,User,Password)

-> VALUES('%','jeffrey',PASSWORD('biscuit'));
mysql> FLUSH PRIVILEGES;

• To change the password for an existing account, use UPDATE to set the Password column
value:

shell> mysql -u root mysql
mysql> UPDATE user SET Password = PASSWORD('bagel')

-> WHERE Host = '%' AND User = 'francis';
mysql> FLUSH PRIVILEGES;

When you assign an account a password using SET PASSWORD, INSERT, or UPDATE, you must
use the PASSWORD() function to encrypt it. (The only exception is that you need not use PASS-
WORD() if the password is empty.) PASSWORD() is necessary because the user table stores pass-
words in encrypted form, not as plaintext. If you forget that fact, you are likely to set passwords like
this:

shell> mysql -u root mysql
mysql> INSERT INTO user (Host,User,Password)

-> VALUES('%','jeffrey','biscuit');
mysql> FLUSH PRIVILEGES;

The result is that the literal value 'biscuit' is stored as the password in the user table, not the
encrypted value. When jeffrey attempts to connect to the server using this password, the value is
encrypted and compared to the value stored in the user table. However, the stored value is the lit-
eral string 'biscuit', so the comparison fails and the server rejects the connection:

shell> mysql -u jeffrey -pbiscuit test
Access denied

If you set passwords using the GRANT ... IDENTIFIED BY statement or the mysqladmin
password command, they both take care of encrypting the password for you. The PASSWORD()
function is unnecessary.

Note: PASSWORD() encryption is different from Unix password encryption. See Section 5.6.1,
“MySQL Usernames and Passwords”.

5.6.6. Keeping Your Password Secure

Database Administration

309

On an administrative level, you should never grant access to the mysql.user table to any non-
administrative accounts. Passwords in the user table are stored in encrypted form, but in versions
of MySQL earlier than 4.1, knowing the encrypted password for an account makes it possible to
connect to the server using that account.

When you run a client program to connect to the MySQL server, it is inadvisable to specify your
password in a way that exposes it to discovery by other users. The methods you can use to specify
your password when you run client programs are listed here, along with an assessment of the risks
of each method:

• Use a -pyour_pass or --password=your_pass option on the command line. For ex-
ample:

shell> mysql -u francis -pfrank db_name

This is convenient but insecure, because your password becomes visible to system status pro-
grams such as ps that may be invoked by other users to display command lines. MySQL clients
typically overwrite the command-line password argument with zeros during their initialization
sequence, but there is still a brief interval during which the value is visible.

• Use a -p or --password option with no password value specified. In this case, the client pro-
gram solicits the password from the terminal:

shell> mysql -u francis -p db_name
Enter password: ********

The '*' characters indicate where you enter your password. The password is not displayed as you
enter it.

It is more secure to enter your password this way than to specify it on the command line because
it is not visible to other users. However, this method of entering a password is suitable only for
programs that you run interactively. If you want to invoke a client from a script that runs non-
interactively, there is no opportunity to enter the password from the terminal. On some systems,
you may even find that the first line of your script is read and interpreted (incorrectly) as your
password!

• Store your password in an option file. For example, on Unix you can list your password in the
[client] section of the .my.cnf file in your home directory:

[client]
password=your_pass

If you store your password in .my.cnf, the file should not be accessible to anyone but your-
self. To ensure this, set the file access mode to 400 or 600. For example:

shell> chmod 600 .my.cnf

Section 4.3.2, “Using Option Files” discusses option files in more detail.

• Store your password in the MYSQL_PWD environment variable. This method of specifying your
MySQL password must be considered extremely insecure and should not be used. Some ver-
sions of ps include an option to display the environment of running processes. If you set
MYSQL_PWD, your password is exposed to any other user who runs ps. Even on systems without
such a version of ps, it is unwise to assume that there are no other methods by which users can
examine process environments. See Appendix F, Environment Variables.

All in all, the safest methods are to have the client program prompt for the password or to specify
the password in a properly protected option file.

Database Administration

310

5.6.7. Using Secure Connections
Beginning with version 4.0.0, MySQL has support for secure (encrypted) connections between
MySQL clients and the server using the Secure Sockets Layer (SSL) protocol. This section dis-
cusses how to use SSL connections. It also describes a way to set up SSH on Windows.

The standard configuration of MySQL is intended to be as fast as possible, so encrypted connections
are not used by default. Doing so would make the client/server protocol much slower. Encrypting
data is a CPU-intensive operation that requires the computer to do additional work and can delay
other MySQL tasks. For applications that require the security provided by encrypted connections,
the extra computation is warranted.

MySQL allows encryption to be enabled on a per-connection basis. You can choose a normal unen-
crypted connection or a secure encrypted SSL connection according the requirements of individual
applications.

5.6.7.1. Basic SSL Concepts

To understand how MySQL uses SSL, it's necessary to explain some basic SSL and X509 concepts.
People who are familiar with them can skip this part.

By default, MySQL uses unencrypted connections between the client and the server. This means
that someone with access to the network could watch all your traffic and look at the data being sent
or received. They could even change the data while it is in transit between client and server. To im-
prove security a little, you can compress client/server traffic by using the --compress option
when invoking client programs. However, this does not foil a determined attacker.

When you need to move information over a network in a secure fashion, an unencrypted connection
is unacceptable. Encryption is the way to make any kind of data unreadable. In fact, today's practice
requires many additional security elements from encryption algorithms. They should resist many
kind of known attacks such as changing the order of encrypted messages or replaying data twice.

SSL is a protocol that uses different encryption algorithms to ensure that data received over a public
network can be trusted. It has mechanisms to detect any data change, loss, or replay. SSL also incor-
porates algorithms that provide identity verification using the X509 standard.

X509 makes it possible to identify someone on the Internet. It is most commonly used in e-
commerce applications. In basic terms, there should be some company called a ``Certificate Author-
ity'' (or CA) that assigns electronic certificates to anyone who needs them. Certificates rely on asym-
metric encryption algorithms that have two encryption keys (a public key and a secret key). A certi-
ficate owner can show the certificate to another party as proof of identity. A certificate consists of its
owner's public key. Any data encrypted with this public key can be decrypted only using the corres-
ponding secret key, which is held by the owner of the certificate.

If you need more information about SSL, X509, or encryption, use your favorite Internet search en-
gine to search for keywords in which you are interested.

5.6.7.2. Requirements

To use SSL connections between the MySQL server and client programs, your system must be able
to support OpenSSL and your version of MySQL must be 4.0.0 or newer.

To get secure connections to work with MySQL, you must do the following:

1. Install the OpenSSL library. We have tested MySQL with OpenSSL 0.9.6. If you need
OpenSSL, visit http://www.openssl.org.

2. When you configure MySQL, run the configure script with the --with-vio and -
-with-openssl options.

3. Make sure that you have upgraded your grant tables to include the SSL-related columns in the
mysql.user table. This is necessary if your grant tables date from a version prior to MySQL

Database Administration

311

http://www.openssl.org

4.0.0. The upgrade procedure is described in Section 2.10.7, “Upgrading the Grant Tables”.

4. To check whether a running mysqld server supports OpenSSL, examine the value of the
have_openssl system variable:

mysql> SHOW VARIABLES LIKE 'have_openssl';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| have_openssl | YES |
+---------------+-------+

If the value is YES, the server supports OpenSSL connections.

5.6.7.3. Setting Up SSL Certificates for MySQL

Here is an example for setting up SSL certificates for MySQL:

DIR=`pwd`/openssl
PRIV=$DIR/private
mkdir $DIR $PRIV $DIR/newcerts
cp /usr/share/ssl/openssl.cnf $DIR
replace ./demoCA $DIR -- $DIR/openssl.cnf
Create necessary files: $database, $serial and $new_certs_dir
directory (optional)
touch $DIR/index.txt
echo "01" > $DIR/serial
#
Generation of Certificate Authority(CA)
#
openssl req -new -x509 -keyout $PRIV/cakey.pem -out $DIR/cacert.pem \

-config $DIR/openssl.cnf
Sample output:
Using configuration from /home/monty/openssl/openssl.cnf
Generating a 1024 bit RSA private key
................++++++
.........++++++
writing new private key to '/home/monty/openssl/private/cakey.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name
or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:FI
State or Province Name (full name) [Some-State]:.
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:MySQL AB
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:MySQL admin
Email Address []:
#
Create server request and key
#
openssl req -new -keyout $DIR/server-key.pem -out \

$DIR/server-req.pem -days 3600 -config $DIR/openssl.cnf
Sample output:
Using configuration from /home/monty/openssl/openssl.cnf
Generating a 1024 bit RSA private key
..++++++
..........++++++

Database Administration

312

writing new private key to '/home/monty/openssl/server-key.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name
or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:FI
State or Province Name (full name) [Some-State]:.
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:MySQL AB
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:MySQL server
Email Address []:
#
Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:
#
Remove the passphrase from the key (optional)
#
openssl rsa -in $DIR/server-key.pem -out $DIR/server-key.pem
#
Sign server cert
#
openssl ca -policy policy_anything -out $DIR/server-cert.pem \

-config $DIR/openssl.cnf -infiles $DIR/server-req.pem
Sample output:
Using configuration from /home/monty/openssl/openssl.cnf
Enter PEM pass phrase:
Check that the request matches the signature
Signature ok
The Subjects Distinguished Name is as follows
countryName :PRINTABLE:'FI'
organizationName :PRINTABLE:'MySQL AB'
commonName :PRINTABLE:'MySQL admin'
Certificate is to be certified until Sep 13 14:22:46 2003 GMT
(365 days)
Sign the certificate? [y/n]:y
#
#
1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated
#
Create client request and key
#
openssl req -new -keyout $DIR/client-key.pem -out \

$DIR/client-req.pem -days 3600 -config $DIR/openssl.cnf
Sample output:
Using configuration from /home/monty/openssl/openssl.cnf
Generating a 1024 bit RSA private key
.....................................++++++
...++++++
writing new private key to '/home/monty/openssl/client-key.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name
or a DN.
There are quite a few fields but you can leave some blank

Database Administration

313

For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:FI
State or Province Name (full name) [Some-State]:.
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:MySQL AB
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:MySQL user
Email Address []:
#
Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:
#
Remove a passphrase from the key (optional)
#
openssl rsa -in $DIR/client-key.pem -out $DIR/client-key.pem
#
Sign client cert
#
openssl ca -policy policy_anything -out $DIR/client-cert.pem \

-config $DIR/openssl.cnf -infiles $DIR/client-req.pem
Sample output:
Using configuration from /home/monty/openssl/openssl.cnf
Enter PEM pass phrase:
Check that the request matches the signature
Signature ok
The Subjects Distinguished Name is as follows
countryName :PRINTABLE:'FI'
organizationName :PRINTABLE:'MySQL AB'
commonName :PRINTABLE:'MySQL user'
Certificate is to be certified until Sep 13 16:45:17 2003 GMT
(365 days)
Sign the certificate? [y/n]:y
#
#
1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated
#
Create a my.cnf file that you can use to test the certificates
#
cnf=""
cnf="$cnf [client]"
cnf="$cnf ssl-ca=$DIR/cacert.pem"
cnf="$cnf ssl-cert=$DIR/client-cert.pem"
cnf="$cnf ssl-key=$DIR/client-key.pem"
cnf="$cnf [mysqld]"
cnf="$cnf ssl-ca=$DIR/cacert.pem"
cnf="$cnf ssl-cert=$DIR/server-cert.pem"
cnf="$cnf ssl-key=$DIR/server-key.pem"
echo $cnf | replace " " '
' > $DIR/my.cnf

To test SSL connections, start the server as follows, where $DIR is the pathname to the directory
where the sample my.cnf option file is located:

shell> mysqld --defaults-file=$DIR/my.cnf &

Then invoke a client program using the same option file:

shell> mysql --defaults-file=$DIR/my.cnf

If you have a MySQL source distribution, you can also test your setup by modifying the preceding

Database Administration

314

my.cnf file to refer to the demonstration certificate and key files in the SSL directory of the distri-
bution.

5.6.7.4. SSL GRANT Options

MySQL can check X509 certificate attributes in addition to the usual authentication that is based on
the username and password. To specify SSL-related options for a MySQL account, use the RE-
QUIRE clause of the GRANT statement. See Section 13.5.1.3, “GRANT and REVOKE Syntax”.

There are different possibilities for limiting connection types for an account:

• If an account has no SSL or X509 requirements, unencrypted connections are allowed if the
username and password are valid. However, encrypted connections also can be used at the cli-
ent's option, if the client has the proper certificate and key files.

• REQUIRE SSL option limits the server to allow only SSL encrypted connections for the ac-
count. Note that this option can be omitted if there are any ACL records that allow non-SSL
connections.

mysql> GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
-> IDENTIFIED BY 'goodsecret' REQUIRE SSL;

• REQUIRE X509 means that the client must have a valid certificate but that the exact certific-
ate, issuer, and subject do not matter. The only requirement is that it should be possible to verify
its signature with one of the CA certificates.

mysql> GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
-> IDENTIFIED BY 'goodsecret' REQUIRE X509;

• REQUIRE ISSUER 'issuer' places the restriction on connection attempts that the client
must present a valid X509 certificate issued by CA 'issuer'. If the client presents a certific-
ate that is valid but has a different issuer, the server rejects the connection. Use of X509 certific-
ates always implies encryption, so the SSL option is unnecessary.

mysql> GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
-> IDENTIFIED BY 'goodsecret'
-> REQUIRE ISSUER '/C=FI/ST=Some-State/L=Helsinki/

O=MySQL Finland AB/CN=Tonu Samuel/Email=tonu@example.com';

Note that the ISSUER value should be entered as a single string.

• REQUIRE SUBJECT 'subject' places the restriction on connection attempts that the client
must present a valid X509 certificate with subject 'subject' on it. If the client presents a cer-
tificate that is valid but has a different subject, the server rejects the connection.

mysql> GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
-> IDENTIFIED BY 'goodsecret'
-> REQUIRE SUBJECT '/C=EE/ST=Some-State/L=Tallinn/

O=MySQL demo client certificate/
CN=Tonu Samuel/Email=tonu@example.com';

Note that the SUBJECT value should be entered as a single string.

• REQUIRE CIPHER 'cipher' is needed to ensure that strong enough ciphers and key
lengths are used. SSL itself can be weak if old algorithms with short encryption keys are used.
Using this option, we can ask for some exact cipher method to allow a connection.

mysql> GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
-> IDENTIFIED BY 'goodsecret'
-> REQUIRE CIPHER 'EDH-RSA-DES-CBC3-SHA';

Database Administration

315

The SUBJECT, ISSUER, and CIPHER options can be combined in the REQUIRE clause like this:

mysql> GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
-> IDENTIFIED BY 'goodsecret'
-> REQUIRE SUBJECT '/C=EE/ST=Some-State/L=Tallinn/

O=MySQL demo client certificate/
CN=Tonu Samuel/Email=tonu@example.com'

-> AND ISSUER '/C=FI/ST=Some-State/L=Helsinki/
O=MySQL Finland AB/CN=Tonu Samuel/Email=tonu@example.com'

-> AND CIPHER 'EDH-RSA-DES-CBC3-SHA';

Note that the SUBJECT and ISSUER values each should be entered as a single string.

Starting from MySQL 4.0.4, the AND keyword is optional between REQUIRE options.

The order of the options does not matter, but no option can be specified twice.

5.6.7.5. SSL Command-Line Options

The following list describes options that are used for specifying the use of SSL, certificate files, and
key files. These options are available beginning with MySQL 4.0. They may be given on the com-
mand line or in an option file.

• --ssl

For the server, this option specifies that the server allows SSL connections. For a client program,
it allows the client to connect to the server using SSL. This option is not sufficient in itself to
cause an SSL connection to be used. You must also specify the --ssl-ca, --ssl-cert, and
--ssl-key options.

This option is more often used in its opposite form to indicate that SSL should not be used. To
do this, specify the option as --skip-ssl or --ssl=0.

Note that use of --ssl doesn't require an SSL connection. For example, if the server or client
is compiled without SSL support, a normal unencrypted connection is used.

The secure way to ensure that an SSL connection is used is to create an account on the server
that includes a REQUIRE SSL clause in the GRANT statement. Then use this account to connect
to the server, with both a server and client that have SSL support enabled.

• --ssl-ca=file_name

The path to a file with a list of trusted SSL CAs.

• --ssl-capath=directory_name

The path to a directory that contains trusted SSL CA certificates in pem format.

• --ssl-cert=file_name

The name of the SSL certificate file to use for establishing a secure connection.

• --ssl-cipher=cipher_list

A list of allowable ciphers to use for SSL encryption. cipher_list has the same format as
the openssl ciphers command.

Example: --ssl-cipher=ALL:-AES:-EXP

• --ssl-key=file_name

The name of the SSL key file to use for establishing a secure connection.

Database Administration

316

5.6.7.6. Connecting to MySQL Remotely from Windows with SSH

Here is a note about how to connect to get a secure connection to remote MySQL server with SSH
(by David Carlson <dcarlson@mplcomm.com>):

1. Install an SSH client on your Windows machine. As a user, the best non-free one I've found is
from SecureCRT from http://www.vandyke.com/. Another option is f-secure from ht-
tp://www.f-secure.com/. You can also find some free ones on Google at ht-
tp://directory.google.com/Top/Computers/Security/Products_and_Tools/Cryptography/SSH/Cli
ents/Windows/.

2. Start your Windows SSH client. Set Host_Name = yourmysqlserver_URL_or_IP.
Set userid=your_userid to log in to your server. This userid value may not be the
same as the username of your MySQL account.

3. Set up port forwarding. Either do a remote forward (Set local_port: 3306, re-
mote_host: yourmysqlservername_or_ip, remote_port: 3306) or a local
forward (Set port: 3306, host: localhost, remote port: 3306).

4. Save everything, otherwise you'll have to redo it the next time.

5. Log in to your server with the SSH session you just created.

6. On your Windows machine, start some ODBC application (such as Access).

7. Create a new file in Windows and link to MySQL using the ODBC driver the same way you
normally do, except type in localhost for the MySQL host server, not
yourmysqlservername.

You should have an ODBC connection to MySQL, encrypted using SSH.

5.7. Disaster Prevention and Recovery
This section discusses how to make database backups (full and incremental) and how to perform ta-
ble maintenance. The syntax of the SQL statements described here is given in Section 13.5,
“Database Administration Statements”. Much of the information here pertains primarily to MyISAM
tables. InnoDB backup procedures are given in Section 15.9, “Backing Up and Recovering an In-
noDB Database”.

5.7.1. Database Backups
Because MySQL tables are stored as files, it is easy to do a backup. To get a consistent backup, do a
LOCK TABLES on the relevant tables, followed by FLUSH TABLES for the tables. See Sec-
tion 13.4.5, “LOCK TABLES and UNLOCK TABLES Syntax” and Section 13.5.5.2, “FLUSH Syn-
tax”. You need only a read lock; this allows other clients to continue to query the tables while you
are making a copy of the files in the database directory. The FLUSH TABLES statement is needed
to ensure that the all active index pages are written to disk before you start the backup.

If you want to make an SQL-level backup of a table, you can use SELECT INTO ... OUTFILE
or BACKUP TABLE. For SELECT INTO ... OUTFILE, the output file cannot previously exist.
For BACKUP TABLE, the same is true as of MySQL 3.23.56 and 4.0.12, because this would be a
security risk. See Section 13.1.7, “SELECT Syntax” and Section 13.5.2.2, “BACKUP TABLE Syn-
tax”.

Another way to back up a database is to use the mysqldump program or the mysqlhotcopy script.
See Section 8.8, “The mysqldump Database Backup Program” and Section 8.9, “The mysqlhot-
copy Database Backup Program”.

Database Administration

317

http://www.vandyke.com/
http://www.f-secure.com/
http://www.f-secure.com/
http://directory.google.com/Top/Computers/Security/Products_and_Tools/Cryptography/SSH/Clients/Windows/
http://directory.google.com/Top/Computers/Security/Products_and_Tools/Cryptography/SSH/Clients/Windows/
http://directory.google.com/Top/Computers/Security/Products_and_Tools/Cryptography/SSH/Clients/Windows/

1. Do a full backup of your database:

shell> mysqldump --tab=/path/to/some/dir --opt db_name

Or:

shell> mysqlhotcopy db_name /path/to/some/dir

You can also simply copy all table files (*.frm, *.MYD, and *.MYI files) as long as the serv-
er isn't updating anything. The mysqlhotcopy script uses this method. (But note that these
methods do not work if your database contains InnoDB tables. InnoDB does not store table
contents in database directories, and mysqlhotcopy works only for MyISAM and ISAM tables.)

2. Stop mysqld if it's running, then start it with the --log-bin[=file_name] option. See
Section 5.9.4, “The Binary Log”. The binary log files provide you with the information you
need to replicate changes to the database that are made subsequent to the point at which you
executed mysqldump.

For InnoDB tables, it's possible to perform an online backup that takes no locks on tables; see Sec-
tion 8.8, “The mysqldump Database Backup Program”

MySQL supports incremental backups: You need to start the server with the --log-bin option to
enable binary logging; see Section 5.9.4, “The Binary Log”. At the moment you want to make an in-
cremental backup (containing all changes that happened since the last full or incremental backup),
you should rotate the binary log by using FLUSH LOGS. This done, you need to copy to the backup
location all binary logs which range from the one of the moment of the last full or incremental
backup to the last but one. These binary logs are the incremental backup; at restore time, you apply
them as explained further below. The next time you do a full backup, you should also rotate the bin-
ary log using FLUSH LOGS, mysqldump --flush-logs, or mysqlhotcopy -
-flushlogs. See Section 8.8, “The mysqldump Database Backup Program” and Section 8.9,
“The mysqlhotcopy Database Backup Program”.

If your MySQL server is a slave replication server, then regardless of the backup method you
choose, you should also back up the master.info and relay-log.info files when you back
up your slave's data. These files are always needed to resume replication after you restore the slave's
data. If your slave is subject to replicating LOAD DATA INFILE commands, you should also back
up any SQL_LOAD-* files that may exist in the directory specified by the -
-slave-load-tmpdir option. (This location defaults to the value of the tmpdir variable if not
specified.) The slave needs these files to resume replication of any interrupted LOAD DATA IN-
FILE operations.

If you have to restore MyISAM tables, try to recover them using REPAIR TABLE or myisamchk -r
first. That should work in 99.9% of all cases. If myisamchk fails, try the following procedure. Note
that it works only if you have enabled binary logging by starting MySQL with the --log-bin op-
tion; see Section 5.9.4, “The Binary Log”.

1. Restore the original mysqldump backup, or binary backup.

2. Execute the following command to re-run the updates in the binary logs:

shell> mysqlbinlog hostname-bin.[0-9]* | mysql

In your case, you may want to re-run only certain binary logs, from certain positions (usually
you want to re-run all binary logs from the date of the restored backup, excepting possibly
some incorrect queries). See Section 8.5, “The mysqlbinlog Binary Log Utility” for more in-
formation on the mysqlbinlog utility and how to use it.

If you are using the update logs instead (which is a deprecated feature removed in MySQL 5.0),
you can process their contents like this:

Database Administration

318

shell> ls -1 -t -r hostname.[0-9]* | xargs cat | mysql

ls is used to sort the update log filenames into the right order.

You can also do selective backups of individual files:

• To dump the table, use SELECT * INTO OUTFILE 'file_name' FROM tbl_name.

• To reload the table, use and restore with LOAD DATA INFILE 'file_name' REPLACE
... To avoid duplicate records, the table must have a PRIMARY KEY or a UNIQUE index. The
REPLACE keyword causes old records to be replaced with new ones when a new record duplic-
ates an old record on a unique key value.

If you have performance problems with your server while making backups, one strategy that can
help is to set up replication and perform backups on the slave rather than on the master. See Sec-
tion 6.1, “Introduction to Replication”.

If you are using a Veritas filesystem, you can make a backup like this:

1. From a client program, execute FLUSH TABLES WITH READ LOCK.

2. From another shell, execute mount vxfs snapshot.

3. From the first client, execute UNLOCK TABLES.

4. Copy files from the snapshot.

5. Unmount the snapshot.

5.7.2. Example Backup and Recovery Strategy
This section discusses a procedure for performing backups that allows you to recover data after sev-
eral types of crashes:

• Operating system crash

• Power failure

• Filesystem crash

• Hardware problem (hard drive, motherboard, and so forth)

The following instructions assume a minimum version of MySQL 4.1.8, because some mysqldump
options used here are not available in earlier versions.

The example commands do not include options such as --user and --password for the mysql-
dump and mysql programs. You should include such options as necessary so that the MySQL serv-
er allows you to connect to it.

We'll consider data is stored into the InnoDB storage engine of MySQL, which has support for
transactions and automatic crash recovery. We'll always assume the MySQL server is under load at
the time of crash. If it were not, no recovery would ever be needed.

For the cases of operating system crashes or power failures, we can assume the MySQL disk data is
available after a restart. The InnoDB data files do not contain consistent data due to the crash, but

Database Administration

319

InnoDB reads its logs and finds in them the list of pending committed and non-committed transac-
tions that have not been flushed to the data files. It automatically rolls back those that were not com-
mitted, and flushes to the data files those that were committed. Information about this recovery pro-
cess is conveyed to the user through the MySQL error log. The following is an example log excerpt:

InnoDB: Database was not shut down normally.
InnoDB: Starting recovery from log files...
InnoDB: Starting log scan based on checkpoint at
InnoDB: log sequence number 0 13674004
InnoDB: Doing recovery: scanned up to log sequence number 0 13739520
InnoDB: Doing recovery: scanned up to log sequence number 0 13805056
InnoDB: Doing recovery: scanned up to log sequence number 0 13870592
InnoDB: Doing recovery: scanned up to log sequence number 0 13936128
...
InnoDB: Doing recovery: scanned up to log sequence number 0 20555264
InnoDB: Doing recovery: scanned up to log sequence number 0 20620800
InnoDB: Doing recovery: scanned up to log sequence number 0 20664692
InnoDB: 1 uncommitted transaction(s) which must be rolled back
InnoDB: Starting rollback of uncommitted transactions
InnoDB: Rolling back trx no 16745
InnoDB: Rolling back of trx no 16745 completed
InnoDB: Rollback of uncommitted transactions completed
InnoDB: Starting an apply batch of log records to the database...
InnoDB: Apply batch completed
InnoDB: Started
mysqld: ready for connections

For the cases of filesystem crashes or hardware problems, we can assume the MySQL disk data is
not available after a restart. This means that MySQL fails to start successfully because some blocks
of disk data are no longer readable. In this case, it's necessary to reformat the disk, install a new one,
or otherwise correct the underlying problem. Then it's necessary to recover our MySQL data from
backups---which means that we must already have made backups. To make sure that is the case, let's
step back in time and design a backup policy.

5.7.2.1. Backup Policy

We all know that backups must be scheduled periodically. Full backups (a snapshot of the data at a
point in time) can be done in MySQL with several tools. For example, InnoDB Hot Backup
provides online non-blocking physical backup of the InnoDB data file, and mysqldump provides
online logical backup. This discussion uses mysqldump.

Assume that we make a backup on Sunday at 1 PM, when load is low. The following command
makes a full backup of all our InnoDB tables in all databases:

shell> mysqldump --single-transaction --all-databases > backup_sunday_1_PM.sql

This is an online, non-blocking backup that does not disturb the reads and writes on the tables. We
assumed earlier that our tables are InnoDB tables, so --single-transaction uses a consist-
ent read and guarantees that data seen by mysqldump does not change. (Changes made by other cli-
ents to InnoDB tables are not seen by the mysqldump process.) If we do also have other types of
tables, we must assume that they are not changed during the backup. For example, for the MyISAM
tables in the mysql database, we must assume that no administrative changes are being made to
MySQL accounts during the backup.

The resulting .sql file produced by the mysqldump command contains SQL INSERT statements
that can be used to reload the dumped tables later.

Full backups are necessary, but they are not always convenient. They produce large backup files and
take time to generate. They are not optimal in the sense that each successive full backup includes all
data, even that part that didn't change since the previous full backup. After we have made the initial
full backup, it is more optimal to make incremental backups. They are smaller and take less time to
produce. (The tradeoff is that at recovery time, you do not restore your data just by reloading the full
backup. You must also process the incremental backups to recover the incremental changes.)

Database Administration

320

To make incremental backups, we need to save the incremental changes. The MySQL server should
always be started with the --log-bin option so that it stores these changes in a file while it up-
dates data. This option enables binary logging, so that the server writes each SQL statement that up-
dates data into a file called a MySQL binary log. Let's look at the data directory of a MySQL server
that was started with the --log-bin option and that has been running for some days. We find
these MySQL binary log files:

-rw-rw---- 1 guilhem guilhem 1277324 Nov 10 23:59 gbichot2-bin.000001
-rw-rw---- 1 guilhem guilhem 4 Nov 10 23:59 gbichot2-bin.000002
-rw-rw---- 1 guilhem guilhem 79 Nov 11 11:06 gbichot2-bin.000003
-rw-rw---- 1 guilhem guilhem 508 Nov 11 11:08 gbichot2-bin.000004
-rw-rw---- 1 guilhem guilhem 220047446 Nov 12 16:47 gbichot2-bin.000005
-rw-rw---- 1 guilhem guilhem 998412 Nov 14 10:08 gbichot2-bin.000006
-rw-rw---- 1 guilhem guilhem 361 Nov 14 10:07 gbichot2-bin.index

Each time it restarts, the MySQL server creates a new binary log file using the next number in the
sequence. While the server is running, you can also tell it to close the current binary log file and be-
gin a new one manually by issuing a FLUSH LOGS SQL statement or with a mysqladmin flush-
logs command. mysqldump also has an option to flush the logs. The .index file contains the list
of all MySQL binary logs in the directory. This file is used for replication.

The MySQL binary logs are important for recovery, because they are incremental backups. If you
make sure to flush the logs when you make your full backup, then any binary log files created after-
ward contain all the data changes made since the backup. Let's modify the previous mysqldump
command a bit so that it flushes the MySQL binary logs at the moment of the full backup, and so
that the dump file contains the name of the new current binary log:

shell> mysqldump --single-transaction --flush-logs --master-data=2
--all-databases > backup_sunday_1_PM.sql

After executing this command, the the data directory contains a new binary log file, gbi-
chot2-bin.000007. The resulting .sql file contains these lines:

-- Position to start replication or point-in-time recovery from
-- CHANGE MASTER TO MASTER_LOG_FILE='gbichot2-bin.000007',MASTER_LOG_POS=4;

Because the mysqldump command made a full backup, these lines mean two things:

• The .sql file contains all changes made before any changes written to the gbi-
chot2-bin.000007 binary log file or newer.

• All data changes logged after the backup are not present in the .sql, but are present in the
gbichot2-bin.000007 binary log file or newer.

On Monday at 1 PM, we can create an incremental backup by flushing the logs to begin a new bin-
ary log file. For example, executing a mysqladmin flush-logs command creates gbi-
chot2-bin.000008. All changes between the Sunday 1 PM full backup and Monday 1 PM are
the file gbichot2-bin.000007. This incremental backup is important, so it's a good idea to
copy it to a safe place. (For example, back it up on tape or DVD, or copy it to another machine.) On
Tuesday 1 PM, execute another mysqladmin flush-logs command. All changes between Monday 1
PM and Tuesday 1 PM are the file gbichot2-bin.000008 (which also should be copied some-
where safe).

The MySQL binary logs take up disk space. To free up space, purge them from time to time. One
way to do this is by deleting the binary logs that are no longer needed, such as when we make a full
backup:

shell> mysqldump --single-transaction --flush-logs --master-data=2
--all-databases --delete-master-logs > backup_sunday_1_PM.sql

Database Administration

321

Note: Deleting the MySQL binary logs with mysqldump --delete-master-logs can be dangerous if
your server is a replication master server, because slave servers might not yet fully have processed
the contents of the binary log.

The description for the PURGE MASTER LOGS statement explains what should be verified before
deleting the MySQL binary logs. See Section 13.6.1.1, “PURGE MASTER LOGS Syntax”.

5.7.2.2. Using Backups for Recovery

Now suppose that we have a catastrophic crash on Wednesday at 8 AM that requires recovery from
backups. To recover, first we restore the last full backup we have (the one from Sunday 1 PM). The
full backup file is just a set of SQL statements, so restoring it is very easy:

shell> mysql < backup_sunday_1_PM.sql

At this point, the data is restored to its state as of Sunday 1 PM. To restore the changes made since
then, we must use the incremental backups, that is, the gbichot2-bin.000007 and gbi-
chot2-bin.000008 binary log files. Fetch them if necessary from where they were backed up,
and then process their contents like this:

shell> mysqlbinlog gbichot2-bin.000007 gbichot2-bin.000008 | mysql

We now have recovered the data to its state as of Tuesday 1 PM, but still are missing the changes
from that date to the date of the crash. To not miss them, we would have needed to have the MySQL
server store its MySQL binary logs into a safe location (RAID disks, SAN, ...) different from the
place where it stores its data files, so that these logs were not in the destroyed disk. (That is, we can
start the server with a --log-bin option that specifies a location on a different physical device
than the one on which the data directory resides. That way, the logs are not lost even if the device
containing the directory is.) If we had done this, we would have the gbichot2-bin.000009 at
hand, and we could apply it to restore the most recent data changes with no loss how it was at the
moment of the crash.

5.7.2.3. Backup Strategy Summary

In case of an operating system crash or power failure, InnoDB itself does all the job of recovering
data. But to make sure that you can sleep well, observe the following guidelines:

• Always run the MySQL server with the --log-bin option, or even
--log-bin=log_name, where the log file name is located on some safe media different
from the drive on which the data directory is located. If you have such safe media, this can also
be good for disk load balancing (which results in a performance improvement).

• Make periodic full backups, using the last mysqldump command given earlier that makes an
online, non-blocking backup.

• Make periodic incremental backups by flushing the logs with FLUSH LOGS or mysqladmin
flush-logs.

5.7.3. Table Maintenance and Crash Recovery
The following text discusses how to use myisamchk to check or repair MyISAM tables (tables with
.MYI and .MYD files). The same concepts apply to using isamchk to check or repair ISAM tables
(tables with .ISM and .ISD files). See Chapter 14, MySQL Storage Engines and Table Types.

You can use the myisamchk utility to get information about your database tables or to check, repair,
or optimize them. The following sections describe how to invoke myisamchk (including a descrip-
tion of its options), how to set up a table maintenance schedule, and how to use myisamchk to per-
form its various functions.

Database Administration

322

Even though table repair with myisamchk is quite secure, it's always a good idea to make a backup
before doing a repair (or any maintenance operation that could make a lot of changes to a table)

myisamchk operations that affect indexes can cause FULLTEXT indexes to be rebuilt with full-text
parameters that are incompatible with the values used by the MySQL server. To avoid this, read the
instructions in Section 5.7.3.2, “General Options for myisamchk”.

In many cases, you may find it simpler to do MyISAM table maintenance using the SQL statements
that perform operations that myisamchk can do:

• To check or repair MyISAM tables, use CHECK TABLE or REPAIR TABLE.

• To optimize MyISAM tables, use OPTIMIZE TABLE.

• To analyze MyISAM tables, use ANALYZE TABLE.

These statements were introduced in different versions, but all are available from MySQL 3.23.14
on. See Section 13.5.2.1, “ANALYZE TABLE Syntax”, Section 13.5.2.3, “CHECK TABLE Syntax”,
Section 13.5.2.5, “OPTIMIZE TABLE Syntax”, and Section 13.5.2.6, “REPAIR TABLE Syntax”.
The statements can be used directly, or by means of the mysqlcheck client program, which provides
a command-line interface to them.

One advantage of these statements over myisamchk is that the server does all the work. With myis-
amchk, you must make sure that the server does not use the tables at the same time. Otherwise,
there can be unwanted interaction between myisamchk and the server.

5.7.3.1. myisamchk Invocation Syntax

Invoke myisamchk like this:

shell> myisamchk [options] tbl_name

The options specify what you want myisamchk to do. They are described in the following sec-
tions. You can also get a list of options by invoking myisamchk --help.

With no options, myisamchk simply checks your table as the default operation. To get more in-
formation or to tell myisamchk to take corrective action, specify options as described in the follow-
ing discussion.

tbl_name is the database table you want to check or repair. If you run myisamchk somewhere
other than in the database directory, you must specify the path to the database directory, because
myisamchk has no idea where the database is located. In fact, myisamchk doesn't actually care
whether the files you are working on are located in a database directory. You can copy the files that
correspond to a database table into some other location and perform recovery operations on them
there.

You can name several tables on the myisamchk command line if you wish. You can also specify a
table by naming its index file (the file with the .MYI suffix). This allows you to specify all tables in
a directory by using the pattern *.MYI. For example, if you are in a database directory, you can
check all the MyISAM tables in that directory like this:

shell> myisamchk *.MYI

If you are not in the database directory, you can check all the tables there by specifying the path to
the directory:

shell> myisamchk /path/to/database_dir/*.MYI

You can even check all tables in all databases by specifying a wildcard with the path to the MySQL

Database Administration

323

data directory:

shell> myisamchk /path/to/datadir/*/*.MYI

The recommended way to quickly check all MyISAM and ISAM tables is:

shell> myisamchk --silent --fast /path/to/datadir/*/*.MYI
shell> isamchk --silent /path/to/datadir/*/*.ISM

If you want to check all MyISAM and ISAM tables and repair any that are corrupted, you can use the
following commands:

shell> myisamchk --silent --force --fast --update-state \
-O key_buffer=64M -O sort_buffer=64M \
-O read_buffer=1M -O write_buffer=1M \
/path/to/datadir/*/*.MYI

shell> isamchk --silent --force -O key_buffer=64M \
-O sort_buffer=64M -O read_buffer=1M -O write_buffer=1M \
/path/to/datadir/*/*.ISM

These commands assume that you have more than 64MB free. For more information about memory
allocation with myisamchk, see Section 5.7.3.6, “myisamchk Memory Usage”.

You must ensure that no other program is using the tables while you are running myisamchk. Oth-
erwise, when you run myisamchk, it may display the following error message:

warning: clients are using or haven't closed the table properly

This means that you are trying to check a table that has been updated by another program (such as
the mysqld server) that hasn't yet closed the file or that has died without closing the file properly.

If mysqld is running, you must force it to flush any table modifications that are still buffered in
memory by using FLUSH TABLES. You should then ensure that no one is using the tables while
you are running myisamchk. The easiest way to avoid this problem is to use CHECK TABLE in-
stead of myisamchk to check tables.

5.7.3.2. General Options for myisamchk

The options described in this section can be used for any type of table maintenance operation per-
formed by myisamchk. The sections following this one describe options that pertain only to specific
operations, such as table checking or repairing.

• --help, -?

Display a help message and exit.

• --debug=debug_options, -# debug_options

Write a debugging log. The debug_options string often is 'd:t:o,file_name'.

• --silent, -s

Silent mode. Write output only when errors occur. You can use -s twice (-ss) to make myis-
amchk very silent.

• --verbose, -v

Verbose mode. Print more information. This can be used with -d and -e. Use -v multiple
times (-vv, -vvv) for even more output.

Database Administration

324

• --version, -V

Display version information and exit.

• --wait, -w

Instead of terminating with an error if the table is locked, wait until the table is unlocked before
continuing. Note that if you are running mysqld with the --skip-external-locking op-
tion, the table can be locked only by another myisamchk command.

You can also set the following variables by using --var_name=value options:

Variable Default Value

decode_bits 9

ft_max_word_len version-dependent

ft_min_word_len 4

ft_stopword_file built-in list

key_buffer_size 523264

myisam_block_size 1024

read_buffer_size 262136

sort_buffer_size 2097144

sort_key_blocks 16

write_buffer_size 262136

It is also possible to set variables by using --set-variable=var_name=value or -O
var_name=value syntax. However, this syntax is deprecated as of MySQL 4.0.

The possible myisamchk variables and their default values can be examined with myisamchk -
-help:

sort_buffer_size is used when the keys are repaired by sorting keys, which is the normal case
when you use --recover.

key_buffer_size is used when you are checking the table with --extend-check or when
the keys are repaired by inserting keys row by row into the table (like when doing normal inserts).
Repairing through the key buffer is used in the following cases:

• You use --safe-recover.

• The temporary files needed to sort the keys would be more than twice as big as when creating
the key file directly. This is often the case when you have large key values for CHAR, VARCHAR,
or TEXT columns, because the sort operation needs to store the complete key values as it pro-
ceeds. If you have lots of temporary space and you can force myisamchk to repair by sorting,
you can use the --sort-recover option.

Repairing through the key buffer takes much less disk space than using sorting, but is also much
slower.

If you want a faster repair, set the key_buffer_size and sort_buffer_size variables to
about 25% of your available memory. You can set both variables to large values, because only one
of them is used at a time.

myisam_block_size is the size used for index blocks. It is available as of MySQL 4.0.0.

The ft_min_word_len and ft_max_word_len variables are available as of MySQL 4.0.0.

Database Administration

325

ft_stopword_file is available as of MySQL 4.0.19.

ft_min_word_len and ft_max_word_len indicate the minimum and maximum word length
for FULLTEXT indexes. ft_stopword_file names the stopword file. These need to be set un-
der the following circumstances.

If you use myisamchk to perform an operation that modifies table indexes (such as repair or ana-
lyze), the FULLTEXT indexes are rebuilt using the default full-text parameter values for minimum
and maximum word length and the stopword file unless you specify otherwise. This can result in
queries failing.

The problem occurs because these parameters are known only by the server. They are not stored in
MyISAM index files. To avoid the problem if you have modified the minimum or maximum word
length or the stopword file in the server, specify the same ft_min_word_len,
ft_max_word_len, and ft_stopword_file values to myisamchk that you use for mysqld.
For example, if you have set the minimum word length to 3, you can repair a table with myisamchk
like this:

shell> myisamchk --recover --ft_min_word_len=3 tbl_name.MYI

To ensure that myisamchk and the server use the same values for full-text parameters, you can
place each one in both the [mysqld] and [myisamchk] sections of an option file:

[mysqld]
ft_min_word_len=3
[myisamchk]
ft_min_word_len=3

An alternative to using myisamchk is to use the REPAIR TABLE, ANALYZE TABLE, OPTIMIZE
TABLE, or ALTER TABLE. These statements are performed by the server, which knows the proper
full-text parameter values to use.

5.7.3.3. Check Options for myisamchk

myisamchk supports the following options for table checking operations:

• --check, -c

Check the table for errors. This is the default operation if you specify no option that selects an
operation type explicitly.

• --check-only-changed, -C

Check only tables that have changed since the last check.

• --extend-check, -e

Check the table very thoroughly. This is quite slow if the table has many indexes. This option
should only be used in extreme cases. Normally, myisamchk or myisamchk --medium-check
should be able to determine whether there are any errors in the table.

If you are using --extend-check and have plenty of memory, setting the
key_buffer_size variable to a large value helps the repair operation run faster.

• --fast, -F

Check only tables that haven't been closed properly.

• --force, -f

Do a repair operation automatically if myisamchk finds any errors in the table. The repair type
is the same as that specified with the --repair or -r option.

Database Administration

326

• --information, -i

Print informational statistics about the table that is checked.

• --medium-check, -m

Do a check that is faster than an --extend-check operation. This finds only 99.99% of all
errors, which should be good enough in most cases.

• --read-only, -T

Don't mark the table as checked. This is useful if you use myisamchk to check a table that is in
use by some other application that doesn't use locking, such as mysqld when run with the -
-skip-external-locking option.

• --update-state, -U

Store information in the .MYI file to indicate when the table was checked and whether the table
crashed. This should be used to get full benefit of the --check-only-changed option, but
you shouldn't use this option if the mysqld server is using the table and you are running it with
the --skip-external-locking option.

5.7.3.4. Repair Options for myisamchk

myisamchk supports the following options for table repair operations:

• --backup, -B

Make a backup of the .MYD file as file_name-time.BAK

• --character-sets-dir=path

The directory where character sets are installed. See Section 5.8.1, “The Character Set Used for
Data and Sorting”.

• --correct-checksum

Correct the checksum information for the table.

• --data-file-length=#, -D #

Maximum length of the data file (when re-creating data file when it's ``full'').

• --extend-check, -e

Do a repair that tries to recover every possible row from the data file. Normally this also finds a
lot of garbage rows. Don't use this option unless you are totally desperate.

• --force, -f

Overwrite old temporary files (files with names like tbl_name.TMD) instead of aborting.

• --keys-used=#, -k #

For myisamchk, the option value indicates which indexes to update. Each binary bit of the op-
tion value corresponds to a table index, where the first index is bit 0. For isamchk, the option
value indicates that only the first # of the table indexes should be updated. In either case, an op-
tion value of 0 disables updates to all indexes, which can be used to get faster inserts. Deactiv-
ated indexes can be reactivated by using myisamchk -r or (isamchk -r).

• --no-symlinks, -l

Database Administration

327

Do not follow symbolic links. Normally myisamchk repairs the table that a symlink points to.
This option doesn't exist as of MySQL 4.0, because versions from 4.0 on do not remove sym-
links during repair operations.

• --parallel-recover, -p

Uses the same technique as -r and -n, but creates all the keys in parallel, using different
threads. This option was added in MySQL 4.0.2. This is alpha code. Use at your own risk!

• --quick, -q

Achieve a faster repair by not modifying the data file. You can specify this option twice to force
myisamchk to modify the original data file in case of duplicate keys.

• --recover, -r

Do a repair that can fix almost any problem except unique keys that aren't unique (which is an
extremely unlikely error with ISAM/MyISAM tables). If you want to recover a table, this is the
option to try first. You should try -o only if myisamchk reports that the table can't be recovered
by -r. (In the unlikely case that -r fails, the data file is still intact.)

If you have lots of memory, you should increase the value of sort_buffer_size.

• --safe-recover, -o

Do a repair using an old recovery method that reads through all rows in order and updates all in-
dex trees based on the rows found. This is an order of magnitude slower than -r, but can handle
a couple of very unlikely cases that -r cannot. This recovery method also uses much less disk
space than -r. Normally, you should repair first with -r, and then with -o only if -r fails.

If you have lots of memory, you should increase the value of key_buffer_size.

• --set-character-set=name

Change the character set used by the table indexes.

• --sort-recover, -n

Force myisamchk to use sorting to resolve the keys even if the temporary files should be very
big.

• --tmpdir=path, -t path

Path of the directory to be used for storing temporary files. If this is not set, myisamchk uses the
value of the TMPDIR environment variable. Starting from MySQL 4.1, tmpdir can be set to a
list of directory paths that are used successively in round-robin fashion for creating temporary
files. The separator character between directory names should be colon (':') on Unix and semi-
colon (';') on Windows, NetWare, and OS/2.

• --unpack, -u

Unpack a table that was packed with myisampack.

5.7.3.5. Other Options for myisamchk

myisamchk supports the following options for actions other than table checks and repairs:

• --analyze, -a

Analyze the distribution of keys. This improves join performance by enabling the join optimizer
to better choose the order in which to join the tables and which keys it should use. To obtain in-

Database Administration

328

formation about the distribution, use a myisamchk --description --verbose tbl_name com-
mand or the SHOW KEYS FROM tbl_name statement.

• --description, -d

Print some descriptive information about the table.

• --set-auto-increment[=value], -A[value]

Force AUTO_INCREMENT numbering for new records to start at the given value (or higher, if
there are existing records with AUTO_INCREMENT values this large). If value is not specified,
AUTO_INCREMENT number for new records begins with the largest value currently in the table,
plus one.

• --sort-index, -S

Sort the index tree blocks in high-low order. This optimizes seeks and makes table scanning by
key faster.

• --sort-records=#, -R #

Sort records according to a particular index. This makes your data much more localized and may
speed up range-based SELECT and ORDER BY operations that use this index. (The first time
you use this option to sort a table, it may be very slow.) To determine a table's index numbers,
use SHOW KEYS, which displays a table's indexes in the same order that myisamchk sees them.
Indexes are numbered beginning with 1.

5.7.3.6. myisamchk Memory Usage

Memory allocation is important when you run myisamchk. myisamchk uses no more memory than
you specify with the -O options. If you are going to use myisamchk on very large tables, you
should first decide how much memory you want it to use. The default is to use only about 3MB to
perform repairs. By using larger values, you can get myisamchk to operate faster. For example, if
you have more than 32MB RAM, you could use options such as these (in addition to any other op-
tions you might specify):

shell> myisamchk -O sort=16M -O key=16M -O read=1M -O write=1M ...

Using -O sort=16M should probably be enough for most cases.

Be aware that myisamchk uses temporary files in TMPDIR. If TMPDIR points to a memory filesys-
tem, you may easily get out of memory errors. If this happens, set TMPDIR to point at some direct-
ory located on a filesystem with more space and run myisamchk again.

When repairing, myisamchk also needs a lot of disk space:

• Double the size of the data file (the original one and a copy). This space is not needed if you do
a repair with --quick; in this case, only the index file is re-created. This space is needed on
the same filesystem as the original data file! (The copy is created in the same directory as the
original.)

• Space for the new index file that replaces the old one. The old index file is truncated at the start
of the repair operation, so you usually ignore this space. This space is needed on the same
filesystem as the original index file!

• When using --recover or --sort-recover (but not when using --safe-recover),
you need space for a sort buffer. The amount of space required is:

(largest_key + row_pointer_length) * number_of_rows * 2

Database Administration

329

You can check the length of the keys and the row_pointer_length with myisamchk -dv
tbl_name. This space is allocated in the temporary directory (specified by TMPDIR or -
-tmpdir=path).

If you have a problem with disk space during repair, you can try to use --safe-recover instead
of --recover.

5.7.3.7. Using myisamchk for Crash Recovery

If you run mysqld with --skip-external-locking (which is the default on some systems,
such as Linux), you can't reliably use myisamchk to check a table when mysqld is using the same
table. If you can be sure that no one is accessing the tables through mysqld while you run myis-
amchk, you only have to do mysqladmin flush-tables before you start checking the tables. If you
can't guarantee this, then you must stop mysqld while you check the tables. If you run myisamchk
while mysqld is updating the tables, you may get a warning that a table is corrupt even when it isn't.

If you are not using --skip-external-locking, you can use myisamchk to check tables at
any time. While you do this, all clients that try to update the table wait until myisamchk is ready be-
fore continuing.

If you use myisamchk to repair or optimize tables, you must always ensure that the mysqld server
is not using the table (this also applies if you are using --skip-external-locking). If you
don't take down mysqld, you should at least do a mysqladmin flush-tables before you run myis-
amchk. Your tables may become corrupted if the server and myisamchk access the tables simultan-
eously.

This section describes how to check for and deal with data corruption in MySQL databases. If your
tables get corrupted frequently you should try to find the reason why. See Section A.4.2, “What to
Do If MySQL Keeps Crashing”.

The MyISAM table section contains reason for why a table could be corrupted. See Section 14.1.4,
“MyISAM Table Problems”.

When performing crash recovery, it is important to understand that each MyISAM table tbl_name
in a database corresponds to three files in the database directory:

File Purpose

tbl_name.frm Definition (format) file

tbl_name.MYD Data file

tbl_name.MYI Index file

Each of these three file types is subject to corruption in various ways, but problems occur most often
in data files and index files.

myisamchk works by creating a copy of the .MYD data file row by row. It ends the repair stage by
removing the old .MYD file and renaming the new file to the original file name. If you use -
-quick, myisamchk does not create a temporary .MYD file, but instead assumes that the .MYD
file is correct and only generates a new index file without touching the .MYD file. This is safe, be-
cause myisamchk automatically detects whether the .MYD file is corrupt and aborts the repair if it
is. You can also specify the --quick option twice to myisamchk. In this case, myisamchk does
not abort on some errors (such as duplicate-key errors) but instead tries to resolve them by modify-
ing the .MYD file. Normally the use of two --quick options is useful only if you have too little
free disk space to perform a normal repair. In this case, you should at least make a backup before
running myisamchk.

5.7.3.8. How to Check MyISAM Tables for Errors

To check a MyISAM table, use the following commands:

Database Administration

330

• myisamchk tbl_name

This finds 99.99% of all errors. What it can't find is corruption that involves only the data file
(which is very unusual). If you want to check a table, you should normally run myisamchk
without options or with either the -s or --silent option.

• myisamchk -m tbl_name

This finds 99.999% of all errors. It first checks all index entries for errors and then reads through
all rows. It calculates a checksum for all keys in the rows and verifies that the checksum matches
the checksum for the keys in the index tree.

• myisamchk -e tbl_name

This does a complete and thorough check of all data (-e means ``extended check''). It does a
check-read of every key for each row to verify that they indeed point to the correct row. This
may take a long time for a large table that has many indexes. Normally, myisamchk stops after
the first error it finds. If you want to obtain more information, you can add the --verbose
(-v) option. This causes myisamchk to keep going, up through a maximum of 20 errors.

• myisamchk -e -i tbl_name

Like the previous command, but the -i option tells myisamchk to print some informational
statistics, too.

In most cases, a simple myisamchk with no arguments other than the table name is sufficient to
check a table.

5.7.3.9. How to Repair Tables

The discussion in this section describes how to use myisamchk on MyISAM tables (extensions
.MYI and .MYD). If you are using ISAM tables (extensions .ISM and .ISD), you should use is-
amchk instead; the concepts are similar.

If you are using MySQL 3.23.16 and above, you can (and should) use the CHECK TABLE and RE-
PAIR TABLE statements to check and repair MyISAM tables. See Section 13.5.2.3, “CHECK TA-
BLE Syntax” and Section 13.5.2.6, “REPAIR TABLE Syntax”.

The symptoms of a corrupted table include queries that abort unexpectedly and observable errors
such as these:

• tbl_name.frm is locked against change

• Can't find file tbl_name.MYI (Errcode: ###)

• Unexpected end of file

• Record file is crashed

• Got error ### from table handler

To get more information about the error you can run perror ###, where ### is the error number.
The following example shows how to use perror to find the meanings for the most common error
numbers that indicate a problem with a table:

shell> perror 126 127 132 134 135 136 141 144 145
126 = Index file is crashed / Wrong file format
127 = Record-file is crashed
132 = Old database file
134 = Record was already deleted (or record file crashed)
135 = No more room in record file

Database Administration

331

136 = No more room in index file
141 = Duplicate unique key or constraint on write or update
144 = Table is crashed and last repair failed
145 = Table was marked as crashed and should be repaired

Note that error 135 (no more room in record file) and error 136 (no more room in index file) are not
errors that can be fixed by a simple repair. In this case, you have to use ALTER TABLE to increase
the MAX_ROWS and AVG_ROW_LENGTH table option values:

ALTER TABLE tbl_name MAX_ROWS=xxx AVG_ROW_LENGTH=yyy;

If you don't know the current table option values, use SHOW CREATE TABLE tbl_name.

For the other errors, you must repair your tables. myisamchk can usually detect and fix most prob-
lems that occur.

The repair process involves up to four stages, described here. Before you begin, you should change
location to the database directory and check the permissions of the table files. On Unix, make sure
that they are readable by the user that mysqld runs as (and to you, because you need to access the
files you are checking). If it turns out you need to modify files, they must also be writable by you.

The options that you can use for table maintenance with myisamchk and isamchk are described in
several of the earlier subsections of Section 5.7.3, “Table Maintenance and Crash Recovery”.

The following section is for the cases where the above command fails or if you want to use the ex-
tended features that myisamchk and isamchk provide.

If you are going to repair a table from the command line, you must first stop the mysqld server.
Note that when you do mysqladmin shutdown on a remote server, the mysqld server is still alive
for a while after mysqladmin returns, until all queries are stopped and all keys have been flushed to
disk.

Stage 1: Checking your tables

Run myisamchk *.MYI or myisamchk -e *.MYI if you have more time. Use the -s (silent) option
to suppress unnecessary information.

If the mysqld server is down, you should use the --update-state option to tell myisamchk to
mark the table as 'checked'.

You have to repair only those tables for which myisamchk announces an error. For such tables, pro-
ceed to Stage 2.

If you get weird errors when checking (such as out of memory errors), or if myisamchk
crashes, go to Stage 3.

Stage 2: Easy safe repair

Note: If you want a repair operation to go much faster, you should set the values of the
sort_buffer_size and key_buffer_size variables each to about 25% of your available
memory when running myisamchk or isamchk.

First, try myisamchk -r -q tbl_name (-r -q means ``quick recovery mode''). This attempts to
repair the index file without touching the data file. If the data file contains everything that it should
and the delete links point at the correct locations within the data file, this should work, and the table
is fixed. Start repairing the next table. Otherwise, use the following procedure:

1. Make a backup of the data file before continuing.

2. Use myisamchk -r tbl_name (-r means ``recovery mode''). This removes incorrect records
and deleted records from the data file and reconstructs the index file.

Database Administration

332

3. If the preceding step fails, use myisamchk --safe-recover tbl_name. Safe recovery mode
uses an old recovery method that handles a few cases that regular recovery mode doesn't (but is
slower).

If you get weird errors when repairing (such as out of memory errors), or if myisamchk
crashes, go to Stage 3.

Stage 3: Difficult repair

You should reach this stage only if the first 16KB block in the index file is destroyed or contains in-
correct information, or if the index file is missing. In this case, it's necessary to create a new index
file. Do so as follows:

1. Move the data file to some safe place.

2. Use the table description file to create new (empty) data and index files:

shell> mysql db_name
mysql> SET AUTOCOMMIT=1;
mysql> TRUNCATE TABLE tbl_name;
mysql> quit

If your version of MySQL doesn't have TRUNCATE TABLE, use DELETE FROM
tbl_name instead.

3. Copy the old data file back onto the newly created data file. (Don't just move the old file back
onto the new file; you want to retain a copy in case something goes wrong.)

Go back to Stage 2. myisamchk -r -q should work. (This shouldn't be an endless loop.)

As of MySQL 4.0.2, you can also use REPAIR TABLE tbl_name USE_FRM, which performs
the whole procedure automatically.

Stage 4: Very difficult repair

You should reach this stage only if the .frm description file has also crashed. That should never
happen, because the description file isn't changed after the table is created:

1. Restore the description file from a backup and go back to Stage 3. You can also restore the in-
dex file and go back to Stage 2. In the latter case, you should start with myisamchk -r.

2. If you don't have a backup but know exactly how the table was created, create a copy of the ta-
ble in another database. Remove the new data file, then move the .frm description and .MYI
index files from the other database to your crashed database. This gives you new description
and index files, but leaves the .MYD data file alone. Go back to Stage 2 and attempt to recon-
struct the index file.

5.7.3.10. Table Optimization

To coalesce fragmented records and eliminate wasted space resulting from deleting or updating re-
cords, run myisamchk in recovery mode:

shell> myisamchk -r tbl_name

You can optimize a table in the same way by using the SQL OPTIMIZE TABLE statement. OP-
TIMIZE TABLE does a repair of the table and a key analysis, and also sorts the index tree to give
faster key lookups. There is also no possibility of unwanted interaction between a utility and the

Database Administration

333

server, because the server does all the work when you use OPTIMIZE TABLE. See Sec-
tion 13.5.2.5, “OPTIMIZE TABLE Syntax”.

myisamchk also has a number of other options you can use to improve the performance of a table:

• -S, --sort-index

• -R index_num, --sort-records=index_num

• -a, --analyze

For a full description of the options, see Section 5.7.3.1, “myisamchk Invocation Syntax”.

5.7.4. Setting Up a Table Maintenance Schedule
It is a good idea to perform table checks on a regular basis rather than waiting for problems to occur.
One way to check and repair MyISAM tables is with the CHECK TABLE and REPAIR TABLE
statements. These are available starting with MySQL 3.23.16. See Section 13.5.2.3, “CHECK TA-
BLE Syntax” and Section 13.5.2.6, “REPAIR TABLE Syntax”.

Another way to check tables is to use myisamchk. For maintenance purposes, you can use myis-
amchk -s. The -s option (short for --silent) causes myisamchk to run in silent mode, printing
messages only when errors occur.

It's also a good idea to check tables when the server starts. For example, whenever the machine has
done a restart in the middle of an update, you usually need to check all the tables that could have
been affected. (These are ``expected crashed tables.'') To check MyISAM tables automatically, start
the server with the --myisam-recover option, available as of MySQL 3.23.25. If your server is
too old to support this option, you could add a test to mysqld_safe that runs myisamchk to check
all tables that have been modified during the last 24 hours if there is an old .pid (process ID) file
left after a restart. (The .pid file is created by mysqld when it starts and removed when it termin-
ates normally. The presence of a .pid file at system startup time indicates that mysqld terminated
abnormally.)

An even better test would be to check any table whose last-modified time is more recent than that of
the .pid file.

You should also check your tables regularly during normal system operation. At MySQL AB, we
run a cron job to check all our important tables once a week, using a line like this in a crontab
file:

35 0 * * 0 /path/to/myisamchk --fast --silent /path/to/datadir/*/*.MYI

This prints out information about crashed tables so that we can examine and repair them when
needed.

Because we haven't had any unexpectedly crashed tables (tables that become corrupted for reasons
other than hardware trouble) for a couple of years (this is really true), once a week is more than
enough for us.

We recommend that to start with, you execute myisamchk -s each night on all tables that have been
updated during the last 24 hours, until you come to trust MySQL as much as we do.

Normally, MySQL tables need little maintenance. If you are changing MyISAM tables with dynam-
ic-sized rows (tables with VARCHAR, BLOB, or TEXT columns) or have tables with many deleted
rows you may want to defragment/reclaim space from the tables from time to time (once a month?).

You can do this by using OPTIMIZE TABLE on the tables in question. Or, if you can stop the
mysqld server for a while, change location into the data directory and use this command while the
server is stopped:

Database Administration

334

shell> myisamchk -r -s --sort-index -O sort_buffer_size=16M */*.MYI

For ISAM tables, the command is similar:

shell> isamchk -r -s --sort-index -O sort_buffer_size=16M */*.ISM

5.7.5. Getting Information About a Table
To obtain a description of a table or statistics about it, use the commands shown here. We explain
some of the information in more detail later:

• myisamchk -d tbl_name

Runs myisamchk in ``describe mode'' to produce a description of your table. If you start the
MySQL server using the --skip-external-locking option, myisamchk may report an
error for a table that is updated while it runs. However, because myisamchk doesn't change the
table in describe mode, there is no risk of destroying data.

• myisamchk -d -v tbl_name

Adding -v runs myisamchk in verbose mode so that it produces more information about what it
is doing.

• myisamchk -eis tbl_name

Shows only the most important information from a table. This operation is slow because it must
read the entire table.

• myisamchk -eiv tbl_name

This is like -eis, but tells you what is being done.

Sample output for some of these commands follows. They are based on a table with these data and
index file sizes:

-rw-rw-r-- 1 monty tcx 317235748 Jan 12 17:30 company.MYD
-rw-rw-r-- 1 davida tcx 96482304 Jan 12 18:35 company.MYM

Example of myisamchk -d output:

MyISAM file: company.MYI
Record format: Fixed length
Data records: 1403698 Deleted blocks: 0
Recordlength: 226
table description:
Key Start Len Index Type
1 2 8 unique double
2 15 10 multip. text packed stripped
3 219 8 multip. double
4 63 10 multip. text packed stripped
5 167 2 multip. unsigned short
6 177 4 multip. unsigned long
7 155 4 multip. text
8 138 4 multip. unsigned long
9 177 4 multip. unsigned long

193 1 text

Example of myisamchk -d -v output:

Database Administration

335

MyISAM file: company
Record format: Fixed length
File-version: 1
Creation time: 1999-10-30 12:12:51
Recover time: 1999-10-31 19:13:01
Status: checked
Data records: 1403698 Deleted blocks: 0
Datafile parts: 1403698 Deleted data: 0
Datafile pointer (bytes): 3 Keyfile pointer (bytes): 3
Max datafile length: 3791650815 Max keyfile length: 4294967294
Recordlength: 226
table description:
Key Start Len Index Type Rec/key Root Blocksize
1 2 8 unique double 1 15845376 1024
2 15 10 multip. text packed stripped 2 25062400 1024
3 219 8 multip. double 73 40907776 1024
4 63 10 multip. text packed stripped 5 48097280 1024
5 167 2 multip. unsigned short 4840 55200768 1024
6 177 4 multip. unsigned long 1346 65145856 1024
7 155 4 multip. text 4995 75090944 1024
8 138 4 multip. unsigned long 87 85036032 1024
9 177 4 multip. unsigned long 178 96481280 1024

193 1 text

Example of myisamchk -eis output:

Checking MyISAM file: company
Key: 1: Keyblocks used: 97% Packed: 0% Max levels: 4
Key: 2: Keyblocks used: 98% Packed: 50% Max levels: 4
Key: 3: Keyblocks used: 97% Packed: 0% Max levels: 4
Key: 4: Keyblocks used: 99% Packed: 60% Max levels: 3
Key: 5: Keyblocks used: 99% Packed: 0% Max levels: 3
Key: 6: Keyblocks used: 99% Packed: 0% Max levels: 3
Key: 7: Keyblocks used: 99% Packed: 0% Max levels: 3
Key: 8: Keyblocks used: 99% Packed: 0% Max levels: 3
Key: 9: Keyblocks used: 98% Packed: 0% Max levels: 4
Total: Keyblocks used: 98% Packed: 17%
Records: 1403698 M.recordlength: 226
Packed: 0%
Recordspace used: 100% Empty space: 0%
Blocks/Record: 1.00
Record blocks: 1403698 Delete blocks: 0
Recorddata: 317235748 Deleted data: 0
Lost space: 0 Linkdata: 0
User time 1626.51, System time 232.36
Maximum resident set size 0, Integral resident set size 0
Non physical pagefaults 0, Physical pagefaults 627, Swaps 0
Blocks in 0 out 0, Messages in 0 out 0, Signals 0
Voluntary context switches 639, Involuntary context switches 28966

Example of myisamchk -eiv output:

Checking MyISAM file: company
Data records: 1403698 Deleted blocks: 0
- check file-size
- check delete-chain
block_size 1024:
index 1:
index 2:
index 3:
index 4:
index 5:
index 6:
index 7:
index 8:
index 9:
No recordlinks

Database Administration

336

- check index reference
- check data record references index: 1
Key: 1: Keyblocks used: 97% Packed: 0% Max levels: 4
- check data record references index: 2
Key: 2: Keyblocks used: 98% Packed: 50% Max levels: 4
- check data record references index: 3
Key: 3: Keyblocks used: 97% Packed: 0% Max levels: 4
- check data record references index: 4
Key: 4: Keyblocks used: 99% Packed: 60% Max levels: 3
- check data record references index: 5
Key: 5: Keyblocks used: 99% Packed: 0% Max levels: 3
- check data record references index: 6
Key: 6: Keyblocks used: 99% Packed: 0% Max levels: 3
- check data record references index: 7
Key: 7: Keyblocks used: 99% Packed: 0% Max levels: 3
- check data record references index: 8
Key: 8: Keyblocks used: 99% Packed: 0% Max levels: 3
- check data record references index: 9
Key: 9: Keyblocks used: 98% Packed: 0% Max levels: 4
Total: Keyblocks used: 9% Packed: 17%
- check records and index references
[LOTS OF ROW NUMBERS DELETED]
Records: 1403698 M.recordlength: 226 Packed: 0%
Recordspace used: 100% Empty space: 0% Blocks/Record: 1.00
Record blocks: 1403698 Delete blocks: 0
Recorddata: 317235748 Deleted data: 0
Lost space: 0 Linkdata: 0
User time 1639.63, System time 251.61
Maximum resident set size 0, Integral resident set size 0
Non physical pagefaults 0, Physical pagefaults 10580, Swaps 0
Blocks in 4 out 0, Messages in 0 out 0, Signals 0
Voluntary context switches 10604, Involuntary context switches 122798

Explanations for the types of information myisamchk produces are given here. ``Keyfile'' refers to
the index file. ``Record'' and ``row'' are synonymous.

• MyISAM file

Name of the MyISAM (index) file.

• File-version

Version of MyISAM format. Currently always 2.

• Creation time

When the data file was created.

• Recover time

When the index/data file was last reconstructed.

• Data records

How many records are in the table.

• Deleted blocks

How many deleted blocks still have reserved space. You can optimize your table to minimize
this space. See Section 5.7.3.10, “Table Optimization”.

• Datafile parts

For dynamic record format, this indicates how many data blocks there are. For an optimized ta-
ble without fragmented records, this is the same as Data records.

Database Administration

337

• Deleted data

How many bytes of unreclaimed deleted data there are. You can optimize your table to minimize
this space. See Section 5.7.3.10, “Table Optimization”.

• Datafile pointer

The size of the data file pointer, in bytes. It is usually 2, 3, 4, or 5 bytes. Most tables manage
with 2 bytes, but this cannot be controlled from MySQL yet. For fixed tables, this is a record ad-
dress. For dynamic tables, this is a byte address.

• Keyfile pointer

The size of the index file pointer, in bytes. It is usually 1, 2, or 3 bytes. Most tables manage with
2 bytes, but this is calculated automatically by MySQL. It is always a block address.

• Max datafile length

How long the table data file can become, in bytes.

• Max keyfile length

How long the table index file can become, in bytes.

• Recordlength

How much space each record takes, in bytes.

• Record format

The format used to store table rows. The preceding examples use Fixed length. Other pos-
sible values are Compressed and Packed.

• table description

A list of all keys in the table. For each key, myisamchk displays some low-level information:

• Key

This key's number.

• Start

Where in the record this index part starts.

• Len

How long this index part is. For packed numbers, this should always be the full length of the
column. For strings, it may be shorter than the full length of the indexed column, because
you can index a prefix of a string column.

• Index

Whether a key value can exist multiple times in the index. Values are unique or multip.
(multiple).

• Type

What data type this index part has. This is a MyISAM data type with the options packed,
stripped, or empty.

• Root

Address of the root index block.

Database Administration

338

• Blocksize

The size of each index block. By default this is 1024, but the value may be changed at com-
pile time when MySQL is built from source.

• Rec/key

This is a statistical value used by the optimizer. It tells how many records there are per value
for this key. A unique key always has a value of 1. This may be updated after a table is
loaded (or greatly changed) with myisamchk -a. If this is not updated at all, a default value
of 30 is given.

For the table shown in the examples, there are two table description lines for the ninth
index. This indicates that it is a multiple-part index with two parts.

• Keyblocks used

What percentage of the keyblocks are used. When a table has just been reorganized with myis-
amchk, as for the table in the examples, the values are very high (very near the theoretical max-
imum).

• Packed

MySQL tries to pack keys with a common suffix. This can only be used for indexes on CHAR,
VARCHAR, or DECIMAL columns. For long indexed strings that have similar leftmost parts, this
can significantly reduce the space used. In the third example above, the fourth key is 10 charac-
ters long and a 60% reduction in space is achieved.

• Max levels

How deep the B-tree for this key is. Large tables with long key values get high values.

• Records

How many rows are in the table.

• M.recordlength

The average record length. This is the exact record length for tables with fixed-length records,
because all records have the same length.

• Packed

MySQL strips spaces from the end of strings. The Packed value indicates the percentage of
savings achieved by doing this.

• Recordspace used

What percentage of the data file is used.

• Empty space

What percentage of the data file is unused.

• Blocks/Record

Average number of blocks per record (that is, how many links a fragmented record is composed
of). This is always 1.0 for fixed-format tables. This value should stay as close to 1.0 as possible.
If it gets too big, you can reorganize the table. See Section 5.7.3.10, “Table Optimization”.

• Recordblocks

How many blocks (links) are used. For fixed format, this is the same as the number of records.

Database Administration

339

• Deleteblocks

How many blocks (links) are deleted.

• Recorddata

How many bytes in the data file are used.

• Deleted data

How many bytes in the data file are deleted (unused).

• Lost space

If a record is updated to a shorter length, some space is lost. This is the sum of all such losses, in
bytes.

• Linkdata

When the dynamic table format is used, record fragments are linked with pointers (4 to 7 bytes
each). Linkdata is the sum of the amount of storage used by all such pointers.

If a table has been compressed with myisampack, myisamchk -d prints additional information
about each table column. See Section 8.2, “myisampack, the MySQL Compressed Read-only Table
Generator”, for an example of this information and a description of what it means.

5.8. MySQL Localization and International Us-
age

This section describes how to configure the server to use different character sets. It also discusses
how to set the server's time zone and enable per-connection time zone support.

5.8.1. The Character Set Used for Data and Sorting
By default, MySQL uses the ISO-8859-1 (Latin1) character set with sorting according to Swedish/
Finnish rules. These defaults are suitable for the United States and most of western Europe.

All MySQL binary distributions are compiled with --with-extra-charsets=complex. This
adds code to all standard programs that enables them to handle latin1 and all multi-byte character
sets within the binary. Other character sets are loaded from a character-set definition file when
needed.

The character set determines what characters are allowed in names. It also determines how strings
are sorted by the ORDER BY and GROUP BY clauses of the SELECT statement.

You can change the character set with the --default-character-set option when you start
the server. The character sets available depend on the --with-charset=charset and -
-with-extra-charsets= list-of-charsets | complex | all | none options
to configure, and the character set configuration files listed in SHAREDIR/charsets/Index.
See Section 2.8.2, “Typical configure Options”.

As of MySQL 4.1.1, you can also change the character set collation with the -
-default-collation option when you start the server. The collation must be a legal collation
for the default character set. (Use the SHOW COLLATION statement to determine which collations
are available for each character set.) See Section 2.8.2, “Typical configure Options”.

If you change the character set when running MySQL, that may also change the sort order. Con-
sequently, you must run myisamchk -r -q --set-character-set=charset on all tables, or your in-
dexes may not be ordered correctly.

Database Administration

340

When a client connects to a MySQL server, the server indicates to the client what the server's de-
fault character set is. The client switches to use this character set for this connection.

You should use mysql_real_escape_string() when escaping strings for an SQL query.
mysql_real_escape_string() is identical to the old mysql_escape_string() func-
tion, except that it takes the MYSQL connection handle as the first parameter so that the appropriate
character set can be taken into account when escaping characters.

If the client is compiled with different paths than where the server is installed and the user who con-
figured MySQL didn't include all character sets in the MySQL binary, you must tell the client where
it can find the additional character sets it needs if the server runs with a different character set than
the client.

You can do this by specifying a --character-sets-dir option to indicate the path to the dir-
ectory in which the dynamic MySQL character sets are stored. For example, you can put the follow-
ing in an option file:

[client]
character-sets-dir=/usr/local/mysql/share/mysql/charsets

You can force the client to use specific character set as follows:

[client]
default-character-set=charset

This is normally unnecessary, however.

5.8.1.1. Using the German Character Set

In MySQL 4.0, to get German sorting order, you should start mysqld with a -
-default-character-set=latin1_de option. This affects server behavior in several
ways:

• When sorting and comparing strings, the following mapping is performed on the strings before
doing the comparison:

ä -> ae
ö -> oe
ü -> ue
ß -> ss

• All accented characters are converted to their unaccented uppercase counterpart. All letters are
converted to uppercase.

• When comparing strings with LIKE, the one-character to two-character mapping is not done.
All letters are converted to uppercase. Accents are removed from all letters except Ü, ü, Ö, ö, Ä,
and ä.

In MySQL 4.1 and up, character set and collation are specified separately. You should select the
latin1 character set and either the latin1_german1_ci or latin1_german2_ci colla-
tion. For example, to start the server with the latin1_german1_ci collation, use the -
-character-set-server=latin1 and -
-collation-server=latin1_german1_ci options.

For information on the differences between these two collations, see Section 10.11.2, “West
European Character Sets”.

5.8.2. Setting the Error Message Language

Database Administration

341

By default, mysqld produces error messages in English, but they can also be displayed in any of
these other languages: Czech, Danish, Dutch, Estonian, French, German, Greek, Hungarian, Italian,
Japanese, Korean, Norwegian, Norwegian-ny, Polish, Portuguese, Romanian, Russian, Slovak,
Spanish, or Swedish.

To start mysqld with a particular language for error messages, use the --language or -L option.
The option value can be a language name or the full path to the error message file. For example:

shell> mysqld --language=swedish

Or:

shell> mysqld --language=/usr/local/share/swedish

The language name should be specified in lowercase.

The language files are located (by default) in the share/LANGUAGE directory under the MySQL
base directory.

To change the error message file, you should edit the errmsg.txt file, and then execute the fol-
lowing command to generate the errmsg.sys file:

shell> comp_err errmsg.txt errmsg.sys

If you upgrade to a newer version of MySQL, remember to repeat your changes with the new er-
rmsg.txt file.

5.8.3. Adding a New Character Set
This section discusses the procedure for adding add another character set to MySQL. You must have
a MySQL source distribution to use these instructions.

To choose the proper procedure, decide whether the character set is simple or complex:

• If the character set does not need to use special string collating routines for sorting and does not
need multi-byte character support, it is simple.

• If it needs either of those features, it is complex.

For example, latin1 and danish are simple character sets, whereas big5 and czech are com-
plex character sets.

In the following procedures, the name of your character set is represented by MYSET.

For a simple character set, do the following:

1. Add MYSET to the end of the sql/share/charsets/Index file. Assign a unique number
to it.

2. Create the file sql/share/charsets/MYSET.conf. (You can use a copy of sql/
share/charsets/latin1.conf as the basis for this file.)

The syntax for the file is very simple:

• Comments start with a '#' character and proceed to the end of the line.

• Words are separated by arbitrary amounts of whitespace.

Database Administration

342

• When defining the character set, every word must be a number in hexadecimal format.

• The ctype array takes up the first 257 words. The to_lower[], to_upper[] and
sort_order[] arrays take up 256 words each after that.

See Section 5.8.4, “The Character Definition Arrays”.

3. Add the character set name to the CHARSETS_AVAILABLE and COMPILED_CHARSETS
lists in configure.in.

4. Reconfigure, recompile, and test.

For a complex character set, do the following:

1. Create the file strings/ctype-MYSET.c in the MySQL source distribution.

2. Add MYSET to the end of the sql/share/charsets/Index file. Assign a unique number
to it.

3. Look at one of the existing ctype-*.c files (such as strings/ctype-big5.c) to see
what needs to be defined. Note that the arrays in your file must have names like
ctype_MYSET, to_lower_MYSET, and so on. These correspond to the arrays for a simple
character set. See Section 5.8.4, “The Character Definition Arrays”.

4. Near the top of the file, place a special comment like this:

/*
* This comment is parsed by configure to create ctype.c,
* so don't change it unless you know what you are doing.
*
* .configure. number_MYSET=MYNUMBER
* .configure. strxfrm_multiply_MYSET=N
* .configure. mbmaxlen_MYSET=N
*/

The configure program uses this comment to include the character set into the MySQL library
automatically.

The strxfrm_multiply and mbmaxlen lines are explained in the following sections. You
need include them only if you need the string collating functions or the multi-byte character set
functions, respectively.

5. You should then create some of the following functions:

• my_strncoll_MYSET()

• my_strcoll_MYSET()

• my_strxfrm_MYSET()

• my_like_range_MYSET()

See Section 5.8.5, “String Collating Support”.

6. Add the character set name to the CHARSETS_AVAILABLE and COMPILED_CHARSETS
lists in configure.in.

7. Reconfigure, recompile, and test.

The sql/share/charsets/README file includes additional instructions.

Database Administration

343

If you want to have the character set included in the MySQL distribution, mail a patch to the
MySQL internals mailing list. See Section 1.4.1.1, “The MySQL Mailing Lists”.

5.8.4. The Character Definition Arrays
to_lower[] and to_upper[] are simple arrays that hold the lowercase and uppercase charac-
ters corresponding to each member of the character set. For example:

to_lower['A'] should contain 'a'
to_upper['a'] should contain 'A'

sort_order[] is a map indicating how characters should be ordered for comparison and sorting
purposes. Quite often (but not for all character sets) this is the same as to_upper[], which means
that sorting is case-insensitive. MySQL sorts characters based on the values of sort_order[]
elements. For more complicated sorting rules, see the discussion of string collating in Section 5.8.5,
“String Collating Support”.

ctype[] is an array of bit values, with one element for one character. (Note that to_lower[],
to_upper[], and sort_order[] are indexed by character value, but ctype[] is indexed by
character value + 1. This is an old legacy convention to be able to handle EOF.)

You can find the following bitmask definitions in m_ctype.h:

#define _U 01 /* Uppercase */
#define _L 02 /* Lowercase */
#define _N 04 /* Numeral (digit) */
#define _S 010 /* Spacing character */
#define _P 020 /* Punctuation */
#define _C 040 /* Control character */
#define _B 0100 /* Blank */
#define _X 0200 /* heXadecimal digit */

The ctype[] entry for each character should be the union of the applicable bitmask values that de-
scribe the character. For example, 'A' is an uppercase character (_U) as well as a hexadecimal digit
(_X), so ctype['A'+1] should contain the value:

_U + _X = 01 + 0200 = 0201

5.8.5. String Collating Support
If the sorting rules for your language are too complex to be handled with the simple
sort_order[] table, you need to use the string collating functions.

The best documentation for this is the existing character sets. Look at the big5, czech, gbk,
sjis, and tis160 character sets for examples.

You must specify the strxfrm_multiply_MYSET=N value in the special comment at the top of
the file. N should be set to the maximum ratio the strings may grow during my_strxfrm_MYSET
(it must be a positive integer).

5.8.6. Multi-Byte Character Support
If you want to add support for a new character set that includes multi-byte characters, you need to
use the multi-byte character functions.

The best documentation for this is the existing character sets. Look at the euc_kr, gb2312, gbk,
sjis, and ujis character sets for examples. These are implemented in the ctype-charset.c
files in the strings directory.

You must specify the mbmaxlen_MYSET=N value in the special comment at the top of the source

Database Administration

344

file. N should be set to the size in bytes of the largest character in the set.

5.8.7. Problems With Character Sets
If you try to use a character set that is not compiled into your binary, you might run into the follow-
ing problems:

• Your program has an incorrect path to where the character sets are stored. (Default /
usr/local/mysql/share/mysql/charsets). This can be fixed by using the -
-character-sets-dir option when you run the program in question.

• The character set is a multi-byte character set that can't be loaded dynamically. In this case, you
must recompile the program with support for the character set.

• The character set is a dynamic character set, but you don't have a configure file for it. In this
case, you should install the configure file for the character set from a new MySQL distribution.

• If your Index file doesn't contain the name for the character set, your program displays the fol-
lowing error message:

ERROR 1105: File '/usr/local/share/mysql/charsets/?.conf'
not found (Errcode: 2)

In this case, you should either get a new Index file or manually add the name of any missing
character sets to the current file.

For MyISAM tables, you can check the character set name and number for a table with myisamchk -
dvv tbl_name.

5.8.8. MySQL Server Time Zone Support
Before MySQL 4.1.3, you can set the time zone for the server with the
--timezone=timezone_name option to mysqld_safe. You can also set it by setting the TZ en-
vironment variable before you start mysqld.

The allowable values for --timezone or TZ are system-dependent. Consult your operating sys-
tem documentation to see what values are acceptable.

Beginning with MySQL 4.1.3, the server maintains several time zone settings:

• The system time zone. When the server starts, it attempts to determine the time zone of the host
machine and uses it to set the system_time_zone system variable.

• The server's current time zone. The global time_zone system variable indicates the time zone
the server currently is operating in. The initial value is 'SYSTEM', which indicates that the
server time zone is the same as the system time zone. The initial value can be specified explicitly
with the --default-time-zone=timezone option. If you have the SUPER privilege, you
can set the global value at runtime with this statement:

mysql> SET GLOBAL time_zone = timezone;

• Per-connection time zones. Each client that connects has its own time zone setting, given by the
session time_zone variable. Initially this is the same as the global time_zone variable, but
can be reset with this statement:

mysql> SET time_zone = timezone;

Database Administration

345

The current values of the global and per-connection time zones can be retrieved like this:

mysql> SELECT @@global.time_zone, @@session.time_zone;

timezone values can be given as strings indicating an offset from UTC, such as '+10:00' or '-
6:00'. If the time zone-related tables in the mysql database have been created and populated, you
can also used named time zones, such as 'Europe/Helsinki', 'US/Eastern', or 'MET'.
The value 'SYSTEM' indicates that the time zone should be the same as the system time zone.
Time zone names are not case sensitive.

The MySQL installation procedure creates the time zone tables in the mysql database, but does not
load them. You must do so manually. (If you are upgrading to MySQL 4.1.3 or later from an earlier
version, you should create the tables by upgrading your mysql database. Use the instructions in
Section 2.10.7, “Upgrading the Grant Tables”.)

If your system has its own zoneinfo database (the set of files describing time zones), you should use
the mysql_tzinfo_to_sql program for filling the time zone tables. Examples of such systems are
Linux, FreeBSD, Sun Solaris, and Mac OS X. One likely location for these files is the /
usr/share/zoneinfo directory. If your system does not have a zoneinfo database, you can use
the downloadable package described later in this section.

The mysql_tzinfo_to_sql program is used to load the time zone tables. On the command line, pass
the zoneinfo directory pathname to mysql_tzinfo_to_sql and send the output into the mysql pro-
gram. For example:

shell> mysql_tzinfo_to_sql /usr/share/zoneinfo | mysql -u root mysql

mysql_tzinfo_to_sql reads your system's time zone files and generates SQL statements from them.
mysql processes those statements to load the time zone tables.

mysql_tzinfo_to_sql also can be used to load a single time zone file, and to generate leap second in-
formation.

To load a single time zone file tz_file that corresponds to a time zone name tz_name, invoke
mysql_tzinfo_to_sql like this:

shell> mysql_tzinfo_to_sql tz_file tz_name | mysql -u root mysql

If your time zone needs to account for leap seconds, initialize the leap second information like this,
where tz_file is the name of your time zone file:

shell> mysql_tzinfo_to_sql --leap tz_file | mysql -u root mysql

If your system doesn't have a zoneinfo database (for example, Windows or HP-UX), you can use the
package of pre-built time zone tables that is available for download at ht-
tp://dev.mysql.com/downloads/timezones.html. This package contains .frm, .MYD, and .MYI files
for the MyISAM time zone tables. These tables should belong to the mysql database, so you should
place the files in the mysql subdirectory of your MySQL server's data directory. The server should
be shut down while you do this.

Warning! Please don't use the downloadable package if your system has a zoneinfo database. Use
the mysql_tzinfo_to_sql utility instead! Otherwise, you may cause a difference in datetime hand-
ling between MySQL and other applications on your system.

For information about time zone settings in replication setup please look into Section 6.7,
“Replication Features and Known Problems”.

5.9. The MySQL Log Files

Database Administration

346

http://dev.mysql.com/downloads/timezones.html
http://dev.mysql.com/downloads/timezones.html

MySQL has several different log files that can help you find out what's going on inside mysqld:

Log File Types of Information Logged to File

The error log Logs problems encountered starting, running, or stopping mysqld.

The isam log Logs all changes to the ISAM tables. Used only for debugging the isam code.

The query log Logs established client connections and executed statements.

The update log Logs statements that change data. This log is deprecated.

The binary log Logs all statements that change data. Also used for replication.

The slow log Logs all queries that took more than long_query_time seconds to execute
or didn't use indexes.

By default, all logs are created in the mysqld data directory. You can force mysqld to close and re-
open the log files (or in some cases switch to a new log) by flushing the logs. Log flushing occurs
when you issue a FLUSH LOGS statement or execute mysqladmin flush-logs or mysqladmin re-
fresh. See Section 13.5.5.2, “FLUSH Syntax”.

If you are using MySQL replication capabilities, slave replication servers maintain additional log
files called relay logs. These are discussed in Chapter 6, Replication in MySQL.

5.9.1. The Error Log
The error log file contains information indicating when mysqld was started and stopped and also
any critical errors that occur while the server is running.

If mysqld dies unexpectedly and mysqld_safe needs to restart it, mysqld_safe writes a restar-
ted mysqld message to the error log. If mysqld notices a table that needs to be automatically
checked or repaired, it writes a message to the error log.

On some operating systems, the error log contains a stack trace if mysqld dies. The trace can be
used to determine where mysqld died. See Section E.1.4, “Using a Stack Trace”.

Beginning with MySQL 4.0.10, you can specify where mysqld stores the error log file with the -
-log-error[=file_name] option. If no file_name value is given, mysqld uses the name
host_name.err and writes the file in the data directory. (Prior to MySQL 4.0.10, the Windows
error log name is mysql.err.) If you execute FLUSH LOGS, the error log is renamed with a suf-
fix of -old and mysqld creates a new empty log file.

In older MySQL versions on Unix, error log handling was done by mysqld_safe which redirected
the error file to host_name.err. You could change this filename by specifying a
--err-log=file_name option to mysqld_safe.

If you don't specify --log-error, or (on Windows) if you use the --console option, errors
are written to stderr, the standard error output. Usually this is your terminal.

On Windows, error output is always written to the .err file if --console is not given.

5.9.2. The General Query Log
If you want to know what happens within mysqld, you should start it with the
--log[=file_name] or -l [file_name] option. If no file_name value is given, the de-
fault name is host_name.log This logs all connections and statements to the log file. This log
can be very useful when you suspect an error in a client and want to know exactly what the client
sent to mysqld.

Older versions of the mysql.server script (from MySQL 3.23.4 to 3.23.8) pass a --log option to
safe_mysqld to enable the general query log. If you need better performance when you start using
MySQL in a production environment, you can remove the --log option from mysql.server or
change it to --log-bin. See Section 5.9.4, “The Binary Log”.

Database Administration

347

mysqld writes statements to the query log in the order that it receives them. This may be different
from the order in which they are executed. This is in contrast to the update log and the binary log,
which are written after the query is executed, but before any locks are released. (The query log also
contains all statements, whereas the update and binary logs do not contain statements that only se-
lect data.)

Server restarts and log flushing do not cause a new general query log file to be generated (although
flushing closes and reopens it). On Unix, you can rename the file and create a new one by using the
following commands:

shell> mv hostname.log hostname-old.log
shell> mysqladmin flush-logs
shell> cp hostname-old.log to-backup-directory
shell> rm hostname-old.log

On Windows, you cannot rename the log file while the server has it open. You must stop the server
and rename the log. Then restart the server to create a new log.

5.9.3. The Update Log
Note: The update log has been deprecated and replaced by the binary log. See Section 5.9.4, “The
Binary Log”. The binary log can do anything the old update log could do, and more. The update log
is unavailable as of MySQL 5.0.0.

When started with the --log-update[=file_name] option, mysqld writes a log file contain-
ing all SQL statements that update data. If no file_name value is given, the default name is name
of the host machine. If a filename is given, but it doesn't contain a leading path, the file is written in
the data directory. If file_name doesn't have an extension, mysqld creates log files with names of
the form file_name.###, where ### is a number that is incremented each time you start the
server or flush the logs.

Note: For this naming scheme to work, you must not create your own files with the same names as
those that might be used for the log file sequence.

Update logging is smart because it logs only statements that really update data. So, an UPDATE or a
DELETE with a WHERE that finds no rows is not written to the log. It even skips UPDATE state-
ments that set a column to its existing value.

The update logging is done immediately after a query completes but before any locks are released or
any commit is done. This ensures that statements are logged in execution order.

If you want to update a database from update log files, you could do the following (assuming that
your update logs have names of the form file_name.###):

shell> ls -1 -t -r file_name.[0-9]* | xargs cat | mysql

ls is used to sort the update log filenames into the right order.

This can be useful if you have to revert to backup files after a crash and you want to redo the up-
dates that occurred between the time of the backup and the crash.

5.9.4. The Binary Log
The binary log has replaced the old update log, which is unavailable starting from MySQL 5.0. The
binary log contains all information that is available in the update log in a more efficient format and
in a manner that is transactionally safe.

The binary log contains all statements which updated data or (starting from MySQL 4.1.3) could po-
tentially have updated it (for example, a DELETE which matched no rows).

The binary log also contains information about how long each statement took that updated the data-

Database Administration

348

base. It doesn't contain statements that don't modify any data. If you want to log all statements (for
example, to identify a problem query) you should use the general query log. See Section 5.9.2, “The
General Query Log”.

The primary purpose of the binary log is to be able to update the database during a restore operation
as fully as possible, because the binary log contains all updates done after a backup was made.

The binary log is also used on master replication servers as a record of the statements to be sent to
slave servers. See Chapter 6, Replication in MySQL.

Running the server with the binary log enabled makes performance about 1% slower. However, the
benefits of the binary log for restore operations and in allowing you to set up replication generally
outweigh this minor performance decrement.

When started with the --log-bin[=file_name] option, mysqld writes a log file containing all
SQL commands that update data. If no file_name value is given, the default name is the name of
the host machine followed by -bin. If file name is given, but it doesn't contain a path, the file is
written in the data directory. It is recommended to specify a filename, see Section 1.5.7.3, “Open
Bugs and Design Deficiencies in MySQL” for the reason.

If you supply an extension in the log name (for example,
--log-bin=file_name.extension), the extension is silently removed and ignored.

mysqld appends a numeric extension to the binary log name. The number is incremented each time
you start the server or flush the logs. A new binary log also is created automatically when the cur-
rent log's size reaches max_binlog_size. A binary log may become larger than
max_binlog_size if you are using large transactions: A transaction is written to the binary log
in one piece, never split between binary logs.

To be able to know which different binary log files have been used, mysqld also creates a binary log
index file that contains the name of all used binary log files. By default this has the same name as
the binary log file, with the extension '.index'. You can change the name of the binary log index
file with the --log-bin-index[=file_name] option. You should not manually edit this file
while mysqld is running; doing so would confuse mysqld.

You can delete all binary log files with the RESET MASTER statement, or only some of them with
PURGE MASTER LOGS. See Section 13.5.5.5, “RESET Syntax” and Section 13.6.1, “SQL State-
ments for Controlling Master Servers”.

The binary log format has some known limitations which can affect recovery from backups, espe-
cially in old versions. These caveats which also affect replication are listed at Section 6.7,
“Replication Features and Known Problems”. One caveat which does not affect replication but only
recovery with mysqlbinlog: before MySQL 4.1, mysqlbinlog could not prepare output suitable
for mysql if the binary log contained interlaced statements originating from different clients that
used temporary tables of the same name. This is fixed in MySQL 4.1. However, the problem still
existed for LOAD DATA INFILE statements until it was fixed in MySQL 4.1.8.

You can use the following options to mysqld to affect what is logged to the binary log. See also the
discussion that follows this option list.

• --binlog-do-db=db_name

Tells the master that it should log updates to the binary log if the current database (that is, the
one selected by USE) is db_name. All other databases that are not explicitly mentioned are ig-
nored. If you use this, you should ensure that you only do updates in the current database.

Observe that there is an exception to the CREATE/ALTER/DROP DATABASE statements,
which use the database manipulated to decide if it should log the statement rather than the cur-
rent database.

An example of what does not work as you might expect: If the server is started with binlog-
do-db=sales, and you do USE prices; UPDATE sales.january SET

Database Administration

349

amount=amount+1000;, this statement does not get written into the binary log.

• --binlog-ignore-db=db_name

Tells the master that updates where the current database (that is, the one selected by USE) is
db_name should not be stored in the binary log. If you use this, you should ensure that you
only do updates in the current database.

An example of what does not work as you might expect: If the server is started with binlog-
ignore-db=sales, and you do USE prices; UPDATE sales.january SET
amount=amount+1000;, this statement is not written into the binary log.

Similar to the case for --binlog-do-db, there is an exception to the CREATE/AL-
TER/DROP DATABASE statements, which use the database manipulated to decide if it should
log the statement rather than the current database.

To log or ignore multiple databases, specify the appropriate option multiple times, once for each
database.

The rules for logging or ignoring updates to the binary log are evaluated according to the following
rules. Observe that there is an exception for CREATE/ALTER/DROP DATABASE statements. In
those cases, the database being created/altered/dropped replace the current database in the rules be-
low.

1. Are there binlog-do-db or binlog-ignore-db rules?

• No: Write the statement to the binary log and exit.

• Yes: Go to the next step.

2. There are some rules (binlog-do-db or binlog-ignore-db or both). Is there a current
database (has any database been selected by USE?)?

• No: Do not write the statement, and exit.

• Yes: Go to the next step.

3. There is a current database. Are there some binlog-do-db rules?

• Yes: Does the current database match any of the binlog-do-db rules?

• Yes: Write the statement and exit.

• No: Do not write the statement, and exit.

• No: Go to the next step.

4. There are some binlog-ignore-db rules. Does the current database match any of the
binlog-ignore-db rules?

• Yes: Do not write the statement, and exit.

• No: Write the query and exit.

For example, a slave running with only binlog-do-db=sales does not write to the binary log
any statement whose current database is different from sales (in other words, binlog-do-db
can sometimes mean ``ignore other databases'').

If you are using replication, you should not delete old binary log files until you are sure that no slave
still needs to use them. One way to do this is to do mysqladmin flush-logs once a day and then re-
move any logs that are more than three days old. You can remove them manually, or preferably us-

Database Administration

350

ing PURGE MASTER LOGS (see Section 13.6.1, “SQL Statements for Controlling Master
Servers”), which also safely updates the binary log index file for you (and which can take a date ar-
gument since MySQL 4.1)

A client with the SUPER privilege can disable binary logging of its own statements by using a SET
SQL_LOG_BIN=0 statement. See Section 13.5.3, “SET Syntax”.

You can examine the binary log file with the mysqlbinlog utility. This can be useful when you want
to reprocess statements in the log. For example, you can update a MySQL server from the binary log
as follows:

shell> mysqlbinlog log-file | mysql -h server_name

See Section 8.5, “The mysqlbinlog Binary Log Utility” for more information on the mysqlbinlog
utility and how to use it.

If you are using transactions, you must use the MySQL binary log for backups instead of the old up-
date log.

The binary logging is done immediately after a query completes but before any locks are released or
any commit is done. This ensures that the log is logged in the execution order.

Updates to non-transactional tables are stored in the binary log immediately after execution. For
transactional tables such as BDB or InnoDB tables, all updates (UPDATE, DELETE, or INSERT)
that change tables are cached until a COMMIT statement is received by the server. At that point,
mysqld writes the whole transaction to the binary log before the COMMIT is executed. When the
thread that handles the transaction starts, it allocates a buffer of binlog_cache_size to buffer
queries. If a statement is bigger than this, the thread opens a temporary file to store the transaction.
The temporary file is deleted when the thread ends.

The Binlog_cache_use status variable shows the number of transactions that used this buffer
(and possibly a temporary file) for storing statements. The Binlog_cache_disk_use status
variable shows how many of those transactions actually did have to use a temporary file. These two
variables can be used for tuning binlog_cache_size to a large enough value that avoids the
use of temporary files.

The max_binlog_cache_size (default 4GB) can be used to restrict the total size used to cache
a multiple-statement transaction. If a transaction is larger than this, it fails and rolls back.

If you are using the update log or binary log, concurrent inserts are converted to normal inserts when
using CREATE ... SELECT or INSERT ... SELECT. This is to ensure that you can re-create
an exact copy of your tables by applying the log on a backup.

The binary log format is different in versions 3.23, 4.0, and 5.0.0. Those format changes were re-
quired to implement enhancements to replication. MySQL 4.1 has the same binary log format as 4.0.
See Section 6.5, “Replication Compatibility Between MySQL Versions”.

By default, the binary log is not synchronized to disk at each write. So if the operating system or
machine (not only the MySQL server) crashes there is a chance that the last statements of the binary
log are lost. To prevent this, you can make the binary log be synchronized to disk after every Nth
binary log write, with the sync_binlog global variable (1 being the safest value, but also the
slowest). See Section 5.2.3, “Server System Variables”. Even with this set to 1, there is still the
chance of an inconsistency between the tables content and the binary log content in case of crash.
For example, if using InnoDB tables, and the MySQL server processes a COMMIT statement, it
writes the whole transaction to the binary log and then commits this transaction into InnoDB. If it
crashes between those two operations, at restart the transaction is rolled back by InnoDB but still ex-
ist in the binary log. This problem can be solved with the --innodb-safe-binlog option
(available starting from MySQL 4.1.3), which adds consistency between the content of InnoDB
tables and the binary log. For this option to really bring safety to you, the MySQL server should also
be configured to synchronize to disk, at every transaction, the binary log (sync_binlog=1) and
(which is true by default) the InnoDB logs. The effect of this option is that at restart after a crash,
after doing a rollback of transactions, the MySQL server cuts rolled back InnoDB transactions from
the binary log. This ensures that the binary log reflects the exact data of InnoDB tables, and so, that

Database Administration

351

the slave remains in sync with the master (not receiving a statement which has been rolled back).
Note that --innodb-safe-binlog can be used even if the MySQL server updates other storage
engines than InnoDB. Only statements/transactions affecting InnoDB tables are subject to being re-
moved from the binary log at InnoDB's crash recovery. If at crash recovery the MySQL server dis-
covers that the binary log is shorter than it should have been (that is, it lacks at least one success-
fully committed InnoDB transaction), which should not happen if sync_binlog=1 and the disk/
filesystem do an actual sync when they are requested to (some don't), it prints an error message
("The binary log <name> is shorter than its expected size"). In this case, this binary log is not cor-
rect, replication should be restarted from a fresh master's data snapshot.

Before MySQL 4.1.9, a write to a binary log file or binary log index file that failed due to a full disk
or an exceeded quota resulted in corruption of the file. Starting from MySQL 4.1.9, writes to the
binary log file and binary log index file are handled the same way as writes to MyISAM tables. See
Section A.4.3, “How MySQL Handles a Full Disk”.

5.9.5. The Slow Query Log
When started with the --log-slow-queries[=file_name] option, mysqld writes a log file
containing all SQL statements that took more than long_query_time seconds to execute. The
time to acquire the initial table locks are not counted as execution time.

If no file_name value is given, the default is the name of the host machine with a suffix of -
slow.log. If a filename is given, but doesn't contain a path, the file is written in the data directory.

A statement is logged to the slow query log after it has been executed and after all locks have been
released. Log order may be different from execution order.

The slow query log can be used to find queries that take a long time to execute and are therefore
candidates for optimization. However, examining a long slow query log can become a difficult task.
To make this easier, you can pipe the slow query log through the mysqldumpslow command to get
a summary of the queries that appear in the log.

Before MySQL 4.1, if you also use --log-long-format when logging slow queries, then quer-
ies that are not using indexes are logged as well. queries that are not using indexes also are logged to
the slow query log. --log-long-format is deprecated as of MySQL version 4.1, when -
-log-short-format was introduced. (Long log format is the default setting since version 4.1.)
Also note that starting with MySQL 4.1, the --log-queries-not-using-indexes option is
available for the purpose of logging queries that do not use indexes to the slow query log. See Sec-
tion 5.2.1, “mysqld Command-Line Options”.

5.9.6. Log File Maintenance
The MySQL Server can create a number of different log files that make it easy to see what is going
on. See Section 5.9, “The MySQL Log Files”. However, you must clean up these files regularly to
ensure that the logs don't take up too much disk space.

When using MySQL with logging enabled, you may want to back up and remove old log files from
time to time and tell MySQL to start logging to new files. See Section 5.7.1, “Database Backups”.

On a Linux (Red Hat) installation, you can use the mysql-log-rotate script for this. If you in-
stalled MySQL from an RPM distribution, the script should have been installed automatically. You
should be careful with this script if you are using the binary log for replication! (You should not re-
move binary logs until you are certain that their contents have been processed by all slaves.)

On other systems, you must install a short script yourself that you start from cron to handle log
files.

You can force MySQL to start using new log files by using mysqladmin flush-logs or by using the
SQL statement FLUSH LOGS. If you are using MySQL 3.21, you must use mysqladmin refresh.

A log flushing operation does the following:

Database Administration

352

• If standard logging (--log) or slow query logging (--log-slow-queries) is used, closes
and reopens the log file (mysql.log and `hostname`-slow.log as default).

• If update logging (--log-update) or binary logging (--log-bin) is used, closes the log
and opens a new log file with a higher sequence number.

If you are using only an update log, you only have to rename the log file and then flush the logs be-
fore making a backup. For example, you can do something like this:

shell> cd mysql-data-directory
shell> mv mysql.log mysql.old
shell> mysqladmin flush-logs

Then make a backup and remove mysql.old.

5.10. Running Multiple MySQL Servers on the
Same Machine

In some cases, you might want to run multiple mysqld servers on the same machine. You might
want to test a new MySQL release while leaving your existing production setup undisturbed. Or you
may want to give different users access to different mysqld servers that they manage themselves.
(For example, you might be an Internet Service Provider that wants to provide independent MySQL
installations for different customers.)

To run multiple servers on a single machine, each server must have unique values for several operat-
ing parameters. These can be set on the command line or in option files. See Section 4.3,
“Specifying Program Options”.

At least the following options must be different for each server:

• --port=port_num

--port controls the port number for TCP/IP connections.

• --socket=path

--socket controls the Unix socket file path on Unix and the name of the named pipe on Win-
dows. On Windows, it's necessary to specify distinct pipe names only for those servers that sup-
port named pipe connections.

• --shared-memory-base-name=name

This option currently is used only on Windows. It designates the shared memory name used by a
Windows server to allow clients to connect via shared memory. This option is new in MySQL
4.1.

• --pid-file=path

This option is used only on Unix. It indicates the name of the file in which the server writes its
process ID.

If you use the following log file options, they must be different for each server:

• --log=path

• --log-bin=path

Database Administration

353

• --log-update=path

• --log-error=path

• --log-isam=path

• --bdb-logdir=path

Log file options are described in Section 5.9.6, “Log File Maintenance”.

If you want more performance, you can also specify the following options differently for each serv-
er, to spread the load between several physical disks:

• --tmpdir=path

• --bdb-tmpdir=path

Having different temporary directories is also recommended, to make it easier to determine which
MySQL server created any given temporary file.

Generally, each server should also use a different data directory, which is specified using the -
-datadir=path option.

Warning: Normally you should never have two servers that update data in the same databases! This
may lead to unpleasant surprises if your operating system doesn't support fault-free system locking!
If (despite this warning) you run multiple servers using the same data directory and they have log-
ging enabled, you must use the appropriate options to specify log filenames that are unique to each
server. Otherwise, the servers try to log to the same files. Please note that this kind of setup only
works with ISAM, MyISAM and MERGE tables, and not with any of the other storage engines.

The warning against sharing a data directory among servers also applies in an NFS environment. Al-
lowing multiple MySQL servers to access a common data directory over NFS is a bad idea!

• The primary problem is that NFS is the speed bottleneck. It is not meant for such use.

• Another risk with NFS is that you has to come up with a way to make sure that two or more
servers do not interfere with each other. Usually NFS file locking is handled by the lockd dae-
mon, but at the moment there is no platform that performs locking 100% reliably in every situ-
ation.

Make it easy for yourself: Forget about sharing a data directory among servers over NFS. A better
solution is to have one computer that contains several CPUs and use an operating system that
handles threads efficiently.

If you have multiple MySQL installations in different locations, normally you can specify the base
installation directory for each server with the --basedir=path option to cause each server to
use a different data directory, log files, and PID file. (The defaults for all these values are determ-
ined relative to the base directory). In that case, the only other options you need to specify are the -
-socket and --port options. For example, suppose that you install different versions of MySQL
using tar file binary distributions. These install in different locations, so you can start the server
for each installation using the command bin/mysqld_safe under its corresponding base directory.
mysqld_safe determines the proper --basedir option to pass to mysqld, and you need specify
only the --socket and --port options to mysqld_safe. (For versions of MySQL older than 4.0,
use safe_mysqld rather than mysqld_safe.)

As discussed in the following sections, it is possible to start additional servers by setting environ-
ment variables or by specifying appropriate command-line options. However, if you need to run
multiple servers on a more permanent basis, it is more convenient to use option files to specify for
each server those option values that must be unique to it.

Database Administration

354

5.10.1. Running Multiple Servers on Windows
You can run multiple servers on Windows by starting them manually from the command line, each
with appropriate operating parameters. On Windows NT-based systems, you also have the option of
installing several servers as Windows services and running them that way. General instructions for
running MySQL servers from the command line or as services are given in Section 2.3, “Installing
MySQL on Windows”. This section describes how to make sure that you start each server with dif-
ferent values for those startup options that must be unique per server, such as the data directory.
These options are described in Section 5.10, “Running Multiple MySQL Servers on the Same Ma-
chine”.

5.10.1.1. Starting Multiple Windows Servers at the Command Line

To start multiple servers manually from the command line, you can specify the appropriate options
on the command line or in an option file. It's more convenient to place the options in an option file,
but it's necessary to make sure that each server gets its own set of options. To do this, create an op-
tion file for each server and tell the server the filename with a --defaults-file option when
you run it.

Suppose that you want to run mysqld on port 3307 with a data directory of C:\mydata1, and
mysqld-max on port 3308 with a data directory of C:\mydata2. (To do this, make sure that be-
fore you start the servers, each data directory exists and has its own copy of the mysql database
that contains the grant tables.)

Then create two option files. For example, create one file named C:\my-opts1.cnf that looks
like this:

[mysqld]
datadir = C:/mydata1
port = 3307

Create a second file named C:\my-opts2.cnf that looks like this:

[mysqld]
datadir = C:/mydata2
port = 3308

Then start each server with its own option file:

C:\> C:\mysql\bin\mysqld --defaults-file=C:\my-opts1.cnf
C:\> C:\mysql\bin\mysqld-max --defaults-file=C:\my-opts2.cnf

On NT, each server starts in the foreground (no new prompt appears until the server exits later);
you'll need to issue those two commands in separate console windows.

To shut down the servers, you must connect to the appropriate port number:

C:\> C:\mysql\bin\mysqladmin --port=3307 shutdown
C:\> C:\mysql\bin\mysqladmin --port=3308 shutdown

Servers configured as just described allow clients to connect over TCP/IP. If your version of Win-
dows supports named pipes and you also want to allow named pipe connections, use the mysqld-nt
or mysqld-max-nt servers and specify options that enable the named pipe and specify its name.
Each server that supports named pipe connections must use a unique pipe name. For example, the
C:\my-opts1.cnf file might be written like this:

[mysqld]
datadir = C:/mydata1
port = 3307
enable-named-pipe
socket = mypipe1

Database Administration

355

Then start the server this way:

C:\> C:\mysql\bin\mysqld-nt --defaults-file=C:\my-opts1.cnf

Modify C:\my-opts2.cnf similarly for use by the second server.

5.10.1.2. Starting Multiple Windows Servers as Services

On NT-based systems, a MySQL server can be run as a Windows service. The procedures for in-
stalling, controlling, and removing a single MySQL service are described in Section 2.3.12,
“Starting MySQL as a Windows Service”.

As of MySQL 4.0.2, you can install multiple servers as services. In this case, you must make sure
that each server uses a different service name in addition to all the other parameters that must be
unique per server.

For the following instructions, assume that you want to run the mysqld-nt server from two different
versions of MySQL that are installed at C:\mysql-4.0.8 and C:\mysql-4.0.17, respect-
ively. (This might be the case if you're running 4.0.8 as your production server, but want to test
4.0.17 before upgrading to it.)

The following principles apply when installing a MySQL service with the --install or -
-install-manual option:

• If you specify no service name, the server uses the default service name of MySQL and the serv-
er reads options from the [mysqld] group in the standard option files.

• If you specify a service name after the --install option, the server ignores the [mysqld]
option group and instead reads options from the group that has the same name as the service.
The server reads options from the standard option files.

• If you specify a --defaults-file option after the service name, the server ignores the
standard option files and reads options only from the [mysqld] group of the named file.

Note: Before MySQL 4.0.17, only a server installed using the default service name (MySQL) or one
installed explicitly with a service name of mysqld read the [mysqld] group in the standard option
files. As of 4.0.17, all servers read the [mysqld] group if they read the standard option files, even
if they are installed using another service name. This allows you to use the [mysqld] group for
options that should be used by all MySQL services, and an option group named after each service
for use by the server installed with that service name.

Based on the preceding information, you have several ways to set up multiple services. The follow-
ing instructions describe some examples. Before trying any of them, be sure that you shut down and
remove any existing MySQL services first.

• Approach 1: Specify the options for all services in one of the standard option files. To do this,
use a different service name for each server. Suppose that you want to run the 4.0.8 mysqld-nt
using the service name of mysqld1 and the 4.0.17 mysqld-nt using the service name
mysqld2. In this case, you can use the [mysqld1] group for 4.0.8 and the [mysqld2]
group for 4.0.17. For example, you can set up C:\my.cnf like this:

options for mysqld1 service
[mysqld1]
basedir = C:/mysql-4.0.8
port = 3307
enable-named-pipe
socket = mypipe1
options for mysqld2 service

Database Administration

356

[mysqld2]
basedir = C:/mysql-4.0.17
port = 3308
enable-named-pipe
socket = mypipe2

Install the services as follows, using the full server pathnames to ensure that Windows registers
the correct executable program for each service:

C:\> C:\mysql-4.0.8\bin\mysqld-nt --install mysqld1
C:\> C:\mysql-4.0.17\bin\mysqld-nt --install mysqld2

To start the services, use the services manager, or use NET START with the appropriate service
names:

C:\> NET START mysqld1
C:\> NET START mysqld2

To stop the services, use the services manager, or use NET STOP with the appropriate service
names:

C:\> NET STOP mysqld1
C:\> NET STOP mysqld2

• Approach 2: Specify options for each server in separate files and use --defaults-file
when you install the services to tell each server what file to use. In this case, each file should list
options using a [mysqld] group.

With this approach, to specify options for the 4.0.8 mysqld-nt, create a file
C:\my-opts1.cnf that looks like this:

[mysqld]
basedir = C:/mysql-4.0.8
port = 3307
enable-named-pipe
socket = mypipe1

For the 4.0.17 mysqld-nt, create a file C:\my-opts2.cnf that looks like this:

[mysqld]
basedir = C:/mysql-4.0.17
port = 3308
enable-named-pipe
socket = mypipe2

Install the services as follows (enter each command on a single line):

C:\> C:\mysql-4.0.8\bin\mysqld-nt --install mysqld1
--defaults-file=C:\my-opts1.cnf

C:\> C:\mysql-4.0.17\bin\mysqld-nt --install mysqld2
--defaults-file=C:\my-opts2.cnf

To use a --defaults-file option when you install a MySQL server as a service, you must
precede the option with the service name.

After installing the services, start and stop them the same way as in the preceding example.

To remove multiple services, use mysqld --remove for each one, specifying a service name follow-

Database Administration

357

ing the --remove option. If the service name is the default (MySQL), you can omit it.

5.10.2. Running Multiple Servers on Unix
The easiest way is to run multiple servers on Unix is to compile them with different TCP/IP ports
and Unix socket files so that each one is listening on different network interfaces. Also, by compil-
ing in different base directories for each installation, that automatically results in different compiled-
in data directory, log file, and PID file locations for each of your servers.

Assume that an existing server is configured for the default TCP/IP port number (3306) and Unix
socket file (/tmp/mysql.sock). To configure a new server to have different operating paramet-
ers, use a configure command something like this:

shell> ./configure --with-tcp-port=port_number \
--with-unix-socket-path=file_name \
--prefix=/usr/local/mysql-4.0.17

Here, port_number and file_name must be different from the default TCP/IP port number and
Unix socket file pathname, and the --prefix value should specify an installation directory differ-
ent than the one under which the existing MySQL installation is located.

If you have a MySQL server listening on a given port number, you can use the following command
to find out what operating parameters it is using for several important configurable variables, includ-
ing the base directory and Unix socket filename:

shell> mysqladmin --host=host_name --port=port_number variables

With the information displayed by that command, you can tell what option values not to use when
configuring an additional server.

Note that if you specify localhost as a hostname, mysqladmin defaults to using a Unix socket
file connection rather than TCP/IP. In MySQL 4.1, you can explicitly specify the connection pro-
tocol to use by using the --protocol={TCP | SOCKET | PIPE | MEMORY} option.

You don't have to compile a new MySQL server just to start with a different Unix socket file and
TCP/IP port number. It is also possible to specify those values at runtime. One way to do so is by
using command-line options:

shell> mysqld_safe --socket=file_name --port=port_number

To start a second server, provide different --socket and --port option values, and pass a -
-datadir=path option to mysqld_safe so that the server uses a different data directory.

Another way to achieve a similar effect is to use environment variables to set the Unix socket file-
name and TCP/IP port number:

shell> MYSQL_UNIX_PORT=/tmp/mysqld-new.sock
shell> MYSQL_TCP_PORT=3307
shell> export MYSQL_UNIX_PORT MYSQL_TCP_PORT
shell> mysql_install_db --user=mysql
shell> mysqld_safe --datadir=/path/to/datadir &

This is a quick way of starting a second server to use for testing. The nice thing about this method is
that the environment variable settings apply to any client programs that you invoke from the same
shell. Thus, connections for those clients are automatically directed to the second server!

Appendix F, Environment Variables includes a list of other environment variables you can use to af-
fect mysqld.

For automatic server execution, your startup script that is executed at boot time should execute the
following command once for each server with an appropriate option file path for each command:

Database Administration

358

mysqld_safe --defaults-file=path

Each option file should contain option values specific to a given server.

On Unix, the mysqld_multi script is another way to start multiple servers. See Section 5.1.5, “The
mysqld_multi Program for Managing Multiple MySQL Servers”.

5.10.3. Using Client Programs in a Multiple-Server En-
vironment

When you want to connect with a client program to a MySQL server that is listening to different
network interfaces than those compiled into your client, you can use one of the following methods:

• Start the client with --host=host_name --port=port_number to connect via TCP/IP
to a remote server, with --host=127.0.0.1 --port=port_number to connect via
TCP/IP to a local server, or with --host=localhost --socket=file_name to connect
to a local server via a Unix socket file or a Windows named pipe.

• As of MySQL 4.1, start the client with --protocol=tcp to connect via TCP/IP, -
-protocol=socket to connect via a Unix socket file, --protocol=pipe to connect via
a named pipe, or --protocol=memory to connect via shared memory. For TCP/IP connec-
tions, you may also need to specify --host and --port options. For the other types of con-
nections, you may need to specify a --socket option to specify a Unix socket file or named
pipe name, or a --shared-memory-base-name option to specify the shared memory
name. Shared memory connections are supported only on Windows.

• On Unix, set the MYSQL_UNIX_PORT and MYSQL_TCP_PORT environment variables to point
to the Unix socket file and TCP/IP port number before you start your clients. If you normally
use a specific socket file or port number, you can place commands to set these environment vari-
ables in your .login file so that they apply each time you log in. See Appendix F, Environ-
ment Variables.

• Specify the default Unix socket file and TCP/IP port number in the [client] group of an op-
tion file. For example, you can use C:\my.cnf on Windows, or the .my.cnf file in your
home directory on Unix. See Section 4.3.2, “Using Option Files”.

• In a C program, you can specify the socket file or port number arguments in the
mysql_real_connect() call. You can also have the program read option files by calling
mysql_options(). See Section 22.2.3, “C API Function Descriptions”.

• If you are using the Perl DBD::mysql module, you can read options from MySQL option files.
For example:

$dsn = "DBI:mysql:test;mysql_read_default_group=client;"
. "mysql_read_default_file=/usr/local/mysql/data/my.cnf";

$dbh = DBI->connect($dsn, $user, $password);

See Section 22.4, “MySQL Perl API”.

Other programming interfaces may provide similar capabilities for reading option files.

5.11. The MySQL Query Cache
From version 4.0.1 on, MySQL Server features a query cache. When in use, the query cache stores
the text of a SELECT query together with the corresponding result that was sent to the client. If the
identical query is received later, the server retrieves the results from the query cache rather than
parsing and executing the query again.

Database Administration

359

The query cache is extremely useful in an environment where (some) tables don't change very often
and you have a lot of identical queries. This is a typical situation for many Web servers that generate
a lot of dynamic pages based on database content.

Note: The query cache does not return stale data. When tables are modified, any relevant entries in
the query cache are flushed.

Note: The query cache does not work in an environment where you have many mysqld servers up-
dating the same MyISAM tables.

Some performance data for the query cache follow. These results were generated by running the
MySQL benchmark suite on a Linux Alpha 2 x 500MHz system with 2GB RAM and a 64MB query
cache.

• If all the queries you're performing are simple (such as selecting a row from a table with one
row), but still differ so that the queries cannot be cached, the overhead for having the query
cache active is 13%. This could be regarded as the worst case scenario. In real life, queries tend
to be much more complicated, so the overhead normally is significantly lower.

• Searches for a single row in a single-row table are 238% faster with the query cache than
without it. This can be regarded as close to the minimum speedup to be expected for a query that
is cached.

To disable the query cache at server startup, set the query_cache_size system variable to 0. By
disabling the query cache code, there is no noticeable overhead. Query cache capabilities can be ex-
cluded from the server entirely by using the --without-query-cache option to configure
when compiling MySQL.

5.11.1. How the Query Cache Operates
This section describes how the query cache works when it is operational. Section 5.11.3, “Query
Cache Configuration” describes how to control whether or not it is operational.

Queries are compared before parsing, so the following two queries are regarded as different by the
query cache:

SELECT * FROM tbl_name
Select * from tbl_name

Queries must be exactly the same (byte for byte) to be seen as identical. In addition, query strings
that are identical may be treated as different for other reasons. Queries that use different databases,
different protocol versions, or different default character sets are considered different queries and
are cached separately.

If a query result is returned from query cache, the server increments the Qcache_hits status vari-
able, not Com_select. See Section 5.11.4, “Query Cache Status and Maintenance”.

If a table changes, then all cached queries that use the table become invalid and are removed from
the cache. This includes queries that use MERGE tables that map to the changed table. A table can be
changed by many types of statements, such as INSERT, UPDATE, DELETE, TRUNCATE, ALTER
TABLE, DROP TABLE, or DROP DATABASE.

Transactional InnoDB tables that have been changed are invalidated when a COMMIT is performed.

In MySQL 4.0, the query cache is disabled within transactions (it does not return results). Beginning
with MySQL 4.1.1, the query cache also works within transactions when using InnoDB tables (it
uses the table version number to detect whether or not its contents are still current).

Before MySQL 5.0, a query that begins with a leading comment might be cached, but could not be
fetched from the cache. This problem is fixed in MySQL 5.0.

Database Administration

360

The query cache works for SELECT SQL_CALC_FOUND_ROWS ... and SELECT
FOUND_ROWS() type queries. FOUND_ROWS() returns the correct value even if the preceding
query was fetched from the cache because the number of found rows is also stored in the cache.

A query cannot be cached if it contains any of the following functions:

BENCHMARK() CONNECTION_ID() CURDATE()

CURRENT_DATE() CURRENT_TIME() CURRENT_TIMESTAMP()

CURTIME() DATABASE() ENCRYPT() with one paramet-
er

FOUND_ROWS() GET_LOCK() LAST_INSERT_ID()

LOAD_FILE() MASTER_POS_WAIT() NOW()

RAND() RELEASE_LOCK() SYSDATE()

UNIX_TIMESTAMP() with no
parameters

USER()

A query also is not cached under these conditions:

• It contains user-defined functions (UDFs).

• It contains user variables.

• It refers to the tables in the mysql system database.

• It is of any of the following forms:

SELECT ... IN SHARE MODE
SELECT ... INTO OUTFILE ...
SELECT ... INTO DUMPFILE ...
SELECT * FROM ... WHERE autoincrement_col IS NULL

The last form is not cached because it is used as the ODBC workaround for obtaining the last in-
sert ID value. See Section 23.1.14.1, “How to Get the Value of an AUTO_INCREMENT Column
in ODBC”.

• It uses TEMPORARY tables.

• It does not use any tables.

• The user has a column-level privilege for any of the involved tables.

• Before a query is fetched from the query cache, MySQL checks that the user has SELECT priv-
ilege for all the involved databases and tables. If this is not the case, the cached result is not
used.

5.11.2. Query Cache SELECT Options
There are two query cache-related options that may be specified in a SELECT statement:

• SQL_CACHE

The query result is cached if the value of the query_cache_type system variable is ON or
DEMAND.

• SQL_NO_CACHE

Database Administration

361

The query result is not cached.

Examples:

SELECT SQL_CACHE id, name FROM customer;
SELECT SQL_NO_CACHE id, name FROM customer;

5.11.3. Query Cache Configuration
The have_query_cache server system variable indicates whether the query cache is available:

mysql> SHOW VARIABLES LIKE 'have_query_cache';
+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| have_query_cache | YES |
+------------------+-------+

Several other system variables control query cache operation. These can be set in an option file or
on the command line when starting mysqld. The query cache-related system variables all have
names that begin with query_cache_. They are described briefly in Section 5.2.3, “Server Sys-
tem Variables”, with additional configuration information given here.

To set the size of the query cache, set the query_cache_size system variable. Setting it to 0
disables the query cache. The default cache size is 0; that is, the query cache is disabled.

If the query cache is enabled, the query_cache_type variable influences how it works. This
variable can be set to the following values:

• A value of 0 or OFF prevents caching or retrieval of cached results.

• A value of 1 or ON allows caching except of those statements that begin with SELECT
SQL_NO_CACHE.

• A value of 2 or DEMAND causes caching of only those statements that begin with SELECT
SQL_CACHE.

Setting the GLOBAL value of query_cache_type determines query cache behavior for all cli-
ents that connect after the change is made. Individual clients can control cache behavior for their
own connection by setting the SESSION value of query_cache_type. For example, a client
can disable use of the query cache for its own queries like this:

mysql> SET SESSION query_cache_type = OFF;

To control the maximum size of individual query results that can be cached, set the
query_cache_limit variable. The default value is 1MB.

The result of a query (the data sent to the client) is stored in the query cache during result retrieval.
Therefore the data usually is not handled in one big chunk. The query cache allocates blocks for
storing this data on demand, so when one block is filled, a new block is allocated. Because memory
allocation operation is costly (timewise), the query cache allocates blocks with a minimum size giv-
en by the query_cache_min_res_unit system variable. When a query is executed, the last
result block is trimmed to the actual data size so that unused memory is freed. Depending on the
types of queries your server executes, you might find it helpful to tune the value of
query_cache_min_res_unit:

Database Administration

362

• The default value of query_cache_min_res_unit is 4KB. This should be adequate for
most cases.

• If you have a lot of queries with small results, the default block size may lead to memory frag-
mentation, as indicated by a large number of free blocks. Fragmentation can force the query
cache to prune (delete) queries from the cache due to lack of memory. In this case, you should
decrease the value of query_cache_min_res_unit. The number of free blocks and quer-
ies removed due to pruning are given by the values of the Qcache_free_blocks and
Qcache_lowmem_prunes status variables.

• If most of your queries have large results (check the Qcache_total_blocks and
Qcache_queries_in_cache status variables), you can increase performance by increasing
query_cache_min_res_unit. However, be careful to not make it too large (see the previ-
ous item).

query_cache_min_res_unit is present from MySQL 4.1.

5.11.4. Query Cache Status and Maintenance
You can check whether the query cache is present in your MySQL server using the following state-
ment:

mysql> SHOW VARIABLES LIKE 'have_query_cache';
+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| have_query_cache | YES |
+------------------+-------+

You can defragment the query cache to better utilize its memory with the FLUSH QUERY CACHE
statement. The statement does not remove any queries from the cache.

The RESET QUERY CACHE statement removes all query results from the query cache. The
FLUSH TABLES statement also does this.

To monitor query cache performance, use SHOW STATUS to view the cache status variables:

mysql> SHOW STATUS LIKE 'Qcache%';
+-------------------------+--------+
| Variable_name | Value |
+-------------------------+--------+
Qcache_free_blocks	36
Qcache_free_memory	138488
Qcache_hits	79570
Qcache_inserts	27087
Qcache_lowmem_prunes	3114
Qcache_not_cached	22989
Qcache_queries_in_cache	415
Qcache_total_blocks	912
+-------------------------+--------+

Descriptions of each of these variables are given in Section 5.2.4, “Server Status Variables”. Some
uses for them are described here.

The total number of SELECT queries is equal to:

Com_select
+ Qcache_hits
+ queries with errors found by parser

The Com_select value is equal to:

Database Administration

363

Qcache_inserts
+ Qcache_not_cached
+ queries with errors found during columns/rights check

The query cache uses variable-length blocks, so Qcache_total_blocks and
Qcache_free_blocks may indicate query cache memory fragmentation. After FLUSH QUERY
CACHE, only a single free block remains.

Every cached query requires a minimum of two blocks (one for the query text and one or more for
the query results). Also, every table that is used by a query requires one block. However, if two or
more queries use the same table, only one block needs to be allocated.

The information provided by the Qcache_lowmem_prunes status variable can help you tune the
query cache size. It counts the number of queries that have been removed from the cache to free up
memory for caching new queries. The query cache uses a least recently used (LRU) strategy to de-
cide which queries to remove from the cache. Tuning information is given in Section 5.11.3, “Query
Cache Configuration”.

Database Administration

364

Chapter 6. Replication in MySQL
Replication capabilities allowing the databases on one MySQL server to be duplicated on another
were introduced in MySQL 3.23.15. This chapter describes the various replication features provided
by MySQL. It introduces replication concepts, shows how to set up replication servers, and serves as
a reference to the available replication options. It also provides a list of frequently asked questions
(with answers), and troubleshooting advice for solving problems.

For a description of the syntax of replication-related SQL statements, see Section 13.6, “Replication
Statements”.

We suggest that you visit our Web site at http://www.mysql.com often and read updates to this
chapter. Replication is constantly being improved, and we update the manual frequently with the
most current information.

6.1. Introduction to Replication
MySQL 3.23.15 and up features support for one-way replication. One server acts as the master,
while one or more other servers act as slaves. The master server writes updates to its binary log files,
and maintains an index of the files to keep track of log rotation. These logs serve as a record of up-
dates to be sent to slave servers. When a slave server connects to the master server, it informs the
master of its last position within the logs since the last successfully propagated update. The slave
catches up any updates that have occurred since then, and then blocks and waits for the master to
notify it of new updates.

A slave server can also serve as a master if you want to set up chained replication servers.

Note that when you are using replication, all updates to the tables that are replicated should be per-
formed on the master server. Otherwise, you must always be careful to avoid conflicts between up-
dates that users make to tables on the master and updates that they make to tables on the slave.

One-way replication has benefits for robustness, speed, and system administration:

• Robustness is increased with a master/slave setup. In the event of problems with the master, you
can switch to the slave as a backup.

• Better response time for clients can be achieved by splitting the load for processing client quer-
ies between the master and slave servers. SELECT queries may be sent to the slave to reduce the
query processing load of the master. Statements that modify data should still be sent to the mas-
ter so that the master and slave do not get out of sync. This load-balancing strategy is effective if
non-updating queries dominate, but that is the normal case.

• Another benefit of using replication is that you can perform backups using a slave server without
disturbing the master. The master continues to process updates while the backup is being made.
See Section 5.7.1, “Database Backups”.

6.2. Replication Implementation Overview
MySQL replication is based on the master server keeping track of all changes to your databases
(updates, deletes, and so on) in the binary logs. Therefore, to use replication, you must enable binary
logging on the master server. See Section 5.9.4, “The Binary Log”.

Each slave server receives from the master the saved updates that the master has recorded in its bin-
ary log, so that the slave can execute the same updates on its copy of the data.

It is very important to realize that the binary log is simply a record starting from the fixed point in
time at which you enable binary logging. Any slaves that you set up need copies of the databases on
your master as they existed at the moment you enabled binary logging on the master. If you start

365

http://www.mysql.com

your slaves with databases that are not the same as what was on the master when the binary log
was started, your slaves may fail.

One way to copy the master's data to the slave is to use the LOAD DATA FROM MASTER state-
ment. Be aware that LOAD DATA FROM MASTER is available only as of MySQL 4.0.0 and cur-
rently works only if all the tables on the master are MyISAM type. Also, this statement acquires a
global read lock, so no updates on the master are possible while the tables are being transferred to
the slave. When we implement lock-free hot table backup (in MySQL 5.0), this global read lock will
no longer be necessary.

Due to these limitations, we recommend that at this point you use LOAD DATA FROM MASTER
only if the dataset on the master is relatively small, or if a prolonged read lock on the master is ac-
ceptable. While the actual speed of LOAD DATA FROM MASTER may vary from system to sys-
tem, a good rule of thumb for how long it takes is 1 second per 1MB of data. That is only a rough
estimate, but you should get close to it if both master and slave are equivalent to 700MHz Pentium
performance and are connected through a 100MBit/s network.

After the slave has been set up with a copy of the master's data, it connects to the master and waits
for updates to process. If the master goes away or the slave loses connectivity with your master, it
keeps trying to connect periodically until it is able to reconnect and resume listening for updates.
The retry interval is controlled by the --master-connect-retry option. The default is 60
seconds.

Each slave keeps track of where it left off. The master server has no knowledge of how many slaves
there are or which ones are up to date at any given time.

6.3. Replication Implementation Details
MySQL replication capabilities are implemented using three threads (one on the master server and
two on the slave). When START SLAVE is issued, the slave creates an I/O thread. The I/O thread
connects to the master and asks it to send the statements recorded in its binary logs. The master cre-
ates a thread to send the binary log contents to the slave. This thread can be identified as the Bin-
log Dump thread in the output of SHOW PROCESSLIST on the master. The slave I/O thread
reads what the master Binlog Dump thread sends and simply copies it to some local files in the
slave's data directory called relay logs. The third thread is the SQL thread, which the slave creates to
read the relay logs and execute the updates they contain.

In the preceding description, there are three threads per slave. For a master that has multiple slaves,
it creates one thread for each currently connected slave, and each slave has its own I/O and SQL
threads.

For versions of MySQL before 4.0.2, replication involves only two threads (one on the master and
one on the slave). The slave I/O and SQL threads are combined as a single thread, and no relay log
files are used.

The advantage of using two slave threads is that statement reading and execution are separated into
two independent tasks. The task of reading statements is not slowed down if statement execution is
slow. For example, if the slave server has not been running for a while, its I/O thread can quickly
fetch all the binary log contents from the master when the slave starts, even if the SQL thread lags
far behind and may take hours to catch up. If the slave stops before the SQL thread has executed all
the fetched statements, the I/O thread has at least fetched everything so that a safe copy of the state-
ments is locally stored in the slave's relay logs for execution when next the slave starts. This allows
the binary logs to be purged on the master, because it no longer need wait for the slave to fetch their
contents.

The SHOW PROCESSLIST statement provides information that tells you what is happening on the
master and on the slave regarding replication.

The following example illustrates how the three threads show up in SHOW PROCESSLIST. The
output format is that used by SHOW PROCESSLIST as of MySQL version 4.0.15, when the content
of the State column was changed to be more meaningful compared to earlier versions.

On the master server, the output from SHOW PROCESSLIST looks like this:

Replication in MySQL

366

mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************

Id: 2
User: root
Host: localhost:32931
db: NULL

Command: Binlog Dump
Time: 94
State: Has sent all binlog to slave; waiting for binlog to

be updated
Info: NULL

Here, thread 2 is a replication thread for a connected slave. The information indicates that all out-
standing updates have been sent to the slave and that the master is waiting for more updates to oc-
cur.

On the slave server, the output from SHOW PROCESSLIST looks like this:

mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************

Id: 10
User: system user
Host:
db: NULL

Command: Connect
Time: 11
State: Waiting for master to send event
Info: NULL

*************************** 2. row ***************************
Id: 11

User: system user
Host:
db: NULL

Command: Connect
Time: 11
State: Has read all relay log; waiting for the slave I/O

thread to update it
Info: NULL

This information indicates that thread 10 is the I/O thread that is communicating with the master
server, and thread 11 is the SQL thread that is processing the updates stored in the relay logs. Cur-
rently, both threads are idle, waiting for further updates.

Note that the value in the Time column can tell how late the slave is compared to the master. See
Section 6.9, “Replication FAQ”.

6.3.1. Replication Master Thread States
The following list shows the most common states you see in the State column for the master's
Binlog Dump thread. If you don't see any Binlog Dump threads on a master server, replication
is not running. That is, no slaves currently are connected.

• Sending binlog event to slave

Binary logs consist of events, where an event is usually an update statement plus some other in-
formation. The thread has read an event from the binary log and is sending it to the slave.

• Finished reading one binlog; switching to next binlog

The thread has finished reading a binary log file and is opening the next one to send to the slave.

• Has sent all binlog to slave; waiting for binlog to be updated

Replication in MySQL

367

The thread has read all outstanding updates from the binary logs and sent them to the slave. It is
idle, waiting for new events to appear in the binary log resulting from new update statements be-
ing executed on the master.

• Waiting to finalize termination

A very brief state that occurs as the thread is stopping.

6.3.2. Replication Slave I/O Thread States
The following list shows the most common states you see in the State column for a slave server I/
O thread. Beginning with MySQL 4.1.1, this state also appears in the Slave_IO_State column
displayed by the SHOW SLAVE STATUS statement. This means that you can get a good view of
what is happening by using only SHOW SLAVE STATUS.

• Connecting to master

The thread is attempting to connect to the master.

• Checking master version

A very brief state that occurs just after the connection to the master is established.

• Registering slave on master

A very brief state that occurs just after the connection to the master is established.

• Requesting binlog dump

A very brief state that occurs just after the connection to the master is established. The thread
sends to the master a request for the contents of its binary logs, starting from the requested bin-
ary log filename and position.

• Waiting to reconnect after a failed binlog dump request

If the binary log dump request failed (due to disconnection), the thread goes into this state while
it sleeps, then tries to reconnect periodically. The interval between retries can be specified using
the --master-connect-retry option.

• Reconnecting after a failed binlog dump request

The thread is trying to reconnect to the master.

• Waiting for master to send event

The thread has connected to the master and is waiting for binary log events to arrive. This can
last for a long time if the master is idle. If the wait lasts for slave_read_timeout seconds,
a timeout occurs. At that point, the thread considers the connection to be broken and make an at-
tempt to reconnect.

• Queueing master event to the relay log

The thread has read an event and is copying it to the relay log so that the SQL thread can process
it.

• Waiting to reconnect after a failed master event read

An error occurred while reading (due to disconnection). The thread is sleeping for master-
connect-retry seconds before attempting to reconnect.

• Reconnecting after a failed master event read

Replication in MySQL

368

The thread is trying to reconnect to the master. When connection is established again, the state
becomes Waiting for master to send event.

• Waiting for the slave SQL thread to free enough relay log space

You are using a non-zero relay_log_space_limit value, and the relay logs have grown
so much that their combined size exceeds this value. The I/O thread is waiting until the SQL
thread frees enough space by processing relay log contents so that it can delete some relay log
files.

• Waiting for slave mutex on exit

A very brief state that occurs as the thread is stopping.

6.3.3. Replication Slave SQL Thread States
The following list shows the most common states you see in the State column for a slave server
SQL thread:

• Reading event from the relay log

The thread has read an event from the relay log so that it can process it.

• Has read all relay log; waiting for the slave I/O thread to up-
date it

The thread has processed all events in the relay log files and is waiting for the I/O thread to write
new events to the relay log.

• Waiting for slave mutex on exit

A very brief state that occurs as the thread is stopping.

The State column for the I/O thread may also show the text of a statement. This indicates that the
thread has read an event from the relay log, extracted the statement from it, and is executing it.

6.3.4. Replication Relay and Status Files
By default, relay logs are named using filenames of the form
host_name-relay-bin.nnnnnn, where host_name is the name of the slave server host and
nnnnnn is a sequence number. Successive relay log files are created using successive sequence
numbers, beginning with 000001 (001 in MySQL 4.0 or older). The slave keeps track of relay
logs currently in use in an index file. The default relay log index filename is host_name-
relay-bin.index. By default, these files are created in the slave's data directory. The default fi-
lenames may be overridden with the --relay-log and --relay-log-index server options.
See Section 6.8, “Replication Startup Options”.

Relay logs have the same format as binary logs, so you can use mysqlbinlog to read them. A relay
log is automatically deleted by the SQL thread as soon as it has executed all its events and no longer
needs it). There is no explicit mechanism for deleting relay logs, because the SQL thread takes care
of doing so. However, from MySQL 4.0.14, FLUSH LOGS rotates relay logs, which influences
when the SQL thread deletes them.

A new relay log is created under the following conditions:

• When the I/O thread starts for the first time after the slave server starts. (In MySQL 5.0, a new
relay log is created each time the I/O thread starts, not just the first time.)

Replication in MySQL

369

• When the logs are flushed; for example, with FLUSH LOGS or mysqladmin flush-logs. (This
creates a new relay log only as of MySQL 4.0.14.)

• When the size of the current relay log file becomes too large. The meaning of ``too large'' is de-
termined as follows:

• max_relay_log_size, if max_relay_log_size > 0

• max_binlog_size, if max_relay_log_size = 0 or MySQL is older than 4.0.14

A slave replication server creates two additional small files in the data directory. These are status
files and are named master.info and relay-log.info by default. They contain information
like that shown in the output of the SHOW SLAVE STATUS statement (see Section 13.6.2, “SQL
Statements for Controlling Slave Servers” for a description of this statement). As disk files, they
survive a slave server's shutdown. The next time the slave starts up, it reads these files to determine
how far it has proceeded in reading binary logs from the master and in processing its own relay logs.

The master.info file is updated by the I/O thread. Before MySQL 4.1, the correspondence
between the lines in the file and the columns displayed by SHOW SLAVE STATUS is as follows:

Line Description

1 Master_Log_File

2 Read_Master_Log_Pos

3 Master_Host

4 Master_User

5 Password (not shown by SHOW SLAVE STATUS)

6 Master_Port

7 Connect_Retry

As of MySQL 4.1, the file includes a line count and information about SSL options:

Line Description

1 Number of lines in the file

2 Master_Log_File

3 Read_Master_Log_Pos

4 Master_Host

5 Master_User

6 Password (not shown by SHOW SLAVE STATUS)

7 Master_Port

8 Connect_Retry

9 Master_SSL_Allowed

10 Master_SSL_CA_File

11 Master_SSL_CA_Path

12 Master_SSL_Cert

13 Master_SSL_Cipher

14 Master_SSL_Key

The relay-log.info file is updated by the SQL thread. The correspondence between the lines
in the file and the columns displayed by SHOW SLAVE STATUS is as follows:

Line Description

Replication in MySQL

370

1 Relay_Log_File

2 Relay_Log_Pos

3 Relay_Master_Log_File

4 Exec_Master_Log_Pos

When you back up your slave's data, you should back up these two small files as well, along with
the relay log files. They are needed to resume replication after you restore the slave's data. If you
lose the relay logs but still have the relay-log.info file, you can check it to determine how far
the SQL thread has executed in the master binary logs. Then you can use CHANGE MASTER TO
with the MASTER_LOG_FILE and MASTER_LOG_POS options to tell the slave to re-read the bin-
ary logs from that point. This requires that the binary logs still exist on the master server.

If your slave is subject to replicating LOAD DATA INFILE statements, you should also back up
any SQL_LOAD-* files that exist in the directory that the slave uses for this purpose. The slave
needs these files to resume replication of any interrupted LOAD DATA INFILE operations. The
directory location is specified using the --slave-load-tmpdir option. Its default value, if not
specified, is the value of the tmpdir variable.

6.4. How to Set Up Replication
Here is a quick description of how to set up complete replication of your current MySQL server. It
assumes that you want to replicate all your databases and have not configured replication before.
You need to shut down your master server briefly to complete the steps outlined here.

The procedure is written in terms of setting up a single slave, but you can use it to set up multiple
slaves.

While this method is the most straightforward way to set up a slave, it is not the only one. For ex-
ample, if you have a snapshot of the master's data, and the master has its server ID set and binary
logging enabled, you can set up a slave without shutting down the master or even blocking updates
to it. For more details, please see Section 6.9, “Replication FAQ”.

If you want to administer a MySQL replication setup, we suggest that you read this entire chapter
through and try all statements mentioned in Section 13.6.1, “SQL Statements for Controlling Master
Servers” and Section 13.6.2, “SQL Statements for Controlling Slave Servers”. You should also fa-
miliarize yourself with replication startup options described in Section 6.8, “Replication Startup Op-
tions”.

Note that this procedure and some of the replication SQL statements in later sections refer to the
SUPER privilege. Prior to MySQL 4.0.2, use the PROCESS privilege instead.

1. Make sure that you have a recent version of MySQL installed on the master and slaves, and
that these versions are compatible according to the table shown in Section 6.5, “Replication
Compatibility Between MySQL Versions”.

Please do not report bugs until you have verified that the problem is present in the latest re-
lease.

2. Set up an account on the master server that the slave server can use to connect. This account
must be given the REPLICATION SLAVE privilege. If the account is used only for replication
(which is recommended), you don't need to grant any additional privileges.

Suppose that your domain is mydomain.com and you want to create an account with a user-
name of repl such that slave servers can use the account to access the master server from any
host in your domain using a password of slavepass. To create the account, this use GRANT
statement:

mysql> GRANT REPLICATION SLAVE ON *.*
-> TO 'repl'@'%.mydomain.com' IDENTIFIED BY 'slavepass';

Replication in MySQL

371

For MySQL versions older than 4.0.2, the REPLICATION SLAVE privilege does not exist.
Grant the FILE privilege instead:

mysql> GRANT FILE ON *.*
-> TO 'repl'@'%.mydomain.com' IDENTIFIED BY 'slavepass';

If you plan to use the LOAD TABLE FROM MASTER or LOAD DATA FROM MASTER state-
ments from the slave host, you need to grant this account additional privileges:

• Grant the account the SUPER and RELOAD global privileges.

• Grant the SELECT privilege for all tables that you want to load. Any master tables from
which the account cannot SELECT are ignored by LOAD DATA FROM MASTER.

3. If you are using only MyISAM tables, flush all the tables and block write statements by execut-
ing a FLUSH TABLES WITH READ LOCK statement.

mysql> FLUSH TABLES WITH READ LOCK;

Leave the client running from which you issue the FLUSH TABLES statement so that the read
lock remains in effect. (If you exit the client, the lock is released.) Then take a snapshot of the
data on your master server.

The easiest way to create a snapshot is to use an archiving program to make a binary backup of
the databases in your master's data directory. For example, use tar on Unix, or
PowerArchiver, WinRAR, WinZip, or any similar software on Windows. To use tar to cre-
ate an archive that includes all databases, change location into the master server's data direct-
ory, then execute this command:

shell> tar -cvf /tmp/mysql-snapshot.tar .

If you want the archive to include only a database called this_db, use this command instead:

shell> tar -cvf /tmp/mysql-snapshot.tar ./this_db

Then copy the archive file to the /tmp directory on the slave server host. On that machine,
change location into the slave's data directory, and unpack the archive file using this command:

shell> tar -xvf /tmp/mysql-snapshot.tar

You may not want to replicate the mysql database if the slave server has a different set of user
accounts from those that exist on the master. In this case, you should exclude it from the
archive. You also need not include any log files in the archive, or the master.info or re-
lay-log.info files.

While the read lock placed by FLUSH TABLES WITH READ LOCK is in effect, read the
value of the current binary log name and offset on the master:

mysql > SHOW MASTER STATUS;
+---------------+----------+--------------+------------------+
| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |
+---------------+----------+--------------+------------------+
| mysql-bin.003 | 73 | test | manual,mysql |
+---------------+----------+--------------+------------------+

The File column shows the name of the log, while Position shows the offset. In this ex-
ample, the binary log value is mysql-bin.003 and the offset is 73. Record the values. You

Replication in MySQL

372

need to use them later when you are setting up the slave. They represent the replication co-
ordinates at which the slave should begin processing new updates from the master.

After you have taken the snapshot and recorded the log name and offset, you can re-enable
write activity on the master:

mysql> UNLOCK TABLES;

If you are using InnoDB tables, ideally you should use the InnoDB Hot Backup tool. It
takes a consistent snapshot without acquiring any locks on the master server, and records the
log name and offset corresponding to the snapshot to be later used on the slave. InnoDB Hot
Backup is a non-free (commercial) additional tool that is not included in the standard MySQL
distribution. See the InnoDB Hot Backup home page at ht-
tp://www.innodb.com/manual.php for detailed information and screenshots.

Without the Hot Backup tool, the quickest way to take a binary snapshot of InnoDB tables
is to shut down the master server and copy the InnoDB data files, log files, and table definition
files (.frm files). To record the current log file name and offset, you should issue the follow-
ing statements before you shut down the server:

mysql> FLUSH TABLES WITH READ LOCK;
mysql> SHOW MASTER STATUS;

Then record the log name and the offset from the output of SHOW MASTER STATUS as was
shown earlier. After recording the log name and the offset, shut down the server without un-
locking the tables to make sure that the server goes down with the snapshot corresponding to
the current log file and offset:

shell> mysqladmin -u root shutdown

An alternative that works for both MyISAM and InnoDB tables is to take an SQL dump of the
master instead of a binary copy as described in the preceding discussion. For this, you can use
mysqldump --master-data on your master and later load the SQL dump file into your slave.
However, this is slower than doing a binary copy.

If the master has been previously running without --log-bin enabled, the log name and pos-
ition values displayed by SHOW MASTER STATUS or mysqldump --master-data are empty.
In that case, the values that you need to use later when specifying the slave's log file and posi-
tion are the empty string ('') and 4.

4. Make sure that the [mysqld] section of the my.cnf file on the master host includes a log-
bin option. The section should also have a server-id=master_id option, where mas-
ter_id must be a positive integer value from 1 to 2^32 # 1. For example:

[mysqld]
log-bin=mysql-bin
server-id=1

If those options are not present, add them and restart the server.

5. Stop the server that is to be used as a slave server and add the following to its my.cnf file:

[mysqld]
server-id=slave_id

The slave_id value, like the master_id value, must be a positive integer value from 1 to
2^32 # 1. In addition, it is very important that the ID of the slave be different from the ID of the
master. For example:

[mysqld]

Replication in MySQL

373

http://www.innodb.com/manual.php
http://www.innodb.com/manual.php

server-id=2

If you are setting up multiple slaves, each one must have a unique server-id value that dif-
fers from that of the master and from each of the other slaves. Think of server-id values as
something similar to IP addresses: These IDs uniquely identify each server instance in the com-
munity of replication partners.

If you don't specify a server-id value, it is set to 1 if you have not defined master-host,
otherwise it is set to 2. Note that in the case of server-id omission, a master refuses con-
nections from all slaves, and a slave refuses to connect to a master. Thus, omitting server-
id is good only for backup with a binary log.

6. If you made a binary backup of the master server's data, copy it to the slave server's data direct-
ory before starting the slave. Make sure that the privileges on the files and directories are cor-
rect. The user that the server MySQL runs as must able to read and write the files, just as on the
master.

If you made a backup using mysqldump, start the slave first (see next step).

7. Start the slave server. If it has been replicating previously, start the slave server with the -
-skip-slave-start option so that it doesn't immediately try to connect to its master. You
also may want to start the slave server with the --log-warnings option (enabled by default
as of MySQL 4.0.19 and 4.1.2), to get more messages in the error log about problems (for ex-
ample, network or connection problems). As of MySQL 4.0.21 and 4.1.3, aborted connections
are not logged to the error log unless the value is greater than 1.

8. If you made a backup of the master server's data using mysqldump, load the dump file into the
slave server:

shell> mysql -u root -p < dump_file.sql

9. Execute the following statement on the slave, replacing the option values with the actual values
relevant to your system:

mysql> CHANGE MASTER TO
-> MASTER_HOST='master_host_name',
-> MASTER_USER='replication_user_name',
-> MASTER_PASSWORD='replication_password',
-> MASTER_LOG_FILE='recorded_log_file_name',
-> MASTER_LOG_POS=recorded_log_position;

The following table shows the maximum length for the string options:

MASTER_HOST 60

MASTER_USER 16

MASTER_PASSWORD 32

MASTER_LOG_FILE 255

10. Start the slave threads:

mysql> START SLAVE;

After you have performed this procedure, the slave should connect to the master and catch up on any
updates that have occurred since the snapshot was taken.

If you have forgotten to set the server-id value for the master, slaves are not able to connect to

Replication in MySQL

374

it.

If you have forgotten to set the server-id value for the slave, you get the following error in its
error log:

Warning: You should set server-id to a non-0 value if master_host is set;
we will force server id to 2, but this MySQL server will not act as a slave.

You also find error messages in the slave's error log if it is not able to replicate for any other reason.

Once a slave is replicating, you can find in its data directory one file named master.info and an-
other named relay-log.info. The slave uses these two files to keep track of how much of the
master's binary log it has processed. Do not remove or edit these files, unless you really know what
you are doing and understand the implications. Even in that case, it is preferred that you use the
CHANGE MASTER TO statement.

Note: The content of master.info overrides some options specified on the command line or in
my.cnf. See Section 6.8, “Replication Startup Options” for more details.

Once you have a snapshot, you can use it to set up other slaves by following the slave portion of the
procedure just described. You do not need to take another snapshot of the master; you can use the
same one for each slave.

6.5. Replication Compatibility Between
MySQL Versions

The original binary log format was developed in MySQL 3.23. It changed in MySQL 4.0, and again
in MySQL 5.0. This has consequences when you upgrade servers in a replication setup, as described
in Section 6.6, “Upgrading a Replication Setup”.

As far as replication is concerned, any MySQL 4.1.x version and any 4.0.x version are identical, be-
cause they all use the same binary log format. Thus, any servers from these versions are compatible,
and replication between them should work seamlessly. The exceptions to this compatibility is that
versions from MySQL 4.0.0 to 4.0.2 were very early development versions that should not be used
anymore. (These were the alpha versions in the 4.0 release series. Compatibility for them is still
documented in the manual included with their distributions.)

The following table indicates master/slave replication compatibility between different versions of
MySQL.

Master Master Master

3.23.33 and up 4.0.3 and up or any
4.1.x

5.0.0

Slave 3.23.33 and up yes no no

Slave 4.0.3 and up yes yes no

Slave 5.0.0 yes yes yes

As a general rule, we recommended using recent MySQL versions, because replication capabilities
are continually being improved. We also recommend using the same version for both the master and
the slave.

The preceding information pertains the replication compatibility at the protocol level. There can also
be SQL-level compatibility constraints, as discussed in Section 6.7, “Replication Features and
Known Problems”.

6.6. Upgrading a Replication Setup

Replication in MySQL

375

When you upgrade servers that participate in a replication setup, the procedure for upgrading de-
pends on the current server versions and the version to which you are upgrading.

6.6.1. Upgrading Replication to 4.0 or 4.1
This section applies to upgrading replication from MySQL 3.23 to 4.0 or 4.1. A 4.0 server should be
4.0.3 or newer, as mentioned in Section 6.5, “Replication Compatibility Between MySQL
Versions”.

When you upgrade a master from MySQL 3.23 to MySQL 4.0 or 4.1, you should first ensure that all
the slaves of this master are at 4.0 or 4.1. If that is not the case, you should first upgrade your slaves:
Shut down each one, upgrade it, restart it, and restart replication.

The upgrade can safely be done using the following procedure, assuming that you have a 3.23 mas-
ter to upgrade and the slaves are 4.0 or 4.1. Note that after the master has been upgraded, you should
not restart replication using any old 3.23 binary logs, because this unfortunately confuses the 4.0 or
4.1 slaves.

1. Block all updates on the master by issuing a FLUSH TABLES WITH READ LOCK state-
ment.

2. Wait until all the slaves have caught up with all changes from the master server. Use SHOW
MASTER STATUS on the master to obtain its current binary log file and position. Then, for
each slave, use those values with a SELECT MASTER_POS_WAIT() statement. The state-
ment blocks on the slave and returns when the slave has caught up. Then run STOP SLAVE on
the slave.

3. Stop the master server and upgrade it to MySQL 4.0 or 4.1.

4. Restart the master server and record the name of its newly created binary log. You can obtain
the name of the file by issuing a SHOW MASTER STATUS statement on the master. Then is-
sue these statements on each slave:

mysql> CHANGE MASTER TO MASTER_LOG_FILE='binary_log_name',
-> MASTER_LOG_POS=4;

mysql> START SLAVE;

6.6.2. Upgrading Replication to 5.0
This section applies to upgrading replication from MySQL 3.23, 4.0, or 4.1 to 5.0.0. A 4.0 server
should be 4.0.3 or newer, as mentioned in Section 6.5, “Replication Compatibility Between MySQL
Versions”.

First, note that MySQL 5.0.0 is an alpha release. It is intended to work better than older versions
(easier upgrade, replication of some important session variables such as sql_mode; see Sec-
tion D.1.4, “Changes in release 5.0.0 (22 Dec 2003: Alpha)”). However it has not yet been extens-
ively tested. As with any alpha release, we recommend that you not use it in critical production en-
vironments yet.

When you upgrade a master from MySQL 3.23, 4.0, or 4.1 to 5.0.0, you should first ensure that all
the slaves of this master are 5.0.0. If that's not the case, you should first upgrade your slaves. To up-
grade each slave, just shut it down, upgrade it to 5.0.0, restart it, and restart replication. The 5.0.0
slave is able to read its old relay logs that were written before the upgrade and execute the state-
ments they contain. Relay logs created by the slave after the upgrade are in 5.0.0 format.

After the slaves have been upgraded, shut down your master, upgrade it to 5.0.0, and restart it. The
5.0.0 master is able to read its old binary logs that were written before the upgrade and send them to
the 5.0.0 slaves. The slaves recognize the old format and handle it properly. Binary logs created by
master after the upgrade are in 5.0.0 format. These too are recognized by the 5.0.0 slaves.

Replication in MySQL

376

In other words, there are no measures to take when upgrading to 5.0.0, except that slaves must be
5.0.0 before you can upgrade the master to 5.0.0. Note that downgrading from 5.0.0 to older ver-
sions does not work so automatically: You must ensure that any 5.0.0 binary logs or relay logs have
been fully processed, so that you can remove them before proceeding with the downgrade.

6.7. Replication Features and Known Prob-
lems

In general, replication compatibility at the SQL level requires that any features used be supported by
both the master and the slave servers. For example, the GROUP_CONCAT() function is available in
MySQL 4.1 and up. If you use this function on the master server, you cannot replicate to a slave
server that is older than MySQL 4.1.

The following list provides details about what is supported and what is not. Additional InnoDB-
specific information about replication is given in Section 15.7.5, “InnoDB and MySQL Replica-
tion”.

• Replication is done correctly with AUTO_INCREMENT, LAST_INSERT_ID(), and
TIMESTAMP values.

• The USER(), UUID(), and LOAD_FILE() functions are replicated without changes and thus
do not work reliably on the slave. This is also true for CONNECTION_ID() in slave versions
older than 4.1.1. The new PASSWORD() function in MySQL 4.1 is well replicated in masters
from 4.1.1 and up; your slaves also must be 4.1.1 or above to replicate it. If you have older
slaves and need to replicate PASSWORD() from your 4.1.x master, you must start your master
with the --old-password option, so that it uses the old implementation of PASSWORD().
(Note that the PASSWORD() implementation in MySQL 4.1.0 differs from every other version
of MySQL. It is best to avoid 4.1.0 in a replication situation.)

• The FOREIGN_KEY_CHECKS variable is replicated as of MySQL 4.0.14. The SQL_MODE,
UNIQUE_CHECKS, and SQL_AUTO_IS_NULL variables are replicated as of 5.0.0. The ta-
ble_type variables is not yet replicated, which is a good thing for replication between differ-
ent storage engines.

• Replication between MySQL servers using different character sets is discussed here. First, you
must ALWAYS use the same global character set and collation (-
-default-character-set, --default-collation) on the master and the slave.
Otherwise, you may get duplicate-key errors on the slave, because a key that is regarded as
unique in the master's character set may not be unique in the slave's character set. Second, if the
master is strictly older than MySQL 4.1.3, the character set of the session should never be made
different from its global value (in other words, don't use SET NAMES, SET CHARACTER SET
etc) because this character set change is not known to the slave. If the master is 4.1.3 or newer,
and the slave too, the session can freely set its local value of character set variables (NAMES,
CHARACTER SET, COLLATION_CLIENT, COLLATION_SERVER etc) as these settings are
written to the binary log and then known to the slave. The session however is prevented from
changing the global value of these; as said previously the master and slave must always have
identical global character set values. There also is one last limitation: if on the master you have
databases with different character sets from the global collation_server value, you should
design your CREATE TABLE statements so that they don't implicitly rely on the default data-
base's character set, because there currently is a bug (Bug #2326); a good workaround is to ex-
plicitly state the character set and collation in a clause of the CREATE TABLE.

• For both master and slave same system time zone should be set (otherwise some statements, for
example statements using NOW() or FROM_UNIXTIME() functions, won't be replicated prop-
erly). One could set time zone in which MySQL server runs by using -
-timezone=timezone_name option of mysqld_safe script or by setting TZ environ-
ment variable. Also starting from version 4.1.3 both master and slave should have same default
connection time zone set, i.e. --default-time-zone parameter should have the same value
for both master and slave.

Replication in MySQL

377

• It is possible to replicate transactional tables on the master using non-transactional tables on the
slave. For example, you can replicate an InnoDB master table as a MyISAM slave table.
However, if you do this, there are problems if the slave is stopped in the middle of a BEGIN/
COMMIT block, because the slave restarts at the beginning of the BEGIN block. This issue is on
our TODO and will be fixed in the near future.

• Update statements that refer to user variables (that is, variables of the form @var_name) are
badly replicated in 3.23 and 4.0. This is fixed in 4.1. Note that user variable names are case in-
sensitive starting from MySQL 5.0. You should take this into account when setting up replica-
tion between 5.0 and an older version.

• The slave can connect to the master using SSL if both are 4.1.1 or newer.

• If a DATA DIRECTORY or INDEX DIRECTORY clause is used in a CREATE TABLE state-
ment on the master server, the clause is also used on the slave. This can cause problems if no
corresponding directory exists in the slave host filesystem or exists but is not accessible to the
slave server. Starting from MySQL 4.0.15, there is a sql_mode option called
NO_DIR_IN_CREATE. If the slave server is run with its SQL mode set to include this option, it
ignores the clauses before replicating the CREATE TABLE statement. The result is that the My-
ISAM data and index files are created in the table's database directory.

• Although we have never heard of it actually occurring, it is theoretically possible for the data on
the master and slave to become different if a query is designed in such a way that the data modi-
fication is non-deterministic; that is, left to the will of the query optimizer. (That generally is not
a good practice anyway, even outside of replication!). For a detailed explanation of this issue,
see Section 1.5.7.3, “Open Bugs and Design Deficiencies in MySQL”.

• If on master a LOAD DATA INFILE is interrupted in the middle (integrity constraint violation,
killed connection...), the slave skips this LOAD DATA INFILE entirely. It means that if this
command permanently inserted/updated some table records before being interrupted, these
modifications won't be replicated to the slave. This will be fixed when MySQL features a re-
cord-level binary log format, in development.

• Before MySQL 4.1.1, FLUSH, ANALYZE TABLE, OPTIMIZE TABLE, and REPAIR TABLE
statements are not written to the binary log and thus are not replicated to the slaves. This is not
normally a problem because these statements do not modify table data. However, it can cause
difficulties under certain circumstances. If you replicate the privilege tables in the mysql data-
base and update those tables directly without using the GRANT statement, you must issue a
FLUSH PRIVILEGES statement on your slaves to put the new privileges into effect. Also if
you use FLUSH TABLES when renaming a MyISAM table that is part of a MERGE table, you
have to issue FLUSH TABLES manually on the slaves. As of MySQL 4.1.1, these statements
are written to the binary log (unless you specify NO_WRITE_TO_BINLOG, or its alias LOCAL).
Exceptions are that FLUSH LOGS, FLUSH MASTER, FLUSH SLAVE, and FLUSH TABLES
WITH READ LOCK are not logged in any case. (Any of them may cause problems if replicated
to a slave.) For a syntax example, see Section 13.5.5.2, “FLUSH Syntax”.

• MySQL only supports one master and many slaves. Later we will add a voting algorithm to
automatically change master if something goes wrong with the current master. We will also in-
troduce ``agent'' processes to help do load balancing by sending SELECT queries to different
slaves.

• When a server shuts down and restarts, its MEMORY (HEAP) tables become empty. As of
MySQL 4.0.18, the master replicates this effect as follows: The first time that the master uses
each MEMORY table after startup, it notifies slaves that the table needs to be emptied by writing a
DELETE FROM statement for the table to its binary log. See Section 14.3, “The MEMORY
(HEAP) Storage Engine” for more details.

• Temporary tables are replicated with the exception of the case that you shut down the slave serv-
er (not just the slave threads) and you have some replicated temporary tables that are used in up-
date statements that have not yet been executed on the slave. If you shut down the slave server,
the temporary tables needed by those updates no longer are available when the slave starts again.
To avoid this problem, do not shut down the slave while it has temporary tables open. Instead,
use this procedure:

Replication in MySQL

378

1. Issue a STOP SLAVE statement.

2. Use SHOW STATUS to check the value of the Slave_open_temp_tables variable.

3. If the value is 0, issue a mysqladmin shutdown command to shut down the slave.

4. If the value is not 0, restart the slave threads with START SLAVE.

5. Repeat the procedure later to see if you have better luck next time.

We have plans to fix this problem in the near future.

• It is safe to connect servers in a circular master/slave relationship with the -
-log-slave-updates option specified. Note, however, that many statements do not work
correctly in this kind of setup unless your client code is written to take care of the potential prob-
lems that can occur from updates that occur in different sequence on different servers.

This means that you can create a setup such as this:

A -> B -> C -> A

Server IDs are encoded in the binary log events, so server A knows when an event that it reads
was originally created by itself and does not execute the event (unless server A was started with
the --replicate-same-server-id option, which is meaningful only in rare setups).
Thus, there are no infinite loops. But this circular setup works only if you perform no conflicting
updates between the tables. In other words, if you insert data in both A and C, you should never
insert a row in A that may have a key that conflicts with a row inserted in C. You should also
not update the same rows on two servers if the order in which the updates are applied is signific-
ant.

• If a statement on the slave produces an error, the slave SQL thread terminates, and the slave
writes a message to its error log. You should then connect to the slave manually, fix the problem
(for example, a non-existent table), and then run START SLAVE.

• It is safe to shut down a master server and restart it later. If a slave loses its connection to the
master, the slave tries to reconnect immediately. If that fails, the slave retries periodically. (The
default is to retry every 60 seconds. This may be changed with the -
-master-connect-retry option.) The slave also is able to deal with network connectivity
outages. However, the slave does notice the network outage only after receiving no data from
the master for slave_net_timeout seconds. If your outages are short, you may want to de-
crease slave_net_timeout. See Section 5.2.3, “Server System Variables”.

• Shutting down the slave (cleanly) is also safe, as it keeps track of where it left off. Unclean shut-
downs might produce problems, especially if disk cache was not flushed to disk before the sys-
tem went down. Your system fault tolerance is greatly increased if you have a good uninterrupt-
ible power supply. Unclean shutdowns of the master may cause inconsistencies between the con-
tent of tables and the binary log in master; this can be avoided by using InnoDB tables and the
--innodb-safe-binlog option on the master. See Section 5.9.4, “The Binary Log”.

• Due to the non-transactional nature of MyISAM tables, it is possible to have a statement that
only partially updates a table and returns an error code. This can happen, for example, on a mul-
tiple-row insert that has one row violating a key constraint, or if a long update statement is killed
after updating some of the rows. If that happens on the master, the slave thread exits and waits
for the database administrator to decide what to do about it unless the error code is legitimate
and the statement execution results in the same error code. If this error code validation behavior
is not desirable, some or all errors can be masked out (ignored) with the -
-slave-skip-errors option. This option is available starting with MySQL 3.23.47.

• If you update transactional tables from non-transactional tables inside a BEGIN/COMMIT seg-
ment, updates to the binary log may be out of sync if some thread changes the non-transactional
table before the transaction commits. This is because the transaction is written to the binary log
only when it is committed.

Replication in MySQL

379

• Before version 4.0.15, any update to a non-transactional table is written to the binary log at once
when the update is made, whereas transactional updates are written on COMMIT or not written at
all if you use ROLLBACK. You must take this into account when updating both transactional
tables and non-transactional tables within the same transaction. (This is true not only for replica-
tion, but also if you are using binary logging for backups.) In version 4.0.15, we changed the
logging behavior for transactions that mix updates to transactional and non-transactional tables,
which solves the problems (order of statements is good in the binary log, and all needed state-
ments are written to the binary log even in case of ROLLBACK). The problem that remains is
when a second connection updates the non-transactional table while the first connection's trans-
action is not finished yet; wrong order can still occur, because the second connection's update is
written immediately after it is done.

• When a 4.x slave replicates a LOAD DATA INFILE from a 3.23 master, the values of the Ex-
ec_Master_Log_Pos and Relay_Log_Space columns of SHOW SLAVE STATUS be-
come incorrect. The incorrectness of Exec_Master_Log_Pos causes a problem when you
stop and restart replication; so it is a good idea to correct the value before this, by doing FLUSH
LOGS on the master. These bugs are fixed in MySQL 5.0.0 slaves.

The following table lists replication problems in MySQL 3.23 that are fixed in MySQL 4.0:

• LOAD DATA INFILE is handled properly, as long as the data file still resides on the master
server at the time of update propagation.

• LOAD DATA LOCAL INFILE is no longer skipped on the slave as it was in 3.23.

• In 3.23, RAND() in updates does not replicate properly. Use
RAND(some_non_rand_expr) if you are replicating updates with RAND(). You can, for
example, use UNIX_TIMESTAMP() as the argument to RAND().

6.8. Replication Startup Options
On both the master and the slave, you must use the server-id option to establish a unique replic-
ation ID for each server. You should pick a unique positive integer in the range from 1 to 2^32 # 1
for each master and slave. Example: server-id=3

The options that you can use on the master server for controlling binary logging are described in
Section 5.9.4, “The Binary Log”.

The following table describes the options you can use on slave replication servers. You can specify
them on the command line or in an option file.

Some slave server replication options are handled in a special way, in the sense that they are ignored
if a master.info file exists when the slave starts and contains values for the options. The follow-
ing options are handled this way:

• --master-host

• --master-user

• --master-password

• --master-port

• --master-connect-retry

As of MySQL 4.1.1, the following options also are handled specially:

Replication in MySQL

380

• --master-ssl

• --master-ssl-ca

• --master-ssl-capath

• --master-ssl-cert

• --master-ssl-cipher

• --master-ssl-key

The master.info file format in 4.1.1 changed to include values corresponding to the SSL op-
tions. In addition, the 4.1.1 file format includes as its first line the number of lines in the file. If you
upgrade an older server to 4.1.1, the new server upgrades the master.info file to the new format
automatically when it starts. However, if you downgrade a 4.1.1 or newer server to a version older
than 4.1.1, you should manually remove the first line before starting the older server for the first
time. Note that, in this case, the downgraded server no longer can use an SSL connection to commu-
nicate with the master.

If no master.info file exists when the slave server starts, it uses values for those options that are
specified in option files or on the command line. This occurs when you start the server as a replica-
tion slave for the very first time, or when you have run RESET SLAVE and shut down and restarted
the slave server.

If the master.info file exists when the slave server starts, the server ignores those options. In-
stead, it uses the values found in the master.info file.

If you restart the slave server with different values of the startup options that correspond to values in
the master.info file, the different values have no effect, because the server continues to use the
master.info file. To use different values, you must either restart after removing the mas-
ter.info file or (preferably) use the CHANGE MASTER TO statement to reset the values while
the slave is running.

Suppose that you specify this option in your my.cnf file:

[mysqld]
master-host=some_host

The first time you start the server as a replication slave, it reads and uses that option from the
my.cnf file. The server then records the value in the master.info file. The next time you start
the server, it reads the master host value from the master.info file only and ignores the value in
the option file. If you modify the my.cnf file to specify a different master host of
some_other_host, the change still has no effect. You should use CHANGE MASTER TO in-
stead.

Because the server gives an existing master.info file precedence over the startup options just
described, you might prefer not to use startup options for these values at all, and instead specify
them by using the CHANGE MASTER TO statement. See Section 13.6.2.1, “CHANGE MASTER TO
Syntax”.

This example shows a more extensive use of startup options to configure a slave server:

[mysqld]
server-id=2
master-host=db-master.mycompany.com
master-port=3306
master-user=pertinax
master-password=freitag
master-connect-retry=60
report-host=db-slave.mycompany.com

Replication in MySQL

381

The following list describes startup options for controlling replication: Many of these options can be
reset while the server is running by using the CHANGE MASTER TO statement. Others, such as the
--replicate-* options, can be set only when the slave server starts. We plan to fix this.

• --log-slave-updates

Normally, updates received from a master server by a slave are not logged to its binary log. This
option tells the slave to log the updates performed by its SQL thread to the slave's own binary
log. For this option to have any effect, the slave must also be started with the --log-bin op-
tion to enable binary logging. --log-slave-updates is used when you want to chain rep-
lication servers. For example, you might want a setup like this:

A -> B -> C

That is, A serves as the master for the slave B, and B serves as the master for the slave C. For
this to work, B must be both a master and a slave. You must start both A and B with -
-log-bin to enable binary logging, and B with the --log-slave-updates option.

• --log-warnings

Makes the slave print more messages to the error log about what it is doing. For example, it
warns you that it succeeded in reconnecting after a network/connection failure, and warns you
about how each slave thread started. This option is enabled by default as of MySQL 4.0.19 and
4.1.2; to disable it, use --skip-log-warnings. As of MySQL 4.0.21 and 4.1.3, aborted
connections are not logged to the error log unless the value is greater than 1.

This option is not limited to replication use only. It produces warnings across a spectrum of
server activities.

• --master-connect-retry=seconds

The number of seconds the slave thread sleeps before retrying to connect to the master in case
the master goes down or the connection is lost. The value in the master.info file takes pre-
cedence if it can be read. If not set, the default is 60.

• --master-host=host

The hostname or IP number of the master replication server. If this option is not given, the slave
thread does not start. The value in master.info takes precedence if it can be read.

• --master-info-file=file_name

The name to use for the file in which the slave records information about the master. The default
name is mysql.info in the data directory.

• --master-password=password

The password of the account that the slave thread uses for authentication when connecting to the
master. The value in the master.info file takes precedence if it can be read. If not set, an
empty password is assumed.

• --master-port=port_number

The TCP/IP port the master is listening on. The value in the master.info file takes preced-
ence if it can be read. If not set, the compiled-in setting is assumed. If you have not tinkered with
configure options, this should be 3306.

• --master-ssl , --master-ssl-ca=file_name , --master-ssl-capath=dir-
ectory_name , --master-ssl-cert=file_name ,
--master-ssl-cipher=cipher_list , --master-ssl-key=file_name

Replication in MySQL

382

These options are used for setting up a secure replication connection to the master server using
SSL. Their meanings are the same as the corresponding --ssl, --ssl-ca, --ssl-capath,
--ssl-cert, --ssl-cipher, --ssl-key options described in Section 5.6.7.5, “SSL
Command-Line Options”. The values in the master.info file take precedence if they can be
read.

These options are operational as of MySQL 4.1.1.

• --master-user=username

The username of the account that the slave thread uses for authentication when connecting to the
master. The account must have the REPLICATION SLAVE privilege. (Prior to MySQL 4.0.2,
it must have the FILE privilege instead.) The value in the master.info file takes precedence
if it can be read. If the master user is not set, user test is assumed.

• --max-relay-log-size=#

To rotate the relay log automatically. See Section 5.2.3, “Server System Variables”.

This option is available as of MySQL 4.0.14.

• --read-only

This option causes the slave to allow no updates except from slave threads or from users with
the SUPER privilege. This can be useful to ensure that a slave server accepts no updates from
clients.

This option is available as of MySQL 4.0.14.

• --relay-log=file_name

The name for the relay log. The default name is host_name-relay-bin.nnnnnn, where
host_name is the name of the slave server host and nnnnnn indicates that relay logs are cre-
ated in numbered sequence. You can specify the option to create hostname-independent relay
log names, or if your relay logs tend to be big (and you don't want to decrease
max_relay_log_size) and you need to put them in some area different from the data dir-
ectory, or if you want to increase speed by balancing load between disks.

• --relay-log-index=file_name

The location and name that should be used for the relay log index file. The default name is
host_name-relay-bin.index, where host_name is the name of the slave server.

• --relay-log-info-file=file_name

The name to use for the file in which the slave records information about the relay logs. The de-
fault name is relay-log.info in the data directory.

• --relay-log-purge={0|1}

Disables or enables automatic purging of relay logs as soon as they are not needed any more.
The default value is 1 (enabled). This is a global variable that can be changed dynamically with
SET GLOBAL relay_log_purge.

This option is available as of MySQL 4.1.1.

• --relay-log-space-limit=#

Places an upper limit on the total size of all relay logs on the slave (a value of 0 means
``unlimited''). This is useful for a slave server host that has limited disk space. When the limit is
reached, the I/O thread stops reading binary log events from the master server until the SQL
thread has caught up and deleted some unused relay logs. Note that this limit is not absolute:
There are cases where the SQL thread needs more events before it can delete relay logs. In that

Replication in MySQL

383

case, the I/O thread exceeds the limit until it becomes possible for the SQL thread to delete some
relay logs. Not doing so would cause a deadlock (which is what happens before MySQL 4.0.13).
You should not set --relay-log-space-limit to less than twice the value of -
-max-relay-log-size (or --max-binlog-size if --max-relay-log-size is 0).
In that case, there is a chance that the I/O thread waits for free space because -
-relay-log-space-limit is exceeded, but the SQL thread has no relay log to purge and
is unable to satisfy the I/O thread. This forces the I/O thread to temporarily ignore -
-relay-log-space-limit.

• --replicate-do-db=db_name

Tells the slave to restrict replication to statements where the default database (that is, the one se-
lected by USE) is db_name. To specify more than one database, use this option multiple times,
once for each database. Note that this does not replicate cross-database statements such as UP-
DATE some_db.some_table SET foo='bar' while having selected a different data-
base or no database. If you need cross-database updates to work, make sure that you have
MySQL 3.23.28 or later, and use --replicate-wild-do-table=db_name.%. Please
read the notes that follow this option list.

An example of what does not work as you might expect: If the slave is started with -
-replicate-do-db=sales and you issue the following statements on the master, the UP-
DATE statement is not replicated:

USE prices;
UPDATE sales.january SET amount=amount+1000;

If you need cross-database updates to work, use
--replicate-wild-do-table=db_name.% instead.

The main reason for this ``just-check-the-default-database'' behavior is that it's difficult from the
statement alone to know whether or not it should be replicated (for example, if you are using
multiple-table DELETE or multiple-table UPDATE statements that go across multiple databases).
It's also very fast to just check the default database.

• --replicate-do-table=db_name.tbl_name

Tells the slave thread to restrict replication to the specified table. To specify more than one table,
use this option multiple times, once for each table. This works for cross-database updates, in
contrast to --replicate-do-db. Please read the notes that follow this option list.

• --replicate-ignore-db=db_name

Tells the slave to not replicate any statement where the default database (that is, the one selected
by USE) is db_name. To specify more than one database to ignore, use this option multiple
times, once for each database. You should not use this option if you are using cross-database up-
dates and you don't want these updates to be replicated. Please read the notes that follow this op-
tion list.

An example of what does not work as you might expect: If the slave is started with -
-replicate-ignore-db=sales and you issue the following statements on the master, the
UPDATE statement is not replicated:

USE prices;
UPDATE sales.january SET amount=amount+1000;

If you need cross-database updates to work, use
--replicate-wild-ignore-table=db_name.% instead.

• --replicate-ignore-table=db_name.tbl_name

Replication in MySQL

384

Tells the slave thread to not replicate any statement that updates the specified table (even if any
other tables might be updated by the same statement). To specify more than one table to ignore,
use this option multiple times, once for each table. This works for cross-database updates, in
contrast to --replicate-ignore-db. Please read the notes that follow this option list.

• --replicate-wild-do-table=db_name.tbl_name

Tells the slave thread to restrict replication to statements where any of the updated tables match
the specified database and table name patterns. Patterns can contain the '%' and '_' wildcard char-
acters, which have the same meaning as for the LIKE pattern-matching operator. To specify
more than one table, use this option multiple times, once for each table. This works for cross-
database updates. Please read the notes that follow this option list.

Example: --replicate-wild-do-table=foo%.bar% replicates only updates that use a
table where the database name starts with foo and the table name starts with bar.

If the table name pattern is %, it matches any table name and the option also applies to database-
level statements (CREATE DATABASE, DROP DATABASE, and ALTER DATABASE). For ex-
ample, if you use --replicate-wild-do-table=foo%.%, database-level statements are
replicated if the database name matches the pattern foo%.

To include literal wildcard characters in the database or table name patterns, escape them with a
backslash. For example, to replicate all tables of a database that is named my_own%db, but not
replicate tables from the my1ownAABCdb database, you should escape the '_' and '%' characters
like this: --replicate-wild-do-table=my_own\%db. If you're using the option on
the command line, you might need to double the backslashes or quote the option value, depend-
ing on your command interpreter. For example, with the bash shell, you would need to type -
-replicate-wild-do-table=my_own\\%db.

• --replicate-wild-ignore-table=db_name.tbl_name

Tells the slave thread to not replicate a statement where any table matches the given wildcard
pattern. To specify more than one table to ignore, use this option multiple times, once for each
table. This works for cross-database updates. Please read the notes that follow this option list.

Example: --replicate-wild-ignore-table=foo%.bar% does not replicate updates
that use a table where the database name starts with foo and the table name starts with bar.

For information about how matching works, see the description of the -
-replicate-wild-do-table option. The rules for including literal wildcard characters in
the option value are the same as for --replicate-wild-ignore-table as well.

• --replicate-rewrite-db=from_name->to_name

Tells the slave to translate the default database (that is, the one selected by USE) to to_name if
it was from_name on the master. Only statements involving tables are affected (not statements
such as CREATE DATABASE, DROP DATABASE, and ALTER DATABASE), and only if
from_name was the default database on the master. This does not work for cross-database up-
dates. Note that the database name translation is done before --replicate-* rules are tested.

If you use this option on the command line and the '>' character is special to your command in-
terpreter, quote the option value. For example:

shell> mysqld --replicate-rewrite-db="olddb->newdb"

• --replicate-same-server-id

To be used on slave servers. Usually you can should the default setting of 0, to prevent infinite
loops in circular replication. If set to 1, this slave does not skip events having its own server id;
normally this is useful only in rare configurations. Cannot be set to 1 if -
-log-slave-updates is used. Be careful that starting from MySQL 4.1, by default the

Replication in MySQL

385

slave I/O thread does not even write binary log events to the relay log if they have the slave's
server id (this optimization helps save disk usage compared to 4.0). So if you want to use -
-replicate-same-server-id in 4.1 versions, be sure to start the slave with this option
before you make the slave read its own events which you want the slave SQL thread to execute.

• --report-host=host

The hostname or IP number of the slave to be reported to the master during slave registration.
This value appears in the output of SHOW SLAVE HOSTS on the master server. Leave the
value unset if you do not want the slave to register itself with the master. Note that it is not suffi-
cient for the master to simply read the IP number of the slave from the TCP/IP socket after the
slave connects. Due to NAT and other routing issues, that IP may not be valid for connecting to
the slave from the master or other hosts.

This option is available as of MySQL 4.0.0.

• --report-port=port_number

The TCP/IP port for connecting to the slave, to be reported to the master during slave registra-
tion. Set it only if the slave is listening on a non-default port or if you have a special tunnel from
the master or other clients to the slave. If you are not sure, leave this option unset.

This option is available as of MySQL 4.0.0.

• --skip-slave-start

Tells the slave server not to start the slave threads when the server starts. To start the threads
later, use a START SLAVE statement.

• --slave_compressed_protocol={0|1}

If this option is set to 1, use compression of the slave/master protocol if both the slave and the
master support it.

• --slave-load-tmpdir=file_name

The name of the directory where the slave creates temporary files. This option is by default
equal to the value of the tmpdir system variable. When the slave SQL thread replicates a
LOAD DATA INFILE statement, it extracts the to-be-loaded file from the relay log into tem-
porary files, then loads these into the table. If the file loaded on the master was huge, the tem-
porary files on the slave are huge, too. Therefore, it might be advisable to use this option to tell
the slave to put temporary files in a directory located in some filesystem that has a lot of avail-
able space. In that case, you may also use the --relay-log option to place the relay logs in
that filesystem, because the relay logs are huge as well. --slave-load-tmpdir should
point to a disk-based filesystem, not a memory-based one: The slave needs the temporary files
used to replicate LOAD DATA INFILE to survive a machine's restart. The directory also
should not be one that is cleared by the operating system during the system startup process.

• --slave-net-timeout=seconds

The number of seconds to wait for more data from the master before aborting the read, consider-
ing the connection broken, and trying to reconnect. The first retry occurs immediately after the
timeout. The interval between retries is controlled by the --master-connect-retry op-
tion.

• --slave-skip-errors= [err_code1,err_code2,... | all]

Normally, replication stops when an error occurs, which gives you the opportunity to resolve the
inconsistency in the data manually. This option tells the slave SQL thread to continue replication
when a statement returns any of the errors listed in the option value.

Replication in MySQL

386

Do not use this option unless you fully understand why you are getting the errors. If there are no
bugs in your replication setup and client programs, and no bugs in MySQL itself, an error that
stops replication should never occur. Indiscriminate use of this option results in slaves becoming
hopelessly out of sync with the master, and you have no idea why.

For error codes, you should use the numbers provided by the error message in your slave error
log and in the output of SHOW SLAVE STATUS. The server error codes are listed in
Chapter 24, Error Handling in MySQL.

You can (but should not) also use the very non-recommended value of all which ignores all er-
ror messages and keeps barging along regardless of what happens. Needless to say, if you use it,
we make no promises regarding your data integrity. Please do not complain if your data on the
slave is not anywhere close to what it is on the master in this case. You have been warned.

Examples:

--slave-skip-errors=1062,1053
--slave-skip-errors=all

The --replicate-* rules are evaluated as follows to determine whether a statement is executed
by the slave or ignored:

1. Are there some --replicate-do-db or --replicate-ignore-db rules?

• Yes: Test them as for --binlog-do-db and --binlog-ignore-db (see Sec-
tion 5.9.4, “The Binary Log”). What is the result of the test?

• Ignore the statement: Ignore it and exit.

• Execute the statement: Don't execute it immediately, defer the decision, go to the next
step.

• No: Go to the next step.

2. Are there some --replicate-*-table rules?

• No: Execute the query and exit.

• Yes: Go to the next step. Only tables that are to be updated are compared to the rules (IN-
SERT INTO sales SELECT * FROM prices: only sales are compared to the
rules). If several tables are to be updated (multiple-table statement), the first matching table
(matching ``do'' or ``ignore'') wins. That is, the first table is compared to the rules. Then, if
no decision could be mad, the second table is compared to the rules, and so forth.

3. Are there some --replicate-do-table rules?

• Yes: Does the table match any of them?

• Yes: Execute the query and exit.

• No: Go to the next step.

• No: Go to the next step.

4. Are there some --replicate-ignore-table rules?

• Yes: Does the table match any of them?

• Yes: Ignore the query and exit.

Replication in MySQL

387

• No: Go to the next step.

• No: Go to the next step.

5. Are there some --replicate-wild-do-table rules?

• Yes: Does the table match any of them?

• Yes: Execute the query and exit.

• No: Go to the next step.

• No: Go to the next step.

6. Are there some --replicate-wild-ignore-table rules?

• Yes: Does the table match any of them?

• Yes: Ignore the query and exit.

• No: Go to the next step.

• No: Go to the next step.

7. No --replicate-*-table rule was matched. Is there another table to test against these
rules?

• Yes: Loop.

• No: We have tested all tables to be updated and could not match any rule. Are there -
-replicate-do-table or --replicate-wild-do-table rules?

• Yes: Ignore the query and exit.

• No: Execute the query and exit.

6.9. Replication FAQ
Q: How do I configure a slave if the master is running and I do not want to stop it?

A: There are several options. If you have taken a backup of the master at some point and recorded
the binary log name and offset (from the output of SHOW MASTER STATUS) corresponding to the
snapshot, use the following procedure:

1. Make sure that the slave is assigned a unique server ID.

2. Execute the following statement on the slave, filling in appropriate values for each option:

mysql> CHANGE MASTER TO
-> MASTER_HOST='master_host_name',
-> MASTER_USER='master_user_name',
-> MASTER_PASSWORD='master_pass',
-> MASTER_LOG_FILE='recorded_log_file_name',
-> MASTER_LOG_POS=recorded_log_position;

3. Execute START SLAVE on the slave.

If you do not have a backup of the master server, here is a quick procedure for creating one. All

Replication in MySQL

388

steps should be performed on the master host.

1. Issue this statement:

mysql> FLUSH TABLES WITH READ LOCK;

2. With the lock still in place, execute this command (or a variation of it):

shell> tar zcf /tmp/backup.tar.gz /var/lib/mysql

3. Issue this statement and make sure to record the output, which you need later:

mysql> SHOW MASTER STATUS;

4. Release the lock:

mysql> UNLOCK TABLES;

An alternative is to make an SQL dump of the master instead of a binary copy as in the preceding
procedure. To do this, you can use mysqldump --master-data on your master and later load the
SQL dump into your slave. However, this is slower than making a binary copy.

No matter which of the two methods you use, afterward follow the instructions for the case when
you have a snapshot and have recorded the log name and offset. You can use the same snapshot to
set up several slaves. Once you have the snapshot of the master, you can wait to set up a slave as
long as the binary logs of the master are left intact. The two practical limitations on the length of
time you can wait are the amount of disk space available to retain binary logs on the master and the
length of time it takes the slave to catch up.

You can also use LOAD DATA FROM MASTER. This is a convenient statement that transfers a
snapshot to the slave and adjusts the log name and offset all at once. In the future, LOAD DATA
FROM MASTER will be the recommended way to set up a slave. Be warned, however, that it works
only for MyISAM tables and it may hold a read lock for a long time. It is not yet implemented as ef-
ficiently as we would like. If you have large tables, the preferred method at this time is still to make
a binary snapshot on the master server after executing FLUSH TABLES WITH READ LOCK.

Q: Does the slave need to be connected to the master all the time?

A: No, it does not. The slave can go down or stay disconnected for hours or even days, then recon-
nect and catch up on the updates. For example, you can set up a master/slave relationship over a
dial-up link where the link is up only sporadically and for short periods of time. The implication of
this is that, at any given time, the slave is not guaranteed to be in sync with the master unless you
take some special measures. In the future, we will have the option to block the master until at least
one slave is in sync.

Q: How do I know how late a slave is compared to the master? In other words, how do I know the
date of the last query replicated by the slave?

A: If the slave is 4.1.1 or newer, read the Seconds_Behind_Master column in SHOW SLAVE
STATUS. For older versions, the following applies. This is possible only if SHOW SLAVE
STATUS on the slave shows that the SQL thread is running (or for MySQL 3.23, that the slave
thread is running), and that the thread has executed at least one event from the master. See Sec-
tion 6.3, “Replication Implementation Details”.

When the slave SQL thread executes an event read from the master, it modifies its own time to the
event timestamp (this is why TIMESTAMP is well replicated). In the Time column in the output of
SHOW PROCESSLIST, the number of seconds displayed for the slave SQL thread is the number of
seconds between the timestamp of the last replicated event and the real time of the slave machine.

Replication in MySQL

389

You can use this to determine the date of the last replicated event. Note that if your slave has been
disconnected from the master for one hour, and then reconnects, you may immediately see Time
values like 3600 for the slave SQL thread in SHOW PROCESSLIST. This would be because the
slave is executing statements that are one hour old.

Q: How do I force the master to block updates until the slave catches up?

A: Use the following procedure:

1. On the master, execute these statements:

mysql> FLUSH TABLES WITH READ LOCK;
mysql> SHOW MASTER STATUS;

Record the log name and the offset from the output of the SHOW statement. These are the rep-
lication coordinates.

2. On the slave, issue the following statement, where the arguments to the MAS-
TER_POS_WAIT() function are the replication coordinate values obtained in the previous
step:

mysql> SELECT MASTER_POS_WAIT('log_name', log_offset);

The SELECT statement blocks until the slave reaches the specified log file and offset. At that
point, the slave is in sync with the master and the statement returns.

3. On the master, issue the following statement to allow the master to begin processing updates
again:

mysql> UNLOCK TABLES;

Q: What issues should I be aware of when setting up two-way replication?

A: MySQL replication currently does not support any locking protocol between master and slave to
guarantee the atomicity of a distributed (cross-server) update. In other words, it is possible for client
A to make an update to co-master 1, and in the meantime, before it propagates to co-master 2, client
B could make an update to co-master 2 that makes the update of client A work differently than it did
on co-master 1. Thus, when the update of client A makes it to co-master 2, it produces tables that are
different than what you have on co-master 1, even after all the updates from co-master 2 have also
propagated. This means that you should not co-chain two servers in a two-way replication relation-
ship unless you are sure that your updates can safely happen in any order, or unless you take care of
mis-ordered updates somehow in the client code.

You must also realize that two-way replication actually does not improve performance very much (if
at all), as far as updates are concerned. Both servers need to do the same number of updates each, as
you would have one server do. The only difference is that there is a little less lock contention, be-
cause the updates originating on another server are serialized in one slave thread. Even this benefit
might be offset by network delays.

Q: How can I use replication to improve performance of my system?

A: You should set up one server as the master and direct all writes to it. Then configure as many
slaves as you have the budget and rackspace for, and distribute the reads among the master and the
slaves. You can also start the slaves with the --skip-innodb, --skip-bdb, -
-low-priority-updates, and --delay-key-write=ALL options to get speed improve-
ments on the slave end. In this case, the slave uses non-transactional MyISAM tables instead of In-
noDB and BDB tables to get more speed.

Q: What should I do to prepare client code in my own applications to use performance-enhancing
replication?

Replication in MySQL

390

A: If the part of your code that is responsible for database access has been properly abstracted/
modularized, converting it to run with a replicated setup should be very smooth and easy. Just
change the implementation of your database access to send all writes to the master, and to send
reads to either the master or a slave. If your code does not have this level of abstraction, setting up a
replicated system gives you the opportunity and motivation to it clean up. You should start by creat-
ing a wrapper library or module with the following functions:

• safe_writer_connect()

• safe_reader_connect()

• safe_reader_statement()

• safe_writer_statement()

safe_ in each function name means that the function takes care of handling all the error condi-
tions. You can use different names for the functions. The important thing is to have a unified inter-
face for connecting for reads, connecting for writes, doing a read, and doing a write.

You should then convert your client code to use the wrapper library. This may be a painful and
scary process at first, but it pays off in the long run. All applications that use the approach just de-
scribed are able to take advantage of a master/slave configuration, even one involving multiple
slaves. The code is a lot easier to maintain, and adding troubleshooting options is trivial. You just
need to modify one or two functions; for example, to log how long each statement took, or which
statement among your many thousands gave you an error.

If you have written a lot of code, you may want to automate the conversion task by using the re-
place utility that comes with standard MySQL distributions, or just write your own conversion
script. Ideally, your code uses consistent programming style conventions. If not, then you are prob-
ably better off rewriting it anyway, or at least going through and manually regularizing it to use a
consistent style.

Q: When and how much can MySQL replication improve the performance of my system?

A: MySQL replication is most beneficial for a system with frequent reads and infrequent writes. In
theory, by using a single-master/multiple-slave setup, you can scale the system by adding more
slaves until you either run out of network bandwidth, or your update load grows to the point that the
master cannot handle it.

In order to determine how many slaves you can get before the added benefits begin to level out, and
how much you can improve performance of your site, you need to know your query patterns, and to
determine empirically by benchmarking the relationship between the throughput for reads (reads per
second, or max_reads) and for writes (max_writes) on a typical master and a typical slave.
The example here shows a rather simplified calculation of what you can get with replication for a
hypothetical system.

Let's say that system load consists of 10% writes and 90% reads, and we have determined by bench-
marking that max_reads is 1200 # 2 * max_writes. In other words, the system can do 1,200
reads per second with no writes, the average write is twice as slow as the average read, and the rela-
tionship is linear. Let us suppose that the master and each slave have the same capacity, and that we
have one master and N slaves. Then we have for each server (master or slave):

reads = 1200 - 2 * writes

reads = 9 * writes / (N + 1) (reads are split, but writes go to all servers)

9 * writes / (N + 1) + 2 * writes = 1200

writes = 1200 / (2 + 9/(N+1))

The last equation indicates that the maximum number of writes for N slaves, given a maximum pos-
sible read rate of 1,200 per minute and a ratio of nine reads per write.

Replication in MySQL

391

This analysis yields the following conclusions:

• If N = 0 (which means we have no replication), our system can handle about 1200/11 = 109
writes per second.

• If N = 1, we get up to 184 writes per second.

• If N = 8, we get up to 400 writes per second.

• If N = 17, we get up to 480 writes per second.

• Eventually, as N approaches infinity (and our budget negative infinity), we can get very close to
600 writes per second, increasing system throughput about 5.5 times. However, with only eight
servers, we increased it almost four times.

Note that these computations assume infinite network bandwidth and neglect several other factors
that could turn out to be significant on your system. In many cases, you may not be able to perform
a computation similar to the one just shown that accurately predicts what will happen on your sys-
tem if you add N replication slaves. However, answering the following questions should help you
decide whether and how much replication will improve the performance of your system:

• What is the read/write ratio on your system?

• How much more write load can one server handle if you reduce the reads?

• For how many slaves do you have bandwidth available on your network?

Q: How can I use replication to provide redundancy/high availability?

A: With the currently available features, you would have to set up a master and a slave (or several
slaves), and write a script that monitors the master to see whether it is up. Then instruct your applic-
ations and the slaves to change master in case of failure. Some suggestions:

• To tell a slave to change its master, use the CHANGE MASTER TO statement.

• A good way to keep your applications informed as to the location of the master is by having a
dynamic DNS entry for the master. With bind you can use nsupdate to dynamically update
your DNS.

• You should run your slaves with the --log-bin option and without -
-log-slave-updates. This way the slave is ready to become a master as soon as you issue
STOP SLAVE; RESET MASTER, and CHANGE MASTER TO on the other slaves. For ex-
ample, assume that you have the following setup:

WC
\
v

WC----> M
/ | \
/ | \
v v v
S1 S2 S3

M means the master, S the slaves, WC the clients that issue database writes and reads; clients
that issue only database reads are not represented, because they need not switch. S1, S2, and S3
are slaves running with --log-bin and without --log-slave-updates. Because updates
received by a slave from the master are not logged in the binary log unless -
-log-slave-updates is specified, the binary log on each slave is empty. If for some reason
M becomes unavailable, you can pick one slave to become the new master. For example, if you

Replication in MySQL

392

pick S1, all WC should be redirected to S1, and S2 and S3 should replicate from S1.

Make sure that all slaves have processed any statements in their relay log. On each slave, issue
STOP SLAVE IO_THREAD, then check the output of SHOW PROCESSLIST until you see
Has read all relay log. When this is true for all slaves, they can be reconfigured to the
new setup. On the slave S1 being promoted to become the master, issue STOP SLAVE and RE-
SET MASTER.

On the other slaves S2 and S3, use STOP SLAVE and CHANGE MASTER TO MAS-
TER_HOST='S1' (where 'S1' represents the real hostname of S1). To CHANGE MASTER,
add all information about how to connect to S1 from S2 or S3 (user, password, port). In
CHANGE MASTER, there is no need to specify the name of S1's binary log or binary log posi-
tion to read from: We know it is the first binary log and position 4, which are the defaults for
CHANGE MASTER. Finally, use START SLAVE on S2 and S3.

Then instruct all WC to direct their statements to S1. From that point on, all updates statements
sent by WC to S1 are written to the binary log of S1, which contains every update statement sent
to S1 since M died.

The result is this configuration:

WC
/
|

WC | M(unavailable)
\ |
\ |
v v
S1<--S2 S3
^ |
+-------+

When M is up again, you just have to issue on it the same CHANGE MASTER as the one issued
on S2 and S3, so that M becomes a slave of S1 and picks all the WC writes it has missed while it
was down. To make M a master again (because it is the most powerful machine, for example),
use the preceding procedure as if S1 was unavailable and M was to be the new master. During
the procedure, don't forget to run RESET MASTER on M before making S1, S2, and S3 slaves
of M. Otherwise, they may pick up old WC writes from before the point at which M became un-
available.

We are currently working on integrating an automatic master election system into MySQL, but until
it is ready, you have to create your own monitoring tools.

6.10. Troubleshooting Replication
If you have followed the instructions, and your replication setup is not working, first check the fol-
lowing:

• Check the error log for messages. Many users have lost time by not doing this early enough.

• Is the master logging to the binary log? Check with SHOW MASTER STATUS. If it is, Posi-
tion is non-zero. If not, verify that you are running the master with the log-bin and serv-
er-id options.

• Is the slave running? Use SHOW SLAVE STATUS to check whether the
Slave_IO_Running and Slave_SQL_Running values are both Yes. If not, verify the op-
tions that were used when starting the slave server.

• If the slave is running, did it establish a connection to the master? Use SHOW PROCESSLIST,
find the I/O and SQL threads and check their State column to see how they display. See Sec-

Replication in MySQL

393

tion 6.3, “Replication Implementation Details”. If the I/O thread state says Connecting to
master, verify the privileges for the replication user on the master, master hostname, your
DNS setup, whether the master is actually running, and whether it is reachable from the slave.

• If the slave was running before but has stopped, the reason usually is that some statement that
succeeded on the master failed on the slave. This should never happen if you have taken a proper
snapshot of the master, and never modify the data on the slave outside of the slave thread. If it
does, it is a bug or you have encountered one of the known replication limitations described in
Section 6.7, “Replication Features and Known Problems”. If it is a bug, see Section 6.11,
“Reporting Replication Bugs” for instructions on how to report it.

• If a statement that succeeded on the master refuses to run on the slave, and it is not feasible to do
a full database resynchronization (that is, to delete the slave's database and copy a new snapshot
from the master), try the following:

1. Determine whether the slave's table is different from the master's. Try to understand how
this happened. Then make the slave's table identical to the master's and run START
SLAVE.

2. If the preceding step does not work or does not apply, try to understand whether it would be
safe to make the update manually (if needed) and then ignore the next statement from the
master.

3. If you decide that you can skip the next statement from the master, issue the following
statements:

mysql> SET GLOBAL SQL_SLAVE_SKIP_COUNTER = n;
mysql> START SLAVE;

The value of n should be 1 if the next statement from the master does not use
AUTO_INCREMENT or LAST_INSERT_ID(). Otherwise, the value should be 2. The
reason for using a value of 2 for statements that use AUTO_INCREMENT or
LAST_INSERT_ID() is that they take two events in the binary log of the master.

4. If you are sure that the slave started out perfectly synchronized with the master, and no one
has updated the tables involved outside of slave thread, then presumably the discrepancy is
the result of a bug. If you are running the most recent version, please report the problem. If
you are running an older version of MySQL, try upgrading.

6.11. Reporting Replication Bugs
When you have determined that there is no user error involved, and replication still either does not
work at all or is unstable, it is time to send us a bug report. We need to get as much information as
possible from you to be able to track down the bug. Please do spend some time and effort preparing
a good bug report.

If you have a repeatable test case that demonstrates the bug, please enter it into our bugs database at
http://bugs.mysql.com/. If you have a phantom problem (one that you cannot duplicate ``at will''),
use the following procedure:

1. Verify that no user error is involved. For example, if you update the slave outside of the slave
thread, the data goes out of sync, and you can have unique key violations on updates. In this
case, the slave thread stops and waits for you to clean up the tables manually to bring them in
sync. This is not a replication problem. It is a problem of outside interference that causes rep-
lication to fail.

2. Run the slave with the --log-slave-updates and --log-bin options. They cause the
slave to log the updates that it receives from the master into its own binary logs.

3. Save all evidence before resetting the replication state. If we have no information or only

Replication in MySQL

394

http://bugs.mysql.com/

sketchy information, it becomes difficult or impossible for us to track down the problem. The
evidence you should collect is:

• All binary logs from the master

• All binary logs from the slave

• The output of SHOW MASTER STATUS from the master at the time you have discovered
the problem

• The output of SHOW SLAVE STATUS from the master at the time you have discovered
the problem

• Error logs from the master and the slave

4. Use mysqlbinlog to examine the binary logs. The following should be helpful to find the
trouble query, for example:

shell> mysqlbinlog -j pos_from_slave_status \
/path/to/log_from_slave_status | head

Once you have collected the evidence for the phantom problem, try hard to isolate it into a separate
test case first. Then enter the problem into our bugs database at http://bugs.mysql.com/ with as
much information as possible.

Replication in MySQL

395

http://bugs.mysql.com/

Chapter 7. MySQL Optimization
Optimization is a complex task because ultimately it requires understanding of the entire system to
be optimized. Although it may be possible to perform some local optimizations with little know-
ledge of your system or application, the more optimal you want your system to become, the more
you have to know about it.

This chapter tries to explain and give some examples of different ways to optimize MySQL. Re-
member, however, that there are always additional ways to make the system even faster, although
they may require increasing effort to achieve.

7.1. Optimization Overview
The most important factor in making a system fast is its basic design. You also need to know what
kinds of things your system is doing, and what your bottlenecks are.

The most common system bottlenecks are:

• Disk seeks. It takes time for the disk to find a piece of data. With modern disks, the mean time
for this is usually lower than 10ms, so we can in theory do about 100 seeks a second. This time
improves slowly with new disks and is very hard to optimize for a single table. The way to op-
timize seek time is to distribute the data onto more than one disk.

• Disk reading and writing. When the disk is at the correct position, we need to read the data. With
modern disks, one disk delivers at least 10-20MB/s throughput. This is easier to optimize than
seeks because you can read in parallel from multiple disks.

• CPU cycles. When we have the data in main memory, we need to process it to get our result.
Having small tables compared to the amount of memory is the most common limiting factor.
But with small tables, speed is usually not the problem.

• Memory bandwidth. When the CPU needs more data than can fit in the CPU cache, main
memory bandwidth becomes a bottleneck. This is an uncommon bottleneck for most systems,
but one to be aware of.

7.1.1. MySQL Design Limitations and Tradeoffs
When using the MyISAM storage engine, MySQL uses extremely fast table locking that allows mul-
tiple readers or a single writer. The biggest problem with this storage engine occurs when you have
a steady stream of mixed updates and slow selects on a single table. If this is a problem for certain
tables, you can use another storage engine for them. See Chapter 14, MySQL Storage Engines and
Table Types.

MySQL can work with both transactional and non-transactional tables. To be able to work smoothly
with non-transactional tables (which can't roll back if something goes wrong), MySQL has the fol-
lowing rules (when not running in strict mode or if you use the IGNORE specifier to INSERT or
UPDATE).

• All columns have default values.

• If you insert an ``incorrect'' value in a column, such as a too-large numeric value into a numeric
column, MySQL sets the column to the ``best possible value'' instead of giving an error. For nu-
merical values, this is 0, the smallest possible value or the largest possible value. For strings, this
is either the empty string or the longest possible string that can be stored in the column.

• All calculated expressions return a value that can be used instead of signaling an error condition.
For example, 1/0 returns NULL. (This behavior can be changed by using the ER-

396

ROR_FOR_DIVISION_BY_ZERO SQL mode).

If you are using non-transactional tables, you should not use MySQL to check column content. In
general, the safest (and often fastest) way is to let the application ensure that it passes only legal val-
ues to the database.

For more information about this, see Section 1.5.6, “How MySQL Deals with Constraints” and Sec-
tion 13.1.4, “INSERT Syntax” or Section 5.2.2, “The Server SQL Mode”.

7.1.2. Designing Applications for Portability
Because all SQL servers implement different parts of standard SQL, it takes work to write portable
SQL applications. It is very easy to achieve portability for very simple selects and inserts, but be-
comes more difficult the more capabilities you require. If you want an application that is fast with
many database systems, it becomes even harder!

To make a complex application portable, you need to determine which SQL servers it must work
with, then determine what features those servers support.

All database systems have some weak points. That is, they have different design compromises that
lead to different behavior.

You can use the MySQL crash-me program to find functions, types, and limits that you can use
with a selection of database servers. crash-me does not check for every possible feature, but it is
still reasonably comprehensive, performing about 450 tests.

An example of the type of information crash-me can provide is that you shouldn't have column
names longer than 18 characters if you want to be able to use Informix or DB2.

The crash-me program and the MySQL benchmarks are all very database independent. By taking
a look at how they are written, you can get a feeling for what you have to do to make your own ap-
plications database independent. The programs can be found in the sql-bench directory of
MySQL source distributions. They are written in Perl and use the DBI database interface. Use of
DBI in itself solves part of the portability problem because it provides database-independent access
methods.

For crash-me results, visit http://dev.mysql.com/tech-resources/crash-me.php. See ht-
tp://dev.mysql.com/tech-resources/benchmarks/ for the results from the benchmarks.

If you strive for database independence, you need to get a good feeling for each SQL server's bottle-
necks. For example, MySQL is very fast in retrieving and updating records for MyISAM tables, but
has a problem in mixing slow readers and writers on the same table. Oracle, on the other hand, has a
big problem when you try to access rows that you have recently updated (until they are flushed to
disk). Transactional databases in general are not very good at generating summary tables from log
tables, because in this case row locking is almost useless.

To make your application really database independent, you need to define an easily extendable in-
terface through which you manipulate your data. As C++ is available on most systems, it makes
sense to use a C++ class-based interface to the databases.

If you use some feature that is specific to a given database system (such as the REPLACE statement,
which is specific to MySQL), you should implement the same feature for other SQL servers by cod-
ing an alternative method. Although the alternative may be slower, it allows the other servers to per-
form the same tasks.

With MySQL, you can use the /*! */ syntax to add MySQL-specific keywords to a query. The
code inside /**/ is treated as a comment (and ignored) by most other SQL servers.

If high performance is more important than exactness, as in some Web applications, it is possible to
create an application layer that caches all results to give you even higher performance. By letting old
results ``expire'' after a while, you can keep the cache reasonably fresh. This provides a method to
handle high load spikes, in which case you can dynamically increase the cache and set the expiration

MySQL Optimization

397

http://dev.mysql.com/tech-resources/crash-me.php
http://dev.mysql.com/tech-resources/benchmarks/
http://dev.mysql.com/tech-resources/benchmarks/

timeout higher until things get back to normal.

In this case, the table creation information should contain information of the initial size of the cache
and how often the table should normally be refreshed.

An alternative to implementing an application cache is to use the MySQL query cache. By enabling
the query cache, the server handles the details of determining whether a query result can be reused.
This simplifies your application. See Section 5.11, “The MySQL Query Cache”.

7.1.3. What We Have Used MySQL For
This section describes an early application for MySQL.

During MySQL initial development, the features of MySQL were made to fit our largest customer,
which handled data warehousing for a couple of the largest retailers in Sweden.

From all stores, we got weekly summaries of all bonus card transactions, and were expected to
provide useful information for the store owners to help them find how their advertising campaigns
were affecting their own customers.

The volume of data was quite huge (about seven million summary transactions per month), and we
had data for 4-10 years that we needed to present to the users. We got weekly requests from our cus-
tomers, who wanted to get ``instant'' access to new reports from this data.

We solved this problem by storing all information per month in compressed ``transaction'' tables.
We had a set of simple macros that generated summary tables grouped by different criteria (product
group, customer id, store, and so on) from the tables in which the transactions were stored. The re-
ports were Web pages that were dynamically generated by a small Perl script. This script parsed a
Web page, executed the SQL statements in it, and inserted the results. We would have used PHP or
mod_perl instead, but they were not available at the time.

For graphical data, we wrote a simple tool in C that could process SQL query results and produce
GIF images based on those results. This tool also was dynamically executed from the Perl script that
parses the Web pages.

In most cases, a new report could be created simply by copying an existing script and modifying the
SQL query in it. In some cases, we needed to add more columns to an existing summary table or
generate a new one. This also was quite simple because we kept all transaction-storage tables on
disk. (This amounted to about 50GB of transaction tables and 200GB of other customer data.)

We also let our customers access the summary tables directly with ODBC so that the advanced users
could experiment with the data themselves.

This system worked well and we had no problems handling the data with quite modest Sun Ultra
SPARCstation hardware (2x200MHz). Eventually the system was migrated to Linux.

7.1.4. The MySQL Benchmark Suite
This section should contain a technical description of the MySQL benchmark suite (and
crash-me), but that description has not yet been written. Currently, you can get a good idea of the
benchmarks by looking at the code and results in the sql-bench directory in any MySQL source
distribution.

This benchmark suite is meant to tell any user what operations a given SQL implementation per-
forms well or poorly.

Note that this benchmark is single-threaded, so it measures the minimum time for the operations
performed. We plan to add multi-threaded tests to the benchmark suite in the future.

To use the benchmark suite, the following requirements must be satisfied:

MySQL Optimization

398

• The benchmark suite is provided with MySQL source distributions. You can either download a
released distribution from http://dev.mysql.com/downloads/, or use the current development
source tree (see Section 2.8.3, “Installing from the Development Source Tree”).

• The benchmark scripts are written in Perl and use the Perl DBI module to access database serv-
ers, so DBI must be installed. You also need the server-specific DBD drivers for each of the
servers you want to test. For example, to test MySQL, PostgreSQL, and DB2, you must have the
DBD::mysql, DBD::Pg, and DBD::DB2 modules installed. See Section 2.13, “Perl Installa-
tion Notes”.

After you obtain a MySQL source distribution, you can find the benchmark suite located in its
sql-bench directory. To run the benchmark tests, build MySQL, then change location into the
sql-bench directory and execute the run-all-tests script:

shell> cd sql-bench
shell> perl run-all-tests --server=server_name

server_name is one of the supported servers. To get a list of all options and supported servers,
invoke this command:

shell> perl run-all-tests --help

The crash-me script also is located in the sql-bench directory. crash-me tries to determine
what features a database supports and what its capabilities and limitations are by actually running
queries. For example, it determines:

• What column types are supported

• How many indexes are supported

• What functions are supported

• How big a query can be

• How big a VARCHAR column can be

You can find the results from crash-me for many different database servers at ht-
tp://dev.mysql.com/tech-resources/crash-me.php. For more information about benchmark results,
visit http://dev.mysql.com/tech-resources/benchmarks/.

7.1.5. Using Your Own Benchmarks
You should definitely benchmark your application and database to find out where the bottlenecks
are. By fixing a bottleneck (or by replacing it with a ``dummy module''), you can then easily identify
the next bottleneck. Even if the overall performance for your application currently is acceptable, you
should at least make a plan for each bottleneck, and decide how to solve it if someday you really
need the extra performance.

For an example of portable benchmark programs, look at the MySQL benchmark suite. See Sec-
tion 7.1.4, “The MySQL Benchmark Suite”. You can take any program from this suite and modify it
for your needs. By doing this, you can try different solutions to your problem and test which really
is fastest for you.

Another free benchmark suite is the Open Source Database Benchmark, available at ht-
tp://osdb.sourceforge.net/.

It is very common for a problem to occur only when the system is very heavily loaded. We have had
many customers who contact us when they have a (tested) system in production and have en-

MySQL Optimization

399

http://dev.mysql.com/downloads/
http://dev.mysql.com/tech-resources/crash-me.php
http://dev.mysql.com/tech-resources/crash-me.php
http://dev.mysql.com/tech-resources/benchmarks/
http://osdb.sourceforge.net/
http://osdb.sourceforge.net/

countered load problems. In most cases, performance problems turn out to be due to issues of basic
database design (for example, table scans are not good at high load) or problems with the operating
system or libraries. Most of the time, these problems would be a lot easier to fix if the systems were
not in production.

To avoid problems like this, you should put some effort into benchmarking your whole application
under the worst possible load! You can use Super Smack for this. It is available at ht-
tp://jeremy.zawodny.com/mysql/super-smack/. As the name suggests, it can bring a system to its
knees if you ask it, so make sure to use it only on your development systems.

7.2. Optimizing SELECT Statements and Other
Queries

First, one factor affects all statements: The more complex your permission setup is, the more over-
head you have.

Using simpler permissions when you issue GRANT statements enables MySQL to reduce permis-
sion-checking overhead when clients execute statements. For example, if you don't grant any table-
level or column-level privileges, the server need not ever check the contents of the tables_priv
and columns_priv tables. Similarly, if you place no resource limits on any accounts, the server
does not have to perform resource counting. If you have a very high query volume, it may be worth
the time to use a simplified grant structure to reduce permission-checking overhead.

If your problem is with some specific MySQL expression or function, you can use the BENCH-
MARK() function from the mysql client program to perform a timing test. Its syntax is BENCH-
MARK(loop_count,expression). For example:

mysql> SELECT BENCHMARK(1000000,1+1);
+------------------------+
| BENCHMARK(1000000,1+1) |
+------------------------+
| 0 |
+------------------------+
1 row in set (0.32 sec)

This result was obtained on a Pentium II 400MHz system. It shows that MySQL can execute
1,000,000 simple addition expressions in 0.32 seconds on that system.

All MySQL functions should be very optimized, but there may be some exceptions. BENCH-
MARK() is a great tool to find out if this is a problem with your query.

7.2.1. EXPLAIN Syntax (Get Information About a SE-
LECT)

EXPLAIN tbl_name

Or:

EXPLAIN SELECT select_options

The EXPLAIN statement can be used either as a synonym for DESCRIBE or as a way to obtain in-
formation about how MySQL executes a SELECT statement:

• The EXPLAIN tbl_name syntax is synonymous with DESCRIBE tbl_name or SHOW
COLUMNS FROM tbl_name.

• When you precede a SELECT statement with the keyword EXPLAIN, MySQL explains how it

MySQL Optimization

400

http://jeremy.zawodny.com/mysql/super-smack/
http://jeremy.zawodny.com/mysql/super-smack/

would process the SELECT, providing information about how tables are joined and in which or-
der.

This section provides information about the second use of EXPLAIN.

With the help of EXPLAIN, you can see when you must add indexes to tables to get a faster SE-
LECT that uses indexes to find records.

If you have a problem with incorrect index usage, you should run ANALYZE TABLE to update ta-
ble statistics such as cardinality of keys, which can affect the choices the optimizer makes. See Sec-
tion 13.5.2.1, “ANALYZE TABLE Syntax”.

You can also see whether the optimizer joins the tables in an optimal order. To force the optimizer
to use a join order corresponding to the order in which the tables are named in the SELECT state-
ment, begin the statement with SELECT STRAIGHT_JOIN rather than just SELECT.

EXPLAIN returns a row of information for each table used in the SELECT statement. The tables are
listed in the output in the order that MySQL would read them while processing the query. MySQL
resolves all joins using a single-sweep multi-join method. This means that MySQL reads a row from
the first table, then finds a matching row in the second table, then in the third table, and so on. When
all tables are processed, it outputs the selected columns and backtracks through the table list until a
table is found for which there are more matching rows. The next row is read from this table and the
process continues with the next table.

In MySQL version 4.1, the EXPLAIN output format was changed to work better with constructs
such as UNION statements, subqueries, and derived tables. Most notable is the addition of two new
columns: id and select_type. You do not see these columns when using servers older than
MySQL 4.1.

Each output row from EXPLAIN provides information about one table, and each row consists of the
following columns:

• id

The SELECT identifier. This is the sequential number of the SELECT within the query.

• select_type

The type of SELECT, which can be any of the following:

• SIMPLE

Simple SELECT (not using UNION or subqueries)

• PRIMARY

Outermost SELECT

• UNION

Second or later SELECT statement in a UNION

• DEPENDENT UNION

Second or later SELECT statement in a UNION, dependent on outer query

• UNION RESULT

Result of a UNION.

• SUBQUERY

MySQL Optimization

401

First SELECT in subquery

• DEPENDENT SUBQUERY

First SELECT in subquery, dependent on outer query

• DERIVED

Derived table SELECT (subquery in FROM clause)

• table

The table to which the row of output refers.

• type

The join type. The different join types are listed here, ordered from the best type to the worst:

• system

The table has only one row (= system table). This is a special case of the const join type.

• const

The table has at most one matching row, which is read at the start of the query. Because
there is only one row, values from the column in this row can be regarded as constants by the
rest of the optimizer. const tables are very fast because they are read only once!

const is used when you compare all parts of a PRIMARY KEY or UNIQUE index with
constant values. In the following queries, tbl_name can be used as a const table:

SELECT * FROM tbl_name WHERE primary_key=1;
SELECT * FROM tbl_name
WHERE primary_key_part1=1 AND primary_key_part2=2;

• eq_ref

One row is read from this table for each combination of rows from the previous tables. Other
than the const types, this is the best possible join type. It is used when all parts of an index
are used by the join and the index is a PRIMARY KEY or UNIQUE index.

eq_ref can be used for indexed columns that are compared using the = operator. The com-
parison value can be a constant or an expression that uses columns from tables that are read
before this table.

In the following examples, MySQL can use an eq_ref join to process ref_table:

SELECT * FROM ref_table,other_table
WHERE ref_table.key_column=other_table.column;
SELECT * FROM ref_table,other_table
WHERE ref_table.key_column_part1=other_table.column
AND ref_table.key_column_part2=1;

• ref

All rows with matching index values are read from this table for each combination of rows
from the previous tables. ref is used if the join uses only a leftmost prefix of the key or if
the key is not a PRIMARY KEY or UNIQUE index (in other words, if the join cannot select a

MySQL Optimization

402

single row based on the key value). If the key that is used matches only a few rows, this is a
good join type.

ref can be used for indexed columns that are compared using the = operator.

In the following examples, MySQL can use a ref join to process ref_table:

SELECT * FROM ref_table WHERE key_column=expr;
SELECT * FROM ref_table,other_table
WHERE ref_table.key_column=other_table.column;
SELECT * FROM ref_table,other_table
WHERE ref_table.key_column_part1=other_table.column
AND ref_table.key_column_part2=1;

• ref_or_null

This join type is like ref, but with the addition that MySQL does an extra search for rows
that contain NULL values. This join type optimization is new for MySQL 4.1.1 and is mostly
used when resolving subqueries.

In the following examples, MySQL can use a ref_or_null join to process ref_table:

SELECT * FROM ref_table
WHERE key_column=expr OR key_column IS NULL;

See Section 7.2.7, “How MySQL Optimizes IS NULL”.

• index_merge

This join type indicates that the Index Merge optimization is used. In this case, the key
column contains a list of indexes used, and key_len contains a list of the longest key parts
for the indexes used. For more information, see Section 7.2.6, “Index Merge Optimization”.

• unique_subquery

This type replaces ref for some IN subqueries of the following form:

value IN (SELECT primary_key FROM single_table WHERE some_expr)

unique_subquery is just an index lookup function that replaces the subquery completely
for better efficiency.

• index_subquery

This join type is similar to unique_subquery. It replaces IN subqueries, but it works for
non-unique indexes in subqueries of the following form:

value IN (SELECT key_column FROM single_table WHERE some_expr)

• range

Only rows that are in a given range are retrieved, using an index to select the rows. The key
column indicates which index is used. The key_len contains the longest key part that was
used. The ref column is NULL for this type.

range can be used for when a key column is compared to a constant using any of the =, <>,
>, >=, <, <=, IS NULL, <=>, BETWEEN, or IN operators:

MySQL Optimization

403

SELECT * FROM tbl_name
WHERE key_column = 10;
SELECT * FROM tbl_name
WHERE key_column BETWEEN 10 and 20;
SELECT * FROM tbl_name
WHERE key_column IN (10,20,30);
SELECT * FROM tbl_name
WHERE key_part1= 10 AND key_part2 IN (10,20,30);

• index

This join type is the same as ALL, except that only the index tree is scanned. This usually is
faster than ALL, because the index file usually is smaller than the data file.

MySQL can use this join type when the query uses only columns that are part of a single in-
dex.

• ALL

A full table scan is done for each combination of rows from the previous tables. This is nor-
mally not good if the table is the first table not marked const, and usually very bad in all
other cases. Normally, you can avoid ALL by adding indexes that allow row retrieval from
the table based on constant values or column values from earlier tables.

• possible_keys

The possible_keys column indicates which indexes MySQL could use to find the rows in
this table. Note that this column is totally independent of the order of the tables as displayed in
the output from EXPLAIN. That means that some of the keys in possible_keys might not
be usable in practice with the generated table order.

If this column is NULL, there are no relevant indexes. In this case, you may be able to improve
the performance of your query by examining the WHERE clause to see whether it refers to some
column or columns that would be suitable for indexing. If so, create an appropriate index and
check the query with EXPLAIN again. See Section 13.2.2, “ALTER TABLE Syntax”.

To see what indexes a table has, use SHOW INDEX FROM tbl_name.

• key

The key column indicates the key (index) that MySQL actually decided to use. The key is
NULL if no index was chosen. To force MySQL to use or ignore an index listed in the pos-
sible_keys column, use FORCE INDEX, USE INDEX, or IGNORE INDEX in your query.
See Section 13.1.7, “SELECT Syntax”.

For MyISAM and BDB tables, running ANALYZE TABLE helps the optimizer choose better in-
dexes. For MyISAM tables, myisamchk --analyze does the same. See Section 13.5.2.1, “ANA-
LYZE TABLE Syntax” and Section 5.7.3, “Table Maintenance and Crash Recovery”.

• key_len

The key_len column indicates the length of the key that MySQL decided to use. The length is
NULL if the key column says NULL. Note that the value of key_len allows you to determine
how many parts of a multiple-part key MySQL actually uses.

• ref

The ref column shows which columns or constants are used with the key to select rows from
the table.

MySQL Optimization

404

• rows

The rows column indicates the number of rows MySQL believes it must examine to execute the
query.

• Extra

This column contains additional information about how MySQL resolves the query. Here is an
explanation of the different text strings that can appear in this column:

• Distinct

MySQL stops searching for more rows for the current row combination after it has found the
first matching row.

• Not exists

MySQL was able to do a LEFT JOIN optimization on the query and does not examine
more rows in this table for the previous row combination after it finds one row that matches
the LEFT JOIN criteria.

Here is an example of the type of query that can be optimized this way:

SELECT * FROM t1 LEFT JOIN t2 ON t1.id=t2.id
WHERE t2.id IS NULL;

Assume that t2.id is defined as NOT NULL. In this case, MySQL scans t1 and looks up
the rows in t2 using the values of t1.id. If MySQL finds a matching row in t2, it knows
that t2.id can never be NULL, and does not scan through the rest of the rows in t2 that
have the same id value. In other words, for each row in t1, MySQL needs to do only a
single lookup in t2, regardless of how many rows actually match in t2.

• range checked for each record (index map: #)

MySQL found no good index to use, but found that some of indexes might be used once
column values from preceding tables are known. For each row combination in the preceding
tables, MySQL checks whether it is possible to use a range or index_merge access
method to retrieve rows. The applicability criteria are as described in Section 7.2.5, “Range
Optimization” and Section 7.2.6, “Index Merge Optimization”, with the exception that all
column values for the preceding table are known and considered to be constants.

This is not very fast, but is faster than performing a join with no index at all.

• Using filesort

MySQL needs to do an extra pass to find out how to retrieve the rows in sorted order. The
sort is done by going through all rows according to the join type and storing the sort key and
pointer to the row for all rows that match the WHERE clause. The keys then are sorted and
the rows are retrieved in sorted order. See Section 7.2.10, “How MySQL Optimizes ORDER
BY”.

• Using index

The column information is retrieved from the table using only information in the index tree
without having to do an additional seek to read the actual row. This strategy can be used
when the query uses only columns that are part of a single index.

• Using temporary

To resolve the query, MySQL needs to create a temporary table to hold the result. This typic-
ally happens if the query contains GROUP BY and ORDER BY clauses that list columns dif-
ferently.

MySQL Optimization

405

• Using where

A WHERE clause is used to restrict which rows to match against the next table or send to the
client. Unless you specifically intend to fetch or examine all rows from the table, you may
have something wrong in your query if the Extra value is not Using where and the ta-
ble join type is ALL or index.

If you want to make your queries as fast as possible, you should look out for Extra values
of Using filesort and Using temporary.

• Using sort_union(...) , Using union(...) , Using intersect(...)

These indicate how index scans are merged for the index_merge join type. See Sec-
tion 7.2.6, “Index Merge Optimization” for more information.

• Using index for group-by

Similar to the Using index way of accessing a table, Using index for group-by
indicates that MySQL found an index that can be used to retrieve all columns of a GROUP
BY or DISTINCT query without any extra disk access to the actual table. Additionally, the
index is used in the most efficient way so that for each group, only a few index entries are
read. For details, see Section 7.2.11, “How MySQL Optimizes GROUP BY”.

You can get a good indication of how good a join is by taking the product of the values in the rows
column of the EXPLAIN output. This should tell you roughly how many rows MySQL must exam-
ine to execute the query. If you restrict queries with the max_join_size system variable, this
product also is used to determine which multiple-table SELECT statements to execute. See Sec-
tion 7.5.2, “Tuning Server Parameters”.

The following example shows how a multiple-table join can be optimized progressively based on
the information provided by EXPLAIN.

Suppose that you have the SELECT statement shown here and you plan to examine it using EX-
PLAIN:

EXPLAIN SELECT tt.TicketNumber, tt.TimeIn,
tt.ProjectReference, tt.EstimatedShipDate,
tt.ActualShipDate, tt.ClientID,
tt.ServiceCodes, tt.RepetitiveID,
tt.CurrentProcess, tt.CurrentDPPerson,
tt.RecordVolume, tt.DPPrinted, et.COUNTRY,
et_1.COUNTRY, do.CUSTNAME

FROM tt, et, et AS et_1, do
WHERE tt.SubmitTime IS NULL

AND tt.ActualPC = et.EMPLOYID
AND tt.AssignedPC = et_1.EMPLOYID
AND tt.ClientID = do.CUSTNMBR;

For this example, make the following assumptions:

• The columns being compared have been declared as follows:

Table Column Column Type

tt ActualPC CHAR(10)

tt AssignedPC CHAR(10)

tt ClientID CHAR(10)

et EMPLOYID CHAR(15)

do CUSTNMBR CHAR(15)

MySQL Optimization

406

• The tables have the following indexes:

Table Index

tt ActualPC

tt AssignedPC

tt ClientID

et EMPLOYID (primary key)

do CUSTNMBR (primary key)

• The tt.ActualPC values are not evenly distributed.

Initially, before any optimizations have been performed, the EXPLAIN statement produces the fol-
lowing information:

table type possible_keys key key_len ref rows Extra
et ALL PRIMARY NULL NULL NULL 74
do ALL PRIMARY NULL NULL NULL 2135
et_1 ALL PRIMARY NULL NULL NULL 74
tt ALL AssignedPC, NULL NULL NULL 3872

ClientID,
ActualPC

range checked for each record (key map: 35)

Because type is ALL for each table, this output indicates that MySQL is generating a Cartesian
product of all the tables; that is, every combination of rows. This takes quite a long time, because
the product of the number of rows in each table must be examined. For the case at hand, this product
is 74 * 2135 * 74 * 3872 = 45,268,558,720 rows. If the tables were bigger, you can
only imagine how long it would take.

One problem here is that MySQL can use indexes on columns more efficiently if they are declared
the same. (For ISAM tables, indexes may not be used at all unless the columns are declared the
same.) In this context, VARCHAR and CHAR are the same unless they are declared as different
lengths. Because tt.ActualPC is declared as CHAR(10) and et.EMPLOYID is declared as
CHAR(15), there is a length mismatch.

To fix this disparity between column lengths, use ALTER TABLE to lengthen ActualPC from 10
characters to 15 characters:

mysql> ALTER TABLE tt MODIFY ActualPC VARCHAR(15);

tt.ActualPC and et.EMPLOYID are both VARCHAR(15). Executing the EXPLAIN statement
again produces this result:

table type possible_keys key key_len ref rows Extra
tt ALL AssignedPC, NULL NULL NULL 3872 Using

ClientID, where
ActualPC

do ALL PRIMARY NULL NULL NULL 2135
range checked for each record (key map: 1)

et_1 ALL PRIMARY NULL NULL NULL 74
range checked for each record (key map: 1)

et eq_ref PRIMARY PRIMARY 15 tt.ActualPC 1

This is not perfect, but is much better: The product of the rows values is less by a factor of 74. This
version is executed in a couple of seconds.

A second alteration can be made to eliminate the column length mismatches for the
tt.AssignedPC = et_1.EMPLOYID and tt.ClientID = do.CUSTNMBR comparisons:

MySQL Optimization

407

mysql> ALTER TABLE tt MODIFY AssignedPC VARCHAR(15),
-> MODIFY ClientID VARCHAR(15);

EXPLAIN produces the output shown here:

table type possible_keys key key_len ref rows Extra
et ALL PRIMARY NULL NULL NULL 74
tt ref AssignedPC, ActualPC 15 et.EMPLOYID 52 Using

ClientID, where
ActualPC

et_1 eq_ref PRIMARY PRIMARY 15 tt.AssignedPC 1
do eq_ref PRIMARY PRIMARY 15 tt.ClientID 1

This is almost as good as it can get.

The remaining problem is that, by default, MySQL assumes that values in the tt.ActualPC
column are evenly distributed, and that is not the case for the tt table. Fortunately, it is easy to tell
MySQL to analyze the key distribution:

mysql> ANALYZE TABLE tt;

The join is perfect, and EXPLAIN produces this result:

table type possible_keys key key_len ref rows Extra
tt ALL AssignedPC NULL NULL NULL 3872 Using

ClientID, where
ActualPC

et eq_ref PRIMARY PRIMARY 15 tt.ActualPC 1
et_1 eq_ref PRIMARY PRIMARY 15 tt.AssignedPC 1
do eq_ref PRIMARY PRIMARY 15 tt.ClientID 1

Note that the rows column in the output from EXPLAIN is an educated guess from the MySQL
join optimizer. You should check whether the numbers are even close to the truth. If not, you may
get better performance by using STRAIGHT_JOIN in your SELECT statement and trying to list the
tables in a different order in the FROM clause.

7.2.2. Estimating Query Performance
In most cases, you can estimate the performance by counting disk seeks. For small tables, you can
usually find a row in one disk seek (because the index is probably cached). For bigger tables, you
can estimate that, using B-tree indexes, you need this many seeks to find a row:
log(row_count) / log(index_block_length / 3 * 2 / (index_length +
data_pointer_length)) + 1.

In MySQL, an index block is usually 1024 bytes and the data pointer is usually 4 bytes. For a
500,000-row table with an index length of 3 bytes (medium integer), the formula indicates
log(500,000)/log(1024/3*2/(3+4)) + 1 = 4 seeks.

This index would require storage of about 500,000 * 7 * 3/2 = 5.2MB (assuming a typical index
buffer fill ratio of 2/3), so you probably have much of the index in memory and you probably need
only one or two calls to read data to find the row.

For writes, however, you need four seek requests (as above) to find where to place the new index
and normally two seeks to update the index and write the row.

Note that the preceding discussion doesn't mean that your application performance slowly degener-
ates by log N. As long as everything is cached by the OS or the MySQL server, things become only
marginally slower as the table gets bigger. After the data gets too big to be cached, things start to go
much slower until your applications are only bound by disk-seeks (which increase by log N). To
avoid this, increase the key cache size as the data grows. For MyISAM tables, the key cache size is
controlled by the key_buffer_size system variable. See Section 7.5.2, “Tuning Server Para-

MySQL Optimization

408

meters”.

7.2.3. Speed of SELECT Queries
In general, when you want to make a slow SELECT ... WHERE query faster, the first thing to
check is whether you can add an index. All references between different tables should usually be
done with indexes. You can use the EXPLAIN statement to determine which indexes are used for a
SELECT. See Section 7.4.5, “How MySQL Uses Indexes” and Section 7.2.1, “EXPLAIN Syntax
(Get Information About a SELECT)”.

Some general tips for speeding up queries on MyISAM tables:

• To help MySQL optimize queries better, use ANALYZE TABLE or run myisamchk --analyze
on a table after it has been loaded with data. This updates a value for each index part that indic-
ates the average number of rows that have the same value. (For unique indexes, this is always 1.)
MySQL uses this to decide which index to choose when you join two tables based on a non-
constant expression. You can check the result from the table analysis by using SHOW INDEX
FROM tbl_name and examining the Cardinality value. myisamchk --description -
-verbose shows index distribution information.

• To sort an index and data according to an index, use myisamchk --sort-index --sort-records=1
(if you want to sort on index 1). This is a good way to make queries faster if you have a unique
index from which you want to read all records in order according to the index. Note that the first
time you sort a large table this way, it may take a long time.

7.2.4. How MySQL Optimizes WHERE Clauses
This section discusses optimizations that can be made for processing WHERE clauses. The examples
use SELECT statements, but the same optimizations apply for WHERE clauses in DELETE and UP-
DATE statements.

Note that work on the MySQL optimizer is ongoing, so this section is incomplete. MySQL does
many optimizations, not all of which are documented here.

Some of the optimizations performed by MySQL are listed here:

• Removal of unnecessary parentheses:

((a AND b) AND c OR (((a AND b) AND (c AND d))))
-> (a AND b AND c) OR (a AND b AND c AND d)

• Constant folding:

(a<b AND b=c) AND a=5
-> b>5 AND b=c AND a=5

• Constant condition removal (needed because of constant folding):

(B>=5 AND B=5) OR (B=6 AND 5=5) OR (B=7 AND 5=6)
-> B=5 OR B=6

• Constant expressions used by indexes are evaluated only once.

• COUNT(*) on a single table without a WHERE is retrieved directly from the table information
for MyISAM and HEAP tables. This is also done for any NOT NULL expression when used with
only one table.

• Early detection of invalid constant expressions. MySQL quickly detects that some SELECT

MySQL Optimization

409

statements are impossible and returns no rows.

• HAVING is merged with WHERE if you don't use GROUP BY or group functions (COUNT(),
MIN(), and so on).

• For each table in a join, a simpler WHERE is constructed to get a fast WHERE evaluation for the
table and also to skip records as soon as possible.

•
All constant tables are read first before any other tables in the query. A constant table is any of
the following:

• An empty table or a table with one row.

• A table that is used with a WHERE clause on a PRIMARY KEY or a UNIQUE index, where
all index parts are compared to constant expressions and are defined as NOT NULL.

All of the following tables are used as constant tables:

SELECT * FROM t WHERE primary_key=1;
SELECT * FROM t1,t2

WHERE t1.primary_key=1 AND t2.primary_key=t1.id;

• The best join combination for joining the tables is found by trying all possibilities. If all columns
in ORDER BY and GROUP BY clauses come from the same table, that table is preferred first
when joining.

• If there is an ORDER BY clause and a different GROUP BY clause, or if the ORDER BY or
GROUP BY contains columns from tables other than the first table in the join queue, a tempor-
ary table is created.

• If you use SQL_SMALL_RESULT, MySQL uses an in-memory temporary table.

• Each table index is queried, and the best index is used unless the optimizer believes that it is
more efficient to use a table scan. At one time, a scan was used based on whether the best index
spanned more than 30% of the table. The optimizer is more complex and bases its estimate on
additional factors such as table size, number of rows, and I/O block size, so a fixed percentage
no longer determines the choice between using an index or a scan.

• In some cases, MySQL can read rows from the index without even consulting the data file. If all
columns used from the index are numeric, only the index tree is used to resolve the query.

• Before each record is output, those that do not match the HAVING clause are skipped.

Some examples of queries that are very fast:

SELECT COUNT(*) FROM tbl_name;
SELECT MIN(key_part1),MAX(key_part1) FROM tbl_name;
SELECT MAX(key_part2) FROM tbl_name

WHERE key_part1=constant;
SELECT ... FROM tbl_name

ORDER BY key_part1,key_part2,... LIMIT 10;
SELECT ... FROM tbl_name

ORDER BY key_part1 DESC, key_part2 DESC, ... LIMIT 10;

The following queries are resolved using only the index tree, assuming that the indexed columns are
numeric:

SELECT key_part1,key_part2 FROM tbl_name WHERE key_part1=val;
SELECT COUNT(*) FROM tbl_name

WHERE key_part1=val1 AND key_part2=val2;
SELECT key_part2 FROM tbl_name GROUP BY key_part1;

MySQL Optimization

410

The following queries use indexing to retrieve the rows in sorted order without a separate sorting
pass:

SELECT ... FROM tbl_name
ORDER BY key_part1,key_part2,... ;

SELECT ... FROM tbl_name
ORDER BY key_part1 DESC, key_part2 DESC, ... ;

7.2.5. Range Optimization
The range access method uses a single index to retrieve a subset of table records that are contained
within one or several index value intervals. It can be used for a single-part or multiple-part index. A
detailed description of how intervals are extracted from the WHERE clause is given in the following
sections.

7.2.5.1. Range Access Method for Single-Part Indexes

For a single-part index, index value intervals can be conveniently represented by corresponding con-
ditions in the WHERE clause, so we'll talk about ``range conditions'' instead of intervals.

The definition of a range condition for a single-part index is as follows:

• For both BTREE and HASH indexes, comparison of a key part with a constant value is a range
condition when using the =, <=>, IN, IS NULL, or IS NOT NULL operators.

• For BTREE indexes, comparison of a key part with a constant value is a range condition when
using the >, <, >=, <=, BETWEEN, !=, or <> operators, or LIKE 'pattern' (where 'pat-
tern' doesn't start with a wildcard).

• For all types of indexes, multiple range conditions combined with OR or AND form a range con-
dition.

``Constant value'' in the preceding descriptions means one of the following:

• A constant from the query string

• A column of a const or system table from the same join

• The result of an uncorrelated subquery

• Any expression composed entirely from subexpressions of the preceding types

Here are some examples of queries with range conditions in the WHERE clause:

SELECT * FROM t1 WHERE key_col > 1 AND key_col < 10;
SELECT * FROM t1 WHERE key_col = 1 OR key_col IN (15,18,20);
SELECT * FROM t1 WHERE key_col LIKE 'ab%' OR key_col BETWEEN
'bar' AND 'foo';

Note that some non-constant values may be converted to constants during the constant propagation
phase.

MySQL tries to extract range conditions from the WHERE clause for each of the possible indexes.
During the extraction process, conditions that can't be used for constructing the range condition are
dropped, conditions that produce overlapping ranges are combined, and conditions that produce
empty ranges are removed.

MySQL Optimization

411

For example, consider the following statement, where key1 is an indexed column and nonkey is
not indexed:

SELECT * FROM t1 WHERE
(key1 < 'abc' AND (key1 LIKE 'abcde%' OR key1 LIKE '%b')) OR
(key1 < 'bar' AND nonkey = 4) OR
(key1 < 'uux' AND key1 > 'z');

The extraction process for key key1 is as follows:

1. Start with original WHERE clause:

(key1 < 'abc' AND (key1 LIKE 'abcde%' OR key1 LIKE '%b')) OR
(key1 < 'bar' AND nonkey = 4) OR
(key1 < 'uux' AND key1 > 'z')

2. Remove nonkey = 4 and key1 LIKE '%b' because they cannot be used for a range
scan. The right way to remove them is to replace them with TRUE, so that we don't miss any
matching records when doing the range scan. Having replaced them with TRUE, we get:

(key1 < 'abc' AND (key1 LIKE 'abcde%' OR TRUE)) OR
(key1 < 'bar' AND TRUE) OR
(key1 < 'uux' AND key1 > 'z')

3. Collapse conditions that are always true or false:

• (key1 LIKE 'abcde%' OR TRUE) is always true

• (key1 < 'uux' AND key1 > 'z') is always false

Replacing these conditions with constants, we get:

(key1 < 'abc' AND TRUE) OR (key1 < 'bar' AND TRUE) OR (FALSE)

Removing unnecessary TRUE and FALSE constants, we obtain

(key1 < 'abc') OR (key1 < 'bar')

4. Combining overlapping intervals into one yields the final condition to be used for the range
scan:

(key1 < 'bar')

In general (and as demonstrated in the example), the condition used for a range scan is less restrict-
ive than the WHERE clause. MySQL performs an additional check to filter out rows that satisfy the
range condition but not the full WHERE clause.

The range condition extraction algorithm can handle nested AND/OR constructs of arbitrary depth,
and its output doesn't depend on the order in which conditions appear in WHERE clause.

7.2.5.2. Range Access Method for Multiple-Part Indexes

Range conditions on a multiple-part index are an extension of range conditions for a single-part in-
dex. A range condition on a multiple-part index restricts index records to lie within one or several
key tuple intervals. Key tuple intervals are defined over a set of key tuples, using ordering from the
index.

MySQL Optimization

412

For example, consider a multiple-part index defined as key1(key_part1, key_part2,
key_part3), and the following set of key tuples listed in key order:

key_part1 key_part2 key_part3
NULL 1 'abc'
NULL 1 'xyz'
NULL 2 'foo'
1 1 'abc'
1 1 'xyz'
1 2 'abc'
2 1 'aaa'

The condition key_part1 = 1 defines this interval:

(1, -inf, -inf) <= (key_part1, key_part2, key_part3) < (1, +inf, +inf)

The interval covers the 4th, 5th, and 6th tuples in the preceding data set and can be used by the
range access method.

By contrast, the condition key_part3 = 'abc' does not define a single interval and cannot be
used by the range access method.

The following descriptions indicate how range conditions work for multiple-part indexes in greater
detail.

• For HASH indexes, each interval containing identical values can be used. This means that the in-
terval can be produced only for conditions in the following form:

key_part1 cmp const1
AND key_part2 cmp const2
AND ...
AND key_partN cmp constN;

Here, const1, const2, ... are constants, cmp is one of the =, <=>, or IS NULL comparison
operators, and the conditions cover all index parts. (That is, there are N conditions, one for each
part of an N-part index.)

See Section 7.2.5.1, “Range Access Method for Single-Part Indexes” for the definition of what is
considered to be a constant.

For example, the following is a range condition for a three-part HASH index:

key_part1 = 1 AND key_part2 IS NULL AND key_part3 = 'foo'

• For a BTREE index, an interval might be usable for conditions combined with AND, where each
condition compares a key part with a constant value using =, <=>, IS NULL, >, <, >=, <=, !=,
<>, BETWEEN, or LIKE 'pattern' (where 'pattern' doesn't start with a wildcard). An
interval can be used as long as it is possible to determine a single key tuple containing all re-
cords that match the condition (or two intervals if <> or != is used). For example, for this con-
dition:

key_part1 = 'foo' AND key_part2 >= 10 AND key_part3 > 10

The single interval is:

('foo', 10, 10)
< (key_part1, key_part2, key_part3)

< ('foo', +inf, +inf)

MySQL Optimization

413

It is possible that the created interval contains more records than the initial condition. For ex-
ample, the preceding interval includes the value ('foo', 11, 0), which does not satisfy the
original condition.

• If conditions that cover sets of records contained within intervals are combined with OR, they
form a condition that covers a set of records contained within the union of their intervals. If the
conditions are combined with AND, they form a condition that covers a set of records contained
within the intersection of their intervals. For example, for this condition on a two-part index:

(key_part1 = 1 AND key_part2 < 2)
OR (key_part1 > 5)

The intervals is:

(1, -inf) < (key_part1, key_part2) < (1, 2)
(5, -inf) < (key_part1, key_part2)

In this example, the interval on the first line uses one key part for the left bound and two key
parts for the right bound. The interval on the second line uses only one key part. The key_len
column in the EXPLAIN output indicates the maximum length of the key prefix used.

In some cases, key_len may indicate that a key part was used, but that might be not what you
would expect. Suppose that key_part1 and key_part2 can be NULL. Then the key_len
column displays two key part lengths for the following condition:

key_part1 >= 1 AND key_part2 < 2

But in fact, the condition is converted to this:

key_part1 >= 1 AND key_part2 IS NOT NULL

Section 7.2.5.1, “Range Access Method for Single-Part Indexes” describes how optimizations are
performed to combine or eliminate intervals for range conditions on single-part index. Analogous
steps are performed for range conditions on multiple-part keys.

7.2.6. Index Merge Optimization
The Index Merge (index_merge) method is used to retrieve rows with several ref,
ref_or_null, or range scans and merge the results into one. This method is employed when
the table condition is a disjunction of conditions for which ref, ref_or_null, or range could
be used with different keys.

This ``join'' type optimization is new in MySQL 5.0.0, and represents a significant change in behavi-
or with regard to indexes, because the old rule was that the server is only ever able to use at most
one index for each referenced table.

In EXPLAIN output, this method appears as index_merge in the type column. In this case, the
key column contains a list of indexes used, and key_len contains a list of the longest key parts
for those indexes.

Examples:

SELECT * FROM tbl_name WHERE key_part1 = 10 OR key_part2 = 20;
SELECT * FROM tbl_name

WHERE (key_part1 = 10 OR key_part2 = 20) AND non_key_part=30;
SELECT * FROM t1, t2

WHERE (t1.key1 IN (1,2) OR t1.key2 LIKE 'value%')
AND t2.key1=t1.some_col;

MySQL Optimization

414

SELECT * FROM t1, t2
WHERE t1.key1=1
AND (t2.key1=t1.some_col OR t2.key2=t1.some_col2);

The Index Merge method has several access algorithms (seen in the Extra field of EXPLAIN out-
put):

• intersection

• union

• sort-union

The following sections describe these methods in greater detail.

Note: The Index Merge optimization algorithm has the following known deficiencies:

• If a range scan is possible on some key, an Index Merge is not considered. For example, con-
sider this query:

SELECT * FROM t1 WHERE (goodkey1 < 10 OR goodkey2 < 20) AND badkey < 30;

For this query, two plans are possible:

1. An Index Merge scan using the (goodkey1 < 10 OR goodkey2 < 20) condition.

2. A range scan using the badkey < 30 condition.

However, the optimizer only considers the second plan. If that is not what you want, you can
make the optimizer consider index_merge by using IGNORE INDEX or FORCE INDEX.
The following queries are executed using Index Merge:

SELECT * FROM t1 FORCE INDEX(goodkey1,goodkey2)
WHERE (goodkey1 < 10 OR goodkey2 < 20) AND badkey < 30;
SELECT * FROM t1 IGNORE INDEX(badkey)
WHERE (goodkey1 < 10 OR goodkey2 < 20) AND badkey < 30;

• If your query has a complex WHERE clause with deep AND/OR nesting and MySQL doesn't
choose the optimal plan, try distributing terms using the following identity laws:

(x AND y) OR z = (x OR z) AND (y OR z)
(x OR y) AND z = (x AND z) OR (y AND z)

The choice between different possible variants of the index_merge access method and other ac-
cess methods is based on cost estimates of various available options.

7.2.6.1. Index Merge Intersection Access Algorithm

This access algorithm can be employed when a WHERE clause was converted to several range condi-
tions on different keys combined with AND, and each condition is one of the following:

• In this form, where the index has exactly N parts (that is, all index parts are covered):

key_part1=const1 AND key_part2=const2 ... AND key_partN=constN

• Any range condition over a primary key of an InnoDB or BDB table.

MySQL Optimization

415

Here are some examples:

SELECT * FROM innodb_table WHERE primary_key < 10 AND key_col1=20;
SELECT * FROM tbl_name
WHERE (key1_part1=1 AND key1_part2=2) AND key2=2;

The Index Merge intersection algorithm performs simultaneous scans on all used indexes and pro-
duces the intersection of row sequences that it receives from the merged index scans.

If all columns used in the query are covered by the used indexes, full table records are not retrieved
and (EXPLAIN output contains Using index in Extra field in this case). Here is an example of
such query:

SELECT COUNT(*) FROM t1 WHERE key1=1 AND key2=1;

If the used indexes don't cover all columns used in the query, full records are retrieved only when
the range conditions for all used keys are satisfied.

If one of the merged conditions is a condition over a primary key of an InnoDB or BDB table, it is
not used for record retrieval, but is used to filter out records retrieved using other conditions.

7.2.6.2. Index Merge Union Access Algorithm

The applicability criteria for this algorithm are similar to those of the Index Merge method intersec-
tion algorithm. The algorithm can be employed when the table WHERE clause was converted to sev-
eral range conditions on different keys combined with OR, and each condition is one of the follow-
ing:

• In this form, where the index has exactly N parts (that is, all index parts are covered):

key_part1=const1 AND key_part2=const2 ... AND key_partN=constN

• Any range condition over a primary key of an InnoDB or BDB table.

• A condition for which the Index Merge method intersection algorithm is applicable.

Here are some examples:

SELECT * FROM t1 WHERE key1=1 OR key2=2 OR key3=3;
SELECT * FROM innodb_table WHERE (key1=1 AND key2=2) OR
(key3='foo' AND key4='bar') AND key5=5;

7.2.6.3. Index Merge Sort-Union Access Algorithm

This access algorithm is employed when the WHERE clause was converted to several range condi-
tions combined by OR, but for which the Index Merge method union algorithm is not applicable.

Here are some examples:

SELECT * FROM tbl_name WHERE key_col1 < 10 OR key_col2 < 20;
SELECT * FROM tbl_name

WHERE (key_col1 > 10 OR key_col2 = 20) AND nonkey_col=30;

The difference between the sort-union algorithm and the union algorithm is that the sort-union al-
gorithm must first fetch row IDs for all records and sort them before returning any records.

7.2.7. How MySQL Optimizes IS NULL

MySQL Optimization

416

MySQL can do the same optimization on col_name IS NULL that it can do with col_name =
constant_value. For example, MySQL can use indexes and ranges to search for NULL with IS
NULL.

SELECT * FROM tbl_name WHERE key_col IS NULL;
SELECT * FROM tbl_name WHERE key_col <=> NULL;
SELECT * FROM tbl_name

WHERE key_col=const1 OR key_col=const2 OR key_col IS NULL;

If a WHERE clause includes a col_name IS NULL condition for a column that is declared as NOT
NULL, that expression is optimized away. This optimization does not occur in cases when the
column might produce NULL anyway; for example, if it comes from a table on the right side of a
LEFT JOIN.

MySQL 4.1.1 and up can additionally optimize the combination col_name = expr AND
col_name IS NULL, a form that is common in resolved subqueries. EXPLAIN shows
ref_or_null when this optimization is used.

This optimization can handle one IS NULL for any key part.

Some examples of queries that are optimized, assuming that there is an index on columns a and b of
table t2:

SELECT * FROM t1 WHERE t1.a=expr OR t1.a IS NULL;
SELECT * FROM t1, t2 WHERE t1.a=t2.a OR t2.a IS NULL;
SELECT * FROM t1, t2

WHERE (t1.a=t2.a OR t2.a IS NULL) AND t2.b=t1.b;
SELECT * FROM t1, t2

WHERE t1.a=t2.a AND (t2.b=t1.b OR t2.b IS NULL);
SELECT * FROM t1, t2

WHERE (t1.a=t2.a AND t2.a IS NULL AND ...)
OR (t1.a=t2.a AND t2.a IS NULL AND ...);

ref_or_null works by first doing a read on the reference key, and then a separate search for
rows with a NULL key value.

Note that the optimization can handle only one IS NULL level. In the following query, MySQL
uses key lookups only on the expression (t1.a=t2.a AND t2.a IS NULL) and is not able to
use the key part on b:

SELECT * FROM t1, t2
WHERE (t1.a=t2.a AND t2.a IS NULL)
OR (t1.b=t2.b AND t2.b IS NULL);

7.2.8. How MySQL Optimizes DISTINCT

DISTINCT combined with ORDER BY needs a temporary table in many cases.

Note that because DISTINCT may use GROUP BY, you should be aware of how MySQL works
with columns in ORDER BY or HAVING clauses that are not part of the selected columns. See Sec-
tion 12.9.3, “GROUP BY with Hidden Fields”.

In most cases, a DISTINCT clause can be considered as a special case of GROUP BY. For example,
the following two queries are equivalent:

SELECT DISTINCT c1, c2, c3 FROM t1 WHERE c1 > const;
SELECT c1, c2, c3 FROM t1 WHERE c1 > const GROUP BY c1, c2, c3;

Due to this equivalence, the optimizations applicable to GROUP BY queries can be also applied to
queries with a DISTINCT clause. Thus, for more details on the optimization possibilities for DIS-
TINCT queries, see Section 7.2.11, “How MySQL Optimizes GROUP BY”.

MySQL Optimization

417

When combining LIMIT row_count with DISTINCT, MySQL stops as soon as it finds
row_count unique rows.

If you don't use columns from all tables named in a query, MySQL stops scanning the not-used
tables as soon as it finds the first match. In the following case, assuming that t1 is used before t2
(which you can check with EXPLAIN), MySQL stops reading from t2 (for any particular row in
t1) when the first row in t2 is found:

SELECT DISTINCT t1.a FROM t1, t2 where t1.a=t2.a;

7.2.9. How MySQL Optimizes LEFT JOIN and RIGHT
JOIN

A LEFT JOIN B join_condition is implemented in MySQL as follows:

• Table B is set to depend on table A and all tables on which A depends.

• Table A is set to depend on all tables (except B) that are used in the LEFT JOIN condition.

• The LEFT JOIN condition is used to decide how to retrieve rows from table B. (In other
words, any condition in the WHERE clause is not used.)

• All standard join optimizations are done, with the exception that a table is always read after all
tables on which it depends. If there is a circular dependence, MySQL issues an error.

• All standard WHERE optimizations are done.

• If there is a row in A that matches the WHERE clause, but there is no row in B that matches the
ON condition, an extra B row is generated with all columns set to NULL.

• If you use LEFT JOIN to find rows that don't exist in some table and you have the following
test: col_name IS NULL in the WHERE part, where col_name is a column that is declared
as NOT NULL, MySQL stops searching for more rows (for a particular key combination) after it
has found one row that matches the LEFT JOIN condition.

RIGHT JOIN is implemented analogously to LEFT JOIN, with the roles of the tables reversed.

The join optimizer calculates the order in which tables should be joined. The table read order forced
by LEFT JOIN and STRAIGHT_JOIN helps the join optimizer do its work much more quickly,
because there are fewer table permutations to check. Note that this means that if you do a query of
the following type, MySQL does a full scan on b because the LEFT JOIN forces it to be read be-
fore d:

SELECT *
FROM a,b LEFT JOIN c ON (c.key=a.key) LEFT JOIN d ON (d.key=a.key)
WHERE b.key=d.key;

The fix in this case is to rewrite the query as follows:

SELECT *
FROM b,a LEFT JOIN c ON (c.key=a.key) LEFT JOIN d ON (d.key=a.key)
WHERE b.key=d.key;

Starting from 4.0.14, MySQL does the following LEFT JOIN optimization: If the WHERE condi-
tion is always false for the generated NULL row, the LEFT JOIN is changed to a normal join.

For example, the WHERE clause would be false in the following query if t2.column1 would be
NULL:

MySQL Optimization

418

SELECT * FROM t1 LEFT JOIN t2 ON (column1) WHERE t2.column2=5;

Therefore, it's safe to convert the query to a normal join:

SELECT * FROM t1, t2 WHERE t2.column2=5 AND t1.column1=t2.column1;

This can be made faster because MySQL can use table t2 before table t1 if this would result in a
better query plan. To force a specific table order, use STRAIGHT_JOIN.

7.2.10. How MySQL Optimizes ORDER BY

In some cases, MySQL can use an index to satisfy an ORDER BY clause without doing any extra
sorting.

The index can also be used even if the ORDER BY doesn't match the index exactly, as long as all the
unused index parts and all the extra are ORDER BY columns are constants in the WHERE clause. The
following queries use the index to resolve the ORDER BY part:

SELECT * FROM t1 ORDER BY key_part1,key_part2,... ;
SELECT * FROM t1 WHERE key_part1=constant ORDER BY key_part2;
SELECT * FROM t1 ORDER BY key_part1 DESC, key_part2 DESC;
SELECT * FROM t1

WHERE key_part1=1 ORDER BY key_part1 DESC, key_part2 DESC;

In some cases, MySQL cannot use indexes to resolve the ORDER BY, although it still uses indexes
to find the rows that match the WHERE clause. These cases include the following:

• You use ORDER BY on different keys:

SELECT * FROM t1 ORDER BY key1, key2;

• You use ORDER BY on non-consecutive key parts:

SELECT * FROM t1 WHERE key2=constant ORDER BY key_part2;

• You mix ASC and DESC:

SELECT * FROM t1 ORDER BY key_part1 DESC, key_part2 ASC;

• The key used to fetch the rows is not the same as the one used in the ORDER BY:

SELECT * FROM t1 WHERE key2=constant ORDER BY key1;

• You are joining many tables, and the columns in the ORDER BY are not all from the first non-
constant table that is used to retrieve rows. (This is the first table in the EXPLAIN output that
doesn't have a const join type.)

• You have different ORDER BY and GROUP BY expressions.

• The type of table index used doesn't store rows in order. For example, this is true for a HASH in-
dex in a HEAP table.

With EXPLAIN SELECT ... ORDER BY, you can check whether MySQL can use indexes to
resolve the query. It cannot if you see Using filesort in the Extra column. See Sec-
tion 7.2.1, “EXPLAIN Syntax (Get Information About a SELECT)”.

MySQL Optimization

419

In those cases where MySQL must sort the result, it uses the following filesort algorithm before
MySQL 4.1:

1. Read all rows according to key or by table scanning. Rows that don't match the WHERE clause
are skipped.

2. For each row, store a pair of values in a buffer (the sort key and the row pointer). The size of
the buffer is the value of the sort_buffer_size system variable.

3. When the buffer gets full, run a qsort (quicksort) on it and store the result in a temporary file.
Save a pointer to the sorted block. (If all pairs fit into the sort buffer, no temporary file is cre-
ated.)

4. Repeat the preceding steps until all rows have been read.

5. Do a multi-merge of up to MERGEBUFF (7) regions to one block in another temporary file. Re-
peat until all blocks from the first file are in the second file.

6. Repeat the following until there are fewer than MERGEBUFF2 (15) blocks left.

7. On the last multi-merge, only the pointer to the row (the last part of the sort key) is written to a
result file.

8. Read the rows in sorted order by using the row pointers in the result file. To optimize this, we
read in a big block of row pointers, sort them, and use them to read the rows in sorted order in-
to a row buffer. The size of the buffer is the value of the read_rnd_buffer_size system
variable. The code for this step is in the sql/records.cc source file.

One problem with this approach is that it reads rows twice: One time when evaluating the WHERE
clause, and again after sorting the pair values. And even if the rows were accessed successively the
first time (for example, if a table scan is done), the second time they are accessed randomly. (The
sort keys are ordered, but the row positions are not.)

In MySQL 4.1 and up, a filesort optimization is used that records not only the sort key value
and row position, but also the columns required for the query. This avoids reading the rows twice.
The modified filesort algorithm works like this:

1. Read the rows that match the WHERE clause, as before.

2. For each row, record a tuple of values consisting of the sort key value and row position, and
also the columns required for the query.

3. Sort the tuples by sort key value

4. Retrieve the rows in sorted order, but read the required columns directly from the sorted tuples
rather than by accessing the table a second time.

Using the modified filesort algorithm, the tuples are longer than the pairs used in the original
method, and fewer of them fit in the sort buffer (the size of which is given by
sort_buffer_size). As a result, it is possible for the extra I/O to make the modified approach
slower, not faster. To avoid a slowdown, the optimization is used only if the total size of the extra
columns in the sort tuple does not exceed the value of the max_length_for_sort_data sys-
tem variable. (A symptom of setting the value of this variable too high is that you should see high
disk activity and low CPU activity.)

If you want to increase ORDER BY speed, first see whether you can get MySQL to use indexes
rather than an extra sorting phase. If this is not possible, you can try the following strategies:

• Increase the size of the sort_buffer_size variable.

MySQL Optimization

420

• Increase the size of the read_rnd_buffer_size variable.

• Change tmpdir to point to a dedicated filesystem with lots of empty space. If you use MySQL
4.1 or later, this option accepts several paths that are used in round-robin fashion. Paths should
be separated by colon characters (':') on Unix and semicolon characters (';') on Windows, Net-
Ware, and OS/2. You can use this feature to spread the load across several directories. Note: The
paths should be for directories in filesystems that are located on different physical disks, not dif-
ferent partitions of the same disk.

By default, MySQL sorts all GROUP BY col1, col2, ... queries as if you specified ORDER
BY col1, col2, ... in the query as well. If you include an ORDER BY clause explicitly that
contains the same column list, MySQL optimizes it away without any speed penalty, although the
sorting still occurs. If a query includes GROUP BY but you want to avoid the overhead of sorting
the result, you can suppress sorting by specifying ORDER BY NULL. For example:

INSERT INTO foo
SELECT a, COUNT(*) FROM bar GROUP BY a ORDER BY NULL;

7.2.11. How MySQL Optimizes GROUP BY

The most general way to satisfy a GROUP BY clause is to scan the whole table and create a new
temporary table where all rows from each group are consecutive, and then use this temporary table
to discover groups and apply aggregate functions (if any). In some cases, MySQL is able to do much
better than that and to avoid creation of temporary tables by using index access.

The most important preconditions for using indexes for GROUP BY are that all GROUP BY
columns reference attributes from the same index, and the index stores its keys in order (for ex-
ample, this is a B-Tree index, and not a HASH index). Whether usage of temporary tables can be re-
placed by index access also depends on which parts of an index are used in a query, the conditions
specified for these parts, and the selected aggregate functions.

There are two ways to execute a GROUP BY query via index access, as detailed in the following
sections. In the first method, the grouping operation is applied together with all range predicates (if
any). The second method first performs a range scan, and then groups the resulting tuples.

7.2.11.1. Loose index scan

The most efficient way is when the index is used to directly retrieve the group fields. With this ac-
cess method, MySQL uses the property of some index types (for example, B-Trees) that the keys are
ordered. This property allows use of lookup groups in an index without having to consider all keys
in the index that satisfy all WHERE conditions. Since this access method considers only a fraction of
the keys in an index, it is called ``loose index scan.'' When there is no WHERE clause, a loose index
scan reads as many keys as the number of groups, which may be a much smaller number than all
keys. If the WHERE clause contains range predicates (described in Section 7.2.1, “EXPLAIN Syntax
(Get Information About a SELECT)”, under the range join type), a loose index scan looks up the
first key of each group that satisfies the range conditions, and again reads the least possible number
of keys. This is possible under the following conditions:

• The query is over a single table.

• The GROUP BY includes the first consecutive parts of the index (if instead of GROUP BY, the
query has a DISTINCT clause, then all distinct attributes refer to the beginning of the index).

• The only aggregate functions used (if any) are MIN() and MAX(), and all of them refer to the
same column.

• Any other index parts than the ones from GROUP BY referenced in the query must be constants
(that is, they must be referenced in equalities with constants), except for the argument of MIN()
or MAX() functions.

MySQL Optimization

421

The EXPLAIN output for such queries shows Using index for group-by in the Extra
column.

The following queries provide several examples that fall into this category, assuming there is an in-
dex idx(c1, c2, c3) on table t1(c1,c2,c3,c4):

SELECT c1, c2 FROM t1 GROUP BY c1, c2;
SELECT DISTINCT c1, c2 FROM t1;
SELECT c1, MIN(c2) FROM t1 GROUP BY c1;
SELECT c1, c2 FROM t1 WHERE c1 < const GROUP BY c1, c2;
SELECT MAX(c3), MIN(c3), c1, c2 FROM t1 WHERE c2 > const GROUP BY c1, c2;
SELECT c2 FROM t1 WHERE c1 < const GROUP BY c1, c2;
SELECT c1, c2 FROM t1 WHERE c3 = const GROUP BY c1, c2;

The following queries cannot be executed with this quick select method, for the reasons given:

• There are other aggregate function than MIN() or MAX():

SELECT c1, SUM(c2) FROM t1 GROUP BY c1;

• The fields in GROUP BY do not refer to the beginning of the index:

SELECT c1,c2 FROM t1 GROUP BY c2, c3;

• The query refers to a key part that is after the GROUP BY parts, and for which there is no equal-
ity with a constant:

SELECT c1,c3 FROM t1 GROUP BY c1, c2;

7.2.11.2. Tight index scan

A tight index scan may be either a full index scan or a range index scan, depending on the query
conditions.

When the conditions for a loose index scan are not met, it is still possible to avoid creation of tem-
porary tables for GROUP BY queries. If there are range conditions in the WHERE clause, this method
reads only the keys that satisfy these conditions. Otherwise, it performs an index scan. Since this
method reads all keys in each range defined by the WHERE clause, or scans the whole index if there
are no range conditions, we term it a ``tight index scan.'' Notice that with a tight index scan, the
grouping operation is performed after all keys that satisfy the range conditions have been found.

For this method to work, it is sufficient that for all columns in a query referring to key parts before
or in between the GROUP BY key parts, there is a constant equality condition. The constants from
the equality conditions fill in the ``gaps'' in the search keys so that it is possible to form complete
prefixes of the index. Then these index prefixes can be used for index lookups. If we require sorting
of the GROUP BY result, and it is possible to form search keys that are prefixes of the index,
MySQL also avoids sorting because searching with prefixes in an ordered index retrieves all keys in
order.

The following queries do not work with the first method above, but still work with the second index
access method (assuming we have the aforementioned index idx on table t1):

• There is a ``gap'' in GROUP BY, but it is covered by the condition (c2 = 'a').

SELECT c1, c2, c3 FROM t1 WHERE c2 = 'a' GROUP BY c1, c3;

• GROUP BY does not begin from the first key part, but there is a condition that provides a con-

MySQL Optimization

422

stant for that key part:

SELECT c1, c2, c3 FROM t1 WHERE c1 = 'a' GROUP BY c2, c3;

7.2.12. How MySQL Optimizes LIMIT

In some cases, MySQL handles a query differently when you are using LIMIT row_count and
not using HAVING:

• If you are selecting only a few rows with LIMIT, MySQL uses indexes in some cases when nor-
mally it would prefer to do a full table scan.

• If you use LIMIT row_count with ORDER BY, MySQL ends the sorting as soon as it has
found the first row_count lines rather than sorting the whole table.

• When combining LIMIT row_count with DISTINCT, MySQL stops as soon as it finds
row_count unique rows.

• In some cases, a GROUP BY can be resolved by reading the key in order (or doing a sort on the
key) and then calculating summaries until the key value changes. In this case, LIMIT
row_count does not calculate any unnecessary GROUP BY values.

• As soon as MySQL has sent the required number of rows to the client, it aborts the query unless
you are using SQL_CALC_FOUND_ROWS.

• LIMIT 0 always quickly returns an empty set. This is useful to check the query or to get the
column types of the result columns.

• When the server uses temporary tables to resolve the query, the LIMIT row_count is used to
calculate how much space is required.

7.2.13. How to Avoid Table Scans
The output from EXPLAIN shows ALL in the type column when MySQL uses a table scan to re-
solve a query. This usually happens under the following conditions:

• The table is so small that it's faster to do a table scan than a key lookup. This is a common case
for tables with fewer than 10 rows and a short row length.

• There are no usable restrictions in the ON or WHERE clause for indexed columns.

• You are comparing indexed columns with constant values and MySQL has calculated (based on
the index tree) that the constants cover too large a part of the table and that a table scan would be
faster. See Section 7.2.4, “How MySQL Optimizes WHERE Clauses”.

• You are using a key with low cardinality (many rows match the key value) through another
column. In this case, MySQL assumes that by using the key it probably does a lot of key look-
ups and that a table scan would be faster.

For small tables, a table scan often is appropriate. For large tables, try the following techniques to
avoid having the optimizer incorrectly choose a table scan:

• Use ANALYZE TABLE tbl_name to update the key distributions for the scanned table. See
Section 13.5.2.1, “ANALYZE TABLE Syntax”.

• Use FORCE INDEX for the scanned table to tell MySQL that table scans are very expensive

MySQL Optimization

423

compared to using the given index. See Section 13.1.7, “SELECT Syntax”.

SELECT * FROM t1, t2 FORCE INDEX (index_for_column)
WHERE t1.col_name=t2.col_name;

• Start mysqld with the --max-seeks-for-key=1000 option or use SET
max_seeks_for_key=1000 to tell the optimizer to assume that no key scan causes more
than 1,000 key seeks. See Section 5.2.3, “Server System Variables”.

7.2.14. Speed of INSERT Statements
The time to insert a record is determined by the following factors, where the numbers indicate ap-
proximate proportions:

• Connecting: (3)

• Sending query to server: (2)

• Parsing query: (2)

• Inserting record: (1 x size of record)

• Inserting indexes: (1 x number of indexes)

• Closing: (1)

This does not take into consideration the initial overhead to open tables, which is done once for each
concurrently running query.

The size of the table slows down the insertion of indexes by log N, assuming B-tree indexes.

You can use the following methods to speed up inserts:

• If you are inserting many rows from the same client at the same time, use INSERT statements
with multiple VALUES lists to insert several rows at a time. This is much faster (many times
faster in some cases) than using separate single-row INSERT statements. If you are adding data
to a non-empty table, you may tune the bulk_insert_buffer_size variable to make it
even faster. See Section 5.2.3, “Server System Variables”.

• If you are inserting a lot of rows from different clients, you can get higher speed by using the
INSERT DELAYED statement. See Section 13.1.4, “INSERT Syntax”.

• With MyISAM tables you can insert rows at the same time that SELECT statements are running
if there are no deleted rows in the tables.

• When loading a table from a text file, use LOAD DATA INFILE. This is usually 20 times
faster than using a lot of INSERT statements. See Section 13.1.5, “LOAD DATA INFILE Syn-
tax”.

• With some extra work, it is possible to make LOAD DATA INFILE run even faster when the
table has many indexes. Use the following procedure:

1. Optionally create the table with CREATE TABLE.

2. Execute a FLUSH TABLES statement or a mysqladmin flush-tables command.

3. Use myisamchk --keys-used=0 -rq /path/to/db/tbl_name. This removes all use of
indexes for the table.

MySQL Optimization

424

4. Insert data into the table with LOAD DATA INFILE. This does not update any indexes
and therefore is very fast.

5. If you are going to only read the table in the future, use myisampack to make it smaller.
See Section 14.1.3.3, “Compressed Table Characteristics”.

6. Re-create the indexes with myisamchk -r -q /path/to/db/tbl_name. This creates
the index tree in memory before writing it to disk, which is much faster because it avoids
lots of disk seeks. The resulting index tree is also perfectly balanced.

7. Execute a FLUSH TABLES statement or a mysqladmin flush-tables command.

Note that LOAD DATA INFILE also performs the preceding optimization if you insert into an
empty MyISAM table; the main difference is that you can let myisamchk allocate much more
temporary memory for the index creation than you might want the server to allocate for index re-
creation when it executes the LOAD DATA INFILE statement.

As of MySQL 4.0, you can also use ALTER TABLE tbl_name DISABLE KEYS instead of
myisamchk --keys-used=0 -rq /path/to/db/tbl_name and ALTER TABLE tbl_name
ENABLE KEYS instead of myisamchk -r -q /path/to/db/tbl_name. This way you can
also skip the FLUSH TABLES steps.

• You can speed up INSERT operations that are done with multiple statements by locking your
tables:

LOCK TABLES a WRITE;
INSERT INTO a VALUES (1,23),(2,34),(4,33);
INSERT INTO a VALUES (8,26),(6,29);
UNLOCK TABLES;

A performance benefit occurs because the index buffer is flushed to disk only once, after all IN-
SERT statements have completed. Normally there would be as many index buffer flushes as
there are different INSERT statements. Explicit locking statements are not needed if you can in-
sert all rows with a single statement.

For transactional tables, you should use BEGIN/COMMIT instead of LOCK TABLES to get a
speedup.

Locking also lowers the total time of multiple-connection tests, although the maximum wait
time for individual connections might go up because they wait for locks. For example:

Connection 1 does 1000 inserts
Connections 2, 3, and 4 do 1 insert
Connection 5 does 1000 inserts

If you don't use locking, connections 2, 3, and 4 finish before 1 and 5. If you use locking, con-
nections 2, 3, and 4 probably do not finish before 1 or 5, but the total time should be about 40%
faster.

INSERT, UPDATE, and DELETE operations are very fast in MySQL, but you can obtain better
overall performance by adding locks around everything that does more than about five inserts or
updates in a row. If you do very many inserts in a row, you could do a LOCK TABLES followed
by an UNLOCK TABLES once in a while (about each 1,000 rows) to allow other threads access
to the table. This would still result in a nice performance gain.

INSERT is still much slower for loading data than LOAD DATA INFILE, even when using the
strategies just outlined.

• To get some more speed for MyISAM tables, for both LOAD DATA INFILE and INSERT, en-
large the key cache by increasing the key_buffer_size system variable. See Section 7.5.2,
“Tuning Server Parameters”.

MySQL Optimization

425

7.2.15. Speed of UPDATE Statements
Update statements are optimized as a SELECT query with the additional overhead of a write. The
speed of the write depends on the amount of data being updated and the number of indexes that are
updated. Indexes that are not changed does not get updated.

Also, another way to get fast updates is to delay updates and then do many updates in a row later.
Doing many updates in a row is much quicker than doing one at a time if you lock the table.

Note that for a MyISAM table that uses dynamic record format, updating a record to a longer total
length may split the record. If you do this often, it is very important to use OPTIMIZE TABLE oc-
casionally. See Section 13.5.2.5, “OPTIMIZE TABLE Syntax”.

7.2.16. Speed of DELETE Statements
The time to delete individual records is exactly proportional to the number of indexes. To delete re-
cords more quickly, you can increase the size of the key cache. See Section 7.5.2, “Tuning Server
Parameters”.

If you want to delete all rows in the table, use TRUNCATE TABLE tbl_name rather than DE-
LETE FROM tbl_name. See Section 13.1.9, “TRUNCATE Syntax”.

7.2.17. Other Optimization Tips
This section lists a number of miscellaneous tips for improving query processing speed:

• Use persistent connections to the database to avoid connection overhead. If you can't use persist-
ent connections and you are initiating many new connections to the database, you may want to
change the value of the thread_cache_size variable. See Section 7.5.2, “Tuning Server
Parameters”.

• Always check whether all your queries really use the indexes you have created in the tables. In
MySQL, you can do this with the EXPLAIN statement. See Section 7.2.1, “EXPLAIN Syntax
(Get Information About a SELECT)”.

• Try to avoid complex SELECT queries on MyISAM tables that are updated frequently, to avoid
problems with table locking that occur due to contention between readers and writers.

• With MyISAM tables that have no deleted rows, you can insert rows at the end at the same time
that another query is reading from the table. If this is important for you, you should consider us-
ing the table in ways that avoid deleting rows. Another possibility is to run OPTIMIZE TABLE
after you have deleted a lot of rows.

• Use ALTER TABLE ... ORDER BY expr1, expr2, ... if you mostly retrieve rows
in expr1, expr2, ... order. By using this option after extensive changes to the table, you
may be able to get higher performance.

• In some cases, it may make sense to introduce a column that is ``hashed'' based on information
from other columns. If this column is short and reasonably unique, it may be much faster than a
big index on many columns. In MySQL, it's very easy to use this extra column:

SELECT * FROM tbl_name
WHERE hash_col=MD5(CONCAT(col1,col2))
AND col1='constant' AND col2='constant';

• For MyISAM tables that change a lot, you should try to avoid all variable-length columns
(VARCHAR, BLOB, and TEXT). The table uses dynamic record format if it includes even a single
variable-length column. See Chapter 14, MySQL Storage Engines and Table Types.

• It's normally not useful to split a table into different tables just because the rows get ``big.'' To
access a row, the biggest performance hit is the disk seek to find the first byte of the row. After

MySQL Optimization

426

finding the data, most modern disks can read the whole row fast enough for most applications.
The only cases where it really matters to split up a table is if it's a MyISAM table with dynamic
record format (see above) that you can change to a fixed record size, or if you very often need to
scan the table but do not need most of the columns. See Chapter 14, MySQL Storage Engines
and Table Types.

• If you very often need to calculate results such as counts based on information from a lot of
rows, it's probably much better to introduce a new table and update the counter in real time. An
update of the following form is very fast:

UPDATE tbl_name SET count_col=count_col+1 WHERE key_col=constant;

This is really important when you use MySQL storage engines such as MyISAM and ISAM that
have only table-level locking (multiple readers / single writers). This also gives better perform-
ance with most databases, because the row locking manager in this case has less to do.

• If you need to collect statistics from large log tables, use summary tables instead of scanning the
entire log table. Maintaining the summaries should be much faster than trying to calculate stat-
istics ``live.'' It's much faster to regenerate new summary tables from the logs when things
change (depending on business decisions) than to have to change the running application!

• If possible, you should classify reports as ``live'' or ``statistical,'' where data needed for statistical
reports is created only from summary tables that are generated periodically from the live data.

• Take advantage of the fact that columns have default values. Insert values explicitly only when
the value to be inserted differs from the default. This reduces the parsing that MySQL needs to
do and improves the insert speed.

• In some cases, it's convenient to pack and store data into a BLOB column. In this case, you must
add some extra code in your application to pack and unpack information in the BLOB values, but
this may save a lot of accesses at some stage. This is practical when you have data that doesn't
conform to a rows-and-columns table structure.

• Normally, you should try to keep all data non-redundant (what is called "third normal form" in
database theory). However, do not be afraid to duplicate information or create summary tables if
necessary to gain more speed.

• Stored procedures or UDFs (user-defined functions) may be a good way to get more perform-
ance for some tasks. However, if you use a database system that does not support these capabilit-
ies, you should always have another way to perform the same tasks, even if the alternative meth-
od is slower.

• You can always gain something by caching queries or answers in your application and then per-
forming many inserts or updates together. If your database supports table locks (like MySQL
and Oracle), this should help to ensure that the index cache is only flushed once after all updates.

• Use INSERT DELAYED when you do not need to know when your data is written. This speeds
things up because many records can be written with a single disk write.

• Use INSERT LOW_PRIORITY when you want to give SELECT statements higher priority
than your inserts.

• Use SELECT HIGH_PRIORITY to get retrievals that jump the queue. That is, the SELECT is
done even if there is another client waiting to do a write.

• Use multiple-row INSERT statements to store many rows with one SQL statement (many SQL
servers support this).

• Use LOAD DATA INFILE to load large amounts of data. This is faster than using INSERT
statements.

• Use AUTO_INCREMENT columns to generate unique values.

MySQL Optimization

427

• Use OPTIMIZE TABLE once in a while to avoid fragmentation with MyISAM tables when us-
ing a dynamic table format. See Section 14.1.3, “MyISAM Table Storage Formats”.

• Use HEAP tables when possible to get more speed. See Chapter 14, MySQL Storage Engines and
Table Types.

• When using a normal Web server setup, images should be stored as files. That is, store only a
file reference in the database. The main reason for this is that a normal Web server is much bet-
ter at caching files than database contents, so it's much easier to get a fast system if you are us-
ing files.

• Use in-memory tables for non-critical data that is accessed often, such as information about the
last displayed banner for users who don't have cookies enabled in their Web browser.

• Columns with identical information in different tables should be declared to have identical data
types. Before MySQL 3.23, you get slow joins otherwise.

Try to keep column names simple. For example, in a table named customer, use a column
name of name instead of customer_name. To make your names portable to other SQL serv-
ers, you should keep them shorter than 18 characters.

• If you need really high speed, you should take a look at the low-level interfaces for data storage
that the different SQL servers support! For example, by accessing the MySQL MyISAM storage
engine directly, you could get a speed increase of two to five times compared to using the SQL
interface. To be able to do this, the data must be on the same server as the application, and usu-
ally it should only be accessed by one process (because external file locking is really slow). One
could eliminate these problems by introducing low-level MyISAM commands in the MySQL
server (this could be one easy way to get more performance if needed). By carefully designing
the database interface, it should be quite easy to support this types of optimization.

• If you are using numerical data, it's faster in many cases to access information from a database
(using a live connection) than to access a text file. Information in the database is likely to be
stored in a more compact format than in the text file, so accessing it involves fewer disk ac-
cesses. You also save code in your application because you don't have to parse your text files to
find line and column boundaries.

• Replication can provide a performance benefit for some operations. You can distribute client re-
trievals among replication servers to split up the load. To avoid slowing down the master while
making backups, you can make backups using a slave server. See Chapter 6, Replication in
MySQL.

• Declaring a MyISAM table with the DELAY_KEY_WRITE=1 table option makes index updates
faster because they are not flushed to disk until the table is closed. The downside is that if
something kills the server while such a table is open, you should ensure that they are okay by
running the server with the --myisam-recover option, or by running myisamchk before re-
starting the server. (However, even in this case, you should not lose anything by using
DELAY_KEY_WRITE, because the key information can always be generated from the data
rows.)

7.3. Locking Issues
7.3.1. Locking Methods

Currently, MySQL supports table-level locking for ISAM, MyISAM, and MEMORY (HEAP) tables,
page-level locking for BDB tables, and row-level locking for InnoDB tables.

In many cases, you can make an educated guess about which locking type is best for an application,
but generally it's very hard to say that a given lock type is better than another. Everything depends
on the application and different parts of an application may require different lock types.

MySQL Optimization

428

To decide whether you want to use a storage engine with row-level locking, you should look at what
your application does and what mix of select and update statements it uses. For example, most Web
applications do lots of selects, very few deletes, updates based mainly on key values, and inserts into
some specific tables. The base MySQL MyISAM setup is very well tuned for this.

Table locking in MySQL is deadlock-free for storage engines that use table-level locking. Deadlock
avoidance is managed by always requesting all needed locks at once at the beginning of a query and
always locking the tables in the same order.

The table-locking method MySQL uses for WRITE locks works as follows:

• If there are no locks on the table, put a write lock on it.

• Otherwise, put the lock request in the write lock queue.

The table-locking method MySQL uses for READ locks works as follows:

• If there are no write locks on the table, put a read lock on it.

• Otherwise, put the lock request in the read lock queue.

When a lock is released, the lock is made available to the threads in the write lock queue, then to the
threads in the read lock queue.

This means that if you have many updates for a table, SELECT statements wait until there are no
more updates.

Starting in MySQL 3.23.33, you can analyze the table lock contention on your system by checking
the Table_locks_waited and Table_locks_immediate status variables:

mysql> SHOW STATUS LIKE 'Table%';
+-----------------------+---------+
| Variable_name | Value |
+-----------------------+---------+
| Table_locks_immediate | 1151552 |
| Table_locks_waited | 15324 |
+-----------------------+---------+

As of MySQL 3.23.7 (3.23.25 for Windows), you can freely mix concurrent INSERT and SELECT
statements for a MyISAM table without locks if the INSERT statements are non-conflicting. That is,
you can insert rows into a MyISAM table at the same time other clients are reading from it. No con-
flict occurs if the data file contains no free blocks in the middle, because in that case, records always
are inserted at the end of the data file. (Holes can result from rows having been deleted from or up-
dated in the middle of the table.) If there are holes, concurrent inserts are re-enabled automatically
when all holes have been filled with new data.

If you want to do many INSERT and SELECT operations on a table when concurrent inserts are not
possible, you can insert rows in a temporary table and update the real table with the records from the
temporary table once in a while. This can be done with the following code:

mysql> LOCK TABLES real_table WRITE, insert_table WRITE;
mysql> INSERT INTO real_table SELECT * FROM insert_table;
mysql> TRUNCATE TABLE insert_table;
mysql> UNLOCK TABLES;

InnoDB uses row locks and BDB uses page locks. For the InnoDB and BDB storage engines, dead-
lock is possible. This is because InnoDB automatically acquires row locks and BDB acquires page
locks during the processing of SQL statements, not at the start of the transaction.

MySQL Optimization

429

Advantages of row-level locking:

• Fewer lock conflicts when accessing different rows in many threads.

• Fewer changes for rollbacks.

• Makes it possible to lock a single row a long time.

Disadvantages of row-level locking:

• Takes more memory than page-level or table-level locks.

• Is slower than page-level or table-level locks when used on a large part of the table because you
must acquire many more locks.

• Is definitely much worse than other locks if you often do GROUP BY operations on a large part
of the data or if you often must scan the entire table.

• With higher-level locks, you can also more easily support locks of different types to tune the ap-
plication, because the lock overhead is less than for row-level locks.

Table locks are superior to page-level or row-level locks in the following cases:

• Most statements for the table are reads.

• Read and updates on strict keys, where you update or delete a row that can be fetched with a
single key read:

UPDATE tbl_name SET column=value WHERE unique_key_col=key_value;
DELETE FROM tbl_name WHERE unique_key_col=key_value;

• SELECT combined with concurrent INSERT statements, and very few UPDATE and DELETE
statements.

• Many scans or GROUP BY operations on the entire table without any writers.

Options other than row-level or page-level locking:

Versioning (such as we use in MySQL for concurrent inserts) where you can have one writer at the
same time as many readers. This means that the database/table supports different views for the data
depending on when you started to access it. Other names for this are time travel, copy on write, or
copy on demand.

Copy on demand is in many cases much better than page-level or row-level locking. However, the
worst case does use much more memory than when using normal locks.

Instead of using row-level locks, you can use application-level locks, such as GET_LOCK() and
RELEASE_LOCK() in MySQL. These are advisory locks, so they work only in well-behaved ap-
plications.

7.3.2. Table Locking Issues
To achieve a very high lock speed, MySQL uses table locking (instead of page, row, or column
locking) for all storage engines except InnoDB and BDB.

For InnoDB and BDB tables, MySQL only uses table locking if you explicitly lock the table with
LOCK TABLES. For these table types, we recommend you to not use LOCK TABLES at all, be-

MySQL Optimization

430

cause InnoDB uses automatic row-level locking and BDB uses page-level locking to ensure transac-
tion isolation.

For large tables, table locking is much better than row locking for most applications, but there are
some pitfalls.

Table locking enables many threads to read from a table at the same time, but if a thread wants to
write to a table, it must first get exclusive access. During the update, all other threads that want to
access this particular table must wait until the update is done.

Table updates normally are considered to be more important than table retrievals, so they are given
higher priority. This should ensure that updates to a table are not ``starved'' even if there is heavy
SELECT activity for the table.

Table locking causes problems in cases such as when a thread is waiting because the disk is full and
free space needs to become available before the thread can proceed. In this case, all threads that
want to access the problem table are also put in a waiting state until more disk space is made avail-
able.

Table locking is also disadvantageous under the following scenario:

• A client issues a SELECT that takes a long time to run.

• Another client then issues an UPDATE on the same table. This client waits until the SELECT is
finished.

• Another client issues another SELECT statement on the same table. Because UPDATE has high-
er priority than SELECT, this SELECT waits for the UPDATE to finish. It also waits for the first
SELECT to finish!

The following list describes some ways to avoid or reduce contention caused by table locking:

• Try to get the SELECT statements to run faster. You might have to create some summary tables
to do this.

• Start mysqld with --low-priority-updates. This gives all statements that update
(modify) a table lower priority than SELECT statements. In this case, the second SELECT state-
ment in the preceding scenario would execute before the INSERT statement, and would not
need to wait for the first SELECT to finish.

• You can specify that all updates issued in a specific connection should be done with low priority
by using the SET LOW_PRIORITY_UPDATES=1 statement. See Section 13.5.3, “SET Syn-
tax”.

• You can give a specific INSERT, UPDATE, or DELETE statement lower priority with the
LOW_PRIORITY attribute.

• You can give a specific SELECT statement higher priority with the HIGH_PRIORITY attribute.
See Section 13.1.7, “SELECT Syntax”.

• Starting from MySQL 3.23.7, you can start mysqld with a low value for the
max_write_lock_count system variable to force MySQL to temporarily elevate the prior-
ity of all SELECT statements that are waiting for a table after a specific number of inserts to the
table occur. This allows READ locks after a certain number of WRITE locks.

• If you have problems with INSERT combined with SELECT, switch to using MyISAM tables,
which support concurrent SELECT and INSERT statements.

• If you mix inserts and deletes on the same table, INSERT DELAYED may be of great help. See
Section 13.1.4.2, “INSERT DELAYED Syntax”.

• If you have problems with mixed SELECT and DELETE statements, the LIMIT option to DE-

MySQL Optimization

431

LETE may help. See Section 13.1.1, “DELETE Syntax”.

• Using SQL_BUFFER_RESULT with SELECT statements can help to make the duration of table
locks shorter. See Section 13.1.7, “SELECT Syntax”.

• You could change the locking code in mysys/thr_lock.c to use a single queue. In this
case, write locks and read locks would have the same priority, which might help some applica-
tions.

Here are some tips about table locking in MySQL:

• Concurrent users are not a problem if you don't mix updates with selects that need to examine
many rows in the same table.

• You can use LOCK TABLES to speed up things (many updates within a single lock is much
faster than updates without locks). Splitting table contents into separate tables may also help.

• If you encounter speed problems with table locks in MySQL, you may be able to improve per-
formance by converting some of your tables to InnoDB or BDB tables. See Chapter 15, The
InnoDB Storage Engine. See Section 14.4, “The BDB (BerkeleyDB) Storage Engine”.

7.4. Optimizing Database Structure
7.4.1. Design Choices

MySQL keeps row data and index data in separate files. Many (almost all) other databases mix row
and index data in the same file. We believe that the MySQL choice is better for a very wide range of
modern systems.

Another way to store the row data is to keep the information for each column in a separate area
(examples are SDBM and Focus). This causes a performance hit for every query that accesses more
than one column. Because this degenerates so quickly when more than one column is accessed, we
believe that this model is not good for general-purpose databases.

The more common case is that the index and data are stored together (as in Oracle/Sybase, et al). In
this case, you find the row information at the leaf page of the index. The good thing with this layout
is that it, in many cases, depending on how well the index is cached, saves a disk read. The bad
things with this layout are:

• Table scanning is much slower because you have to read through the indexes to get at the data.

• You can't use only the index table to retrieve data for a query.

• You use more space because you must duplicate indexes from the nodes (you can't store the row
in the nodes).

• Deletes degenerate the table over time (because indexes in nodes are usually not updated on de-
lete).

• It's harder to cache only the index data.

7.4.2. Make Your Data as Small as Possible
One of the most basic optimizations is to design your tables to take as little space on the disk as pos-
sible. This can give huge improvements because disk reads are faster, and smaller tables normally
require less main memory while their contents are being actively processed during query execution.

MySQL Optimization

432

Indexing also is a lesser resource burden if done on smaller columns.

MySQL supports a lot of different table types and row formats. For each table, you can decide
which storage/index method to use. Choosing the right table format for your application may give
you a big performance gain. See Chapter 14, MySQL Storage Engines and Table Types.

You can get better performance on a table and minimize storage space using the techniques listed
here:

• Use the most efficient (smallest) data types possible. MySQL has many specialized types that
save disk space and memory.

• Use the smaller integer types if possible to get smaller tables. For example, MEDIUMINT is of-
ten better than INT.

• Declare columns to be NOT NULL if possible. It makes everything faster and you save one bit
per column. If you really need NULL in your application, you should definitely use it. Just avoid
having it on all columns by default.

• For MyISAM tables, if you don't have any variable-length columns (VARCHAR, TEXT, or BLOB
columns), a fixed-size record format is used. This is faster but unfortunately may waste some
space. See Section 14.1.3, “MyISAM Table Storage Formats”. You can hint that you want to
have fixed length rows even if you have VARCHAR columns with the CREATE option
ROW_FORMAT=fixed.

• Starting with MySQL/InnoDB 5.0.3, InnoDB tables use a more compact storage format. In
earlier versions of MySQL, InnoDB records contain some redundant information, such as the
number of columns and the lengths of each column, even for fixed-size columns. By default,
tables are created in the compact format (ROW_FORMAT=COMPACT). If you wish to downgrade
to older versions of MySQL/InnoDB, you can request the old format with
ROW_FORMAT=REDUNDANT.

• The primary index of a table should be as short as possible. This makes identification of each
row easy and efficient.

• Create only the indexes that you really need. Indexes are good for retrieval but bad when you
need to store things fast. If you mostly access a table by searching on a combination of columns,
make an index on them. The first index part should be the most used column. If you are always
using many columns, you should use the column with more duplicates first to get better com-
pression of the index.

• If it's very likely that a column has a unique prefix on the first number of characters, it's better to
index only this prefix. MySQL supports an index on the leftmost part of a character column.
Shorter indexes are faster not only because they take less disk space, but also because they give
you more hits in the index cache and thus fewer disk seeks. See Section 7.5.2, “Tuning Server
Parameters”.

• In some circumstances, it can be beneficial to split into two a table that is scanned very often.
This is especially true if it is a dynamic format table and it is possible to use a smaller static
format table that can be used to find the relevant rows when scanning the table.

7.4.3. Column Indexes
All MySQL column types can be indexed. Use of indexes on the relevant columns is the best way to
improve the performance of SELECT operations.

The maximum number of indexes per table and the maximum index length is defined per storage en-
gine. See Chapter 14, MySQL Storage Engines and Table Types. All storage engines support at least
16 indexes per table and a total index length of at least 256 bytes. Most storage engines have higher
limits.

MySQL Optimization

433

With col_name(length) syntax in an index specification, you can create an index that uses
only the first length characters of a CHAR or VARCHAR column. Indexing only a prefix of column
values like this can make the index file much smaller.

The MyISAM and (as of MySQL 4.0.14) InnoDB storage engines also support indexing on BLOB
and TEXT columns. When indexing a BLOB or TEXT column, you must specify a prefix length for
the index. For example:

CREATE TABLE test (blob_col BLOB, INDEX(blob_col(10)));

Prefixes can be up to 255 bytes long (or 1000 bytes for MyISAM and InnoDB tables as of MySQL
4.1.2). Note that prefix limits are measured in bytes, whereas the prefix length in CREATE TABLE
statements is interpreted as number of characters. Take this into account when specifying a prefix
length for a column that uses a multi-byte character set.

As of MySQL 3.23.23, you can also create FULLTEXT indexes. They are used for full-text
searches. Only the MyISAM table type supports FULLTEXT indexes and only for CHAR, VARCHAR,
and TEXT columns. Indexing always happens over the entire column and partial (prefix) indexing is
not supported. See Section 12.6, “Full-Text Search Functions” for details.

As of MySQL 4.1.0, you can create indexes on spatial column types. Currently, spatial types are
supported only by the MyISAM storage engine. Spatial indexes use R-trees.

The MEMORY (HEAP) storage engine uses hash indexes by default. It also supports B-tree indexes as
of MySQL 4.1.0.

7.4.4. Multiple-Column Indexes
MySQL can create indexes on multiple columns. An index may consist of up to 15 columns. For
certain column types, you can index a prefix of the column (see Section 7.4.3, “Column Indexes”).

A multiple-column index can be considered a sorted array containing values that are created by con-
catenating the values of the indexed columns.

MySQL uses multiple-column indexes in such a way that queries are fast when you specify a known
quantity for the first column of the index in a WHERE clause, even if you don't specify values for the
other columns.

Suppose that a table has the following specification:

CREATE TABLE test (
id INT NOT NULL,
last_name CHAR(30) NOT NULL,
first_name CHAR(30) NOT NULL,
PRIMARY KEY (id),
INDEX name (last_name,first_name));

The name index is an index over last_name and first_name. The index can be used for quer-
ies that specify values in a known range for last_name, or for both last_name and
first_name. Therefore, the name index is used in the following queries:

SELECT * FROM test WHERE last_name='Widenius';
SELECT * FROM test

WHERE last_name='Widenius' AND first_name='Michael';
SELECT * FROM test

WHERE last_name='Widenius'
AND (first_name='Michael' OR first_name='Monty');

SELECT * FROM test
WHERE last_name='Widenius'
AND first_name >='M' AND first_name < 'N';

MySQL Optimization

434

However, the name index is not used in the following queries:

SELECT * FROM test WHERE first_name='Michael';
SELECT * FROM test

WHERE last_name='Widenius' OR first_name='Michael';

The manner in which MySQL uses indexes to improve query performance is discussed further in the
next section.

7.4.5. How MySQL Uses Indexes
Indexes are used to find rows with specific column values fast. Without an index, MySQL has to
start with the first record and then read through the whole table to find the relevant rows. The larger
the table, the more this costs. If the table has an index for the columns in question, MySQL can
quickly determine the position to seek to in the middle of the data file without having to look at all
the data. If a table has 1,000 rows, this is at least 100 times faster than reading sequentially. Note
that if you need to access almost all 1,000 rows, it is faster to read sequentially, because that minim-
izes disk seeks.

Most MySQL indexes (PRIMARY KEY, UNIQUE, INDEX, and FULLTEXT) are stored in B-trees.
Exceptions are that indexes on spatial column types use R-trees, and MEMORY (HEAP) tables sup-
port hash indexes.

Strings are automatically prefix- and end-space compressed. See Section 13.2.5, “CREATE INDEX
Syntax”.

In general, indexes are used as described in the following discussion. Characteristics specific to hash
indexes (as used in MEMORY tables) are described at the end of this section.

Indexes are used for these operations:

• To quickly find the rows that match a WHERE clause.

• To eliminate rows from consideration. If there is a choice between multiple indexes, MySQL
normally uses the index that finds the smallest number of rows.

• To retrieve rows from other tables when performing joins.

• To find the MIN() or MAX() value for a specific indexed column key_col. This is optimized
by a preprocessor that checks whether you are using WHERE key_part_# = constant on
all key parts that occur before key_col in the index. In this case, MySQL does a single key
lookup for each MIN() or MAX() expression and replace it with a constant. If all expressions
are replaced with constants, the query returns at once. For example:

SELECT MIN(key_part2),MAX(key_part2)
FROM tbl_name WHERE key_part1=10;

• To sort or group a table if the sorting or grouping is done on a leftmost prefix of a usable key
(for example, ORDER BY key_part1, key_part2). If all key parts are followed by
DESC, the key is read in reverse order. See Section 7.2.10, “How MySQL Optimizes ORDER
BY”.

• In some cases, a query can be optimized to retrieve values without consulting the data rows. If a
query uses only columns from a table that are numeric and that form a leftmost prefix for some
key, the selected values may be retrieved from the index tree for greater speed:

SELECT key_part3 FROM tbl_name WHERE key_part1=1

Suppose that you issue the following SELECT statement:

MySQL Optimization

435

mysql> SELECT * FROM tbl_name WHERE col1=val1 AND col2=val2;

If a multiple-column index exists on col1 and col2, the appropriate rows can be fetched directly.
If separate single-column indexes exist on col1 and col2, the optimizer tries to find the most re-
strictive index by deciding which index finds fewer rows and using that index to fetch the rows.

If the table has a multiple-column index, any leftmost prefix of the index can be used by the optim-
izer to find rows. For example, if you have a three-column index on (col1, col2, col3), you
have indexed search capabilities on (col1), (col1, col2), and (col1, col2, col3).

MySQL can't use a partial index if the columns don't form a leftmost prefix of the index. Suppose
that you have the SELECT statements shown here:

SELECT * FROM tbl_name WHERE col1=val1;
SELECT * FROM tbl_name WHERE col2=val2;
SELECT * FROM tbl_name WHERE col2=val2 AND col3=val3;

If an index exists on (col1, col2, col3), only the first of the preceding queries uses the in-
dex. The second and third queries do involve indexed columns, but (col2) and (col2, col3)
are not leftmost prefixes of (col1, col2, col3).

A B-tree index can be used for column comparisons in expressions that use the =, >, >=, <, <=, or
BETWEEN operators. The index also can be used for LIKE comparisons if the argument to LIKE is
a constant string that doesn't start with a wildcard character. For example, the following SELECT
statements use indexes:

SELECT * FROM tbl_name WHERE key_col LIKE 'Patrick%';
SELECT * FROM tbl_name WHERE key_col LIKE 'Pat%_ck%';

In the first statement, only rows with 'Patrick' <= key_col < 'Patricl' are con-
sidered. In the second statement, only rows with 'Pat' <= key_col < 'Pau' are considered.

The following SELECT statements do not use indexes:

SELECT * FROM tbl_name WHERE key_col LIKE '%Patrick%';
SELECT * FROM tbl_name WHERE key_col LIKE other_col;

In the first statement, the LIKE value begins with a wildcard character. In the second statement, the
LIKE value is not a constant.

MySQL 4.0 and up performs an additional LIKE optimization. If you use ... LIKE
'%string%' and string is longer than three characters, MySQL uses the Turbo Boyer-
Moore algorithm to initialize the pattern for the string and then use this pattern to perform the
search quicker.

Searching using col_name IS NULL uses indexes if col_name is indexed.

Any index that doesn't span all AND levels in the WHERE clause is not used to optimize the query. In
other words, to be able to use an index, a prefix of the index must be used in every AND group.

The following WHERE clauses use indexes:

... WHERE index_part1=1 AND index_part2=2 AND other_column=3
/* index = 1 OR index = 2 */

... WHERE index=1 OR A=10 AND index=2
/* optimized like "index_part1='hello'" */

... WHERE index_part1='hello' AND index_part3=5
/* Can use index on index1 but not on index2 or index3 */

... WHERE index1=1 AND index2=2 OR index1=3 AND index3=3;

MySQL Optimization

436

These WHERE clauses do not use indexes:

/* index_part1 is not used */
... WHERE index_part2=1 AND index_part3=2

/* Index is not used in both AND parts */
... WHERE index=1 OR A=10

/* No index spans all rows */
... WHERE index_part1=1 OR index_part2=10

Sometimes MySQL does not use an index, even if one is available. One way this occurs is when the
optimizer estimates that using the index would require MySQL to access a large percentage of the
rows in the table. (In this case, a table scan is probably much faster, because it requires fewer seeks.)
However, if such a query uses LIMIT to only retrieve part of the rows, MySQL uses an index any-
way, because it can much more quickly find the few rows to return in the result.

Hash indexes have somewhat different characteristics than those just discussed:

• They are used only for equality comparisons that use the = or <=> operators (but are very fast).
They are not used for comparison operators such as < that find a range of values.

• The optimizer cannot use a hash index to speed up ORDER BY operations. (This type of index
cannot be used to search for the next entry in order.)

• MySQL cannot determine approximately how many rows there are between two values (this is
used by the range optimizer to decide which index to use). This may affect some queries if you
change a MyISAM table to a hash-indexed MEMORY table.

• Only whole keys can be used to search for a row. (With a B-tree index, any leftmost prefix of
the key can be used to find rows.)

7.4.6. The MyISAM Key Cache
To minimize disk I/O, the MyISAM storage engine employs a strategy that is used by many database
management systems. It exploits a cache mechanism to keep the most frequently accessed table
blocks in memory:

• For index blocks, a special structure called the key cache (key buffer) is maintained. The struc-
ture contains a number of block buffers where the most-used index blocks are placed.

• For data blocks, MySQL uses no special cache. Instead it relies on the native operating system
filesystem cache.

This section first describes the basic operation of the MyISAM key cache. Then it discusses changes
made in MySQL 4.1 that improve key cache performance and that enable you to better control cache
operation:

• Access to the key cache no longer is serialized among threads. Multiple threads can access the
cache concurrently.

• You can set up multiple key caches and assign table indexes to specific caches.

The key cache mechanism also is used for ISAM tables. However, the significance of this fact is on
the wane. ISAM table use has been decreasing since MySQL 3.23 when MyISAM was introduced.
MySQL 4.1 carries this trend further; the ISAM storage engine is disabled by default.

You can control the size of the key cache by means of the key_buffer_size system variable. If
this variable is set equal to zero, no key cache is used. The key cache also is not used if the

MySQL Optimization

437

key_buffer_size value is too small to allocate the minimal number of block buffers (8).

When the key cache is not operational, index files are accessed using only the native filesystem buf-
fering provided by the operating system. (In other words, table index blocks are accessed using the
same strategy as that employed for table data blocks.)

An index block is a contiguous unit of access to the MyISAM index files. Usually the size of an in-
dex block is equal to the size of nodes of the index B-tree. (Indexes are represented on disk using a
B-tree data structure. Nodes at the bottom of the tree are leaf nodes. Nodes above the leaf nodes are
non-leaf nodes.)

All block buffers in a key cache structure are the same size. This size can be equal to, greater than,
or less than the size of a table index block. Usually one these two values is a multiple of the other.

When data from any table index block must be accessed, the server first checks whether it is avail-
able in some block buffer of the key cache. If it is, the server accesses data in the key cache rather
than on disk. That is, it reads from the cache or writes into it rather than reading from or writing to
disk. Otherwise, the server chooses a cache block buffer containing a different table index block (or
blocks) and replaces the data there by a copy of required table index block. As soon as the new in-
dex block is in the cache, the index data can be accessed.

If it happens that a block selected for replacement has been modified, the block is considered
``dirty.'' In this case, before being replaced, its contents are flushed to the table index from which it
came.

Usually the server follows an LRU (Least Recently Used) strategy: When choosing a block for re-
placement, it selects the least recently used index block. To be able to make such a choice easy, the
key cache module maintains a special queue (LRU chain) of all used blocks. When a block is ac-
cessed, it is placed at the end of the queue. When blocks need to be replaced, blocks at the beginning
of the queue are the least recently used and become the first candidates for eviction.

7.4.6.1. Shared Key Cache Access

Prior to MySQL 4.1, access to the key cache is serialized: No two threads can access key cache buf-
fers simultaneously. The server processes a request for an index block only after it has finished pro-
cessing the previous request. As a result, a request for an index block not present in any key cache
buffer blocks access by other threads while a buffer is being updated to contain the requested index
block.

Starting from version 4.1.0, the server supports shared access to the key cache:

• A buffer that is not being updated can be accessed by multiple threads.

• A buffer that is being updated causes threads that need to use it to wait until the update is com-
plete.

• Multiple threads can initiate requests that result in cache block replacements, as long as they do
not interfere with each other (that is, as long as they need different index blocks, and thus cause
different cache blocks to be replaced).

Shared access to the key cache allows the server to improve throughput significantly.

7.4.6.2. Multiple Key Caches

Shared access to the key cache improves performance but does not eliminate contention among
threads entirely. They still compete for control structures that manage access to the key cache buf-
fers. To reduce key cache access contention further, MySQL 4.1.1 offers the feature of multiple key
caches. This allows you to assign different table indexes to different key caches.

When there can be multiple key caches, the server must know which cache to use when processing
queries for a given MyISAM table. By default, all MyISAM table indexes are cached in the default
key cache. To assign table indexes to a specific key cache, use the CACHE INDEX statement.

MySQL Optimization

438

For example, the following statement assigns indexes from the tables t1, t2, and t3 to the key
cache named hot_cache:

mysql> CACHE INDEX t1, t2, t3 IN hot_cache;
+---------+--------------------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------+--------------------+----------+----------+
test.t1	assign_to_keycache	status	OK
test.t2	assign_to_keycache	status	OK
test.t3	assign_to_keycache	status	OK
+---------+--------------------+----------+----------+

Note: If the server has been built with the ISAM storage engine enabled, ISAM tables use the key
cache mechanism. However, ISAM indexes use only the default key cache and cannot be reassigned
to a different cache.

The key cache referred to in a CACHE INDEX statement can be created by setting its size with a
SET GLOBAL parameter setting statement or by using server startup options. For example:

mysql> SET GLOBAL keycache1.key_buffer_size=128*1024;

To destroy a key cache, set its size to zero:

mysql> SET GLOBAL keycache1.key_buffer_size=0;

Key cache variables are structured system variables that have a name and components. For
keycache1.key_buffer_size, keycache1 is the cache variable name and
key_buffer_size is the cache component. See Section 9.4.1, “Structured System Variables” for
a description of the syntax used for referring to structured key cache system variables.

By default, table indexes are assigned to the main (default) key cache created at the server startup.
When a key cache is destroyed, all indexes assigned to it are reassigned to the default key cache.

For a busy server, we recommend a strategy that uses three key caches:

• A hot key cache that takes up 20% of the space allocated for all key caches. This is used for
tables that are heavily used for searches but that are not updated.

• A cold key cache that takes up 20% of the space allocated for all key caches. This is used for
medium-sized intensively modified tables, such as temporary tables.

• A warm key cache that takes up 60% of the key cache space. This is the default key cache, to be
used by default for all other tables.

One reason the use of three key caches is beneficial is that access to one key cache structure does
not block access to the others. Queries that access tables assigned to one cache do not compete with
queries that access tables assigned to another cache. Performance gains occur for other reasons as
well:

• The hot cache is used only for retrieval queries, so its contents are never modified. Con-
sequently, whenever an index block needs to be pulled in from disk, the contents of the cache
block chosen for replacement need not be flushed first.

• For an index assigned to the hot cache, if there are no queries requiring an index scan, there is a
high probability that the index blocks corresponding to non-leaf nodes of the index B-tree re-
main in the cache.

• An update operation most frequently executed for temporary tables is performed much faster
when the updated node is in the cache and need not be read in from disk first. If the size of the

MySQL Optimization

439

indexes of the temporary tables are comparable with the size of cold key cache, the probability is
very high that the updated node is in the cache.

CACHE INDEX sets up an association between a table and a key cache, but the association is lost
each time the server restarts. If you want the association to take effect each time the server starts,
one way to accomplish this is to use an option file: Include variable settings that configure your key
caches, and an init-file option that names a file containing CACHE INDEX statements to be
executed. For example:

key_buffer_size = 4G
hot_cache.key_buffer_size = 2G
cold_cache.key_buffer_size = 2G
init_file=/path/to/data-directory/mysqld_init.sql

The statements in mysqld_init.sql are executed each time the server starts. It should contain
one SQL statement per line. The following example assigns several tables each to hot_cache and
cold_cache:

CACHE INDEX a.t1, a.t2, b.t3 IN hot_cache
CACHE INDEX a.t4, b.t5, b.t6 IN cold_cache

7.4.6.3. Midpoint Insertion Strategy

By default, the key cache management system of MySQL 4.1 uses the LRU strategy for choosing
key cache blocks to be evicted, but it also supports a more sophisticated method called the "mid-
point insertion strategy."

When using the midpoint insertion strategy, the LRU chain is divided into two parts: a hot sub-chain
and a warm sub-chain. The division point between two parts is not fixed, but the key cache manage-
ment system takes care that the warm part is not ``too short,'' always containing at least
key_cache_division_limit percent of the key cache blocks.
key_cache_division_limit is a component of structured key cache variables, so its value is
a parameter that can be set per cache.

When an index block is read from a table into the key cache, it is placed at the end of the warm sub-
chain. After a certain number of hits (accesses of the block), it is promoted to the hot sub-chain. At
present, the number of hits required to promote a block (3) is the same for all index blocks. In the
future, we will allow the hit count to depend on the B-tree level of the node corresponding to an in-
dex block: Fewer hits are required for promotion of an index block if it contains a non-leaf node
from the upper levels of the index B-tree than if it contains a leaf node.

A block promoted into the hot sub-chain is placed at the end of the chain. The block then circulates
within this sub-chain. If the block stays at the beginning of the sub-chain for a long enough time, it
is demoted to the warm chain. This time is determined by the value of the
key_cache_age_threshold component of the key cache.

The threshold value prescribes that, for a key cache containing N blocks, the block at the beginning
of the hot sub-chain not accessed within the last N*key_cache_age_threshold/100 hits is
to be moved to the beginning of the warm sub-chain. It then becomes the first candidate for eviction,
because blocks for replacement always are taken from the beginning of the warm sub-chain.

The midpoint insertion strategy allows you to keep more-valued blocks always in the cache. If you
prefer to use the plain LRU strategy, leave the key_cache_division_limit value set to its
default of 100.

The midpoint insertion strategy helps to improve performance when execution of a query that re-
quires an index scan effectively pushes out of the cache all the index blocks corresponding to valu-
able high-level B-tree nodes. To avoid this, you must use a midpoint insertion strategy with the
key_cache_division_limit set to much less than 100. Then valuable frequently hit nodes
are preserved in the hot sub-chain during an index scan operation as well.

MySQL Optimization

440

7.4.6.4. Index Preloading

If there are enough blocks in a key cache to hold blocks of an entire index, or at least the blocks cor-
responding to its non-leaf nodes, then it makes sense to preload the key cache with index blocks be-
fore starting to use it. Preloading allows you to put the table index blocks into a key cache buffer in
the most efficient way: by reading the index blocks from disk sequentially.

Without preloading, the blocks are still placed into the key cache as needed by queries. Although the
blocks will stay in the cache, because there are enough buffers for all of them, they are fetched from
disk in a random order, not sequentially.

To preload an index into a cache, use the LOAD INDEX INTO CACHE statement. For example,
the following statement preloads nodes (index blocks) of indexes of the tables t1 and t2:

mysql> LOAD INDEX INTO CACHE t1, t2 IGNORE LEAVES;
+---------+--------------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------+--------------+----------+----------+
| test.t1 | preload_keys | status | OK |
| test.t2 | preload_keys | status | OK |
+---------+--------------+----------+----------+

The IGNORE LEAVES modifier causes only blocks for the non-leaf nodes of the index to be pre-
loaded. Thus, the statement shown preloads all index blocks from t1, but only blocks for the non-
leaf nodes from t2.

If an index has been assigned to a key cache using a CACHE INDEX statement, preloading places
index blocks into that cache. Otherwise, the index is loaded into the default key cache.

7.4.6.5. Key Cache Block Size

MySQL 4.1 introduces a new key_cache_block_size variable on a per-key cache basis. This
variable specifies the size of the block buffers for a key cache. It is intended to allow tuning of the
performance of I/O operations for index files.

The best performance for I/O operations is achieved when the size of read buffers is equal to the size
of the native operating system I/O buffers. But setting the size of key nodes equal to the size of the
I/O buffer does not always ensure the best overall performance. When reading the big leaf nodes,
the server pulls in a lot of unnecessary data, effectively preventing reading other leaf nodes.

Currently, you cannot control the size of the index blocks in a table. This size is set by the server
when the .MYI index file is created, depending on the size of the keys in the indexes present in the
table definition. In most cases, it is set equal to the I/O buffer size. In the future, this will be changed
and then the key_cache_block_size variable is fully employed.

7.4.6.6. Restructuring a Key Cache

A key cache can be restructured at any time by updating its parameter values. For example:

mysql> SET GLOBAL cold_cache.key_buffer_size=4*1024*1024;

If you assign to either the key_buffer_size or key_cache_block_size key cache com-
ponent a value that differs from the component's current value, the server destroys the cache's old
structure and creates a new one based on the new values. If the cache contains any dirty blocks, the
server saves them to disk before destroying and re-creating the cache. Restructuring does not occur
if you set other key cache parameters.

When restructuring a key cache, the server first flushes the contents of any dirty buffers to disk.
After that, the cache contents become unavailable. However, restructuring does not block queries
that need to use indexes assigned to the cache. Instead, the server directly accesses the table indexes
using native filesystem caching. Filesystem caching is not as efficient as using a key cache, so al-

MySQL Optimization

441

though queries execute, a slowdown can be anticipated. Once the cache has been restructured, it be-
comes available again for caching indexes assigned to it, and the use of filesystem caching for the
indexes ceases.

7.4.7. How MySQL Counts Open Tables
When you execute a mysqladmin status command, you'll see something like this:

Uptime: 426 Running threads: 1 Questions: 11082
Reloads: 1 Open tables: 12

The Open tables value of 12 can be somewhat puzzling if you have only six tables.

MySQL is multi-threaded, so there may be many clients issuing queries for a given table simultan-
eously. To minimize the problem with multiple client threads having different states on the same ta-
ble, the table is opened independently by each concurrent thread. This takes some memory but nor-
mally increases performance. With MyISAM tables, one extra file descriptor is required for the data
file for each client that has the table open. (By contrast, the index file descriptor is shared between
all threads.) The ISAM storage engine shares this behavior.

You can read more about this topic in the next section. See Section 7.4.8, “How MySQL Opens and
Closes Tables”.

7.4.8. How MySQL Opens and Closes Tables
The table_cache, max_connections, and max_tmp_tables system variables affect the
maximum number of files the server keeps open. If you increase one or more of these values, you
may run up against a limit imposed by your operating system on the per-process number of open file
descriptors. Many operating systems allow you to increase the open-files limit, although the method
varies widely from system to system. Consult your operating system documentation to determine
whether it is possible to increase the limit and how to do so.

table_cache is related to max_connections. For example, for 200 concurrent running con-
nections, you should have a table cache size of at least 200 * N, where N is the maximum number
of tables in a join. You also need to reserve some extra file descriptors for temporary tables and
files.

Make sure that your operating system can handle the number of open file descriptors implied by the
table_cache setting. If table_cache is set too high, MySQL may run out of file descriptors
and refuse connections, fail to perform queries, and be very unreliable. You also have to take into
account that the MyISAM storage engine needs two file descriptors for each unique open table. You
can increase the number of file descriptors available for MySQL with the -
-open-files-limit startup option to mysqld_safe. See Section A.2.17, “File Not Found”.

The cache of open tables is kept at a level of table_cache entries. The default value is 64; this
can be changed with the --table_cache option to mysqld. Note that MySQL may temporarily
open even more tables to be able to execute queries.

An unused table is closed and removed from the table cache under the following circumstances:

• When the cache is full and a thread tries to open a table that is not in the cache.

• When the cache contains more than table_cache entries and a thread is no longer using a ta-
ble.

• When a table flushing operation occurs. This happens when someone issues a FLUSH TABLES
statement or executes a mysqladmin flush-tables or mysqladmin refresh command.

When the table cache fills up, the server uses the following procedure to locate a cache entry to use:

MySQL Optimization

442

• Tables that are not currently in use are released, in least recently used order.

• If a new table needs to be opened, but the cache is full and no tables can be released, the cache is
temporarily extended as necessary.

When the cache is in a temporarily extended state and a table goes from a used to unused state, the
table is closed and released from the cache.

A table is opened for each concurrent access. This means the table needs to be opened twice if two
threads access the same table or if a thread accesses the table twice in the same query (for example,
by joining the table to itself). Each concurrent open requires an entry in the table cache. The first
open of any table takes two file descriptors: one for the data file and one for the index file. Each ad-
ditional use of the table takes only one file descriptor, for the data file. The index file descriptor is
shared among all threads.

If you are opening a table with the HANDLER tbl_name OPEN statement, a dedicated table ob-
ject is allocated for the thread. This table object is not shared by other threads and is not closed until
the thread calls HANDLER tbl_name CLOSE or the thread terminates. When this happens, the
table is put back in the table cache (if the cache isn't full). See Section 13.1.3, “HANDLER Syntax”.

You can determine whether your table cache is too small by checking the mysqld status variable
Opened_tables:

mysql> SHOW STATUS LIKE 'Opened_tables';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| Opened_tables | 2741 |
+---------------+-------+

If the value is quite big, even when you haven't issued a lot of FLUSH TABLES statements, you
should increase your table cache size. See Section 5.2.3, “Server System Variables” and Sec-
tion 5.2.4, “Server Status Variables”.

7.4.9. Drawbacks to Creating Many Tables in the Same
Database

If you have many MyISAM or ISAM tables in a database directory, open, close, and create opera-
tions are slow. If you execute SELECT statements on many different tables, there is a little overhead
when the table cache is full, because for every table that has to be opened, another must be closed.
You can reduce this overhead by making the table cache larger.

7.5. Optimizing the MySQL Server
7.5.1. System Factors and Startup Parameter Tuning

We start with system-level factors, because some of these decisions must be made very early to
achieve large performance gains. In other cases, a quick look at this section may suffice. However, it
is always nice to have a sense of how much can be gained by changing things at this level.

The default operating system to use is very important! To get the best use of multiple-CPU ma-
chines, you should use Solaris (because its threads implementation works really well) or Linux
(because the 2.4 kernel has really good SMP support). Note that older Linux kernels have a 2GB
filesize limit by default. If you have such a kernel and a desperate need for files larger than 2GB,
you should get the Large File Support (LFS) patch for the ext2 filesystem. Other filesystems such as
ReiserFS and XFS do not have this 2GB limitation.

Before using MySQL in production, we advise you to test it on your intended platform.

MySQL Optimization

443

Other tips:

• If you have enough RAM, you could remove all swap devices. Some operating systems use a
swap device in some contexts even if you have free memory.

• Use the --skip-external-locking MySQL option to avoid external locking. This option
is on by default as of MySQL 4.0. Before that, it is on by default when compiling with MIT-
pthreads, because flock() isn't fully supported by MIT-pthreads on all platforms. It's also on
by default for Linux because Linux file locking is not yet safe.

Note that the --skip-external-locking option does not affect MySQL's functionality as
long as you run only one server. Just remember to take down the server (or lock and flush the
relevant tables) before you run myisamchk. On some systems this option is mandatory, because
the external locking does not work in any case.

The only case when you can't use --skip-external-locking is if you run multiple
MySQL servers (not clients) on the same data, or if you run myisamchk to check (not repair) a
table without telling the server to flush and lock the tables first.

You can still use LOCK TABLES and UNLOCK TABLES even if you are using -
-skip-external-locking.

7.5.2. Tuning Server Parameters
You can determine the default buffer sizes used by the mysqld server with this command (prior to
MySQL 4.1, omit --verbose):

shell> mysqld --verbose --help

This command produces a list of all mysqld options and configurable system variables. The output
includes the default variable values and looks something like this:

back_log current value: 5
bdb_cache_size current value: 1048540
binlog_cache_size current value: 32768
connect_timeout current value: 5
delayed_insert_limit current value: 100
delayed_insert_timeout current value: 300
delayed_queue_size current value: 1000
flush_time current value: 0
interactive_timeout current value: 28800
join_buffer_size current value: 131072
key_buffer_size current value: 1048540
long_query_time current value: 10
lower_case_table_names current value: 0
max_allowed_packet current value: 1048576
max_binlog_cache_size current value: 4294967295
max_connect_errors current value: 10
max_connections current value: 100
max_delayed_threads current value: 20
max_heap_table_size current value: 16777216
max_join_size current value: 4294967295
max_sort_length current value: 1024
max_tmp_tables current value: 32
max_write_lock_count current value: 4294967295
myisam_sort_buffer_size current value: 8388608
net_buffer_length current value: 16384
net_read_timeout current value: 30
net_retry_count current value: 10
net_write_timeout current value: 60
read_buffer_size current value: 131072
read_rnd_buffer_size current value: 262144
slow_launch_time current value: 2

MySQL Optimization

444

sort_buffer current value: 2097116
table_cache current value: 64
thread_concurrency current value: 10
thread_stack current value: 131072
tmp_table_size current value: 1048576
wait_timeout current value: 28800

If there is a mysqld server currently running, you can see what values it actually is using for the sys-
tem variables by connecting to it and issuing this statement:

mysql> SHOW VARIABLES;

You can also see some statistical and status indicators for a running server by issuing this statement:

mysql> SHOW STATUS;

System variable and status information also can be obtained using mysqladmin:

shell> mysqladmin variables
shell> mysqladmin extended-status

You can find a full description for all system and status variables in Section 5.2.3, “Server System
Variables” and Section 5.2.4, “Server Status Variables”.

MySQL uses algorithms that are very scalable, so you can usually run with very little memory.
However, normally you get better performance by giving MySQL more memory.

When tuning a MySQL server, the two most important variables to configure are
key_buffer_size and table_cache. You should first feel confident that you have these set
appropriately before trying to change any other variables.

The following examples indicate some typical variable values for different runtime configurations.
The examples use the mysqld_safe script and use --var_name=value syntax to set the variable
var_name to the value value. This syntax is available as of MySQL 4.0. For older versions of
MySQL, take the following differences into account:

• Use safe_mysqld rather than mysqld_safe.

• Set variables using --set-variable=var_name=value or -O var_name=value syn-
tax.

• For variable names that end in _size, you may need to specify them without _size. For ex-
ample, the old name for sort_buffer_size is sort_buffer. The old name for
read_buffer_size is record_buffer. To see which variables your version of the server
recognizes, use mysqld --help.

If you have at least 256MB of memory and many tables and want maximum performance with a
moderate number of clients, you should use something like this:

shell> mysqld_safe --key_buffer_size=64M --table_cache=256 \
--sort_buffer_size=4M --read_buffer_size=1M &

If you have only 128MB of memory and only a few tables, but you still do a lot of sorting, you can
use something like this:

shell> mysqld_safe --key_buffer_size=16M --sort_buffer_size=1M

If there are very many simultaneous connections, swapping problems may occur unless mysqld has

MySQL Optimization

445

been configured to use very little memory for each connection. mysqld performs better if you have
enough memory for all connections.

With little memory and lots of connections, use something like this:

shell> mysqld_safe --key_buffer_size=512K --sort_buffer_size=100K \
--read_buffer_size=100K &

Or even this:

shell> mysqld_safe --key_buffer_size=512K --sort_buffer_size=16K \
--table_cache=32 --read_buffer_size=8K \
--net_buffer_length=1K &

If you are doing GROUP BY or ORDER BY operations on tables that are much larger than your
available memory, you should increase the value of read_rnd_buffer_size to speed up the
reading of rows after sorting operations.

When you have installed MySQL, the support-files directory contains some different
my.cnf sample files: my-huge.cnf, my-large.cnf, my-medium.cnf, and my-
small.cnf. You can use these as a basis for optimizing your system.

Note that if you specify an option on the command line for mysqld or mysqld_safe, it remains in
effect only for that invocation of the server. To use the option every time the server runs, put it in an
option file.

To see the effects of a parameter change, do something like this (prior to MySQL 4.1, omit -
-verbose):

shell> mysqld --key_buffer_size=32M --verbose --help

The variable values are listed near the end of the output. Make sure that the --verbose and -
-help options are last. Otherwise, the effect of any options listed after them on the command line
are not reflected in the output.

For information on tuning the InnoDB storage engine, see Section 15.12, “InnoDB Performance
Tuning Tips”.

7.5.3. Controlling Query Optimizer Performance
The task of the query optimizer is to find an optimal plan for executing an SQL query. Because the
difference in performance between ``good'' and ``bad'' plans can be orders of magnitude (that is,
seconds versus hours or even days), most query optimizers, including that of MySQL, perform more
or less exhaustive search for an optimal plan among all possible query evaluation plans. For join
queries, the number of possible plans investigated by the MySQL optimizer grows exponentially
with the number of tables referenced in a query. For small numbers of tables (typically less than
7-10) this is not a problem. However, when bigger queries are submitted, the time spent in query op-
timization may easily become the major bottleneck in the server performance.

MySQL 5.0.1 introduces a new more flexible method for query optimization that allows the user to
control how exhaustive the optimizer is in its search for an optimal query evaluation plan. The gen-
eral idea is that the fewer plans that are investigated by the optimizer, the less time it spends in com-
piling a query. On the other hand, because the optimizer skips some plans, it may miss finding an
optimal plan.

The behavior of the optimizer with respect to the number of plans it evaluates can be controlled via
two system variables:

• The optimizer_prune_level variable tells the optimizer to skip certain plans based on es-
timates of the number of rows accessed for each table. Our experience shows that this kind of
``educated guess'' rarely misses optimal plans, while it may dramatically reduce query compila-

MySQL Optimization

446

tion times. That is why this option is on (optimizer_prune_level=1) by default.
However, if you believe that the optimizer missed better query plans, then this option can be
switched off (optimizer_prune_level=0) with the risk that query compilation may take
much longer. Notice that even with the use of this heuristic, the optimizer still explores a
roughly exponential number of plans.

• The optimizer_search_depth variable tells how far in the ``future'' of each incomplete
plan the optimizer should look in order to evaluate whether it should be expanded further. Smal-
ler values of optimizer_search_depth may result in orders of magnitude smaller query
compilation times. For example, queries with 12-13 or more tables may easily require hours and
even days to compile if optimizer_search_depth is close to the number of tables in the
query. At the same time, if compiled with optimizer_search_depth equal to 3 or 4, the
compiler may compile in less than a minute for the same query. If you are unsure of what a reas-
onable value is for optimizer_search_depth, this variable can be set to 0 to tell the op-
timizer to determine the value automatically.

7.5.4. How Compiling and Linking Affects the Speed of
MySQL

Most of the following tests were performed on Linux with the MySQL benchmarks, but they should
give some indication for other operating systems and workloads.

You get the fastest executables when you link with -static.

On Linux, you get the fastest code when compiling with pgcc and -O3. You need about 200MB
memory to compile sql_yacc.cc with these options, because gcc/pgcc needs a lot of memory to
make all functions inline. You should also set CXX=gcc when configuring MySQL to avoid inclu-
sion of the libstdc++ library, which is not needed. Note that with some versions of pgcc, the
resulting code runs only on true Pentium processors, even if you use the compiler option indicating
that you want the resulting code to work on all x586-type processors (such as AMD).

By just using a better compiler and better compiler options, you can get a 10-30% speed increase in
your application. This is particularly important if you compile the MySQL server yourself.

We have tested both the Cygnus CodeFusion and Fujitsu compilers, but when we tested them,
neither was sufficiently bug-free to allow MySQL to be compiled with optimizations enabled.

The standard MySQL binary distributions are compiled with support for all character sets. When
you compile MySQL yourself, you should include support only for the character sets that you are
going to use. This is controlled by the --with-charset option to configure.

Here is a list of some measurements that we have made:

• If you use pgcc and compile everything with -O6, the mysqld server is 1% faster than with gcc
2.95.2.

• If you link dynamically (without -static), the result is 13% slower on Linux. Note that you
still can use a dynamically linked MySQL library for your client applications. It is the server that
is most critical for performance.

• If you strip your mysqld binary with strip mysqld, the resulting binary can be up to 4%
faster.

• For a connection from a client to a server running on the same host, if you connect using TCP/IP
rather than a Unix socket file, performance is 7.5% slower. (On Unix, if you connect to the host-
name localhost, MySQL uses a socket file by default.)

• For TCP/IP connections from a client to a server, connecting to a remote server on another host
is 8-11% slower than connecting to the local server on the same host, even for connections over
100Mb/s Ethernet.

MySQL Optimization

447

• When running our benchmark tests using secure connections (all data encrypted with internal
SSL support) performance was 55% slower than for unencrypted connections.

• If you compile with --with-debug=full, most queries are 20% slower. Some queries may
take substantially longer; for example, the MySQL benchmarks ran 35% slower. If you use -
-with-debug (without =full), the slowdown is only 15%. For a version of mysqld that has
been compiled with --with-debug=full, you can disable memory checking at runtime by
starting it with the --skip-safemalloc option. The execution speed should then be close to
that obtained when configuring with --with-debug.

• On a Sun UltraSPARC-IIe, a server compiled with Forte 5.0 is 4% faster than one compiled with
gcc 3.2.

• On a Sun UltraSPARC-IIe, a server compiled with Forte 5.0 is 4% faster in 32-bit mode than in
64-bit mode.

• Compiling with gcc 2.95.2 for UltraSPARC with the -mcpu=v8 -Wa,-xarch=v8plusa
options gives 4% more performance.

• On Solaris 2.5.1, MIT-pthreads is 8-12% slower than Solaris native threads on a single pro-
cessor. With more load or CPUs, the difference should be larger.

• Compiling on Linux-x86 using gcc without frame pointers (-fomit-frame-pointer or -
fomit-frame-pointer -ffixed-ebp) makes mysqld 1-4% faster.

Binary MySQL distributions for Linux that are provided by MySQL AB used to be compiled with
pgcc. We had to go back to regular gcc due to a bug in pgcc that would generate code that does
not run on AMD. We will continue using gcc until that bug is resolved. In the meantime, if you have
a non-AMD machine, you can get a faster binary by compiling with pgcc. The standard MySQL
Linux binary is linked statically to make it faster and more portable.

7.5.5. How MySQL Uses Memory
The following list indicates some of the ways that the mysqld server uses memory. Where applic-
able, the name of the system variable relevant to the memory use is given:

• The key buffer (variable key_buffer_size) is shared by all threads; other buffers used by
the server are allocated as needed. See Section 7.5.2, “Tuning Server Parameters”.

• Each connection uses some thread-specific space:

• A stack (default 64KB, variable thread_stack)

• A connection buffer (variable net_buffer_length)

• A result buffer (variable net_buffer_length)

The connection buffer and result buffer are dynamically enlarged up to
max_allowed_packet when needed. While a query is running, a copy of the current query
string is also allocated.

• All threads share the same base memory.

• Only compressed ISAM and MyISAM tables are memory mapped. This is because the 32-bit
memory space of 4GB is not large enough for most big tables. When systems with a 64-bit ad-
dress space become more common, we may add general support for memory mapping.

• Each request that performs a sequential scan of a table allocates a read buffer (variable
read_buffer_size).

• When reading rows in ``random'' order (for example, after a sort), a random-read buffer may be

MySQL Optimization

448

allocated to avoid disk seeks. (variable read_rnd_buffer_size).

• All joins are done in one pass, and most joins can be done without even using a temporary table.
Most temporary tables are memory-based (HEAP) tables. Temporary tables with a large record
length (calculated as the sum of all column lengths) or that contain BLOB columns are stored on
disk.

One problem before MySQL 3.23.2 is that if an internal in-memory heap table exceeds the size
of tmp_table_size, the error The table tbl_name is full occurs. From 3.23.2
on, this is handled automatically by changing the in-memory heap table to a disk-based MyISAM
table as necessary. To work around this problem for older servers, you can increase the tempor-
ary table size by setting the tmp_table_size option to mysqld, or by setting the SQL option
SQL_BIG_TABLES in the client program. See Section 13.5.3, “SET Syntax”.

In MySQL 3.20, the maximum size of the temporary table is record_buffer*16; if you are
using this version, you have to increase the value of record_buffer. You can also start
mysqld with the --big-tables option to always store temporary tables on disk. However,
this affects the speed of many complicated queries.

• Most requests that perform a sort allocate a sort buffer and zero to two temporary files depend-
ing on the result set size. See Section A.4.4, “Where MySQL Stores Temporary Files”.

• Almost all parsing and calculating is done in a local memory store. No memory overhead is
needed for small items, so the normal slow memory allocation and freeing is avoided. Memory
is allocated only for unexpectedly large strings; this is done with malloc() and free().

• For each MyISAM and ISAM table that is opened, the index file is opened once and the data file
is opened once for each concurrently running thread. For each concurrent thread, a table struc-
ture, column structures for each column, and a buffer of size 3 * N are allocated (where N is
the maximum row length, not counting BLOB columns). A BLOB column requires five to eight
bytes plus the length of the BLOB data. The MyISAM and ISAM storage engines maintain one
extra row buffer for internal use.

• For each table having BLOB columns, a buffer is enlarged dynamically to read in larger BLOB
values. If you scan a table, a buffer as large as the largest BLOB value is allocated.

• Handler structures for all in-use tables are saved in a cache and managed as a FIFO. By default,
the cache has 64 entries. If a table has been used by two running threads at the same time, the
cache contains two entries for the table. See Section 7.4.8, “How MySQL Opens and Closes
Tables”.

• A FLUSH TABLES statement or mysqladmin flush-tables command closes all tables that are
not in use at once and marks all in-use tables to be closed when the currently executing thread
finishes. This effectively frees most in-use memory. FLUSH TABLES does not return until all
tables have been closed.

ps and other system status programs may report that mysqld uses a lot of memory. This may be
caused by thread stacks on different memory addresses. For example, the Solaris version of ps
counts the unused memory between stacks as used memory. You can verify this by checking avail-
able swap with swap -s. We have tested mysqld with several memory-leakage detectors (both
commercial and open source), so there should be no memory leaks.

7.5.6. How MySQL Uses DNS
When a new client connects to mysqld, mysqld spawns a new thread to handle the request. This
thread first checks whether the hostname is in the hostname cache. If not, the thread attempts to re-
solve the hostname:

• If the operating system supports the thread-safe gethostbyaddr_r() and gethostby-
name_r() calls, the thread uses them to perform hostname resolution.

MySQL Optimization

449

• If the operating system doesn't support the thread-safe calls, the thread locks a mutex and calls
gethostbyaddr() and gethostbyname() instead. In this case, no other thread can re-
solve hostnames that are not in the hostname cache until the first thread unlocks the mutex.

You can disable DNS hostname lookups by starting mysqld with the --skip-name-resolve
option. However, in this case, you can use only IP numbers in the MySQL grant tables.

If you have a very slow DNS and many hosts, you can get more performance by either disabling
DNS lookups with --skip-name-resolve or by increasing the HOST_CACHE_SIZE define
(default value: 128) and recompiling mysqld.

You can disable the hostname cache by starting the server with the --skip-host-cache option.
To clear the hostname cache, issue a FLUSH HOSTS statement or execute the mysqladmin flush-
hosts command.

If you want to disallow TCP/IP connections entirely, start mysqld with the -
-skip-networking option.

7.6. Disk Issues

• Disk seeks are a big performance bottleneck. This problem becomes more apparent when the
amount of data starts to grow so large that effective caching becomes impossible. For large data-
bases where you access data more or less randomly, you can be sure that you need at least one
disk seek to read and a couple of disk seeks to write things. To minimize this problem, use disks
with low seek times.

• Increase the number of available disk spindles (and thereby reduce the seek overhead) by either
symlinking files to different disks or striping the disks:

• Using symbolic links

This means that, for MyISAM tables, you symlink the index file and/or data file from their
usual location in the data directory to another disk (that may also be striped). This makes
both the seek and read times better, assuming that the disk is not used for other purposes as
well. See Section 7.6.1, “Using Symbolic Links”.

• Striping

Striping means that you have many disks and put the first block on the first disk, the second
block on the second disk, and the Nth block on the (N mod number_of_disks) disk, and so
on. This means if your normal data size is less than the stripe size (or perfectly aligned), you
get much better performance. Striping is very dependent on the operating system and the
stripe size, so benchmark your application with different stripe sizes. See Section 7.1.5,
“Using Your Own Benchmarks”.

The speed difference for striping is very dependent on the parameters. Depending on how
you set the striping parameters and number of disks, you may get differences measured in or-
ders of magnitude. You have to choose to optimize for random or sequential access.

• For reliability you may want to use RAID 0+1 (striping plus mirroring), but in this case, you
need 2*N drives to hold N drives of data. This is probably the best option if you have the money
for it. However, you may also have to invest in some volume-management software to handle it
efficiently.

• A good option is to vary the RAID level according to how critical a type of data is. For example,
store semi-important data that can be regenerated on a RAID 0 disk, but store really important
data such as host information and logs on a RAID 0+1 or RAID N disk. RAID N can be a prob-
lem if you have many writes, due to the time required to update the parity bits.

MySQL Optimization

450

• On Linux, you can get much more performance by using hdparm to configure your disk's inter-
face. (Up to 100% under load is not uncommon.) The following hdparm options should be
quite good for MySQL, and probably for many other applications:

hdparm -m 16 -d 1

Note that performance and reliability when using this command depends on your hardware, so
we strongly suggest that you test your system thoroughly after using hdparm. Please consult
the hdparm manual page for more information. If hdparm is not used wisely, filesystem cor-
ruption may result, so back up everything before experimenting!

• You can also set the parameters for the filesystem that the database uses:

If you don't need to know when files were last accessed (which is not really useful on a database
server), you can mount your filesystems with the -o noatime option. That skips updates to
the last access time in inodes on the filesystem, which avoids some disk seeks.

On many operating systems, you can set a filesystem to be updated asynchronously by mounting
it with the -o async option. If your computer is reasonably stable, this should give you more
performance without sacrificing too much reliability. (This flag is on by default on Linux.)

7.6.1. Using Symbolic Links
You can move tables and databases from the database directory to other locations and replace them
with symbolic links to the new locations. You might want to do this, for example, to move a data-
base to a file system with more free space or increase the speed of your system by spreading your
tables to different disk.

The recommended way to do this is to just symlink databases to a different disk. Symlink tables
only as a last resort.

7.6.1.1. Using Symbolic Links for Databases on Unix

On Unix, the way to symlink a database is to first create a directory on some disk where you have
free space and then create a symlink to it from the MySQL data directory.

shell> mkdir /dr1/databases/test
shell> ln -s /dr1/databases/test /path/to/datadir

MySQL doesn't support linking one directory to multiple databases. Replacing a database directory
with a symbolic link works fine as long as you don't make a symbolic link between databases. Sup-
pose that you have a database db1 under the MySQL data directory, and then make a symlink db2
that points to db1:

shell> cd /path/to/datadir
shell> ln -s db1 db2

For any table tbl_a in db1, there also appears to be a table tbl_a in db2. If one client updates
db1.tbl_a and another client updates db2.tbl_a, there are problems.

If you really need to do this, you can change one of the source files. The file to modify depends on
your version of MySQL. For MySQL 4.0 and up, look for the following statement in the mysys/
my_symlink.c file:

if (!(MyFlags & MY_RESOLVE_LINK) ||
(!lstat(filename,&stat_buff) && S_ISLNK(stat_buff.st_mode)))

Before MySQL 4.0, look for this statement in the mysys/mf_format.c file:

MySQL Optimization

451

if (flag & 32 || (!lstat(to,&stat_buff) && S_ISLNK(stat_buff.st_mode)))

Change the statement to this:

if (1)

On Windows, you can use internal symbolic links to directories by compiling MySQL with -
DUSE_SYMDIR. This allows you to put different databases on different disks. See Section 7.6.1.3,
“Using Symbolic Links for Databases on Windows”. (It is necessary to define USE_SYMDIR expli-
citly only before MySQL 4.0. As of MySQL 4.0, symbolic link support is enabled by default for all
Windows servers.)

7.6.1.2. Using Symbolic Links for Tables on Unix

Before MySQL 4.0, you should not symlink tables unless you are very careful with them. The prob-
lem is that if you run ALTER TABLE, REPAIR TABLE, or OPTIMIZE TABLE on a symlinked
table, the symlinks are removed and replaced by the original files. This happens because these state-
ments work by creating a temporary file in the database directory and replacing the original file with
the temporary file when the statement operation is complete.

You should not symlink tables on systems that don't have a fully working realpath() call. (At
least Linux and Solaris support realpath()). You can check whether your system supports sym-
bolic links by issuing a SHOW VARIABLES LIKE 'have_symlink' statement.

In MySQL 4.0, symlinks are fully supported only for MyISAM tables. For other table types, you
may get strange problems if you try to use symbolic links on files in the operating system with any
of the preceding statements.

The handling of symbolic links for MyISAM tables in MySQL 4.0 works the following way:

• In the data directory, you always have the table definition file, the data file, and the index file.
The data file and index file can be moved elsewhere and replaced in the data directory by sym-
links. The definition file cannot.

• You can symlink the data file and the index file independently to different directories.

• The symlinking can be done manually from the command line with ln -s if mysqld is not run-
ning. With SQL, you can instruct the server to perform the symlinking by using the DATA
DIRECTORY and INDEX DIRECTORY options to CREATE TABLE. See Section 13.2.6,
“CREATE TABLE Syntax”.

• myisamchk does not replace a symlink with the data file or index file. It works directly on the
file a symlink points to. Any temporary files are created in the directory where the data file or
index file is located.

• When you drop a table that is using symlinks, both the symlink and the file the symlink points to
are dropped. This is a good reason why you should not run mysqld as root or allow users to
have write access to the MySQL database directories.

• If you rename a table with ALTER TABLE ... RENAME and you don't move the table to an-
other database, the symlinks in the database directory are renamed to the new names and the
data file and index file are renamed accordingly.

• If you use ALTER TABLE ... RENAME to move a table to another database, the table is
moved to the other database directory. The old symlinks and the files to which they pointed are
deleted. In other words, the new table is not symlinked.

• If you are not using symlinks, you should use the --skip-symbolic-links option to
mysqld to ensure that no one can use mysqld to drop or rename a file outside of the data direct-
ory.

MySQL Optimization

452

SHOW CREATE TABLE doesn't report if a table has symbolic links prior to MySQL 4.0.15. This is
also true for mysqldump, which uses SHOW CREATE TABLE to generate CREATE TABLE state-
ments.

Table symlink operations that are not yet supported:

• ALTER TABLE ignores the DATA DIRECTORY and INDEX DIRECTORY table options.

• BACKUP TABLE and RESTORE TABLE don't respect symbolic links.

• The .frm file must never be a symbolic link (as indicated previously, only the data and index
files can be symbolic links). Attempting to do this (for example, to make synonyms) produces
incorrect results. Suppose that you have a database db1 under the MySQL data directory, a table
tbl1 in this database, and in the db1 directory you make a symlink tbl2 that points to tbl1:

shell> cd /path/to/datadir/db1
shell> ln -s tbl1.frm tbl2.frm
shell> ln -s tbl1.MYD tbl2.MYD
shell> ln -s tbl1.MYI tbl2.MYI

There are problems if one thread reads db1.tbl1 and another thread updates db1.tbl2:

• The query cache is fooled (it believes tbl1 has not been updated so it returns outdated res-
ults).

• ALTER statements on tbl2 also fail.

7.6.1.3. Using Symbolic Links for Databases on Windows

Beginning with MySQL 3.23.16, the mysqld-max and mysql-max-nt servers for Windows are
compiled with the -DUSE_SYMDIR option. This allows you to put a database directory on a differ-
ent disk by setting up a symbolic link to it. This is similar to the way that symbolic links work on
Unix, although the procedure for setting up the link is different.

As of MySQL 4.0, symbolic links are enabled by default. If you don't need them, you can disable
them with the skip-symbolic-links option:

[mysqld]
skip-symbolic-links

Before MySQL 4.0, symbolic links are disabled by default. To enable them, you should put the fol-
lowing entry in your my.cnf or my.ini file:

[mysqld]
symbolic-links

On Windows, you make a symbolic link to a MySQL database by creating a file in the data direct-
ory that contains the path to the destination directory. The file should be named db_name.sym,
where db_name is the database name.

Suppose that the MySQL data directory is C:\mysql\data and you want to have database foo
located at D:\data\foo. Set up a symlink like this:

1. Make sure that the D:\data\foo directory exists by creating it if necessary. If you have a
database directory named foo in the data directory, you should move it to D:\data. Other-
wise, the symbolic link is ineffective. To avoid problems, the server should not be running
when you move the database directory.

MySQL Optimization

453

2. Create a file C:\mysql\data\foo.sym that contains the pathname D:\data\foo\.

After that, all tables created in the database foo are created in D:\data\foo. Note that the sym-
bolic link is not used if a directory with the database name exists in the MySQL data directory.

MySQL Optimization

454

Chapter 8. MySQL Client and Utility
Programs

There are many different MySQL client programs that connect to the server to access databases or
perform administrative tasks. Other utilities are available as well. These do not communicate with
the server but perform MySQL-related operations.

This chapter provides a brief overview of these programs and then a more detailed description of
each one. The descriptions indicate how to invoke the programs and the options they understand.
See Chapter 4, Using MySQL Programs for general information on invoking programs and specify-
ing program options.

8.1. Overview of the Client-Side Scripts and
Utilities

The following list briefly describes the MySQL client programs and utilities:

• myisampack

A utility that compresses MyISAM tables to produce smaller read-only tables. See Section 8.2,
“myisampack, the MySQL Compressed Read-only Table Generator”.

• mysql

The command-line tool for interactively entering SQL statements or executing them from a file
in batch mode. See Section 8.3, “mysql, the Command-Line Tool”.

• mysqlaccess

A script that checks the access privileges for a host, user, and database combination.

• mysqladmin

A client that performs administrative operations, such as creating or dropping databases, reload-
ing the grant tables, flushing tables to disk, and reopening log files. mysqladmin can also be
used to retrieve version, process, and status information from the server. See Section 8.4,
“mysqladmin, Administering a MySQL Server”.

• mysqlbinlog

A utility for reading statements from a binary log. The log of executed statements contained in
the binary log files can be used to help recover from a crash. See Section 8.5, “The mysqlbinlog
Binary Log Utility”.

• mysqlcc

A client that provides a graphical interface for interacting with the server. See Section 8.6,
“mysqlcc, the MySQL Control Center”.

• mysqlcheck

A table-maintenance client that checks, repairs, analyzes, and optimizes tables. See Section 8.7,

455

“The mysqlcheck Table Maintenance and Repair Program”.

• mysqldump

A client that dumps a MySQL database into a file as SQL statements or as tab-separated text
files. Enhanced freeware originally by Igor Romanenko. See Section 8.8, “The mysqldump
Database Backup Program”.

• mysqlhotcopy

A utility that quickly makes backups of MyISAM or ISAM tables while the server is running. See
Section 8.9, “The mysqlhotcopy Database Backup Program”.

• mysqlimport

A client that imports text files into their respective tables using LOAD DATA INFILE. See
Section 8.10, “The mysqlimport Data Import Program”.

• mysqlshow

A client that displays information about databases, tables, columns, and indexes. See Sec-
tion 8.11, “mysqlshow, Showing Databases, Tables, and Columns”.

• perror

A utility that displays the meaning of system or MySQL error codes. See Section 8.12, “perror,
Explaining Error Codes”.

• replace

A utility program that changes strings in place in files or on the standard input. See Section 8.13,
“The replace String-Replacement Utility”.

Each MySQL program takes many different options. However, every MySQL program provides a -
-help option that you can use to get a full description of the program's different options. For ex-
ample, try mysql --help.

MySQL clients that communicate with the server using the mysqlclient library use the follow-
ing environment variables:

MYSQL_UNIX_PORT The default Unix socket file; used for connections to localhost

MYSQL_TCP_PORT The default port number; used for TCP/IP connections

MYSQL_PWD The default password

MYSQL_DEBUG Debug trace options when debugging

TMPDIR The directory where temporary tables and files are created

Use of MYSQL_PWD is insecure. See Section 5.6.6, “Keeping Your Password Secure”.

You can override the default option values or values specified in environment variables for all
standard programs by specifying options in an option file or on the command line. Section 4.3,
“Specifying Program Options”.

8.2. myisampack, the MySQL Compressed

MySQL Client and Utility Programs

456

Read-only Table Generator
The myisampack utility compresses MyISAM tables. myisampack works by compressing each
column in the table separately. Usually, myisampack packs the data file 40%-70%.

When the table is used later, the information needed to decompress columns is read into memory.
This results in much better performance when accessing individual records, because you only have
to uncompress exactly one record, not a much larger disk block as when using Stacker on MS-DOS.

MySQL uses mmap() when possible to perform memory mapping on compressed tables. If
mmap() doesn't work, MySQL falls back to normal read/write file operations.

A similar utility, pack_isam, compresses ISAM tables. Because ISAM tables are deprecated, this
section discusses only myisampack, but the general procedures for using myisampack are also true
for pack_isam unless otherwise specified.

Please note the following:

• If the mysqld server was invoked with the --skip-external-locking option, it is not a
good idea to invoke myisampack if the table might be updated by the server during the packing
process.

• After packing a table, it becomes read-only. This is generally intended (such as when accessing
packed tables on a CD). Allowing writes to a packed table is on our TODO list, but with low pri-
ority.

• myisampack can pack BLOB or TEXT columns. The older pack_isam program for ISAM tables
cannot.

Invoke myisampack like this:

shell> myisampack [options] filename ...

Each filename should be the name of an index (.MYI) file. If you are not in the database directory,
you should specify the pathname to the file. It is permissible to omit the .MYI extension.

myisampack supports the following options:

• --help, -?

Display a help message and exit.

• --backup, -b

Make a backup of the table data file using the name tbl_name.OLD.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. The debug_options string often is 'd:t:o,file_name'.

• --force, -f

Produce a packed table even if it becomes larger than the original or if the temporary file from
an earlier invocation of myisampack exists. (myisampack creates a temporary file named
tbl_name.TMD while it compresses the table. If you kill myisampack, the .TMD file might
not be deleted.) Normally, myisampack exits with an error if it finds that tbl_name.TMD ex-
ists. With --force, myisampack packs the table anyway.

• --join=big_tbl_name, -j big_tbl_name

MySQL Client and Utility Programs

457

Join all tables named on the command line into a single table big_tbl_name. All tables that
are to be combined must have identical structure (same column names and types, same indexes,
and so forth).

• --packlength=#, -p #

Specify the record length storage size, in bytes. The value should be 1, 2, or 3. myisampack
stores all rows with length pointers of 1, 2, or 3 bytes. In most normal cases, myisampack can
determine the right length value before it begins packing the file, but it may notice during the
packing process that it could have used a shorter length. In this case, myisampack prints a note
that the next time you pack the same file, you could use a shorter record length.

• --silent, -s

Silent mode. Write output only when errors occur.

• --test, -t

Don't actually pack the table, just test packing it.

• --tmp_dir=path, -T path

Use the named directory as the location in which to write the temporary table.

• --verbose, -v

Verbose mode. Write information about the progress of the packing operation and its result.

• --version, -V

Display version information and exit.

• --wait, -w

Wait and retry if the table is in use. If the mysqld server was invoked with the -
-skip-external-locking option, it is not a good idea to invoke myisampack if the table
might be updated by the server during the packing process.

The following sequence of commands illustrates a typical table compression session:

shell> ls -l station.*
-rw-rw-r-- 1 monty my 994128 Apr 17 19:00 station.MYD
-rw-rw-r-- 1 monty my 53248 Apr 17 19:00 station.MYI
-rw-rw-r-- 1 monty my 5767 Apr 17 19:00 station.frm
shell> myisamchk -dvv station
MyISAM file: station
Isam-version: 2
Creation time: 1996-03-13 10:08:58
Recover time: 1997-02-02 3:06:43
Data records: 1192 Deleted blocks: 0
Datafile parts: 1192 Deleted data: 0
Datafile pointer (bytes): 2 Keyfile pointer (bytes): 2
Max datafile length: 54657023 Max keyfile length: 33554431
Recordlength: 834
Record format: Fixed length
table description:
Key Start Len Index Type Root Blocksize Rec/key
1 2 4 unique unsigned long 1024 1024 1
2 32 30 multip. text 10240 1024 1
Field Start Length Type
1 1 1
2 2 4
3 6 4
4 10 1

MySQL Client and Utility Programs

458

5 11 20
6 31 1
7 32 30
8 62 35
9 97 35
10 132 35
11 167 4
12 171 16
13 187 35
14 222 4
15 226 16
16 242 20
17 262 20
18 282 20
19 302 30
20 332 4
21 336 4
22 340 1
23 341 8
24 349 8
25 357 8
26 365 2
27 367 2
28 369 4
29 373 4
30 377 1
31 378 2
32 380 8
33 388 4
34 392 4
35 396 4
36 400 4
37 404 1
38 405 4
39 409 4
40 413 4
41 417 4
42 421 4
43 425 4
44 429 20
45 449 30
46 479 1
47 480 1
48 481 79
49 560 79
50 639 79
51 718 79
52 797 8
53 805 1
54 806 1
55 807 20
56 827 4
57 831 4
shell> myisampack station.MYI
Compressing station.MYI: (1192 records)
- Calculating statistics
normal: 20 empty-space: 16 empty-zero: 12 empty-fill: 11
pre-space: 0 end-space: 12 table-lookups: 5 zero: 7
Original trees: 57 After join: 17
- Compressing file
87.14%
Remember to run myisamchk -rq on compressed tables
shell> ls -l station.*
-rw-rw-r-- 1 monty my 127874 Apr 17 19:00 station.MYD
-rw-rw-r-- 1 monty my 55296 Apr 17 19:04 station.MYI
-rw-rw-r-- 1 monty my 5767 Apr 17 19:00 station.frm
shell> myisamchk -dvv station
MyISAM file: station
Isam-version: 2

MySQL Client and Utility Programs

459

Creation time: 1996-03-13 10:08:58
Recover time: 1997-04-17 19:04:26
Data records: 1192 Deleted blocks: 0
Datafile parts: 1192 Deleted data: 0
Datafile pointer (bytes): 3 Keyfile pointer (bytes): 1
Max datafile length: 16777215 Max keyfile length: 131071
Recordlength: 834
Record format: Compressed
table description:
Key Start Len Index Type Root Blocksize Rec/key
1 2 4 unique unsigned long 10240 1024 1
2 32 30 multip. text 54272 1024 1
Field Start Length Type Huff tree Bits
1 1 1 constant 1 0
2 2 4 zerofill(1) 2 9
3 6 4 no zeros, zerofill(1) 2 9
4 10 1 3 9
5 11 20 table-lookup 4 0
6 31 1 3 9
7 32 30 no endspace, not_always 5 9
8 62 35 no endspace, not_always, no empty 6 9
9 97 35 no empty 7 9
10 132 35 no endspace, not_always, no empty 6 9
11 167 4 zerofill(1) 2 9
12 171 16 no endspace, not_always, no empty 5 9
13 187 35 no endspace, not_always, no empty 6 9
14 222 4 zerofill(1) 2 9
15 226 16 no endspace, not_always, no empty 5 9
16 242 20 no endspace, not_always 8 9
17 262 20 no endspace, no empty 8 9
18 282 20 no endspace, no empty 5 9
19 302 30 no endspace, no empty 6 9
20 332 4 always zero 2 9
21 336 4 always zero 2 9
22 340 1 3 9
23 341 8 table-lookup 9 0
24 349 8 table-lookup 10 0
25 357 8 always zero 2 9
26 365 2 2 9
27 367 2 no zeros, zerofill(1) 2 9
28 369 4 no zeros, zerofill(1) 2 9
29 373 4 table-lookup 11 0
30 377 1 3 9
31 378 2 no zeros, zerofill(1) 2 9
32 380 8 no zeros 2 9
33 388 4 always zero 2 9
34 392 4 table-lookup 12 0
35 396 4 no zeros, zerofill(1) 13 9
36 400 4 no zeros, zerofill(1) 2 9
37 404 1 2 9
38 405 4 no zeros 2 9
39 409 4 always zero 2 9
40 413 4 no zeros 2 9
41 417 4 always zero 2 9
42 421 4 no zeros 2 9
43 425 4 always zero 2 9
44 429 20 no empty 3 9
45 449 30 no empty 3 9
46 479 1 14 4
47 480 1 14 4
48 481 79 no endspace, no empty 15 9
49 560 79 no empty 2 9
50 639 79 no empty 2 9
51 718 79 no endspace 16 9
52 797 8 no empty 2 9
53 805 1 17 1
54 806 1 3 9
55 807 20 no empty 3 9
56 827 4 no zeros, zerofill(2) 2 9

MySQL Client and Utility Programs

460

57 831 4 no zeros, zerofill(1) 2 9

myisampack displays the following kinds of information:

• normal

The number of columns for which no extra packing is used.

• empty-space

The number of columns containing values that are only spaces; these occupy one bit.

• empty-zero

The number of columns containing values that are only binary zeros; these occupy one bit.

• empty-fill

The number of integer columns that don't occupy the full byte range of their type; these are
changed to a smaller type. For example, a BIGINT column (eight bytes) can be stored as a
TINYINT column (one byte) if all its values are in the range from -128 to 127.

• pre-space

The number of decimal columns that are stored with leading spaces. In this case, each value con-
tains a count for the number of leading spaces.

• end-space

The number of columns that have a lot of trailing spaces. In this case, each value contains a
count for the number of trailing spaces.

• table-lookup

The column had only a small number of different values, which were converted to an ENUM be-
fore Huffman compression.

• zero

The number of columns for which all values are zero.

• Original trees

The initial number of Huffman trees.

• After join

The number of distinct Huffman trees left after joining trees to save some header space.

After a table has been compressed, myisamchk -dvv prints additional information about each
column:

• Type

The column type. The value may contain any of the following descriptors:

• constant

All rows have the same value.

• no endspace

MySQL Client and Utility Programs

461

Don't store endspace.

• no endspace, not_always

Don't store endspace and don't do endspace compression for all values.

• no endspace, no empty

Don't store endspace. Don't store empty values.

• table-lookup

The column was converted to an ENUM.

• zerofill(n)

The most significant n bytes in the value are always 0 and are not stored.

• no zeros

Don't store zeros.

• always zero

Zero values are stored using one bit.

• Huff tree

The number of the Huffman tree associated with the column.

• Bits

The number of bits used in the Huffman tree.

After you run myisampack, you must run myisamchk to re-create any indexes. At this time, you
can also sort the index blocks and create statistics needed for the MySQL optimizer to work more
efficiently:

shell> myisamchk -rq --sort-index --analyze tbl_name.MYI

A similar procedure applies for ISAM tables. After using pack_isam, use isamchk to re-create the
indexes:

shell> isamchk -rq --sort-index --analyze tbl_name.ISM

After you have installed the packed table into the MySQL database directory, you should execute
mysqladmin flush-tables to force mysqld to start using the new table.

To unpack a packed table, use the --unpack option to myisamchk or isamchk.

8.3. mysql, the Command-Line Tool
mysql is a simple SQL shell (with GNU readline capabilities). It supports interactive and non-
interactive use. When used interactively, query results are presented in an ASCII-table format.
When used non-interactively (for example, as a filter), the result is presented in tab-separated
format. The output format can be changed using command-line options.

If you have problems due to insufficient memory for large result sets, use the --quick option.
This forces mysql to retrieve results from the server a row at a time rather than retrieving the entire

MySQL Client and Utility Programs

462

result set and buffering it in memory before displaying it. This is done by using
mysql_use_result() rather than mysql_store_result() to retrieve the result set.

Using mysql is very easy. Invoke it from the prompt of your command interpreter as follows:

shell> mysql db_name

Or:

shell> mysql --user=user_name --password=your_password db_name

Then type an SQL statement, end it with ';', \g, or \G and press Enter.

You can run a script simply like this:

shell> mysql db_name < script.sql > output.tab

mysql supports the following options:

• --help, -?

Display a help message and exit.

• --batch, -B

Print results using tab as the column separator, with each row on a new line. With this option,
mysql doesn't use the history file.

• --character-sets-dir=path

The directory where character sets are installed. See Section 5.8.1, “The Character Set Used for
Data and Sorting”.

• --compress, -C

Compress all information sent between the client and the server if both support compression.

• --database=db_name, -D db_name

The database to use. This is useful mainly in an option file.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. The debug_options string often is 'd:t:o,file_name'. The
default is 'd:t:o,/tmp/mysql.trace'.

• --debug-info, -T

Print some debugging information when the program exits.

• --default-character-set=charset

Use charset as the default character set. See Section 5.8.1, “The Character Set Used for Data
and Sorting”.

MySQL Client and Utility Programs

463

• --execute=statement, -e statement

Execute the statement and quit. The default output format is like that produced with --batch.

• --force, -f

Continue even if an SQL error occurs.

• --host=host_name, -h host_name

Connect to the MySQL server on the given host.

• --html, -H

Produce HTML output.

• --ignore-space, -i

Ignore spaces after function names. The effect of this is described in the discussion for IG-
NORE_SPACE in Section 5.2.2, “The Server SQL Mode”.

• --local-infile[={0|1}]

Enable or disable LOCAL capability for LOAD DATA INFILE. With no value, the option en-
ables LOCAL. It may be given as --local-infile=0 or --local-infile=1 to expli-
citly disable or enable LOCAL. Enabling LOCAL has no effect if the server does not also support
it.

• --named-commands, -G

Named commands are enabled. Long format commands are allowed as well as shortened *
commands. For example, quit and \q both are recognized.

• --no-auto-rehash, -A

No automatic rehashing. This option causes mysql to start faster, but you must issue the re-
hash command if you want to use table and column name completion.

• --no-beep, -b

Do not beep when errors occur.

• --no-named-commands, -g

Named commands are disabled. Use the * form only, or use named commands only at the be-
ginning of a line ending with a semicolon (';'). As of MySQL 3.23.22, mysql starts with this op-
tion enabled by default! However, even with this option, long-format commands still work from
the first line.

• --no-pager

Do not use a pager for displaying query output. Output paging is discussed further in Sec-
tion 8.3.1, “mysql Commands”.

MySQL Client and Utility Programs

464

• --no-tee

Do not copy output to a file. Tee files are discussed further in Section 8.3.1, “mysql Com-
mands”.

• --one-database, -O

Ignore statements except those for the default database named on the command line. This is use-
ful for skipping updates to other databases in the binary log.

• --pager[=command]

Use the given command for paging query output. If the command is omitted, the default pager is
the value of your PAGER environment variable. Valid pagers are less, more, cat [> filename],
and so forth. This option works only on Unix. It does not work in batch mode. Output paging is
discussed further in Section 8.3.1, “mysql Commands”.

• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you
cannot have a space between the option and the password. If you omit the password value fol-
lowing the --password or -p option on the command line, you are prompted for one.

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

• --prompt=format_str

Set the prompt to the specified format. The default is mysql>. The special sequences that the
prompt can contain are described in Section 8.3.1, “mysql Commands”.

• --protocol={TCP | SOCKET | PIPE | MEMORY}

The connection protocol to use. New in MySQL 4.1.

• --quick, -q

Don't cache each query result, print each row as it is received. This may slow down the server if
the output is suspended. With this option, mysql doesn't use the history file.

• --raw, -r

Write column values without escape conversion. Often used with the --batch option.

• --reconnect

If the connection to the server is lost, automatically try to reconnect. A single reconnect attempt
is made each time the connection is lost. To suppress reconnection behavior, use -
-skip-reconnect. New in MySQL 4.1.0.

• --safe-updates, --i-am-a-dummy, -U

MySQL Client and Utility Programs

465

Allow only UPDATE and DELETE statements that specify rows to affect using key values. If
you have this option in an option file, you can override it by using --safe-updates on the
command line. See Section 8.3.3, “mysql Tips” for more information about this option.

• --sigint-ignore

Ignore SIGINT signals (typically the result of typing Control-C). This option was added in
MySQL 4.1.6.

• --silent, -s

Silent mode. Produce less output. This option can be given multiple times to produce less and
less output.

• --skip-column-names, -N

Don't write column names in results.

• --skip-line-numbers, -L

Don't write line numbers for errors. Useful when you want to compare result files that include
error messages.

• --socket=path, -S path

The socket file to use for the connection.

• --table, -t

Display output in table format. This is the default for interactive use, but can be used to produce
table output in batch mode.

• --tee=file_name

Append a copy of output to the given file. This option does not work in batch mode. Tee files
are discussed further in Section 8.3.1, “mysql Commands”.

• --unbuffered, -n

Flush the buffer after each query.

• --user=user_name, -u user_name

The MySQL username to use when connecting to the server.

• --verbose, -v

Verbose mode. Produce more output. This option can be given multiple times to produce more
and more output. (For example, -v -v -v produces the table output format even in batch
mode.)

• --version, -V

MySQL Client and Utility Programs

466

Display version information and exit.

• --vertical, -E

Print the rows of query output vertically. Without this option, you can specify vertical output for
individual statements by terminating them with \G.

• --wait, -w

If the connection cannot be established, wait and retry instead of aborting.

• --xml, -X

Produce XML output.

You can also set the following variables by using --var_name=value options:

• connect_timeout

The number of seconds before connection timeout. (Default value is 0.)

• max_allowed_packet

The maximum packet length to send to or receive from the server. (Default value is 16MB.)

• max_join_size

The automatic limit for rows in a join when using --safe-updates. (Default value is
1,000,000.)

• net_buffer_length

The buffer size for TCP/IP and socket communication. (Default value is 16KB.)

• select_limit

The automatic limit for SELECT statements when using --safe-updates. (Default value is
1,000.)

It is also possible to set variables by using --set-variable=var_name=value or -O
var_name=value syntax. However, this syntax is deprecated as of MySQL 4.0.

On Unix, the mysql client writes a record of executed statements to a history file. By default, the
history file is named .mysql_history and is created in your home directory. To specify a differ-
ent file, set the value of the MYSQL_HISTFILE environment variable.

If you do not want to maintain a history file, first remove .mysql_history if it exists, and then
use either of the following techniques:

• Set the MYSQL_HISTFILE variable to /dev/null. To cause this setting to take effect each
time you log in, put the setting in one of your shell's startup files.

• Create .mysql_history as a symbolic link to /dev/null:

shell> ln -s /dev/null $HOME/.mysql_history

MySQL Client and Utility Programs

467

You need do this only once.

8.3.1. mysql Commands
mysql sends SQL statements that you issue to the server to be executed. There is also a set of com-
mands that mysql itself interprets. For a list of these commands, type help or \h at the mysql>
prompt:

mysql> help
MySQL commands:
? (\h) Synonym for `help'.
clear (\c) Clear command.
connect (\r) Reconnect to the server.

Optional arguments are db and host.
delimiter (\d) Set query delimiter.
edit (\e) Edit command with $EDITOR.
ego (\G) Send command to mysql server,

display result vertically.
exit (\q) Exit mysql. Same as quit.
go (\g) Send command to mysql server.
help (\h) Display this help.
nopager (\n) Disable pager, print to stdout.
notee (\t) Don't write into outfile.
pager (\P) Set PAGER [to_pager].

Print the query results via PAGER.
print (\p) Print current command.
prompt (\R) Change your mysql prompt.
quit (\q) Quit mysql.
rehash (\#) Rebuild completion hash.
source (\.) Execute an SQL script file.

Takes a file name as an argument.
status (\s) Get status information from the server.
system (\!) Execute a system shell command.
tee (\T) Set outfile [to_outfile].

Append everything into given outfile.
use (\u) Use another database.

Takes database name as argument.

Each command has both a long and short form. The long form is not case sensitive; the short form
is. The long form can be followed by an optional semicolon terminator, but the short form should
not.

The edit, nopager, pager, and system commands work only in Unix.

The status command provides some information about the connection and the server you are us-
ing. If you are running in --safe-updates mode, status also prints the values for the mysql
variables that affect your queries.

To log queries and their output, use the tee command. All the data displayed on the screen is ap-
pended into a given file. This can be very useful for debugging purposes also. You can enable this
feature on the command line with the --tee option, or interactively with the tee command. The
tee file can be disabled interactively with the notee command. Executing tee again re-enables
logging. Without a parameter, the previous file is used. Note that tee flushes query results to the
file after each statement, just before mysql prints its next prompt.

Browsing or searching query results in interactive mode by using Unix programs such as less, more,
or any other similar program is possible with the --pager option. If you specify no value for the
option, mysql checks the value of the PAGER environment variable and sets the pager to that. Out-
put paging can be enabled interactively with the pager command and disabled with nopager.
The command takes an optional argument; if given, the paging program is set to that. With no argu-
ment, the pager is set to the pager that was set on the command line, or stdout if no pager was
specified.

MySQL Client and Utility Programs

468

Output paging works only in Unix because it uses the popen() function, which doesn't exist on
Windows. For Windows, the tee option can be used instead to save query output, although this is
not as convenient as pager for browsing output in some situations.

A few tips about the pager command:

• You can use it to write to a file and the results go only to the file:

mysql> pager cat > /tmp/log.txt

You can also pass any options for the program that you want to use as your pager:

mysql> pager less -n -i -S

• In the preceding example, note the -S option. You may find it very useful for browsing wide
query results. Sometimes a very wide result set is difficult to read on the screen. The -S option
to less can make the result set much more readable because you can scroll it horizontally using
the left-arrow and right-arrow keys. You can also use -S interactively within less to switch the
horizontal-browse mode on and off. For more information, read the less manual page:

shell> man less

• You can specify very complex pager commands for handling query output:

mysql> pager cat | tee /dr1/tmp/res.txt \
| tee /dr2/tmp/res2.txt | less -n -i -S

In this example, the command would send query results to two files in two different directories
on two different filesystems mounted on /dr1 and /dr2, yet still display the results onscreen
via less.

You can also combine the tee and pager functions. Have a tee file enabled and pager set to
less, and you are able to browse the results using the less program and still have everything appen-
ded into a file the same time. The difference between the Unix tee used with the pager command
and the mysql built-in tee command is that the built-in tee works even if you don't have the Unix
tee available. The built-in tee also logs everything that is printed on the screen, whereas the Unix
tee used with pager doesn't log quite that much. Additionally, tee file logging can be turned on
and off interactively from within mysql. This is useful when you want to log some queries to a file,
but not others.

From MySQL 4.0.2 on, the default mysql> prompt can be reconfigured. The string for defining the
prompt can contain the following special sequences:

Option Description

\v The server version

\d The current database

\h The server host

\p The current TCP/IP host

\u Your username

\U Your full user_name@host_name account name

\\ A literal '\' backslash character

\n A newline character

\t A tab character

\ A space (a space follows the backslash)

MySQL Client and Utility Programs

469

_ A space

\R The current time, in 24-hour military time (0-23)

\r The current time, standard 12-hour time (1-12)

\m Minutes of the current time

\y The current year, two digits

\Y The current year, four digits

\D The full current date

\s Seconds of the current time

\w The current day of the week in three-letter format (Mon, Tue, ...)

\P am/pm

\o The current month in numeric format

\O The current month in three-letter format (Jan, Feb, ...)

\c A counter that increments for each statement you issue

\S Semicolon

\' Single quote

\" Double quote

'\' followed by any other letter just becomes that letter.

If you specify the prompt command with no argument, mysql resets the prompt to the default of
mysql>.

You can set the prompt in several ways:

• Use an environment variable

You can set the MYSQL_PS1 environment variable to a prompt string. For example:

shell> export MYSQL_PS1="(\u@\h) [\d]> "

• Use an option file

You can set the prompt option in the [mysql] group of any MySQL option file, such as /
etc/my.cnf or the .my.cnf file in your home directory. For example:

[mysql]
prompt=(\\u@\\h) [\\d]>_

In this example, note that the backslashes are doubled. If you set the prompt using the prompt
option in an option file, it is advisable to double the backslashes when using the special prompt
options. There is some overlap in the set of allowable prompt options and the set of special es-
cape sequences that are recognized in option files. (These sequences are listed in Section 4.3.2,
“Using Option Files”.) The overlap may cause you problems if you use single backslashes. For
example, \s is interpreted as a space rather than as the current seconds value. The following ex-
ample shows how to define a prompt within an option file to include the current time in
HH:MM:SS> format:

[mysql]
prompt="\\r:\\m:\\s> "

• Use a command-line option

You can set the --prompt option on the command line to mysql. For example:

MySQL Client and Utility Programs

470

shell> mysql --prompt="(\u@\h) [\d]> "
(user@host) [database]>

• Interactively

You can change your prompt interactively by using the prompt (or \R) command. For ex-
ample:

mysql> prompt (\u@\h) [\d]>_
PROMPT set to '(\u@\h) [\d]>_'
(user@host) [database]>
(user@host) [database]> prompt
Returning to default PROMPT of mysql>
mysql>

8.3.2. Executing SQL Statements from a Text File
The mysql client typically is used interactively, like this:

shell> mysql db_name

However, it's also possible to put your SQL statements in a file and then tell mysql to read its input
from that file. To do so, create a text file text_file that contains the statements you wish to ex-
ecute. Then invoke mysql as shown here:

shell> mysql db_name < text_file

You can also start your text file with a USE db_name statement. In this case, it is unnecessary to
specify the database name on the command line:

shell> mysql < text_file

If you are running mysql, you can execute an SQL script file using the source or \. command:

mysql> source filename
mysql> \. filename

Sometimes you may want your script to display progress information to the user; for this you can in-
sert some lines like

SELECT '<info_to_display>' AS ' ';

which outputs <info_to_display>.

For more information about batch mode, see Section 3.5, “Using mysql in Batch Mode”.

8.3.3. mysql Tips
This section describes some techniques that can help you use mysql more effectively.

8.3.3.1. Displaying Query Results Vertically

Some query results are much more readable when displayed vertically, instead of in the usual hori-
zontal table format. Queries can be displayed vertically by terminating the query with \G instead of
a semicolon. For example, longer text values that include newlines often are much easier to read

MySQL Client and Utility Programs

471

with vertical output:

mysql> SELECT * FROM mails WHERE LENGTH(txt) < 300 LIMIT 300,1\G
*************************** 1. row ***************************
msg_nro: 3068

date: 2000-03-01 23:29:50
time_zone: +0200
mail_from: Monty

reply: monty@no.spam.com
mail_to: "Thimble Smith" <tim@no.spam.com>

sbj: UTF-8
txt: >>>>> "Thimble" == Thimble Smith writes:

Thimble> Hi. I think this is a good idea. Is anyone familiar
Thimble> with UTF-8 or Unicode? Otherwise, I'll put this on my
Thimble> TODO list and see what happens.
Yes, please do that.
Regards,
Monty

file: inbox-jani-1
hash: 190402944

1 row in set (0.09 sec)

8.3.3.2. Using the --safe-updates Option

For beginners, a useful startup option is --safe-updates (or --i-am-a-dummy, which has
the same effect). This option was introduced in MySQL 3.23.11. It is helpful for cases when you
might have issued a DELETE FROM tbl_name statement but forgotten the WHERE clause. Nor-
mally, such a statement deletes all rows from the table. With --safe-updates, you can delete
rows only by specifying the key values that identify them. This helps prevent accidents.

When you use the --safe-updates option, mysql issues the following statement when it con-
nects to the MySQL server:

SET SQL_SAFE_UPDATES=1,SQL_SELECT_LIMIT=1000, SQL_MAX_JOIN_SIZE=1000000;

See Section 13.5.3, “SET Syntax”.

The SET statement has the following effects:

• You are not allowed to execute an UPDATE or DELETE statement unless you specify a key con-
straint in the WHERE clause or provide a LIMIT clause (or both). For example:

UPDATE tbl_name SET not_key_column=# WHERE key_column=#;
UPDATE tbl_name SET not_key_column=# LIMIT 1;

• All large SELECT results are automatically limited to 1,000 rows unless the statement includes a
LIMIT clause.

• Multiple-table SELECT statements that probably need to examine more than 1,000,000 row
combinations are aborted.

To specify limits other than 1,000 and 1,000,000, you can override the defaults by using -
-select_limit and --max_join_size options:

shell> mysql --safe-updates --select_limit=500 --max_join_size=10000

8.3.3.3. Disabling mysql Auto-Reconnect

If the mysql client loses its connection to the server while sending a query, it immediately and auto-

MySQL Client and Utility Programs

472

matically tries to reconnect once to the server and send the query again. However, even if mysql
succeeds in reconnecting, your first connection has ended and all your previous session objects and
settings are lost: temporary tables, the autocommit mode, and user and session variables. This beha-
vior may be dangerous for you, as in the following example where the server was shut down and re-
started without you knowing it:

mysql> SET @a=1;
Query OK, 0 rows affected (0.05 sec)
mysql> INSERT INTO t VALUES(@a);
ERROR 2006: MySQL server has gone away
No connection. Trying to reconnect...
Connection id: 1
Current database: test
Query OK, 1 row affected (1.30 sec)
mysql> SELECT * FROM t;
+------+
| a |
+------+
| NULL |
+------+
1 row in set (0.05 sec)

The @a user variable has been lost with the connection, and after the reconnection it is undefined. If
it is important to have mysql terminate with an error if the connection has been lost, you can start
the mysql client with the --skip-reconnect option.

8.4. mysqladmin, Administering a MySQL
Server

mysqladmin is a client for performing administrative operations. You can use it to check the serv-
er's configuration and current status, create and drop databases, and more.

Invoke mysqladmin like this:

shell> mysqladmin [options] command [command-option] command ...

mysqladmin supports the following commands:

• create db_name

Create a new database named db_name.

• debug

Tell the server to write debug information to the error log.

• drop db_name

Delete the database named db_name and all its tables.

• extended-status

Display the server status variables and their values.

• flush-hosts

Flush all information in the host cache.

• flush-logs

Flush all logs.

MySQL Client and Utility Programs

473

• flush-privileges

Reload the grant tables (same as reload).

• flush-status

Clear status variables.

• flush-tables

Flush all tables.

• flush-threads

Flush the thread cache. (Added in MySQL 3.23.16.)

• kill id,id,...

Kill server threads.

• old-password new-password

This is like the password command but stores the password using the old (pre-4.1) password-
hashing format. This command was added in MySQL 4.1.0.

• password new-password

Set a new password. This changes the password to new-password for the account that you
use with mysqladmin for connecting to the server.

If new-password contains spaces or other characters that are special to your command inter-
preter, you need to enclose it within quotes. On Windows, be sure to use double quotes rather
than single quotes; single quotes are not be stripped from the password, they are interpreted as
part of the password. For example:

shell> mysqladmin password "my new password"

• ping

Check whether the server is alive. The return status from mysqladmin is 0 if the server is run-
ning, 1 if it is not. Beginning with MySQL 4.0.22, the status is 0 even in case of an error such as
Access denied, because that means the server is running but disallowed the connection,
which is different from the server not running.

• processlist

Show a list of active server threads. This is like the output of the SHOW PROCESSLIST state-
ment. If the --verbose option is given, the output is like that of SHOW FULL PROCESS-
LIST.

• reload

Reload the grant tables.

• refresh

Flush all tables and close and open log files.

• shutdown

Stop the server.

• start-slave

MySQL Client and Utility Programs

474

Start replication on a slave server. (Added in MySQL 3.23.16.)

• status

Display a short server status message.

• stop-slave

Stop replication on a slave server. (Added in MySQL 3.23.16.)

• variables

Display the server system variables and their values.

• version

Display version information from the server.

All commands can be shortened to any unique prefix. For example:

shell> mysqladmin proc stat
+----+-------+-----------+----+-------------+------+-------+------+
| Id | User | Host | db | Command | Time | State | Info |
+----+-------+-----------+----+-------------+------+-------+------+
| 6 | monty | localhost | | Processlist | 0 | | |
+----+-------+-----------+----+-------------+------+-------+------+
Uptime: 10077 Threads: 1 Questions: 9 Slow queries: 0
Opens: 6 Flush tables: 1 Open tables: 2
Memory in use: 1092K Max memory used: 1116K

The mysqladmin status command result displays the following values:

• Uptime

The number of seconds the MySQL server has been running.

• Threads

The number of active threads (clients).

• Questions

The number of questions (queries) from clients since the server was started.

• Slow queries

The number of queries that have taken more than long_query_time seconds. See Sec-
tion 5.9.5, “The Slow Query Log”.

• Opens

The number of tables the server has opened.

• Flush tables

The number of flush ..., refresh, and reload commands the server has executed.

MySQL Client and Utility Programs

475

• Open tables

The number of tables that currently are open.

• Memory in use

The amount of memory allocated directly by mysqld code. This value is displayed only when
MySQL has been compiled with --with-debug=full.

• Maximum memory used

The maximum amount of memory allocated directly by mysqld code. This value is displayed
only when MySQL has been compiled with --with-debug=full.

If you execute mysqladmin shutdown when connecting to a local server using a Unix socket file,
mysqladmin waits until the server's process ID file has been removed, to ensure that the server has
stopped properly.

mysqladmin supports the following options:

• --help, -?

Display a help message and exit.

• --character-sets-dir=path

The directory where character sets are installed. See Section 5.8.1, “The Character Set Used for
Data and Sorting”.

• --compress, -C

Compress all information sent between the client and the server if both support compression.

• --count=#, -c #

The number of iterations to make. This works only with --sleep (-i).

• --debug[=debug_options], -# [debug_options]

Write a debugging log. The debug_options string often is 'd:t:o,file_name'. The
default is 'd:t:o,/tmp/mysqladmin.trace'.

• --default-character-set=charset

Use charset as the default character set. See Section 5.8.1, “The Character Set Used for Data
and Sorting”. Added in MySQL 4.1.9.

• --force, -f

Don't ask for confirmation for the drop database command. With multiple commands, con-
tinue even if an error occurs.

• --host=host_name, -h host_name

Connect to the MySQL server on the given host.

• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you

MySQL Client and Utility Programs

476

cannot have a space between the option and the password. If you omit the password value fol-
lowing the --password or -p option on the command line, you are prompted for one.

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

• --protocol={TCP | SOCKET | PIPE | MEMORY}

The connection protocol to use. New in MySQL 4.1.

• --relative, -r

Show the difference between the current and previous values when used with -i. Currently, this
option works only with the extended-status command.

• --silent, -s

Exit silently if a connection to the server cannot be established.

• --sleep=delay, -i delay

Execute commands again and again, sleeping for delay seconds in between.

• --socket=path, -S path

The socket file to use for the connection.

• --user=user_name, -u user_name

The MySQL username to use when connecting to the server.

• --verbose, -v

Verbose mode. Print out more information on what the program does.

• --version, -V

Display version information and exit.

• --vertical, -E

Print output vertically. This is similar to --relative, but prints output vertically.

• --wait[=#], -w[#]

If the connection cannot be established, wait and retry instead of aborting. If an option value is
given, it indicates the number of times to retry. The default is one time.

You can also set the following variables by using --var_name=value options:

• connect_timeout

The number of seconds before connection timeout. (Default value is 0.)

• shutdown_timeout

The number of seconds to wait for shutdown. (Default value is 0.)

It is also possible to set variables by using --set-variable=var_name=value or -O
var_name=value syntax. However, this syntax is deprecated as of MySQL 4.0.

MySQL Client and Utility Programs

477

8.5. The mysqlbinlog Binary Log Utility
The binary log files that the server generates are written in binary format. To examine these files in
text format, use the mysqlbinlog utility. It is available as of MySQL 3.23.14.

Invoke mysqlbinlog like this:

shell> mysqlbinlog [options] log-file ...

For example, to display the contents of the binary log binlog.000003, use this command:

shell> mysqlbinlog binlog.0000003

The output includes all statements contained in binlog.000003, together with other information
such as the time each statement took, the thread ID of the client that issued it, the timestamp when it
was issued, and so forth.

Normally, you use mysqlbinlog to read binary log files directly and apply them to the local MySQL
server. It is also possible to read binary logs from a remote server by using the -
-read-from-remote-server option.

When you read remote binary logs, the connection parameter options can be given to indicate how
to connect to the server, but they are ignored unless you also specify the -
-read-from-remote-server option. These options are --host, --password, --port, -
-protocol, --socket, and --user.

You can also use mysqlbinlog to read relay log files written by a slave server in a replication setup.
Relay logs have the same format as binary log files.

The binary log is discussed further in Section 5.9.4, “The Binary Log”.

mysqlbinlog supports the following options:

• --help, -?

Display a help message and exit.

• --database=db_name, -d db_name

List entries for just this database (local log only).

• --force-read, -f

With this option, if mysqlbinlog reads a binary log event that it does not recognize, it prints a
warning, ignores the event, and continues. Without this option, mysqlbinlog stops if it reads
such an event.

• --host=host_name, -h host_name

Get the binary log from the MySQL server on the given host.

• --local-load=path, -l path

Prepare local temporary files for LOAD DATA INFILE in the specified directory.

• --offset=N, -o N

Skip the first N entries.

• --password[=password], -p[password]

MySQL Client and Utility Programs

478

The password to use when connecting to the server. If you use the short option form (-p), you
cannot have a space between the option and the password. If you omit the password value fol-
lowing the --password or -p option on the command line, you are prompted for one.

• --port=port_num, -P port_num

The TCP/IP port number to use for connecting to a remote server.

• --position=N, -j N

Deprecated, use --start-position instead (starting from MySQL 4.1.4).

• --protocol={TCP | SOCKET | PIPE | MEMORY}

The connection protocol to use. New in MySQL 4.1.

• --read-from-remote-server, -R

Read the binary log from a MySQL server. Any connection parameter options are ignored unless
this option is given as well. These options are --host, --password, --port, -
-protocol, --socket, and --user.

• --result-file=name, -r name

Direct output to the given file.

• --short-form, -s

Display only the statements contained in the log, without any extra information.

• --socket=path, -S path

The socket file to use for the connection.

• --start-datetime=datetime

Start reading the binary log at the first event having a datetime equal or posterior to the date-
time argument. Available as of MySQL 4.1.4.

• --stop-datetime=datetime

Stop reading the binary log at the first event having a datetime equal or posterior to the date-
time argument. Available as of MySQL 4.1.4. Useful for point-in-time recovery.

• --start-position=N

Start reading the binary log at the first event having a position equal to the N argument. Avail-
able as of MySQL 4.1.4 (previously named --position).

• --stop-position=N

Stop reading the binary log at the first event having a position equal or greater than the N argu-
ment. Available as of MySQL 4.1.4.

• --to-last-log, -t

Do not stop at the end of the requested binary log of the MySQL server, but rather continue
printing until the end of the last binary log. If you send the output to the same MySQL server,
this may lead to an endless loop. This option requires --read-from-remote-server.
Available as of MySQL 4.1.2.

• --disable-log-bin, -D

MySQL Client and Utility Programs

479

Disable binary logging. This is useful for avoiding an endless loop if you use the -
-to-last-log option and are sending the output to the same MySQL server. This option also
is useful when restoring after a crash to avoid duplication of the statements you have logged.
Note: This option requires that you have the SUPER privilege. Available as of MySQL 4.1.8.

• --user=user_name, -u user_name

The MySQL username to use when connecting to a remote server.

• --version, -V

Display version information and exit.

You can also set the following variable by using --var_name=value options:

• open_files_limit

Specify the number of open file descriptors to reserve.

You can pipe the output of mysqlbinlog into a mysql client to execute the statements contained in
the binary log. This is used to recover from a crash when you have an old backup (see Section 5.7.1,
“Database Backups”):

shell> mysqlbinlog hostname-bin.000001 | mysql

Or:

shell> mysqlbinlog hostname-bin.[0-9]* | mysql

You can also redirect the output of mysqlbinlog to a text file instead, if you need to modify the
statement log first (for example, to remove statements that you don't want to execute for some reas-
on). After editing the file, execute the statements that it contains by using it as input to the mysql
program.

mysqlbinlog has the --position option, which prints only those statements with an offset in the
binary log greater than or equal to a given position (the given position must match the start of one
event). It also has options to stop or start when it sees an event of a given date and time. This en-
ables you to perform point-in-time recovery using the --stop-datetime option (to be able to
say, for example, "roll forward my databases to how they were today at 10:30 AM").

If you have more than one binary log to execute on the MySQL server, the safe method is to process
them all using a single connection to the server. Here is an example that demonstrates what may be
unsafe:

shell> mysqlbinlog hostname-bin.000001 | mysql # DANGER!!
shell> mysqlbinlog hostname-bin.000002 | mysql # DANGER!!

Processing binary logs this way using different connections to the server causes problems if the first
log file contains a CREATE TEMPORARY TABLE statement and the second log contains a state-
ment that uses the temporary table. When the first mysql process terminates, the server drops the
temporary table. When the second mysql process attempts to use the table, the server reports
``unknown table.''

To avoid problems like this, use a single connection to execute the contents of all binary logs that
you want to process. Here is one way to do that:

shell> mysqlbinlog hostname-bin.000001 hostname-bin.000002 | mysql

MySQL Client and Utility Programs

480

Another approach is to do this:

shell> mysqlbinlog hostname-bin.000001 > /tmp/statements.sql
shell> mysqlbinlog hostname-bin.000002 >> /tmp/statements.sql
shell> mysql -e "source /tmp/statements.sql"

In MySQL 3.23, the binary log did not contain the data to load for LOAD DATA INFILE state-
ments. To execute such a statement from a binary log file, the original data file was needed. Starting
from MySQL 4.0.14, the binary log does contain the data, so mysqlbinlog can produce output that
reproduces the LOAD DATA INFILE operation without the original data file. mysqlbinlog copies
the data to a temporary file and writes a LOAD DATA LOCAL INFILE statement that refers to the
file. The default location of the directory where these files are written is system-specific. To specify
a directory explicitly, use the --local-load option.

Because mysqlbinlog converts LOAD DATA INFILE statements to LOAD DATA LOCAL IN-
FILE statements (that is, it adds LOCAL), both the client and the server that you use to process the
statements must be configured to allow LOCAL capability. See Section 5.4.4, “Security Issues with
LOAD DATA LOCAL”.

Warning: The temporary files created for LOAD DATA LOCAL statements are not automatically
deleted because they are needed until you actually execute those statements. You should delete the
temporary files yourself after you no longer need the statement log. The files can be found in the
temporary file directory and have names like original_file_name-#-#.

In the future, we will fix this problem by allowing mysqlbinlog to connect directly to a mysqld
server. Then it is possible to safely remove the log files automatically as soon as the LOAD DATA
INFILE statements have been executed.

Before MySQL 4.1, mysqlbinlog could not prepare output suitable for mysql if the binary log con-
tained interlaced statements originating from different clients that used temporary tables of the same
name. This is fixed in MySQL 4.1. However, the problem still existed for LOAD DATA INFILE
statements until it was fixed in MySQL 4.1.8.

8.6. mysqlcc, the MySQL Control Center
mysqlcc, the MySQL Control Center, is a platform-independent client that provides a graphical user
interface (GUI) to the MySQL database server. It supports interactive use, including syntax high-
lighting and tab completion. It provides database and table management, and allows server adminis-
tration.

mysqlcc is deprecated and it is recommended that users choose the new MySQL Administrator and
MySQL Query Browser, found at http://dev.mysql.com/downloads/.

Currently, mysqlcc runs on Windows and Linux platforms.

Invoke mysqlcc by double-clicking its icon in a graphical environment. From the command line, in-
voke it like this:

shell> mysqlcc [options]

mysqlcc supports the following options:

• --help, -?

Display a help message and exit.

• --blocking_queries, -b

Use blocking queries.

MySQL Client and Utility Programs

481

http://dev.mysql.com/downloads/

• --compress, -C

Compress all information sent between the client and the server if both support compression.

• --connection_name=name, -c name

This option is a synonym for --server.

• --database=db_name, -d db_name

The database to use. This is useful mainly in an option file.

• --history_size=#, -H #

The history size for the query window.

• --host=host_name, -h host_name

Connect to the MySQL server on the given host.

• --local-infile[={0|1}]

Enable or disable LOCAL capability for LOAD DATA INFILE. With no value, the option en-
ables LOCAL. It may be given as --local-infile=0 or --local-infile=1 to expli-
citly disable or enable LOCAL. Enabling LOCAL has no effect if the server does not also support
it.

• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you
cannot have a space between the option and the password. If you omit the password value fol-
lowing the --password or -p option on the command line, you are prompted for one.

• --plugins_path=name, -g name

The path to the directory where MySQL Control Center plugins are located.

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

• --query, -q

Open a query window on startup.

• --register, -r

Open the Register Server dialog on startup.

• --server=name, -s name

The MySQL Control Center connection name.

MySQL Client and Utility Programs

482

• --socket=path, -S path

The socket file to use for the connection.

• --syntax, -y

Enable syntax highlighting and completion.

• --syntax_file=name, -Y name

The syntax file for completion.

• --translations_path=name, -T name

The path to the directory where MySQL Control Center translations are located.

• --user=user_name, -u user_name

The MySQL username to use when connecting to the server.

• --version, -V

Display version information and exit.

You can also set the following variables by using --var_name=value options:

• connect_timeout

The number of seconds before connection timeout. (Default value is 0.)

• max_allowed_packet

The maximum packet length to send to or receive from the server. (Default value is 16MB.)

• max_join_size

The automatic limit for rows in a join. (Default value is 1,000,000.)

• net_buffer_length

The buffer size for TCP/IP and socket communication. (Default value is 16KB.)

• select_limit

The automatic limit for SELECT statements. (Default value is 1,000.)

It is also possible to set variables by using --set-variable=var_name=value or -O
var_name=value syntax. However, this syntax is deprecated as of MySQL 4.0.

8.7. The mysqlcheck Table Maintenance and
Repair Program

The mysqlcheck client checks and repairs MyISAM tables. It can also optimize and analyze tables.

MySQL Client and Utility Programs

483

mysqlcheck is available as of MySQL 3.23.38.

mysqlcheck is similar in function to myisamchk, but works differently. The main operational dif-
ference is that mysqlcheck must be used when the mysqld server is running, whereas myisamchk
should be used when it is not. The benefit of using mysqlcheck is that you do not have to stop the
server to check or repair your tables.

mysqlcheck uses the SQL statements CHECK TABLE, REPAIR TABLE, ANALYZE TABLE, and
OPTIMIZE TABLE in a convenient way for the user. It determines which statements to use for the
operation you want to perform, then sends the statements to the server to be executed.

There are three general ways to invoke mysqlcheck:

shell> mysqlcheck [options] db_name [tables]
shell> mysqlcheck [options] --databases DB1 [DB2 DB3...]
shell> mysqlcheck [options] --all-databases

If you don't name any tables or use the --databases or --all-databases option, entire
databases are checked.

mysqlcheck has a special feature compared to the other clients. The default behavior of checking
tables (--check) can be changed by renaming the binary. If you want to have a tool that repairs
tables by default, you should just make a copy of mysqlcheck named mysqlrepair, or make a sym-
bolic link to mysqlcheck named mysqlrepair. If you invoke mysqlrepair, it repairs tables on
command.

The following names can be used to change mysqlcheck default behavior:

mysqlrepair The default option is --repair

mysqlanalyze The default option is --analyze

mysqloptimize The default option is --optimize

mysqlcheck supports the following options:

• --help, -?

Display a help message and exit.

• --all-databases, -A

Check all tables in all databases. This is the same as using the --databases option and nam-
ing all the databases on the command line.

• --all-in-1, -1

Instead of issuing a statement for each table, execute a single statement for each database that
names all the tables from that database to be processed.

• --analyze, -a

Analyze the tables.

• --auto-repair

If a checked table is corrupted, automatically fix it. Any necessary repairs are done after all
tables have been checked.

• --character-sets-dir=path

The directory where character sets are installed. See Section 5.8.1, “The Character Set Used for
Data and Sorting”.

MySQL Client and Utility Programs

484

• --check, -c

Check the tables for errors.

• --check-only-changed, -C

Check only tables that have changed since the last check or that haven't been closed properly.

• --compress

Compress all information sent between the client and the server if both support compression.

• --databases, -B

Process all tables in the named databases. With this option, all name arguments are regarded as
database names, not as table names.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. The debug_options string often is 'd:t:o,file_name'.

• --default-character-set=charset

Use charset as the default character set. See Section 5.8.1, “The Character Set Used for Data
and Sorting”.

• --extended, -e

If you are using this option to check tables, it ensures that they are 100% consistent but takes a
long time.

If you are using this option to repair tables, it runs an extended repair that may not only take a
long time to execute, but may produce a lot of garbage rows also!

• --fast, -F

Check only tables that haven't been closed properly.

• --force, -f

Continue even if an SQL error occurs.

• --host=host_name, -h host_name

Connect to the MySQL server on the given host.

• --medium-check, -m

Do a check that is faster than an --extended operation. This finds only 99.99% of all errors,
which should be good enough in most cases.

• --optimize, -o

Optimize the tables.

• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you
cannot have a space between the option and the password. If you omit the password value fol-
lowing the --password or -p option on the command line, you are prompted for one.

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

MySQL Client and Utility Programs

485

• --protocol={TCP | SOCKET | PIPE | MEMORY}

The connection protocol to use. New in MySQL 4.1.

• --quick, -q

If you are using this option to check tables, it prevents the check from scanning the rows to
check for incorrect links. This is the fastest check method.

If you are using this option to repair tables, it tries to repair only the index tree. This is the fast-
est repair method.

• --repair, -r

Do a repair that can fix almost anything except unique keys that aren't unique.

• --silent, -s

Silent mode. Print only error messages.

• --socket=path, -S path

The socket file to use for the connection.

• --tables

Overrides the --databases or -B option. All arguments following the option are regarded as
table names.

• --user=user_name, -u user_name

The MySQL username to use when connecting to the server.

• --verbose, -v

Verbose mode. Print information about the various stages of program operation.

• --version, -V

Display version information and exit.

8.8. The mysqldump Database Backup Pro-
gram

The mysqldump client can be used to dump a database or a collection of databases for backup or
for transferring the data to another SQL server (not necessarily a MySQL server). The dump con-
tains SQL statements to create the table and/or populate the table.

If you are doing a backup on the server, and your tables all are MyISAM tables, you could consider
using the mysqlhotcopy instead (faster backup, faster restore). See Section 8.9, “The mysqlhotcopy
Database Backup Program”.

There are three general ways to invoke mysqldump:

shell> mysqldump [options] db_name [tables]
shell> mysqldump [options] --databases DB1 [DB2 DB3...]
shell> mysqldump [options] --all-databases

If you don't name any tables or use the --databases or --all-databases option, entire
databases are dumped.

MySQL Client and Utility Programs

486

To get a list of the options your version of mysqldump supports, execute mysqldump --help.

If you run mysqldump without the --quick or --opt option, mysqldump loads the whole result
set into memory before dumping the result. This probably is a problem if you are dumping a big
database. As of MySQL 4.1, --opt is on by default, but can be disabled with --skip-opt.

If you are using a recent copy of the mysqldump program to generate a dump to be reloaded into a
very old MySQL server, you should not use the --opt or -e options.

Before MySQL 4.1.2, out-of-range numeric values such as -inf and inf, as well as NaN
(not-a-number) values are dumped by mysqldump as NULL. You can see this using the following
sample table:

mysql> CREATE TABLE t (f DOUBLE);
mysql> INSERT INTO t VALUES(1e+111111111111111111111);
mysql> INSERT INTO t VALUES(-1e111111111111111111111);
mysql> SELECT f FROM t;
+------+
| f |
+------+
| inf |
| -inf |
+------+

For this table, mysqldump produces the following data output:

--
-- Dumping data for table `t`
--
INSERT INTO t VALUES (NULL);
INSERT INTO t VALUES (NULL);

The significance of this behavior is that if you dump and restore the table, the new table has contents
that differ from the original contents. This problem is fixed as of MySQL 4.1.2; you cannot insert
inf in the table, so this mysqldump behavior is only relevant when you deal with old servers.

mysqldump supports the following options:

• --help, -?

Display a help message and exit.

• --add-drop-table

Add a DROP TABLE statement before each CREATE TABLE statement.

• --add-locks

Surround each table dump with LOCK TABLES and UNLOCK TABLES statements. This results
in faster inserts when the dump file is reloaded. See Section 7.2.14, “Speed of INSERT State-
ments”.

• --all-databases, -A

Dump all tables in all databases. This is the same as using the --databases option and nam-
ing all the databases on the command line.

• --allow-keywords

Allow creation of column names that are keywords. This works by prefixing each column name
with the table name.

MySQL Client and Utility Programs

487

• --comments[={0|1}]

If set to 0, suppresses additional information in the dump file such as program version, server
version, and host. --skip-comments has the same effect as --comments=0. The default
value is 1 to not suppress the extra information. New in MySQL 4.0.17.

• --compact

Produce less verbose output. This option suppresses comments and enables the -
-skip-add-drop-table, --no-set-names, --skip-disable-keys, and -
-skip-add-locks options. New in MySQL 4.1.2.

• --compatible=name

Produce output that is compatible with other database systems or with older MySQL servers.
The value of name can be ansi, mysql323, mysql40, postgresql, oracle, mssql,
db2, maxdb, no_key_options, no_table_options, or no_field_options. To use
several values, separate them by commas. These values have the same meaning as the corres-
ponding options for setting the server SQL mode. See Section 5.2.2, “The Server SQL Mode”.

This option requires a server version of 4.1.0 or higher. With older servers, it does nothing.

• --complete-insert, -c

Use complete INSERT statements that include column names.

• --compress, -C

Compress all information sent between the client and the server if both support compression.

• --create-options

Include all MySQL-specific table options in the CREATE TABLE statements. Before MySQL
4.1.2, use --all instead.

• --databases, -B

Dump several databases. Normally, mysqldump treats the first name argument on the command
line as a database name and following names as table names. With this option, it treats all name
arguments as database names. CREATE DATABASE IF NOT EXISTS db_name and USE
db_name statements are included in the output before each new database.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. The debug_options string often is 'd:t:o,file_name'.

• --default-character-set=charset

Use charset as the default character set. See Section 5.8.1, “The Character Set Used for Data
and Sorting”. If not specified, mysqldump from MySQL 4.1.2 or later uses utf8, and earlier
versions use latin1.

• --delayed-insert

Insert rows using INSERT DELAYED statements.

• --delete-master-logs

On a master replication server, delete the binary logs after performing the dump operation. This
option automatically enables --first-slave before MySQL 4.1.8 and enables -
-master-data thereafter. It was added in MySQL 3.23.57 (for MySQL 3.23) and MySQL
4.0.13 (for MySQL 4.0).

• --disable-keys, -K

MySQL Client and Utility Programs

488

For each table, surround the INSERT statements with /*!40000 ALTER TABLE
tbl_name DISABLE KEYS */; and /*!40000 ALTER TABLE tbl_name ENABLE
KEYS */; statements. This makes loading the dump file into a MySQL 4.0 server faster be-
cause the indexes are created after all rows are inserted. This option is effective only for MyIS-
AM tables.

• --extended-insert, -e

Use multiple-row INSERT syntax that include several VALUES lists. This results in a smaller
dump file and speeds up inserts when the file is reloaded.

• --fields-terminated-by=... , --fields-enclosed-by=... , -
-fields-optionally-enclosed-by=... , --fields-escaped-by=... , -
-lines-terminated-by=...

These options are used with the -T option and have the same meaning as the corresponding
clauses for LOAD DATA INFILE. See Section 13.1.5, “LOAD DATA INFILE Syntax”.

• --first-slave, -x

Deprecated, renamed to --lock-all-tables in MySQL 4.1.8.

• --flush-logs, -F

Flush the MySQL server log files before starting the dump. This option requires the RELOAD
privilege. Note that if you use this option in combination with the --all-databases (or -A)
option, the logs are flushed for each database dumped. The exception is when using -
-lock-all-tables or --master-data: In this case, the logs are flushed only once, cor-
responding to the moment that all tables are locked. If you want your dump and the log flush to
happen at exactly the same moment, you should use --flush-logs together with either -
-lock-all-tables or --master-data.

• --force, -f

Continue even if an SQL error occurs during a table dump.

• --host=host_name, -h host_name

Dump data from the MySQL server on the given host. The default host is localhost.

• --hex-blob

Dump binary string columns using hexadecimal notation (for example, 'abc' becomes
0x616263). The affected columns are BINARY, VARBINARY, and BLOB in MySQL 4.1 and
up, and CHAR BINARY, VARCHAR BINARY, and BLOB in MySQL 4.0. This option was ad-
ded in MySQL 4.0.23 and 4.1.8.

• --lock-all-tables, -x

Lock all tables across all databases. This is achieved by acquiring a global read lock for the dur-
ation of the whole dump. This option automatically turns off --single-transaction and
--lock-tables. Added in MySQL 4.1.8.

• --lock-tables, -l

Lock all tables before starting the dump. The tables are locked with READ LOCAL to allow con-
current inserts in the case of MyISAM tables. For InnoDB tables, --single-transaction
is a much better option, because it does not need to lock the tables at all.

Please note that when dumping multiple databases, --lock-tables locks tables for each
database separately. So, this option does not guarantee that the tables in the dump file are logic-
ally consistent between databases. Tables in different databases may be dumped in completely
different states.

MySQL Client and Utility Programs

489

• --master-data[=value]

This option causes the binary log position and filename to be written to the output. This option
requires the RELOAD privilege. If the option value is equal to 1, the position and filename are
written to the dump output in the form of a CHANGE MASTER statement that makes a slave
server start from the correct position in the master's binary logs if you use this SQL dump of the
master to set up a slave. If the option value is equal to 2, the CHANGE MASTER statement is
written as an SQL comment. This is the default action if value is omitted. value may be giv-
en as of MySQL 4.1.8; before that, do not specify an option value.

The --master-data option turns on --lock-all-tables, unless -
-single-transaction also is specified (in which case, a global read lock is only acquired
a short time at the beginning of the dump. See also the description for -
-single-transaction. In all cases, any action on logs happens at the exact moment of the
dump. This option automatically turns off --lock-tables.

• --no-create-db, -n

This option suppresses the CREATE DATABASE /*!32312 IF NOT EXISTS*/
db_name statements that are otherwise included in the output if the --databases or -
-all-databases option is given.

• --no-create-info, -t

Don't write CREATE TABLE statements that re-create each dumped table.

• --no-data, -d

Don't write any row information for the table. This is very useful if you just want to get a dump
of the structure for a table.

• --opt

This option is shorthand; it is the same as specifying --add-drop-table --add-locks
--create-options --disable-keys --extended-insert --lock-tables
--quick --set-charset. It should give you a fast dump operation and produce a dump
file that can be reloaded into a MySQL server quickly. As of MySQL 4.1, --opt is on by de-
fault, but can be disabled with --skip-opt. To disable only certain of the options enabled
by --opt, use their --skip forms; for example, --skip-add-drop-table or -
-skip-quick.

• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you
cannot have a space between the option and the password. If you omit the password value fol-
lowing the --password or -p option on the command line, you are prompted for one.

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

• --protocol={TCP | SOCKET | PIPE | MEMORY}

The connection protocol to use. New in MySQL 4.1.

• --quick, -q

This option is useful for dumping large tables. It forces mysqldump to retrieve rows for a table
from the server a row at a time rather than retrieving the entire row set and buffering it in
memory before writing it out.

• --quote-names, -Q

Quote database, table, and column names within '`' characters. If the server SQL mode includes

MySQL Client and Utility Programs

490

the ANSI_QUOTES option, names are quoted within '"' characters. As of MySQL 4.1.1, -
-quote-names is on by default, but can be disabled with --skip-quote-names.

• --result-file=file, -r file

Direct output to a given file. This option should be used on Windows, because it prevents
newline '\n' characters from being converted to '\r\n' carriage return/newline sequences.

• --set-charset

Add SET NAMES default_character_set to the output. This option is enabled by de-
fault. To suppress the SET NAMES statement, use --skip-set-charset. This option was
added in MySQL 4.1.2.

• --single-transaction

This option issues a BEGIN SQL statement before dumping data from the server. It is useful
only with InnoDB tables, because then it dumps the consistent state of the database at the time
when BEGIN was issued without blocking any applications.

When using this option, you should keep in mind that only InnoDB tables are dumped in a con-
sistent state. For example, any MyISAM or HEAP tables dumped while using this option may
still change state.

The --single-transaction option was added in MySQL 4.0.2. This option is mutually
exclusive with the --lock-tables option, because LOCK TABLES causes any pending
transactions to be committed implicitly.

To dump big tables, you should combine this option with --quick.

• --socket=path, -S path

The socket file to use when connecting to localhost (which is the default host).

• --skip-comments

See the description for the --comments option.

• --tab=path, -T path

Produce tab-separated data files. For each dumped table, mysqldump creates a
tbl_name.sql file that contains the CREATE TABLE statement that creates the table, and a
tbl_name.txt file that contains its data. The option value is the directory in which to write
the files.

By default, the .txt data files are formatted using tab characters between column values and a
newline at the end of each line. The format can be specified explicitly using the
--fields-xxx and --lines--xxx options.

Note: This option should be used only when mysqldump is run on the same machine as the
mysqld server. You must have the FILE privilege, and the server must have permission to write
files in the directory that you specify.

• --tables

Override the --databases or -B option. All arguments following the option are regarded as
table names.

• --user=user_name, -u user_name

The MySQL username to use when connecting to the server.

• --verbose, -v

MySQL Client and Utility Programs

491

Verbose mode. Print out more information on what the program does.

• --version, -V

Display version information and exit.

• --where='where-condition', -w 'where-condition'

Dump only records selected by the given WHERE condition. Note that quotes around the condi-
tion are mandatory if it contains spaces or characters that are special to your command interpret-
er.

Examples:

"--where=user='jimf'"
"-wuserid>1"
"-wuserid<1"

• --xml, -X

Write dump output as well-formed XML.

You can also set the following variables by using --var_name=value options:

• max_allowed_packet

The maximum size of the buffer for client/server communication. The value of the variable can
be up to 16MB before MySQL 4.0, and up to 1GB from MySQL 4.0 on.

• net_buffer_length

The initial size of the buffer for client/server communication. When creating multiple-row-insert
statements (as with option --extended-insert or --opt), mysqldump creates rows up to
net_buffer_length length. If you increase this variable, you should also ensure that the
net_buffer_length variable in the MySQL server is at least this large.

It is also possible to set variables by using --set-variable=var_name=value or -O
var_name=value syntax. However, this syntax is deprecated as of MySQL 4.0.

The most common use of mysqldump is probably for making a backup of an entire database:

shell> mysqldump --opt db_name > backup-file.sql

You can read the dump file back into the server like this:

shell> mysql db_name < backup-file.sql

Or like this:

shell> mysql -e "source /path-to-backup/backup-file.sql" db_name

mysqldump is also very useful for populating databases by copying data from one MySQL server
to another:

shell> mysqldump --opt db_name | mysql --host=remote_host -C db_name

MySQL Client and Utility Programs

492

It is possible to dump several databases with one command:

shell> mysqldump --databases db_name1 [db_name2 ...] > my_databases.sql

If you want to dump all databases, use the --all-databases option:

shell> mysqldump --all-databases > all_databases.sql

If tables are stored in the InnoDB storage engine, mysqldump provides a way of making an online
backup of these (see command below). This backup just needs to acquire a global read lock on all
tables (using FLUSH TABLES WITH READ LOCK) at the beginning of the dump. As soon as this
lock has been acquired, the binary log coordinates are read and lock is released. So if and only if one
long updating statement is running when the FLUSH... is issued, the MySQL server may get
stalled until that long statement finishes, and then the dump becomes lock-free. So if the MySQL
server receives only short (in the sense of "short execution time") updating statements, even if there
are plenty of them, the initial lock period should not be noticeable.

shell> mysqldump --all-databases --single-transaction > all_databases.sql

For point-in-time recovery (also known as "roll-forward", when you need to restore an old backup
and replay the changes which happened since that backup), it is often useful to rotate the binary log
(see Section 5.9.4, “The Binary Log”) or at least know the binary log coordinates to which the dump
corresponds:

shell> mysqldump --all-databases --master-data=2 > all_databases.sql
or
shell> mysqldump --all-databases --flush-logs --master-data=2 > all_databases.sql

The simultaneous use of --master-data and --single-transaction works as of MySQL
4.1.8. It provides a convenient way to make an online backup suitable for point-in-time recovery, if
tables are stored in the InnoDB storage engine.

For more information on making backups, see Section 5.7.1, “Database Backups”.

8.9. The mysqlhotcopy Database Backup Pro-
gram

mysqlhotcopy is a Perl script that was originally written and contributed by Tim Bunce. It uses
LOCK TABLES, FLUSH TABLES, and cp or scp to quickly make a backup of a database. It's the
fastest way to make a backup of the database or single tables, but it can be run only on the same ma-
chine where the database directories are located. mysqlhotcopy works only for backing up MyISAM
and ISAM tables. It runs on Unix, and as of MySQL 4.0.18 also on NetWare.

shell> mysqlhotcopy db_name [/path/to/new_directory]

shell> mysqlhotcopy db_name_1 ... db_name_n /path/to/new_directory

Back up tables in the given database that match a regular expression:

shell> mysqlhotcopy db_name./regex/

The regular expression for the table name can be negated by prefixing it with a tilde ('~'):

shell> mysqlhotcopy db_name./~regex/

MySQL Client and Utility Programs

493

mysqlhotcopy supports the following options:

• --help, -?

Display a help message and exit.

• --allowold

Don't abort if target exists (rename it by adding an _old suffix).

• --checkpoint=db_name.tbl_name

Insert checkpoint entries into the specified db_name.tbl_name.

• --debug

Enable debug output.

• --dryrun, -n

Report actions without doing them.

• --flushlog

Flush logs after all tables are locked.

• --keepold

Don't delete previous (renamed) target when done.

• --method=#

Method for copy (cp or scp).

• --noindices

Don't include full index files in the backup. This makes the backup smaller and faster. The in-
dexes can be reconstructed later with myisamchk -rq for MyISAM tables or isamchk -rq for
ISAM tables.

• --password=password, -ppassword

The password to use when connecting to the server. Note that the password value is not optional
for this option, unlike for other MySQL programs.

• --port=port_num, -P port_num

The TCP/IP port number to use when connecting to the local server.

• --quiet, -q

Be silent except for errors.

• --regexp=expr

Copy all databases with names matching the given regular expression.

• --socket=path, -S path

The Unix socket file to use for the connection.

• --suffix=str

The suffix for names of copied databases.

MySQL Client and Utility Programs

494

• --tmpdir=path

The temporary directory (instead of /tmp).

• --user=user_name, -u user_name

The MySQL username to use when connecting to the server.

mysqlhotcopy reads the [client] and [mysqlhotcopy] option groups from option files.

To execute mysqlhotcopy, you must have access to the files for the tables that you are backing up,
the SELECT privilege for those tables, and the RELOAD privilege (to be able to execute FLUSH
TABLES).

Use perldoc for additional mysqlhotcopy documentation:

shell> perldoc mysqlhotcopy

8.10. The mysqlimport Data Import Program
The mysqlimport client provides a command-line interface to the LOAD DATA INFILE SQL
statement. Most options to mysqlimport correspond directly to clauses of LOAD DATA INFILE.
See Section 13.1.5, “LOAD DATA INFILE Syntax”.

Invoke mysqlimport like this:

shell> mysqlimport [options] db_name textfile1 [textfile2 ...]

For each text file named on the command line, mysqlimport strips any extension from the filename
and uses the result to determine the name of the table into which to import the file's contents. For
example, files named patient.txt, patient.text, and patient all would be imported in-
to a table named patient.

mysqlimport supports the following options:

• --help, -?

Display a help message and exit.

• --columns=column_list, -c column_list

This option takes a comma-separated list of column names as its value. The order of the column
names indicates how to match up data file columns with table columns.

• --compress, -C

Compress all information sent between the client and the server if both support compression.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. The debug_options string often is 'd:t:o,file_name'.

• --delete, -D

Empty the table before importing the text file.

• --fields-terminated-by=... , --fields-enclosed-by=... , -
-fields-optionally-enclosed-by=... , --fields-escaped-by=... , -
-lines-terminated-by=...

MySQL Client and Utility Programs

495

These options have the same meaning as the corresponding clauses for LOAD DATA INFILE.
See Section 13.1.5, “LOAD DATA INFILE Syntax”.

• --force, -f

Ignore errors. For example, if a table for a text file doesn't exist, continue processing any re-
maining files. Without --force, mysqlimport exits if a table doesn't exist.

• --host=host_name, -h host_name

Import data to the MySQL server on the given host. The default host is localhost.

• --ignore, -i

See the description for the --replace option.

• --ignore-lines=n

Ignore the first n lines of the data file.

• --local, -L

Read input files locally from the client host.

• --lock-tables, -l

Lock all tables for writing before processing any text files. This ensures that all tables are syn-
chronized on the server.

• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you
cannot have a space between the option and the password. If you omit the password value fol-
lowing the --password or -p option on the command line, you are prompted for one.

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

• --protocol={TCP | SOCKET | PIPE | MEMORY}

The connection protocol to use. New in MySQL 4.1.

• --replace, -r

The --replace and --ignore options control handling of input records that duplicate exist-
ing records on unique key values. If you specify --replace, new rows replace existing rows
that have the same unique key value. If you specify --ignore, input rows that duplicate an ex-
isting row on a unique key value are skipped. If you don't specify either option, an error occurs
when a duplicate key value is found, and the rest of the text file is ignored.

• --silent, -s

Silent mode. Produce output only when errors occur.

• --socket=path, -S path

The socket file to use when connecting to localhost (which is the default host).

• --user=user_name, -u user_name

The MySQL username to use when connecting to the server.

MySQL Client and Utility Programs

496

• --verbose, -v

Verbose mode. Print out more information what the program does.

• --version, -V

Display version information and exit.

Here is a sample session that demonstrates use of mysqlimport:

shell> mysql -e 'CREATE TABLE imptest(id INT, n VARCHAR(30))' test
shell> ed
a
100 Max Sydow
101 Count Dracula
.
w imptest.txt
32
q
shell> od -c imptest.txt
0000000 1 0 0 \t M a x S y d o w \n 1 0
0000020 1 \t C o u n t D r a c u l a \n
0000040
shell> mysqlimport --local test imptest.txt
test.imptest: Records: 2 Deleted: 0 Skipped: 0 Warnings: 0
shell> mysql -e 'SELECT * FROM imptest' test
+------+---------------+
| id | n |
+------+---------------+
| 100 | Max Sydow |
| 101 | Count Dracula |
+------+---------------+

8.11. mysqlshow, Showing Databases,
Tables, and Columns

The mysqlshow client can be used to quickly look at which databases exist, their tables, and a ta-
ble's columns or indexes.

mysqlshow provides a command-line interface to several SQL SHOW statements. The same inform-
ation can be obtained by using those statements directly. For example, you can issue them from the
mysql client program. See Section 13.5.4, “SHOW Syntax”.

Invoke mysqlshow like this:

shell> mysqlshow [options] [db_name [tbl_name [col_name]]]

• If no database is given, all matching databases are shown.

• If no table is given, all matching tables in the database are shown.

• If no column is given, all matching columns and column types in the table are shown.

Note that in newer MySQL versions, you see only those database, tables, or columns for which you
have some privileges.

If the last argument contains shell or SQL wildcard characters ('*', '?', '%', or '_'), only those names
that are matched by the wildcard are shown. If a database name contains any underscores, those
should be escaped with a backslash (some Unix shells require two) in order to get a list of the proper

MySQL Client and Utility Programs

497

tables or columns. '*' and '?' characters are converted into SQL '%' and '_' wildcard characters. This
might cause some confusion when you try to display the columns for a table with a '_' in the name,
because in this case mysqlshow shows you only the table names that match the pattern. This is eas-
ily fixed by adding an extra '%' last on the command line as a separate argument.

mysqlshow supports the following options:

• --help, -?

Display a help message and exit.

• --character-sets-dir=path

The directory where character sets are installed. See Section 5.8.1, “The Character Set Used for
Data and Sorting”.

• --compress, -C

Compress all information sent between the client and the server if both support compression.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. The debug_options string often is 'd:t:o,file_name'.

• --default-character-set=charset

Use charset as the default character set. See Section 5.8.1, “The Character Set Used for Data
and Sorting”.

• --host=host_name, -h host_name

Connect to the MySQL server on the given host.

• --keys, -k

Show table indexes.

• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you
cannot have a space between the option and the password. If you omit the password value fol-
lowing the --password or -p option on the command line, you are prompted for one.

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

• --protocol={TCP | SOCKET | PIPE | MEMORY}

The connection protocol to use. New in MySQL 4.1.

• --socket=path, -S path

The socket file to use when connecting to localhost (which is the default host).

• --status, -i

Display extra information about each table.

• --user=user_name, -u user_name

The MySQL username to use when connecting to the server.

• --verbose, -v

MySQL Client and Utility Programs

498

Verbose mode. Print out more information what the program does. This option can be used mul-
tiple times to increase the amount of information.

• --version, -V

Display version information and exit.

8.12. perror, Explaining Error Codes
For most system errors, MySQL displays, in addition to an internal text message, the system error
code in one of the following styles:

message ... (errno: #)
message ... (Errcode: #)

You can find out what the error code means by either examining the documentation for your system
or by using the perror utility.

perror prints a description for a system error code or for a storage engine (table handler) error code.

Invoke perror like this:

shell> perror [options] errorcode ...

Example:

shell> perror 13 64
Error code 13: Permission denied
Error code 64: Machine is not on the network

Note that the meaning of system error messages may be dependent on your operating system. A giv-
en error code may mean different things on different operating systems.

8.13. The replace String-Replacement Utility
The replace utility program changes strings in place in files or on the standard input. It uses a finite
state machine to match longer strings first. It can be used to swap strings. For example, the follow-
ing command swaps a and b in the given files, file1 and file2:

shell> replace a b b a -- file1 file2 ...

Use the -- option to indicate where the string-replacement list ends and the filenames begin.

Any file named on the command line is modified in place, so you may want to make a copy of the
original before converting it.

If no files are named on the command line, replace reads the standard input and writes to the stand-
ard output. In this case, no -- option is needed.

The replace program is used by msql2mysql. See Section 22.1.1, “msql2mysql, Convert mSQL
Programs for Use with MySQL”.

replace supports the following options:

• -?, -I

MySQL Client and Utility Programs

499

Display a help message and exit.

• -# debug_options

Write a debugging log. The debug_options string often is 'd:t:o,file_name'.

• -s

Silent mode. Print out less information what the program does.

• -v

Verbose mode. Print out more information what the program does.

• -V

Display version information and exit.

MySQL Client and Utility Programs

500

Chapter 9. Language Structure
This chapter discusses the rules for writing the following elements of SQL statements when using
MySQL:

• Literal values such as strings and numbers

• Identifiers such as table and column names

• User and system variables

• Comments

• Reserved words

9.1. Literal Values
This section describes how to write literal values in MySQL. These include strings, numbers, hexa-
decimal values, boolean values, and NULL. The section also covers the various nuances and
``gotchas'' that you may run into when dealing with these basic types in MySQL.

9.1.1. Strings
A string is a sequence of characters, surrounded by either single quote (''') or double quote ('"')
characters. Examples:

'a string'
"another string"

If the server SQL mode has ANSI_QUOTES enabled, string literals can be quoted only with single
quotes. A string quoted with double quotes is interpreted as an identifier.

As of MySQL 4.1.1, string literals may have an optional character set introducer and COLLATE
clause:

[_charset_name]'string' [COLLATE collation_name]

Examples:

SELECT _latin1'string';
SELECT _latin1'string' COLLATE latin1_danish_ci;

For more information about these forms of string syntax, see Section 10.3.7, “Character String Lit-
eral Character Set and Collation”.

Within a string, certain sequences have special meaning. Each of these sequences begins with a
backslash ('\'), known as the escape character. MySQL recognizes the following escape sequences:

\0 An ASCII 0 (NUL) character.

\' A single quote (''') character.

\" A double quote ('"') character.

\b A backspace character.

\n A newline (linefeed) character.

\r A carriage return character.

501

\t A tab character.

\Z ASCII 26 (Control-Z). This character can be encoded as '\Z' to allow you to work around
the problem that ASCII 26 stands for END-OF-FILE on Windows. (ASCII 26 causes
problems if you try to use mysql db_name < file_name.)

\\ A backslash ('\') character.

\% A '%' character. See note following table.

_ A '_' character. See note following table.

These sequences are case sensitive. For example, '\b' is interpreted as a backspace, but '\B' is inter-
preted as 'B'.

The '\%' and '_' sequences are used to search for literal instances of '%' and '_' in pattern-matching
contexts where they would otherwise be interpreted as wildcard characters. See Section 12.3.1,
“String Comparison Functions”. Note that if you use '\%' or '_' in other contexts, they return the
strings '\%' and '_' and not '%' and '_'.

In all other escape sequences, backslash is ignored. That is, the escaped character is interpreted as if
it was not escaped.

There are several ways to include quotes within a string:

• A ''' inside a string quoted with ''' may be written as ''''.

• A '"' inside a string quoted with '"' may be written as '""'.

• You can precede the quote character with an escape character ('\').

• A ''' inside a string quoted with '"' needs no special treatment and need not be doubled or es-
caped. In the same way, '"' inside a string quoted with ''' needs no special treatment.

The following SELECT statements demonstrate how quoting and escaping work:

mysql> SELECT 'hello', '"hello"', '""hello""', 'hel''lo', '\'hello';
+-------+---------+-----------+--------+--------+
| hello | "hello" | ""hello"" | hel'lo | 'hello |
+-------+---------+-----------+--------+--------+
mysql> SELECT "hello", "'hello'", "''hello''", "hel""lo", "\"hello";
+-------+---------+-----------+--------+--------+
| hello | 'hello' | ''hello'' | hel"lo | "hello |
+-------+---------+-----------+--------+--------+
mysql> SELECT 'This\nIs\nFour\nLines';
+--------------------+
| This
Is
Four
Lines |
+--------------------+
mysql> SELECT 'disappearing\ backslash';
+------------------------+
| disappearing backslash |
+------------------------+

If you want to insert binary data into a string column (such as a BLOB), the following characters
must be represented by escape sequences:

NUL NUL byte (ASCII 0). Represent this character by '\0' (a backslash followed by an ASCII
'0' character).

\ Backslash (ASCII 92). Represent this character by '\\'.

' Single quote (ASCII 39). Represent this character by '\''.

Language Structure

502

" Double quote (ASCII 34). Represent this character by '\"'.

When writing application programs, any string that might contain any of these special characters
must be properly escaped before the string is used as a data value in an SQL statement that is sent to
the MySQL server. You can do this in two ways:

• Process the string with a function that escapes the special characters. For example, in a C pro-
gram, you can use the mysql_real_escape_string() C API function to escape charac-
ters. See Section 22.2.3.47, “mysql_real_escape_string()”. The Perl DBI interface
provides a quote method to convert special characters to the proper escape sequences. See Sec-
tion 22.4, “MySQL Perl API”.

• As an alternative to explicitly escaping special characters, many MySQL APIs provide a place-
holder capability that allows you to insert special markers into a query string, and then bind data
values to them when you issue the query. In this case, the API takes care of escaping special
characters in the values for you.

9.1.2. Numbers
Integers are represented as a sequence of digits. Floats use '.' as a decimal separator. Either type of
number may be preceded by '-' to indicate a negative value.

Examples of valid integers:

1221
0
-32

Examples of valid floating-point numbers:

294.42
-32032.6809e+10
148.00

An integer may be used in a floating-point context; it is interpreted as the equivalent floating-point
number.

9.1.3. Hexadecimal Values
MySQL supports hexadecimal values. In numeric contexts, these act like integers (64-bit precision).
In string contexts, these act like binary strings, where each pair of hex digits is converted to a char-
acter:

mysql> SELECT x'4D7953514C';
-> 'MySQL'

mysql> SELECT 0xa+0;
-> 10

mysql> SELECT 0x5061756c;
-> 'Paul'

In MySQL 4.1 (and in MySQL 4.0 when using the --new option), the default type of a hexadecim-
al value is a string. If you want to ensure that the value is treated as a number, you can use
CAST(... AS UNSIGNED):

mysql> SELECT 0x41, CAST(0x41 AS UNSIGNED);
-> 'A', 65

Language Structure

503

The 0x syntax is based on ODBC. Hexadecimal strings are often used by ODBC to supply values
for BLOB columns. The x'hexstring' syntax is new in 4.0 and is based on standard SQL.

Beginning with MySQL 4.0.1, you can convert a string or a number to a string in hexadecimal
format with the HEX() function:

mysql> SELECT HEX('cat');
-> '636174'

mysql> SELECT 0x636174;
-> 'cat'

9.1.4. Boolean Values
Beginning with MySQL 4.1, the constant TRUE evaluates to 1 and the constant FALSE evaluates to
0. The constant names can be written in any lettercase.

mysql> SELECT TRUE, true, FALSE, false;
-> 1, 1, 0, 0

9.1.5. NULL Values
The NULL value means ``no data.'' NULL can be written in any lettercase.

Be aware that the NULL value is different from values such as 0 for numeric types or the empty
string for string types. See Section A.5.3, “Problems with NULL Values”.

For text file import or export operations performed with LOAD DATA INFILE or SELECT ...
INTO OUTFILE, NULL is represented by the \N sequence. See Section 13.1.5, “LOAD DATA
INFILE Syntax”.

9.2. Database, Table, Index, Column, and Ali-
as Names

Database, table, index, column, and alias names are identifiers. This section describes the allowable
syntax for identifiers in MySQL.

The following table describes the maximum length and allowable characters for each type of identi-
fier.

Identifier Maximum
Length
(bytes)

Allowed Characters

Database 64 Any character that is allowed in a directory name, except '/', '\', or
'.'

Table 64 Any character that is allowed in a filename, except '/', '\', or '.'

Column 64 All characters

Index 64 All characters

Alias 255 All characters

In addition to the restrictions noted in the table, no identifier can contain ASCII 0 or a byte with a
value of 255. Database, table, and column names should not end with space characters. Before
MySQL 4.1, identifier quote characters should not be used in identifiers.

Beginning with MySQL 4.1, identifiers are stored using Unicode (UTF8). This applies to identifiers
in table definitions that stored in .frm files and to identifiers stored in the grant tables in the

Language Structure

504

mysql database. Although Unicode identifiers can include multi-byte characters, note that the max-
imum lengths shown in the table are byte counts. If an identifier does contain multi-byte characters,
the number of characters allowed in the identifier is less than the value shown in the table.

An identifier may be quoted or unquoted. If an identifier is a reserved word or contains special char-
acters, you must quote it whenever you refer to it. For a list of reserved words, see Section 9.6,
“Treatment of Reserved Words in MySQL”. Special characters are those outside the set of alphanu-
meric characters from the current character set, '_', and '$'.

The identifier quote character is the backtick ('`'):

mysql> SELECT * FROM `select` WHERE `select`.id > 100;

If the server SQL mode includes the ANSI_QUOTES mode option, it is also allowable to quote
identifiers with double quotes:

mysql> CREATE TABLE "test" (col INT);
ERROR 1064: You have an error in your SQL syntax. (...)
mysql> SET sql_mode='ANSI_QUOTES';
mysql> CREATE TABLE "test" (col INT);
Query OK, 0 rows affected (0.00 sec)

See Section 5.2.2, “The Server SQL Mode”.

As of MySQL 4.1, identifier quote characters can be included within an identifier if you quote the
identifier. If the character to be included within the identifier is the same as that used to quote the
identifier itself, double the character. The following statement creates a table named a`b that con-
tains a column named c"d:

mysql> CREATE TABLE `a``b` (`c"d` INT);

Identifier quoting was introduced in MySQL 3.23.6 to allow use of identifiers that are reserved
words or that contain special characters. Before 3.23.6, you cannot use identifiers that require
quotes, so the rules for legal identifiers are more restrictive:

• A name may consist of alphanumeric characters from the current character set, '_', and '$'. The
default character set is ISO-8859-1 (Latin1). This may be changed with the -
-default-character-set option to mysqld. See Section 5.8.1, “The Character Set Used
for Data and Sorting”.

• A name may start with any character that is legal in a name. In particular, a name may start with
a digit; this differs from many other database systems! However, an unquoted name cannot con-
sist only of digits.

• You cannot use the '.' character in names because it is used to extend the format by which you
can refer to columns (see Section 9.2.1, “Identifier Qualifiers”).

It is recommended that you do not use names like 1e, because an expression like 1e+1 is ambigu-
ous. It might be interpreted as the expression 1e + 1 or as the number 1e+1, depending on con-
text.

9.2.1. Identifier Qualifiers
MySQL allows names that consist of a single identifier or multiple identifiers. The components of a
multiple-part name should be separated by period ('.') characters. The initial parts of a multiple-part
name act as qualifiers that affect the context within which the final identifier is interpreted.

In MySQL you can refer to a column using any of the following forms:

Column Reference Meaning

Language Structure

505

col_name The column col_name from whichever table used in the query con-
tains a column of that name.

tbl_name.col_name The column col_name from table tbl_name of the default data-
base.

db_name.tbl_name.co
l_name

The column col_name from table tbl_name of the database
db_name. This syntax is unavailable before MySQL 3.22.

If any components of a multiple-part name require quoting, quote them individually rather than
quoting the name as a whole. For example, `my-table`.`my-column` is legal, whereas
`my-table.my-column` is not.

You need not specify a tbl_name or db_name.tbl_name prefix for a column reference in a
statement unless the reference would be ambiguous. Suppose that tables t1 and t2 each contain a
column c, and you retrieve c in a SELECT statement that uses both t1 and t2. In this case, c is
ambiguous because it is not unique among the tables used in the statement. You must qualify it with
a table name as t1.c or t2.c to indicate which table you mean. Similarly, to retrieve from a table
t in database db1 and from a table t in database db2 in the same statement, you must refer to
columns in those tables as db1.t.col_name and db2.t.col_name.

The syntax .tbl_name means the table tbl_name in the current database. This syntax is accep-
ted for ODBC compatibility because some ODBC programs prefix table names with a '.' character.

9.2.2. Identifier Case Sensitivity
In MySQL, databases correspond to directories within the data directory. Tables within a database
correspond to at least one file within the database directory (and possibly more, depending on the
storage engine). Consequently, the case sensitivity of the underlying operating system determines
the case sensitivity of database and table names. This means database and table names are not case
sensitive in Windows, and case sensitive in most varieties of Unix. One notable exception is Mac
OS X, which is Unix-based but uses a default filesystem type (HFS+) that is not case sensitive.
However, Mac OS X also supports UFS volumes, which are case sensitive just as on any Unix. See
Section 1.5.4, “MySQL Extensions to Standard SQL”.

Note: Although database and table names are not case sensitive on some platforms, you should not
refer to a given database or table using different cases within the same query. The following query
would not work because it refers to a table both as my_table and as MY_TABLE:

mysql> SELECT * FROM my_table WHERE MY_TABLE.col=1;

Column names, index names, and column aliases are not case sensitive on any platform.

Table aliases are case sensitive before MySQL 4.1.1. The following query would not work because
it refers to the alias both as a and as A:

mysql> SELECT col_name FROM tbl_name AS a
-> WHERE a.col_name = 1 OR A.col_name = 2;

If you have trouble remembering the allowable lettercase for database and table names, adopt a con-
sistent convention, such as always creating databases and tables using lowercase names.

How table and database names are stored on disk and used in MySQL is defined by the
lower_case_table_names system variable, which you can set when starting mysqld.
lower_case_table_names can take one of the following values:

Value Meaning

0 Table and database names are stored on disk using the lettercase specified in the CRE-
ATE TABLE or CREATE DATABASE statement. Name comparisons are case sensitive.
This is the default on Unix systems. Note that if you force this to 0 with -

Language Structure

506

-lower-case-table-names=0 on a case-insensitive filesystem and access MyIS-
AM tablenames using different lettercases, this may lead to index corruption.

1 Table names are stored in lowercase on disk and name comparisons are not case sensit-
ive. MySQL converts all table names to lowercase on storage and lookup. This behavior
also applies to database names as of MySQL 4.0.2, and to table aliases as of 4.1.1. This
value is the default on Windows and Mac OS X systems.

2 Table and database names are stored on disk using the lettercase specified in the CRE-
ATE TABLE or CREATE DATABASE statement, but MySQL converts them to lower-
case on lookup. Name comparisons are not case sensitive. Note: This works only on
filesystems that are not case sensitive! InnoDB table names are stored in lowercase, as
for lower_case_table_names=1. Setting lower_case_table_names to 2
can be done as of MySQL 4.0.18.

If you are using MySQL on only one platform, you don't normally have to change the
lower_case_table_names variable. However, you may encounter difficulties if you want to
transfer tables between platforms that differ in filesystem case sensitivity. For example, on Unix,
you can have two different tables named my_table and MY_TABLE, but on Windows those names
are considered the same. To avoid data transfer problems stemming from database or table name let-
tercase, you have two options:

• Use lower_case_table_names=1 on all systems. The main disadvantage with this is that
when you use SHOW TABLES or SHOW DATABASES, you don't see the names in their original
lettercase.

• Use lower_case_table_names=0 on Unix and lower_case_table_names=2 on
Windows. This preserves the lettercase of database and table names. The disadvantage of this is
that you must ensure that your queries always refer to your database and table names with the
correct lettercase on Windows. If you transfer your queries to Unix, where lettercase is signific-
ant, they do not work if the lettercase is incorrect.

Note that before setting lower_case_table_names to 1 on Unix, you must first convert your
old database and table names to lowercase before restarting mysqld.

9.3. User Variables
MySQL supports user variables as of version 3.23.6. You can store a value in a user variable and
refer to it later, which allows you to pass values from one statement to another. User variables are
connection-specific. That is, a variable defined by one client cannot be seen or used by other clients.
All variables for a client connection are automatically freed when the client exits.

User variables are written as @var_name, where the variable name var_name may consist of al-
phanumeric characters from the current character set, '.', '_', and '$'. The default character set is
ISO-8859-1 (Latin1). This may be changed with the --default-character-set option to
mysqld. See Section 5.8.1, “The Character Set Used for Data and Sorting”. User variable names are
not case sensitive beginning with MySQL 5.0. Before that, they are case sensitive.

One way to set a user variable is by issuing a SET statement:

SET @var_name = expr [, @var_name = expr] ...

For SET, either = or := can be used as the assignment operator. The expr assigned to each vari-
able can evaluate to an integer, real, string, or NULL value.

You can also assign a value to a user variable in statements other than SET. In this case, the assign-
ment operator must be := and not = because = is treated as a comparison operator in non-SET state-
ments:

Language Structure

507

mysql> SET @t1=0, @t2=0, @t3=0;
mysql> SELECT @t1:=(@t2:=1)+@t3:=4,@t1,@t2,@t3;
+----------------------+------+------+------+
| @t1:=(@t2:=1)+@t3:=4 | @t1 | @t2 | @t3 |
+----------------------+------+------+------+
| 5 | 5 | 1 | 4 |
+----------------------+------+------+------+

User variables may be used where expressions are allowed. This does not currently include contexts
that explicitly require a number, such as in the LIMIT clause of a SELECT statement, or the IG-
NORE number LINES clause of a LOAD DATA statement.

If you refer to a variable that has not been initialized, its value is NULL.

Note: In a SELECT statement, each expression is evaluated only when sent to the client. This means
that in a HAVING, GROUP BY, or ORDER BY clause, you cannot refer to an expression that in-
volves variables that are set in the SELECT list. For example, the following statement does not work
as expected:

mysql> SELECT (@aa:=id) AS a, (@aa+3) AS b FROM tbl_name HAVING b=5;

The reference to b in the HAVING clause refers to an alias for an expression in the SELECT list that
uses @aa. This does not work as expected: @aa does not contain the value of the current row, but
the value of id from the previous selected row.

The general rule is to never assign and use the same variable in the same statement.

Another issue with setting a variable and using it in the same statement is that the default result type
of a variable is based on the type of the variable at the start of the statement. The following example
illustrates this:

mysql> SET @a='test';
mysql> SELECT @a,(@a:=20) FROM tbl_name;

For this SELECT statement, MySQL reports to the client that column one is a string and converts all
accesses of @a to strings, even though @a is set to a number for the second row. After the SELECT
statement executes, @a is regarded as a number for the next statement.

To avoid problems with this behavior, either do not set and use the same variable within a single
statement, or else set the variable to 0, 0.0, or '' to define its type before you use it.

An unassigned variable has a value of NULL with a type of string.

9.4. System Variables
Starting from MySQL 4.0.3, we provide better access to a lot of system and connection variables.
Many variables can be changed dynamically while the server is running. This allows you to modify
server operation without having to stop and restart it.

The mysqld server maintains two kinds of variables. Global variables affect the overall operation of
the server. Session variables affect its operation for individual client connections.

When the server starts, it initializes all global variables to their default values. These defaults may
be changed by options specified in option files or on the command line. After the server starts, those
global variables that are dynamic can be changed by connecting to the server and issuing a SET
GLOBAL var_name statement. To change a global variable, you must have the SUPER privilege.

The server also maintains a set of session variables for each client that connects. The client's session
variables are initialized at connect time using the current values of the corresponding global vari-
ables. For those session variables that are dynamic, the client can change them by issuing a SET
SESSION var_name statement. Setting a session variable requires no special privilege, but a cli-

Language Structure

508

ent can change only its own session variables, not those of any other client.

A change to a global variable is visible to any client that accesses that global variable. However, it
affects the corresponding session variable that is initialized from the global variable only for clients
that connect after the change. It does not affect the session variable for any client that is currently
connected (not even that of the client that issues the SET GLOBAL statement).

Global or session variables may be set or retrieved using several syntax forms. The following ex-
amples use sort_buffer_size as a sample variable name.

To set the value of a GLOBAL variable, use one of the following syntaxes:

mysql> SET GLOBAL sort_buffer_size=value;
mysql> SET @@global.sort_buffer_size=value;

To set the value of a SESSION variable, use one of the following syntaxes:

mysql> SET SESSION sort_buffer_size=value;
mysql> SET @@session.sort_buffer_size=value;
mysql> SET sort_buffer_size=value;

LOCAL is a synonym for SESSION.

If you don't specify GLOBAL, SESSION, or LOCAL when setting a variable, SESSION is the de-
fault. See Section 13.5.3, “SET Syntax”.

To retrieve the value of a GLOBAL variable, use one of the following statements:

mysql> SELECT @@global.sort_buffer_size;
mysql> SHOW GLOBAL VARIABLES like 'sort_buffer_size';

To retrieve the value of a SESSION variable, use one of the following statements:

mysql> SELECT @@sort_buffer_size;
mysql> SELECT @@session.sort_buffer_size;
mysql> SHOW SESSION VARIABLES like 'sort_buffer_size';

Here, too, LOCAL is a synonym for SESSION.

When you retrieve a variable with SELECT @@var_name (that is, you do not specify global.,
session., or local., MySQL returns the SESSION value if it exists and the GLOBAL value
otherwise.

For SHOW VARIABLES, if you do not specify GLOBAL, SESSION, or LOCAL, MySQL returns the
SESSION value.

The reason for requiring the GLOBAL keyword when setting GLOBAL-only variables but not when
retrieving them is to prevent problems in the future. If we remove a SESSION variable with the
same name as a GLOBAL variable, a client with the SUPER privilege might accidentally change the
GLOBAL variable rather than just the SESSION variable for its own connection. If we add a SES-
SION variable with the same name as a GLOBAL variable, a client that intends to change the GLOB-
AL variable might find only its own SESSION variable changed.

Further information about system startup options and system variables can be found in Sec-
tion 5.2.1, “mysqld Command-Line Options” and Section 5.2.3, “Server System Variables”. A list
of the variables that can be set at runtime is given in Section 5.2.3.1, “Dynamic System Variables”.

9.4.1. Structured System Variables
Structured system variables are supported beginning with MySQL 4.1.1. A structured variable dif-
fers from a regular system variable in two respects:

Language Structure

509

• Its value is a structure with components that specify server parameters considered to be closely
related.

• There might be several instances of a given type of structured variable. Each one has a different
name and refers to a different resource maintained by the server.

Currently, MySQL supports one structured variable type. It specifies parameters that govern the op-
eration of key caches. A key cache structured variable has these components:

• key_buffer_size

• key_cache_block_size

• key_cache_division_limit

• key_cache_age_threshold

The purpose of this section is to describe the syntax for referring to structured variables. Key cache
variables are used for syntax examples, but specific details about how key caches operate are found
elsewhere, in Section 7.4.6, “The MyISAM Key Cache”.

To refer to a component of a structured variable instance, you can use a compound name in in-
stance_name.component_name format. Examples:

hot_cache.key_buffer_size
hot_cache.key_cache_block_size
cold_cache.key_cache_block_size

For each structured system variable, an instance with the name of default is always predefined. If
you refer to a component of a structured variable without any instance name, the default instance
is used. Thus, default.key_buffer_size and key_buffer_size both refer to the same
system variable.

The naming rules for structured variable instances and components are as follows:

• For a given type of structured variable, each instance must have a name that is unique within
variables of that type. However, instance names need not be unique across structured variable
types. For example, each structured variable has an instance named default, so default is
not unique across variable types.

• The names of the components of each structured variable type must be unique across all system
variable names. If this were not true (that is, if two different types of structured variables could
share component member names), it would not be clear which default structured variable to use
for references to member names that are not qualified by an instance name.

• If a structured variable instance name is not legal as an unquoted identifier, refer to it as a quoted
identifier using backticks. For example, hot-cache is not legal, but `hot-cache` is.

• global, session, and local are not legal instance names. This avoids a conflict with nota-
tion such as @@global.var_name for referring to non-structured system variables.

At the moment, the first two rules have no possibility of being violated because the only structured
variable type is the one for key caches. These rules assume greater significance if some other type of
structured variable is created in the future.

With one exception, it is allowable to refer to structured variable components using compound
names in any context where simple variable names can occur. For example, you can assign a value
to a structured variable using a command-line option:

Language Structure

510

shell> mysqld --hot_cache.key_buffer_size=64K

In an option file, do this:

[mysqld]
hot_cache.key_buffer_size=64K

If you start the server with such an option, it creates a key cache named hot_cache with a size of
64KB in addition to the default key cache that has a default size of 8MB.

Suppose that you start the server as follows:

shell> mysqld --key_buffer_size=256K \
--extra_cache.key_buffer_size=128K \
--extra_cache.key_cache_block_size=2048

In this case, the server sets the size of the default key cache to 256KB. (You could also have written
--default.key_buffer_size=256K.) In addition, the server creates a second key cache
named extra_cache that has a size of 128KB, with the size of block buffers for caching table in-
dex blocks set to 2048 bytes.

The following example starts the server with three different key caches having sizes in a 3:1:1 ratio:

shell> mysqld --key_buffer_size=6M \
--hot_cache.key_buffer_size=2M \
--cold_cache.key_buffer_size=2M

Structured variable values may be set and retrieved at runtime as well. For example, to set a key
cache named hot_cache to a size of 10MB, use either of these statements:

mysql> SET GLOBAL hot_cache.key_buffer_size = 10*1024*1024;
mysql> SET @@global.hot_cache.key_buffer_size = 10*1024*1024;

To retrieve the cache size, do this:

mysql> SELECT @@global.hot_cache.key_buffer_size;

However, the following statement does not work. The variable is not interpreted as a compound
name, but as a simple string for a LIKE pattern-matching operation:

mysql> SHOW GLOBAL VARIABLES LIKE 'hot_cache.key_buffer_size';

This is the exception to being able to use structured variable names anywhere a simple variable
name may occur.

9.5. Comment Syntax
The MySQL server supports three comment styles:

• From a '#' character to the end of the line.

• From a '-- ' sequence to the end of the line. This style is supported as of MySQL 3.23.3. Note
that the '-- ' (double-dash) comment style requires the second dash to be followed by at least
one space (or by a control character such as a newline). This syntax differs slightly from stand-
ard SQL comment syntax, as discussed in Section 1.5.5.7, “'--' as the Start of a Comment”.

• From a '/*' sequence to the following '*/' sequence. The closing sequence need not be on the

Language Structure

511

same line, so this syntax allows a comment to extend over multiple lines.

The following example demonstrates all three comment styles:

mysql> SELECT 1+1; # This comment continues to the end of line
mysql> SELECT 1+1; -- This comment continues to the end of line
mysql> SELECT 1 /* this is an in-line comment */ + 1;
mysql> SELECT 1+
/*
this is a
multiple-line comment
*/
1;

The comment syntax just described applies to how the mysqld server parses SQL statements. The
mysql client program also performs some parsing of statements before sending them to the server.
(For example, it does this to determine statement boundaries within a multiple-statement input line.)
However, there are some limitations on the way that mysql parses /* ... */ comments:

• A semicolon within the comment is taken to indicate the end of the current SQL statement and
anything following it to indicate the beginning of the next statement. This problem was fixed in
MySQL 4.0.13.

• A single quote, double quote, or backtick character is taken to indicate the beginning of a quoted
string or identifier, even within a comment. If the quote is not matched by a second quote within
the comment, the parser doesn't realize the comment has ended. If you are running mysql inter-
actively, you can tell that it has gotten confused like this because the prompt changes from
mysql> to '>, ">, or `>. This problem was fixed in MySQL 4.1.1.

• An exclamation point used with this style of comment delimiter (such as /*! ... */) marks
portions of SQL statements for conditional execution. For more information and examples, see
Section 1.5.4, “MySQL Extensions to Standard SQL”.

For affected versions of MySQL, these limitations apply both when you run mysql interactively and
when you put commands in a file and use mysql in batch mode to process the file with mysql <
file_name.

9.6. Treatment of Reserved Words in MySQL
A common problem stems from trying to use an identifier such as a table or column name that is the
name of a built-in MySQL data type or function, such as TIMESTAMP or GROUP. You're allowed to
do this (for example, ABS is allowed as a column name). However, by default, no whitespace is al-
lowed in function invocations between the function name and the following '(' character. This re-
quirement allows a function call to be distinguished from a reference to a column name.

A side effect of this behavior is that omitting a space in some contexts causes an identifier to be in-
terpreted as a function name. For example, this statement is legal:

mysql> CREATE TABLE abs (val INT);

But omitting the space after abs causes a syntax error because the statement then appears to invoke
the ABS() function:

mysql> CREATE TABLE abs(val INT);

If the server SQL mode includes the IGNORE_SPACE mode value, the server allows function in-
vocations to have whitespace between a function name and the following '(' character. This causes
function names to be treated as reserved words. As a result, identifiers that are the same as function

Language Structure

512

names must be quoted as described in Section 9.2, “Database, Table, Index, Column, and Alias
Names”. The server SQL mode is controlled as described in Section 5.2.2, “The Server SQL Mode”.

The words in the following table are explicitly reserved in MySQL. Most of them are forbidden by
standard SQL as column and/or table names (for example, GROUP). A few are reserved because
MySQL needs them and (currently) uses a yacc parser. A reserved word can be used as an identifier
if you quote it.

Word Word Word

ADD ALL ALTER

ANALYZE AND AS

ASC ASENSITIVE BEFORE

BETWEEN BIGINT BINARY

BLOB BOTH BY

CALL CASCADE CASE

CHANGE CHAR CHARACTER

CHECK COLLATE COLUMN

CONDITION CONNECTION CONSTRAINT

CONTINUE CONVERT CREATE

CROSS CURRENT_DATE CURRENT_TIME

CURRENT_TIMESTAMP CURRENT_USER CURSOR

DATABASE DATABASES DAY_HOUR

DAY_MICROSECOND DAY_MINUTE DAY_SECOND

DEC DECIMAL DECLARE

DEFAULT DELAYED DELETE

DESC DESCRIBE DETERMINISTIC

DISTINCT DISTINCTROW DIV

DOUBLE DROP DUAL

EACH ELSE ELSEIF

ENCLOSED ESCAPED EXISTS

EXIT EXPLAIN FALSE

FETCH FLOAT FOR

FORCE FOREIGN FROM

FULLTEXT GOTO GRANT

GROUP HAVING HIGH_PRIORITY

HOUR_MICROSECOND HOUR_MINUTE HOUR_SECOND

IF IGNORE IN

INDEX INFILE INNER

INOUT INSENSITIVE INSERT

INT INTEGER INTERVAL

INTO IS ITERATE

JOIN KEY KEYS

KILL LEADING LEAVE

LEFT LIKE LIMIT

LINES LOAD LOCALTIME

LOCALTIMESTAMP LOCK LONG

LONGBLOB LONGTEXT LOOP

LOW_PRIORITY MATCH MEDIUMBLOB

Language Structure

513

MEDIUMINT MEDIUMTEXT MIDDLEINT

MINUTE_MICROSECOND MINUTE_SECOND MOD

MODIFIES NATURAL NOT

NO_WRITE_TO_BINLOG NULL NUMERIC

ON OPTIMIZE OPTION

OPTIONALLY OR ORDER

OUT OUTER OUTFILE

PRECISION PRIMARY PROCEDURE

PURGE READ READS

REAL REFERENCES REGEXP

RENAME REPEAT REPLACE

REQUIRE RESTRICT RETURN

REVOKE RIGHT RLIKE

SCHEMA SCHEMAS SECOND_MICROSECOND

SELECT SENSITIVE SEPARATOR

SET SHOW SMALLINT

SONAME SPATIAL SPECIFIC

SQL SQLEXCEPTION SQLSTATE

SQLWARNING SQL_BIG_RESULT SQL_CALC_FOUND_ROWS

SQL_SMALL_RESULT SSL STARTING

STRAIGHT_JOIN TABLE TERMINATED

THEN TINYBLOB TINYINT

TINYTEXT TO TRAILING

TRIGGER TRUE UNDO

UNION UNIQUE UNLOCK

UNSIGNED UPDATE USAGE

USE USING UTC_DATE

UTC_TIME UTC_TIMESTAMP VALUES

VARBINARY VARCHAR VARCHARACTER

VARYING WHEN WHERE

WHILE WITH WRITE

XOR YEAR_MONTH ZEROFILL

MySQL allows some keywords to be used as unquoted identifiers because many people previously
used them. Examples are those in the following list:

• ACTION

• BIT

• DATE

• ENUM

• NO

• TEXT

Language Structure

514

• TIME

• TIMESTAMP

Language Structure

515

Chapter 10. Character Set Support
Improved support for character set handling was added to MySQL in Version 4.1. The features de-
scribed here are as implemented in MySQL 4.1.1. (MySQL 4.1.0 has some but not all of these fea-
tures, and some of them are implemented differently.)

This chapter discusses the following topics:

• What are character sets and collations?

• The multiple-level default system

• New syntax in MySQL 4.1

• Affected functions and operations

• Unicode support

• The meaning of each individual character set and collation

Character set support currently is included in the MyISAM, MEMORY (HEAP), and (as of MySQL
4.1.2) InnoDB storage engines. The ISAM storage engine does not include character set support;
there are no plans to change this, because ISAM is deprecated.

10.1. Character Sets and Collations in Gener-
al

A character set is a set of symbols and encodings. A collation is a set of rules for comparing char-
acters in a character set. Let's make the distinction clear with an example of an imaginary character
set.

Suppose that we have an alphabet with four letters: 'A', 'B', 'a', 'b'. We give each letter a number: 'A'
= 0, 'B' = 1, 'a' = 2, 'b' = 3. The letter 'A' is a symbol, the number 0 is the encoding for 'A', and the
combination of all four letters and their encodings is a character set.

Suppose that we want to compare two string values, 'A' and 'B'. The simplest way to do this is to
look at the encodings: 0 for 'A' and 1 for 'B'. Because 0 is less than 1, we say 'A' is less than 'B'. What
we've just done is apply a collation to our character set. The collation is a set of rules (only one rule
in this case): ``compare the encodings.'' We call this simplest of all possible collations a binary col-
lation.

But what if we want to say that the lowercase and uppercase letters are equivalent? Then we would
have at least two rules: (1) treat the lowercase letters 'a' and 'b' as equivalent to 'A' and 'B'; (2) then
compare the encodings. We call this a case-insensitive collation. It's a little more complex than a
binary collation.

In real life, most character sets have many characters: not just 'A' and 'B' but whole alphabets, some-
times multiple alphabets or eastern writing systems with thousands of characters, along with many
special symbols and punctuation marks. Also in real life, most collations have many rules: not just
case insensitivity but also accent insensitivity (an ``accent'' is a mark attached to a character as in
German 'Ö') and multiple-character mappings (such as the rule that 'Ö' = 'OE' in one of the two Ger-
man collations).

MySQL 4.1 can do these things for you:

• Store strings using a variety of character sets

516

• Compare strings using a variety of collations

• Mix strings with different character sets or collations in the same server, the same database, or
even the same table

• Allow specification of character set and collation at any level

In these respects, not only is MySQL 4.1 far more flexible than MySQL 4.0, it also is far ahead of
other DBMSs. However, to use the new features effectively, you need to learn what character sets
and collations are available, how to change their defaults, and what the various string operators do
with them.

10.2. Character Sets and Collations in MySQL
The MySQL server can support multiple character sets. To list the available character sets, use the
SHOW CHARACTER SET statement:

mysql> SHOW CHARACTER SET;
+----------+-----------------------------+---------------------+
| Charset | Description | Default collation |
+----------+-----------------------------+---------------------+
big5	Big5 Traditional Chinese	big5_chinese_ci
dec8	DEC West European	dec8_swedish_ci
cp850	DOS West European	cp850_general_ci
hp8	HP West European	hp8_english_ci
koi8r	KOI8-R Relcom Russian	koi8r_general_ci
latin1	ISO 8859-1 West European	latin1_swedish_ci
latin2	ISO 8859-2 Central European	latin2_general_ci
...

The output actually includes another column that is not shown so that the example fits better on the
page.

Any given character set always has at least one collation. It may have several collations.

To list the collations for a character set, use the SHOW COLLATION statement. For example, to see
the collations for the latin1 (``ISO-8859-1 West European'') character set, use this statement to
find those collation names that begin with latin1:

mysql> SHOW COLLATION LIKE 'latin1%';
+-------------------+---------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+-------------------+---------+----+---------+----------+---------+
latin1_german1_ci	latin1	5			0
latin1_swedish_ci	latin1	8	Yes	Yes	1
latin1_danish_ci	latin1	15			0
latin1_german2_ci	latin1	31		Yes	2
latin1_bin	latin1	47		Yes	1
latin1_general_ci	latin1	48			0
latin1_general_cs	latin1	49			0
latin1_spanish_ci	latin1	94			0
+-------------------+---------+----+---------+----------+---------+

The latin1 collations have the following meanings:

Collation Meaning

latin1_bin Binary according to latin1 encoding

latin1_danish_ci Danish/Norwegian

latin1_general_ci Multilingual

latin1_general_cs Multilingual, case sensitive

Character Set Support

517

latin1_german1_ci German DIN-1

latin1_german2_ci German DIN-2

latin1_spanish_ci Modern Spanish

latin1_swedish_ci Swedish/Finnish

Collations have these general characteristics:

• Two different character sets cannot have the same collation.

• Each character set has one collation that is the default collation. For example, the default colla-
tion for latin1 is latin1_swedish_ci.

• There is a convention for collation names: They start with the name of the character set with
which they are associated, they usually include a language name, and they end with _ci (case
insensitive), _cs (case sensitive), or _bin (binary).

10.3. Determining the Default Character Set
and Collation

There are default settings for character sets and collations at four levels: server, database, table, and
connection. The following description may appear complex, but it has been found in practice that
multiple-level defaulting leads to natural and obvious results.

10.3.1. Server Character Set and Collation
The MySQL Server has a server character set and a server collation, which may not be null.

MySQL determines the server character set and server collation thus:

• According to the option settings in effect when the server starts

• According to the values set at runtime

At the server level, the decision is simple. The server character set and collation depend initially on
the options that you use when you start mysqld. You can use --default-character-set for
the character set, and along with it you can add --default-collation for the collation. If you
don't specify a character set, that is the same as saying --default-character-set=latin1.
If you specify only a character set (for example, latin1) but not a collation, that is the same as
saying --default-charset=latin1 --default-collation=latin1_swedish_ci
because latin1_swedish_ci is the default collation for latin1. Therefore, the following
three commands all have the same effect:

shell> mysqld
shell> mysqld --default-character-set=latin1
shell> mysqld --default-character-set=latin1 \

--default-collation=latin1_swedish_ci

One way to change the settings is by recompiling. If you want to change the default server character
set and collation when building from sources, use: --with-charset and --with-collation
as arguments for configure. For example:

shell> ./configure --with-charset=latin1

Character Set Support

518

Or:

shell> ./configure --with-charset=latin1 \
--with-collation=latin1_german1_ci

Both mysqld and configure verify that the character set/collation combination is valid. If not, each
program displays an error message and terminates.

The current server character set and collation are available as the values of the charac-
ter_set_server and collation_server system variables. These variables can be changed
at runtime.

10.3.2. Database Character Set and Collation
Every database has a database character set and a database collation, which may not be null. The
CREATE DATABASE and ALTER DATABASE statements have optional clauses for specifying the
database character set and collation:

CREATE DATABASE db_name
[[DEFAULT] CHARACTER SET charset_name]
[[DEFAULT] COLLATE collation_name]

ALTER DATABASE db_name
[[DEFAULT] CHARACTER SET charset_name]
[[DEFAULT] COLLATE collation_name]

Example:

CREATE DATABASE db_name
DEFAULT CHARACTER SET latin1 COLLATE latin1_swedish_ci;

MySQL chooses the database character set and database collation thus:

• If both CHARACTER SET X and COLLATE Y were specified, then character set X and colla-
tion Y.

• If CHARACTER SET X was specified without COLLATE, then character set X and its default
collation.

• Otherwise, the server character set and server collation.

MySQL's CREATE DATABASE ... DEFAULT CHARACTER SET ... syntax is analogous to
the standard SQL CREATE SCHEMA ... CHARACTER SET ... syntax. Because of this, it is
possible to create databases with different character sets and collations on the same MySQL server.

The database character set and collation are used as default values if the table character set and col-
lation are not specified in CREATE TABLE statements. They have no other purpose.

The character set and collation for the default database are available as the values of the charac-
ter_set_database and collation_database system variables. The server sets these vari-
ables whenever the default database changes. If there is no default database, the variables have the
same value as the corresponding server-level variables, character_set_server and colla-
tion_server.

10.3.3. Table Character Set and Collation
Every table has a table character set and a table collation, which may not be null. The CREATE
TABLE and ALTER TABLE statements have optional clauses for specifying the table character set
and collation:

Character Set Support

519

CREATE TABLE tbl_name (column_list)
[DEFAULT CHARACTER SET charset_name [COLLATE collation_name]]

ALTER TABLE tbl_name
[DEFAULT CHARACTER SET charset_name] [COLLATE collation_name]

Example:

CREATE TABLE t1 (...)
DEFAULT CHARACTER SET latin1 COLLATE latin1_danish_ci;

MySQL chooses the table character set and collation thus:

• If both CHARACTER SET X and COLLATE Y were specified, then character set X and colla-
tion Y.

• If CHARACTER SET X was specified without COLLATE, then character set X and its default
collation.

• Otherwise, the database character set and collation.

The table character set and collation are used as default values if the column character set and colla-
tion are not specified in individual column definitions. The table character set and collation are
MySQL extensions; there are no such things in standard SQL.

10.3.4. Column Character Set and Collation
Every ``character'' column (that is, a column of type CHAR, VARCHAR, or TEXT) has a column char-
acter set and a column collation, which may not be null. Column definition syntax has optional
clauses for specifying the column character set and collation:

col_name {CHAR | VARCHAR | TEXT} (col_length)
[CHARACTER SET charset_name [COLLATE collation_name]]

Example:

CREATE TABLE Table1
(

column1 VARCHAR(5) CHARACTER SET latin1 COLLATE latin1_german1_ci
);

MySQL chooses the column character set and collation thus:

• If both CHARACTER SET X and COLLATE Y were specified, then character set X and colla-
tion Y.

• If CHARACTER SET X was specified without COLLATE, then character set X and its default
collation.

• Otherwise, the table character set and collation.

The CHARACTER SET and COLLATE clauses are standard SQL.

10.3.5. Examples of Character Set and Collation As-
signment

Character Set Support

520

The following examples show how MySQL determines default character set and collation values.

Example 1: Table + Column Definition

CREATE TABLE t1
(

c1 CHAR(10) CHARACTER SET latin1 COLLATE latin1_german1_ci
) DEFAULT CHARACTER SET latin2 COLLATE latin2_bin;

Here we have a column with a latin1 character set and a latin1_german1_ci collation. The
definition is explicit, so that's straightforward. Notice that there's no problem storing a latin1
column in a latin2 table.

Example 2: Table + Column Definition

CREATE TABLE t1
(

c1 CHAR(10) CHARACTER SET latin1
) DEFAULT CHARACTER SET latin1 COLLATE latin1_danish_ci;

This time we have a column with a latin1 character set and a default collation. Although it might
seem natural, the default collation is not taken from the table level. Instead, because the default col-
lation for latin1 is always latin1_swedish_ci, column c1 has a collation of lat-
in1_swedish_ci (not latin1_danish_ci).

Example 3: Table + Column Definition

CREATE TABLE t1
(

c1 CHAR(10)
) DEFAULT CHARACTER SET latin1 COLLATE latin1_danish_ci;

We have a column with a default character set and a default collation. In this circumstance, MySQL
looks up to the table level for inspiration in determining the column character set and collation. So,
the character set for column c1 is latin1 and its collation is latin1_danish_ci.

Example 4: Database + Table + Column Definition

CREATE DATABASE d1
DEFAULT CHARACTER SET latin2 COLLATE latin2_czech_ci;

USE d1;
CREATE TABLE t1
(

c1 CHAR(10)
);

We create a column without specifying its character set and collation. We're also not specifying a
character set and a collation at the table level. In this circumstance, MySQL looks up to the database
level for inspiration. (The database's settings become the table's settings, and thereafter become the
column's setting.) So, the character set for column c1 is latin2 and its collation is lat-
in2_czech_ci.

10.3.6. Connection Character Sets and Collations
Several character set and collation system variables relate to a client's interaction with the server.
Some of these have been mentioned in earlier sections:

• The server character set and collation are available as the values of the charac-
ter_set_server and collation_server variables.

Character Set Support

521

• The character set and collation of the default database are available as the values of the char-
acter_set_database and collation_database variables.

Additional character set and collation variables are involved in handling traffic for the connection
between a client and the server. Every client has connection-related character set and collation vari-
ables.

Consider what a ``connection'' is: It's what you make when you connect to the server. The client
sends SQL statements, such as queries, over the connection to the server. The server sends re-
sponses, such as result sets, over the connection back to the client. This leads to several questions
about character set and collation handling for client connections, each of which can be answered in
terms of system variables:

• What character set is the query in when it leaves the client?

The server takes the character_set_client variable to be the character set in which quer-
ies are sent by the client.

• What character set should the server translate a query to after receiving it?

For this, character_set_connection and collation_connection are used by the
server. It converts queries sent by the client from character_set_client to charac-
ter_set_connection (except for string literals that have an introducer such as _latin1
or _utf8). collation_connection is important for comparisons of literal strings. For
comparisons of strings with column values, it does not matter because columns have a higher
collation precedence.

• What character set should the server translate to before shipping result sets or error messages
back to the client?

The character_set_results variable indicates the character set in which the server re-
turns query results to the client. This includes result data such as column values, and result
metadata such as column names.

You can fine-tune the settings for these variables, or you can depend on the defaults (in which case,
you can skip this section).

There are two statements that affect the connection character sets:

SET NAMES 'charset_name'
SET CHARACTER SET charset_name

SET NAMES indicates what is in the SQL statements that the client sends. Thus, SET NAMES
'cp1251' tells the server ``future incoming messages from this client are in character set
cp1251.'' It also specifies the character set for results that the server sends back to the client. (For
example, it indicates what character set column values are if you use a SELECT statement.)

A SET NAMES 'x' statement is equivalent to these three statements:

mysql> SET character_set_client = x;
mysql> SET character_set_results = x;
mysql> SET character_set_connection = x;

Setting character_set_connection to x also sets collation_connection to the de-
fault collation for x.

SET CHARACTER SET is similar but sets the connection character set and collation to be those of
the default database. A SET CHARACTER SET x statement is equivalent to these three state-
ments:

Character Set Support

522

mysql> SET character_set_client = x;
mysql> SET character_set_results = x;
mysql> SET collation_connection = @@collation_database;

When a client connects, it sends to the server the name of the character set that it wants to use. The
server sets the character_set_client, character_set_results, and charac-
ter_set_connection variables to that character set. (In effect, the server performs a SET
NAMES operation using the character set.)

With the mysql client, it is not necessary to execute SET NAMES every time you start up if you
want to use a character set different from the default. You can add the -
-default-character-set option setting to your mysql statement line, or in your option file.
For example, the following option file setting changes the three character set variables set to koi8r
each time you run mysql:

[mysql]
default-character-set=koi8r

Example: Suppose that column1 is defined as CHAR(5) CHARACTER SET latin2. If you do
not say SET NAMES or SET CHARACTER SET, then for SELECT column1 FROM t, the
server sends back all the values for column1 using the character set that the client specified when
it connected. On the other hand, if you say SET NAMES 'latin1' or SET CHARACTER SET
latin1, then just before sending results back, the server converts the latin2 values to latin1.
Conversion may be lossy if there are characters that are not in both character sets.

If you do not want the server to perform any conversion, set character_set_results to
NULL:

mysql> SET character_set_results = NULL;

10.3.7. Character String Literal Character Set and Col-
lation

Every character string literal has a character set and a collation, which may not be null.

A character string literal may have an optional character set introducer and COLLATE clause:

[_charset_name]'string' [COLLATE collation_name]

Examples:

SELECT 'string';
SELECT _latin1'string';
SELECT _latin1'string' COLLATE latin1_danish_ci;

For the simple statement SELECT 'string', the string has the character set and collation
defined by the character_set_connection and collation_connection system vari-
ables.

The _charset_name expression is formally called an introducer. It tells the parser, ``the string
that is about to follow is in character set X.'' Because this has confused people in the past, we em-
phasize that an introducer does not cause any conversion, it is strictly a signal that does not change
the string's value. An introducer is also legal before standard hex literal and numeric hex literal nota-
tion (x'literal' and 0xnnnn), and before ? (parameter substitution when using prepared state-
ments within a programming language interface).

Examples:

Character Set Support

523

SELECT _latin1 x'AABBCC';
SELECT _latin1 0xAABBCC;
SELECT _latin1 ?;

MySQL determines a literal's character set and collation thus:

• If both _X and COLLATE Y were specified, then character set X and collation Y

• If _X is specified but COLLATE is not specified, then character set X and its default collation

• Otherwise, the character set and collation given by the character_set_connection and
collation_connection system variables

Examples:

• A string with latin1 character set and latin1_german1_ci collation:

SELECT _latin1'Müller' COLLATE latin1_german1_ci;

• A string with latin1 character set and its default collation (that is, latin1_swedish_ci):

SELECT _latin1'Müller';

• A string with the connection default character set and collation:

SELECT 'Müller';

Character set introducers and the COLLATE clause are implemented according to standard SQL spe-
cifications.

10.3.8. Using COLLATE in SQL Statements
With the COLLATE clause, you can override whatever the default collation is for a comparison.
COLLATE may be used in various parts of SQL statements. Here are some examples:

• With ORDER BY:

SELECT k
FROM t1
ORDER BY k COLLATE latin1_german2_ci;

• With AS:

SELECT k COLLATE latin1_german2_ci AS k1
FROM t1
ORDER BY k1;

• With GROUP BY:

SELECT k
FROM t1
GROUP BY k COLLATE latin1_german2_ci;

• With aggregate functions:

Character Set Support

524

SELECT MAX(k COLLATE latin1_german2_ci)
FROM t1;

• With DISTINCT:

SELECT DISTINCT k COLLATE latin1_german2_ci
FROM t1;

• With WHERE:

SELECT *
FROM t1
WHERE _latin1 'Müller' COLLATE latin1_german2_ci = k;

• With HAVING:

SELECT k
FROM t1
GROUP BY k
HAVING k = _latin1 'Müller' COLLATE latin1_german2_ci;

10.3.9. COLLATE Clause Precedence
The COLLATE clause has high precedence (higher than ||), so the following two expressions are
equivalent:

x || y COLLATE z
x || (y COLLATE z)

10.3.10. BINARY Operator
The BINARY operator is a shorthand for a COLLATE clause. BINARY 'x' is equivalent to 'x'
COLLATE y, where y is the name of the binary collation for the character set of 'x'. Every char-
acter set has a binary collation. For example, the binary collation for the latin1 character set is
latin1_bin, so if the column a is of character set latin1, the following two statements have
the same effect:

SELECT * FROM t1 ORDER BY BINARY a;
SELECT * FROM t1 ORDER BY a COLLATE latin1_bin;

10.3.11. Some Special Cases Where the Collation De-
termination Is Tricky

In the great majority of queries, it is obvious what collation MySQL uses to resolve a comparison
operation. For example, in the following cases, it should be clear that the collation is ``the column
collation of column x'':

SELECT x FROM T ORDER BY x;
SELECT x FROM T WHERE x = x;
SELECT DISTINCT x FROM T;

However, when multiple operands are involved, there can be ambiguity. For example:

SELECT x FROM T WHERE x = 'Y';

Character Set Support

525

Should this query use the collation of the column x, or of the string literal 'Y'?

Standard SQL resolves such questions using what used to be called ``coercibility'' rules. The essence
is: Because x and 'Y' both have collations, whose collation takes precedence? It's complex, but the
following rules take care of most situations:

• An explicit COLLATE clause has a coercibility of 0. (Not coercible at all.)

• A concatenation of two strings with different collations has a coercibility of 1.

• A column's collation has a coercibility of 2.

• A literal's collation has a coercibility of 3.

Those rules resolve ambiguities thus:

• Use the collation with the lowest coercibility value.

• If both sides have the same coercibility, then it is an error if the collations aren't the same.

Examples:

column1 = 'A' Use collation of column1

column1 = 'A' COLLATE x Use collation of 'A'

column1 COLLATE x = 'A' COLLATE
y

Error

The COERCIBILITY() function can be used to determine the coercibility of a string expression:

mysql> SELECT COERCIBILITY('A' COLLATE latin1_swedish_ci);
-> 0

mysql> SELECT COERCIBILITY('A');
-> 3

See Section 12.8.3, “Information Functions”.

10.3.12. Collations Must Be for the Right Character Set
Recall that each character set has one or more collations, and each collation is associated with one
and only one character set. Therefore, the following statement causes an error message because the
latin2_bin collation is not legal with the latin1 character set:

mysql> SELECT _latin1 'x' COLLATE latin2_bin;
ERROR 1251: COLLATION 'latin2_bin' is not valid
for CHARACTER SET 'latin1'

In some cases, expressions that worked before MySQL 4.1 fail as of MySQL 4.1 if you do not take
character set and collation into account. For example, before 4.1, this statement works as is:

mysql> SELECT SUBSTRING_INDEX(USER(),'@',1);
+-------------------------------+
| SUBSTRING_INDEX(USER(),'@',1) |
+-------------------------------+
| root |
+-------------------------------+

Character Set Support

526

After an upgrade to MySQL 4.1, the statement fails:

mysql> SELECT SUBSTRING_INDEX(USER(),'@',1);
ERROR 1267 (HY000): Illegal mix of collations
(utf8_general_ci,IMPLICIT) and (latin1_swedish_ci,COERCIBLE)
for operation 'substr_index'

The reason this occurs is that usernames are stored using UTF8 (see Section 10.6, “UTF8 for
Metadata”). As a result, the USER() function and the literal string '@' have different character sets
(and thus different collations):

mysql> SELECT COLLATION(USER()), COLLATION('@');
+-------------------+-------------------+
| COLLATION(USER()) | COLLATION('@') |
+-------------------+-------------------+
| utf8_general_ci | latin1_swedish_ci |
+-------------------+-------------------+

One way to deal with this is to tell MySQL to interpret the literal string as utf8:

mysql> SELECT SUBSTRING_INDEX(USER(),_utf8'@',1);
+------------------------------------+
| SUBSTRING_INDEX(USER(),_utf8'@',1) |
+------------------------------------+
| root |
+------------------------------------+

Another way is to change the connection character set and collation to utf8. You can do that with
SET NAMES 'utf8' or by setting the character_set_connection and colla-
tion_connection system variables directly.

10.3.13. An Example of the Effect of Collation
Suppose that column X in table T has these latin1 column values:

Muffler
Müller
MX Systems
MySQL

And suppose that the column values are retrieved using the following statement:

SELECT X FROM T ORDER BY X COLLATE collation_name;

The resulting order of the values for different collations is shown in this table:

latin1_swedish_ci latin1_german1_ci latin1_german2_ci

Muffler Muffler Müller

MX Systems Müller Muffler

Müller MX Systems MX Systems

MySQL MySQL MySQL

The table is an example that shows what the effect would be if we used different collations in an
ORDER BY clause. The character that causes the different sort orders in this example is the U with
two dots over it, which the Germans call U-umlaut, but we'll call it U-diaeresis.

Character Set Support

527

• The first column shows the result of the SELECT using the Swedish/Finnish collating rule,
which says that U-diaeresis sorts with Y.

• The second column shows the result of the SELECT using the German DIN-1 rule, which says
that U-diaeresis sorts with U.

• The third column shows the result of the SELECT using the German DIN-2 rule, which says that
U-diaeresis sorts with UE.

Three different collations, three different results. That's what MySQL is here to handle. By using the
appropriate collation, you can choose the sort order you want.

10.4. Operations Affected by Character Set
Support

This section describes operations that take character set information into account as of MySQL 4.1.

10.4.1. Result Strings
MySQL has many operators and functions that return a string. This section answers the question:
What is the character set and collation of such a string?

For simple functions that take string input and return a string result as output, the output's character
set and collation are the same as those of the principal input value. For example, UPPER(X) returns
a string whose character string and collation are the same as that of X. The same applies for IN-
STR(), LCASE(), LOWER(), LTRIM(), MID(), REPEAT(), REPLACE(), REVERSE(),
RIGHT(), RPAD(), RTRIM(), SOUNDEX(), SUBSTRING(), TRIM(), UCASE(), and UP-
PER(). (Also note: The REPLACE() function, unlike all other functions, ignores the collation of
the string input and performs a case-insensitive comparison every time.)

For operations that combine multiple string inputs and return a single string output, the
``aggregation rules'' of standard SQL apply:

• If an explicit COLLATE X occurs, then use X

• If an explicit COLLATE X and COLLATE Y occur, then error

• Otherwise, if all collations are X, then use X

• Otherwise, the result has no collation

For example, with CASE ... WHEN a THEN b WHEN b THEN c COLLATE X END, the
resultant collation is X. The same applies for CASE, UNION, ||, CONCAT(), ELT(),
GREATEST(), IF(), and LEAST().

For operations that convert to character data, the character set and collation of the strings that result
from the operations are defined by the character_set_connection and colla-
tion_connection system variables. This applies for CAST(), CHAR(), CONV(), FORMAT(),
HEX(), and SPACE().

10.4.2. CONVERT()
CONVERT() provides a way to convert data between different character sets. The syntax is:

CONVERT(expr USING transcoding_name)

Character Set Support

528

In MySQL, transcoding names are the same as the corresponding character set names.

Examples:

SELECT CONVERT(_latin1'Müller' USING utf8);
INSERT INTO utf8table (utf8column)

SELECT CONVERT(latin1field USING utf8) FROM latin1table;

CONVERT(... USING ...) is implemented according to the standard SQL specification.

10.4.3. CAST()
You may also use CAST() to convert a string to a different character set. The syntax is:

CAST(character_string AS character_data_type CHARACTER SET charset_name)

Example:

SELECT CAST(_latin1'test' AS CHAR CHARACTER SET utf8);

If you use CAST() without specifying CHARACTER SET, the resulting character set and collation
are defined by the character_set_connection and collation_connection system
variables. If you use CAST() with CHARACTER SET X, then the resulting character set and colla-
tion are X and the default collation of X.

You may not use a COLLATE clause inside a CAST(), but you may use it outside. That is,
CAST(... COLLATE ...) is illegal, but CAST(...) COLLATE ... is legal.

Example:

SELECT CAST(_latin1'test' AS CHAR CHARACTER SET utf8) COLLATE utf8_bin;

10.4.4. SHOW Statements
Several SHOW statements are new or modified in MySQL 4.1 to provide additional character set in-
formation. SHOW CHARACTER SET, SHOW COLLATION, and SHOW CREATE DATABASE are
new. SHOW CREATE TABLE and SHOW COLUMNS are modified.

The SHOW CHARACTER SET command shows all available character sets. It takes an optional
LIKE clause that indicates which character set names to match. For example:

mysql> SHOW CHARACTER SET LIKE 'latin%';
+---------+-----------------------------+-------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+-----------------------------+-------------------+--------+
latin1	ISO 8859-1 West European	latin1_swedish_ci	1
latin2	ISO 8859-2 Central European	latin2_general_ci	1
latin5	ISO 8859-9 Turkish	latin5_turkish_ci	1
latin7	ISO 8859-13 Baltic	latin7_general_ci	1
+---------+-----------------------------+-------------------+--------+

See Section 13.5.4.1, “SHOW CHARACTER SET Syntax”.

The output from SHOW COLLATION includes all available character sets. It takes an optional
LIKE clause that indicates which collation names to match. For example:

mysql> SHOW COLLATION LIKE 'latin1%';
+-------------------+---------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |

Character Set Support

529

+-------------------+---------+----+---------+----------+---------+
latin1_german1_ci	latin1	5			0
latin1_swedish_ci	latin1	8	Yes	Yes	0
latin1_danish_ci	latin1	15			0
latin1_german2_ci	latin1	31		Yes	2
latin1_bin	latin1	47		Yes	0
latin1_general_ci	latin1	48			0
latin1_general_cs	latin1	49			0
latin1_spanish_ci	latin1	94			0
+-------------------+---------+----+---------+----------+---------+

See Section 13.5.4.2, “SHOW COLLATION Syntax”.

SHOW CREATE DATABASE displays the CREATE DATABASE statement that creates a given
database. The result includes all database options. DEFAULT CHARACTER SET and COLLATE
are supported. All database options are stored in a text file named db.opt that can be found in the
database directory.

mysql> SHOW CREATE DATABASE a\G
*************************** 1. row ***************************

Database: a
Create Database: CREATE DATABASE `a`

/*!40100 DEFAULT CHARACTER SET macce */

See Section 13.5.4.4, “SHOW CREATE DATABASE Syntax”.

SHOW CREATE TABLE is similar, but displays the CREATE TABLE statement to create a given
table. The column definitions indicate any character set specifications, and the table options include
character set information.

See Section 13.5.4.5, “SHOW CREATE TABLE Syntax”.

The SHOW COLUMNS statement displays the collations of a table's columns when invoked as SHOW
FULL COLUMNS. Columns with CHAR, VARCHAR, or TEXT data types have non-NULL collations.
Numeric and other non-character types have NULL collations. For example:

mysql> SHOW FULL COLUMNS FROM t;
+-------+---------+------------+------+-----+---------+-------+
| Field | Type | Collation | Null | Key | Default | Extra |
+-------+---------+------------+------+-----+---------+-------+
| a | char(1) | latin1_bin | YES | | NULL | |
| b | int(11) | NULL | YES | | NULL | |
+-------+---------+------------+------+-----+---------+-------+

The character set is not part of the display. (The character set name is implied by the collation
name.)

See Section 13.5.4.3, “SHOW COLUMNS Syntax”.

10.5. Unicode Support
As of MySQL version 4.1, there are two new character sets for storing Unicode data:

• ucs2, the UCS-2 Unicode character set.

• utf8, the UTF8 encoding of the Unicode character set.

In UCS-2 (binary Unicode representation), every character is represented by a two-byte Unicode
code with the most significant byte first. For example: "LATIN CAPITAL LETTER A" has the
code 0x0041 and it's stored as a two-byte sequence: 0x00 0x41. "CYRILLIC SMALL LETTER

Character Set Support

530

YERU" (Unicode 0x044B) is stored as a two-byte sequence: 0x04 0x4B. For Unicode characters
and their codes, please refer to the Unicode Home Page [http://www.unicode.org/].

A temporary restriction is that UCS-2 cannot yet be used as a client character set. That means that
SET NAMES 'ucs2' does not work.

The UTF8 character set (transform Unicode representation) is an alternative way to store Unicode
data. It is implemented according to RFC2279. The idea of the UTF8 character set is that various
Unicode characters fit into byte sequences of different lengths:

• Basic Latin letters, digits, and punctuation signs use one byte.

• Most European and Middle East script letters fit into a two-byte sequence: extended Latin letters
(with tilde, macron, acute, grave and other accents), Cyrillic, Greek, Armenian, Hebrew, Arabic,
Syriac, and others.

• Korean, Chinese, and Japanese ideographs use three-byte sequences.

Currently, MySQL UTF8 support does not include four-byte sequences.

Tip: To save space with UTF8, use VARCHAR instead of CHAR. Otherwise, MySQL has to reserve
30 bytes for a CHAR(10) CHARACTER SET utf8 column, because that's the maximum pos-
sible length.

10.6. UTF8 for Metadata
The metadata is the data about the data. Anything that describes the database, as opposed to being
the contents of the database, is metadata. Thus column names, database names, usernames, version
names, and most of the string results from SHOW are metadata.

Representation of metadata must satisfy these requirements:

• All metadata must be in the same character set. Otherwise, SHOW wouldn't work properly be-
cause different rows in the same column would be in different character sets.

• Metadata must include all characters in all languages. Otherwise, users wouldn't be able to name
columns and tables in their own languages.

In order to satisfy both requirements, MySQL stores metadata in a Unicode character set, namely
UTF8. This does not cause any disruption if you never use accented characters. But if you do, you
should be aware that metadata is in UTF8.

This means that the USER(), CURRENT_USER(), and VERSION() functions have the UTF8
character set by default, as do synonyms such as SESSION_USER() and SYSTEM_USER().

The server sets the character_set_system system variable to the name of the metadata char-
acter set:

mysql> SHOW VARIABLES LIKE 'character_set_system';
+----------------------+-------+
| Variable_name | Value |
+----------------------+-------+
| character_set_system | utf8 |
+----------------------+-------+

Storage of metadata using Unicode does not mean that the headers of columns and the results of
DESCRIBE functions are in the character_set_system character set by default. When you
say SELECT column1 FROM t, the name column1 itself is returned from the server to the cli-

Character Set Support

531

http://www.unicode.org/

ent in the character set as determined by the SET NAMES statement. More specifically, the charac-
ter set used is determined by the value of the character_set_results system variable. If this
variable is set to NULL, no conversion is performed and the server returns metadata using its origin-
al character set (the set indicated by character_set_system).

If you want the server to pass metadata results back in a non-UTF8 character set, then use SET
NAMES to force the server to perform character set conversion (see Section 10.3.6, “Connection
Character Sets and Collations”), or else set the client to do the conversion. It is always more effi-
cient to set the client to do the conversion, but this option is not available for many clients until late
in the MySQL 4.x product cycle.

If you are just using, for example, the USER() function for comparison or assignment within a
single statement, don't worry. MySQL does some automatic conversion for you.

SELECT * FROM Table1 WHERE USER() = latin1_column;

This works because the contents of latin1_column are automatically converted to UTF8 before
the comparison.

INSERT INTO Table1 (latin1_column) SELECT USER();

This works because the contents of USER() are automatically converted to latin1 before the as-
signment. Automatic conversion is not fully implemented yet, but should work correctly in a later
version.

Although automatic conversion is not in the SQL standard, the SQL standard document does say
that every character set is (in terms of supported characters) a ``subset'' of Unicode. Since it is a
well-known principle that ``what applies to a superset can apply to a subset,'' we believe that a colla-
tion for Unicode can apply for comparisons with non-Unicode strings.

10.7. Compatibility with Other DBMSs
For MaxDB compatibility these two statements are the same:

CREATE TABLE t1 (f1 CHAR(n) UNICODE);
CREATE TABLE t1 (f1 CHAR(n) CHARACTER SET ucs2);

10.8. New Character Set Configuration File
Format

In MySQL 4.1, character set configuration is stored in XML files, one file per character set. In pre-
vious versions, this information was stored in .conf files.

10.9. National Character Set
Before MySQL 4.1, NCHAR and CHAR were synonymous. ANSI defines NCHAR or NATIONAL
CHAR as a way to indicate that a CHAR column should use some predefined character set. MySQL
4.1 and up uses utf8 as that predefined character set. For example, these column type declarations
are equivalent:

CHAR(10) CHARACTER SET utf8
NATIONAL CHARACTER(10)
NCHAR(10)

As are these:

VARCHAR(10) CHARACTER SET utf8

Character Set Support

532

NATIONAL VARCHAR(10)
NCHAR VARCHAR(10)
NATIONAL CHARACTER VARYING(10)
NATIONAL CHAR VARYING(10)

You can use N'literal' to create a string in the national character set. These two statements are
equivalent:

SELECT N'some text';
SELECT _utf8'some text';

10.10. Upgrading Character Sets from MySQL
4.0

What about upgrading from older versions of MySQL? MySQL 4.1 is almost upward compatible
with MySQL 4.0 and earlier for the simple reason that almost all the features are new, so there's
nothing in earlier versions to conflict with. However, there are some differences and a few things to
be aware of.

Most important: The ``MySQL 4.0 character set'' has the properties of both ``MySQL 4.1 character
sets'' and ``MySQL 4.1 collations.'' You have to unlearn this. Henceforth, we does not bundle char-
acter set/collation properties in the same conglomerate object.

There is a special treatment of national character sets in MySQL 4.1. NCHAR is not the same as
CHAR, and N'...' literals are not the same as '...' literals.

Finally, there is a different file format for storing information about character sets and collations.
Make sure that you have reinstalled the /share/mysql/charsets/ directory containing the
new configuration files.

If you want to start mysqld from a 4.1.x distribution with data created by MySQL 4.0, you should
start the server with the same character set and collation. In this case, you won't need to reindex
your data.

There are two ways to do so:

shell> ./configure --with-charset=... --with-collation=...
shell> ./mysqld --default-character-set=... --default-collation=...

If you used mysqld with, for example, the MySQL 4.0 danish character set, you should use the
latin1 character set and the latin1_danish_ci collation:

shell> ./configure --with-charset=latin1 \
--with-collation=latin1_danish_ci

shell> ./mysqld --default-character-set=latin1 \
--default-collation=latin1_danish_ci

Use the table shown in Section 10.10.1, “4.0 Character Sets and Corresponding 4.1 Character Set/
Collation Pairs ” to find old 4.0 character set names and their 4.1 character set/collation pair equival-
ents.

If you have non-latin1 data stored in a 4.0 latin1 table and want to convert the table column
definitions to reflect the actual character set of the data, use the instructions in Section 10.10.2,
“Converting 4.0 Character Columns to 4.1 Format”.

10.10.1. 4.0 Character Sets and Corresponding 4.1
Character Set/Collation Pairs

Character Set Support

533

ID 4.0 Character Set 4.1 Character Set 4.1 Collation

1 big5 big5 big5_chinese_ci

2 czech latin2 latin2_czech_ci

3 dec8 dec8 dec8_swedish_ci

4 dos cp850 cp850_general_ci

5 german1 latin1 latin1_german1_ci

6 hp8 hp8 hp8_english_ci

7 koi8_ru koi8r koi8r_general_ci

8 latin1 latin1 latin1_swedish_ci

9 latin2 latin2 latin2_general_ci

10 swe7 swe7 swe7_swedish_ci

11 usa7 ascii ascii_general_ci

12 ujis ujis ujis_japanese_ci

13 sjis sjis sjis_japanese_ci

14 cp1251 cp1251 cp1251_bulgarian_ci

15 danish latin1 latin1_danish_ci

16 hebrew hebrew hebrew_general_ci

17 win1251 (removed) (removed)

18 tis620 tis620 tis620_thai_ci

19 euc_kr euckr euckr_korean_ci

20 estonia latin7 latin7_estonian_ci

21 hungarian latin2 latin2_hungarian_ci

22 koi8_ukr koi8u koi8u_ukrainian_ci

23 win1251ukr cp1251 cp1251_ukrainian_ci

24 gb2312 gb2312 gb2312_chinese_ci

25 greek greek greek_general_ci

26 win1250 cp1250 cp1250_general_ci

27 croat latin2 latin2_croatian_ci

28 gbk gbk gbk_chinese_ci

29 cp1257 cp1257 cp1257_lithuanian_ci

30 latin5 latin5 latin5_turkish_ci

31 latin1_de latin1 latin1_german2_ci

10.10.2. Converting 4.0 Character Columns to 4.1
Format

Normally, the server runs using the latin1 character set by default. If you have been storing
column data that actually is in some other character set that the 4.1 server supports directly, you can
convert the column. However, you should avoid trying to convert directly from latin1 to the
"real" character set. This may result in data loss. Instead, convert the column to a binary column
type, and then from the binary type to a non-binary type with the desired character set. Conversion
to and from binary involves no attempt at character value conversion and preserves your data intact.
For example, suppose that you have a 4.0 table with three columns that are used to store values rep-
resented in latin1, latin2, and utf8:

CREATE TABLE t
(

latin1_col CHAR(50),

Character Set Support

534

latin2_col CHAR(100),
utf8_col CHAR(150)

);

After upgrading to MySQL 4.1, you want to convert this table to leave latin1_col alone but
change the latin2_col and utf8_col columns to have character sets of latin2 and utf8.
First, back up your table, then convert the columns as follows:

ALTER TABLE t MODIFY latin2_col BINARY(100);
ALTER TABLE t MODIFY utf8_col BINARY(150);
ALTER TABLE t MODIFY latin2_col CHAR(100) CHARACTER SET latin2;
ALTER TABLE t MODIFY utf8_col CHAR(150) CHARACTER SET utf8;

The first two statements ``remove'' the character set information from the latin2_col and
utf8_col columns. The second two statements assign the proper character sets to the two
columns.

If you like, you can combine the to-binary conversions and from-binary conversions into single
statements:

ALTER TABLE t
MODIFY latin2_col BINARY(100),
MODIFY utf8_col BINARY(150);

ALTER TABLE t
MODIFY latin2_col CHAR(100) CHARACTER SET latin2,
MODIFY utf8_col CHAR(150) CHARACTER SET utf8;

If you specified attributes when creating a column initially, you should also specify them when al-
tering the table with ALTER TABLE. For example, if you specified NOT NULL and an explicit
DEFAULT value, you should also provide them in the ALTER TABLE statement. Otherwise, the
resulting column definition will not include those attributes.

10.11. Character Sets and Collations That
MySQL Supports

Here is an annotated list of character sets and collations that MySQL supports. Because options and
installation settings differ, some sites might not have all items listed, and some sites might have
items not listed.

MySQL supports 70+ collations for 30+ character sets. The character sets and their default colla-
tions are displayed by the SHOW CHARACTER SET statement. (The output actually includes an-
other column that is not shown so that the example fits better on the page.)

mysql> SHOW CHARACTER SET;
+----------+-----------------------------+---------------------+
| Charset | Description | Default collation |
+----------+-----------------------------+---------------------+
big5	Big5 Traditional Chinese	big5_chinese_ci
dec8	DEC West European	dec8_swedish_ci
cp850	DOS West European	cp850_general_ci
hp8	HP West European	hp8_english_ci
koi8r	KOI8-R Relcom Russian	koi8r_general_ci
latin1	ISO 8859-1 West European	latin1_swedish_ci
latin2	ISO 8859-2 Central European	latin2_general_ci
swe7	7bit Swedish	swe7_swedish_ci
ascii	US ASCII	ascii_general_ci
ujis	EUC-JP Japanese	ujis_japanese_ci
sjis	Shift-JIS Japanese	sjis_japanese_ci
hebrew	ISO 8859-8 Hebrew	hebrew_general_ci
tis620	TIS620 Thai	tis620_thai_ci
euckr	EUC-KR Korean	euckr_korean_ci

Character Set Support

535

koi8u	KOI8-U Ukrainian	koi8u_general_ci
gb2312	GB2312 Simplified Chinese	gb2312_chinese_ci
greek	ISO 8859-7 Greek	greek_general_ci
cp1250	Windows Central European	cp1250_general_ci
gbk	GBK Simplified Chinese	gbk_chinese_ci
latin5	ISO 8859-9 Turkish	latin5_turkish_ci
armscii8	ARMSCII-8 Armenian	armscii8_general_ci
utf8	UTF-8 Unicode	utf8_general_ci
ucs2	UCS-2 Unicode	ucs2_general_ci
cp866	DOS Russian	cp866_general_ci
keybcs2	DOS Kamenicky Czech-Slovak	keybcs2_general_ci
macce	Mac Central European	macce_general_ci
macroman	Mac West European	macroman_general_ci
cp852	DOS Central European	cp852_general_ci
latin7	ISO 8859-13 Baltic	latin7_general_ci
cp1251	Windows Cyrillic	cp1251_general_ci
cp1256	Windows Arabic	cp1256_general_ci
cp1257	Windows Baltic	cp1257_general_ci
binary	Binary pseudo charset	binary
geostd8	GEOSTD8 Georgian	geostd8_general_ci
cp932	SJIS for Windows Japanese	cp932_japanese_ci
eucjpms	UJIS for Windows Japanese	eucjpms_japanese_ci
+----------+-----------------------------+---------------------+

10.11.1. Unicode Character Sets
MySQL has two Unicode character sets. You can store texts in about 650 languages using these
character sets. We have added several collations for these two new sets, with more to come.

• ucs2 (UCS-2 Unicode) collations:

• ucs2_bin

• ucs2_czech_ci

• ucs2_danish_ci

• ucs2_estonian_ci

• ucs2_general_ci (default)

• ucs2_icelandic_ci

• ucs2_latvian_ci

• ucs2_lithuanian_ci

• ucs2_persian_ci

• ucs2_polish_ci

• ucs2_roman_ci

• ucs2_romanian_ci

• ucs2_slovak_ci

• ucs2_slovenian_ci

• ucs2_spanish2_ci

• ucs2_spanish_ci

• ucs2_swedish_ci

Character Set Support

536

• ucs2_turkish_ci

• ucs2_unicode_ci

• utf8 (UTF-8 Unicode) collations:

• utf8_bin

• utf8_czech_ci

• utf8_danish_ci

• utf8_estonian_ci

• utf8_general_ci (default)

• utf8_icelandic_ci

• utf8_latvian_ci

• utf8_lithuanian_ci

• utf8_persian_ci

• utf8_polish_ci

• utf8_roman_ci

• utf8_romanian_ci

• utf8_slovak_ci

• utf8_slovenian_ci

• utf8_spanish2_ci

• utf8_spanish_ci

• utf8_swedish_ci

• utf8_turkish_ci

• utf8_unicode_ci

10.11.2. West European Character Sets
West European Character Sets cover most West European languages, such as French, Spanish,
Catalan, Basque, Portuguese, Italian, Albanian, Dutch, German, Danish, Swedish, Norwegian,
Finnish, Faroese, Icelandic, Irish, Scottish, and English.

• ascii (US ASCII) collations:

• ascii_bin

• ascii_general_ci (default)

• cp850 (DOS West European) collations:

• cp850_bin

• cp850_general_ci (default)

Character Set Support

537

• dec8 (DEC West European) collations:

• dec8_bin

• dec8_swedish_ci (default)

• hp8 (HP West European) collations:

• hp8_bin

• hp8_english_ci (default)

• latin1 (ISO 8859-1 West European) collations:

• latin1_bin

• latin1_danish_ci

• latin1_general_ci

• latin1_general_cs

• latin1_german1_ci

• latin1_german2_ci

• latin1_spanish_ci

• latin1_swedish_ci (default)

The latin1 is the default character set. The latin1_swedish_ci collation is the default
that probably is used by the majority of MySQL customers. It is constantly stated that this is
based on the Swedish/Finnish collation rules, but you can find Swedes and Finns who disagree
with that statement.

The latin1_german1_ci and latin1_german2_ci collations are based on the DIN-1
and DIN-2 standards, where DIN stands for Deutsches Institut für Normung (that is, the German
answer to ANSI). DIN-1 is called the dictionary collation and DIN-2 is called the phone-book
collation.

• latin1_german1_ci (dictionary) rules:

Ä = A
Ö = O
Ü = U
ß = s

• latin1_german2_ci (phone-book) rules:

Ä = AE
Ö = OE
Ü = UE
ß = ss

In the latin1_spanish_ci collation, 'Ñ' (N-tilde) is a separate letter between 'N' and 'O'.

• macroman (Mac West European) collations:

• macroman_bin

• macroman_general_ci (default)

• swe7 (7bit Swedish) collations:

Character Set Support

538

• swe7_bin

• swe7_swedish_ci (default)

10.11.3. Central European Character Sets
We have some support for character sets used in the Czech Republic, Slovakia, Hungary, Romania,
Slovenia, Croatia, and Poland.

• cp1250 (Windows Central European) collations:

• cp1250_bin

• cp1250_czech_cs

• cp1250_general_ci (default)

• cp852 (DOS Central European) collations:

• cp852_bin

• cp852_general_ci (default)

• keybcs2 (DOS Kamenicky Czech-Slovak) collations:

• keybcs2_bin

• keybcs2_general_ci (default)

• latin2 (ISO 8859-2 Central European) collations:

• latin2_bin

• latin2_croatian_ci

• latin2_czech_cs

• latin2_general_ci (default)

• latin2_hungarian_ci

• macce (Mac Central European) collations:

• macce_bin

• macce_general_ci (default)

10.11.4. South European and Middle East Character
Sets

• armscii8 (ARMSCII-8 Armenian) collations:

• armscii8_bin

• armscii8_general_ci (default)

• cp1256 (Windows Arabic) collations:

Character Set Support

539

• cp1256_bin

• cp1256_general_ci (default)

• geostd8 (GEOSTD8 Georgian) collations:

• geostd8_bin

• geostd8_general_ci (default)

• greek (ISO 8859-7 Greek) collations:

• greek_bin

• greek_general_ci (default)

• hebrew (ISO 8859-8 Hebrew) collations:

• hebrew_bin

• hebrew_general_ci (default)

• latin5 (ISO 8859-9 Turkish) collations:

• latin5_bin

• latin5_turkish_ci (default)

10.11.5. Baltic Character Sets
The Baltic character sets cover Estonian, Latvian, and Lithuanian languages. There are two Baltic
character sets currently supported:

• cp1257 (Windows Baltic) collations:

• cp1257_bin

• cp1257_general_ci (default)

• cp1257_lithuanian_ci

• latin7 (ISO 8859-13 Baltic) collations:

• latin7_bin

• latin7_estonian_cs

• latin7_general_ci (default)

• latin7_general_cs

10.11.6. Cyrillic Character Sets
Here are the Cyrillic character sets and collations for use with Belarusian, Bulgarian, Russian, and
Ukrainian languages.

• cp1251 (Windows Cyrillic) collations:

Character Set Support

540

• cp1251_bin

• cp1251_bulgarian_ci

• cp1251_general_ci (default)

• cp1251_general_cs

• cp1251_ukrainian_ci

• cp866 (DOS Russian) collations:

• cp866_bin

• cp866_general_ci (default)

• koi8r (KOI8-R Relcom Russian) collations:

• koi8r_bin

• koi8r_general_ci (default)

• koi8u (KOI8-U Ukrainian) collations:

• koi8u_bin

• koi8u_general_ci (default)

10.11.7. Asian Character Sets
The Asian character sets that we support include Chinese, Japanese, Korean, and Thai. These can be
complicated. For example, the Chinese sets must allow for thousands of different characters.

• big5 (Big5 Traditional Chinese) collations:

• big5_bin

• big5_chinese_ci (default)

• cp932 (SJIS for Windows Japanese) collations:

• cp932_bin

• cp932_japanese_ci (default)

• eucjpms (UJIS for Windows Japanese) collations:

• eucjpms_bin

• eucjpms_japanese_ci (default)

• euckr (EUC-KR Korean) collations:

• euckr_bin

• euckr_korean_ci (default)

• gb2312 (GB2312 Simplified Chinese) collations:

• gb2312_bin

Character Set Support

541

• gb2312_chinese_ci (default)

• gbk (GBK Simplified Chinese) collations:

• gbk_bin

• gbk_chinese_ci (default)

• sjis (Shift-JIS Japanese) collations:

• sjis_bin

• sjis_japanese_ci (default)

• tis620 (TIS620 Thai) collations:

• tis620_bin

• tis620_thai_ci (default)

• ujis (EUC-JP Japanese) collations:

• ujis_bin

• ujis_japanese_ci (default)

Character Set Support

542

Chapter 11. Column Types
MySQL supports a number of column types in several categories: numeric types, date and time
types, and string (character) types. This chapter first gives an overview of these column types, and
then provides a more detailed description of the properties of the types in each category, and a sum-
mary of the column type storage requirements. The overview is intentionally brief. The more de-
tailed descriptions should be consulted for additional information about particular column types,
such as the allowable formats in which you can specify values.

MySQL versions 4.1 and up support extensions for handing spatial data. Information about spatial
types is provided in Chapter 18, Spatial Extensions in MySQL.

Several of the column type descriptions use these conventions:

• M

Indicates the maximum display width. The maximum legal display width is 255.

• D

Applies to floating-point and fixed-point types and indicates the number of digits following the
decimal point. The maximum possible value is 30, but should be no greater than M#2.

•
Square brackets ('[' and ']') indicate parts of type specifiers that are optional.

11.1. Column Type Overview
11.1.1. Overview of Numeric Types

A summary of the numeric column types follows. For additional information, see Section 11.2,
“Numeric Types”. Column storage requirements are given in Section 11.5, “Column Type Storage
Requirements”.

M indicates the maximum display width. The maximum legal display width is 255. Display width is
unrelated to the storage size or range of values a type can contain, as described in Section 11.2,
“Numeric Types”.

If you specify ZEROFILL for a numeric column, MySQL automatically adds the UNSIGNED attrib-
ute to the column.

Warning: You should be aware that when you use subtraction between integer values where one is
of type UNSIGNED, the result is unsigned. See Section 12.7, “Cast Functions and Operators”.

• TINYINT[(M)] [UNSIGNED] [ZEROFILL]

A very small integer. The signed range is -128 to 127. The unsigned range is 0 to 255.

• BIT , BOOL , BOOLEAN

These are synonyms for TINYINT(1). The BOOLEAN synonym was added in MySQL 4.1.0. A
value of zero is considered false. Non-zero values are considered true.

In the future, full boolean type handling will be introduced in accordance with standard SQL.

543

• SMALLINT[(M)] [UNSIGNED] [ZEROFILL]

A small integer. The signed range is -32768 to 32767. The unsigned range is 0 to 65535.

• MEDIUMINT[(M)] [UNSIGNED] [ZEROFILL]

A medium-size integer. The signed range is -8388608 to 8388607. The unsigned range is 0
to 16777215.

• INT[(M)] [UNSIGNED] [ZEROFILL]

A normal-size integer. The signed range is -2147483648 to 2147483647. The unsigned
range is 0 to 4294967295.

• INTEGER[(M)] [UNSIGNED] [ZEROFILL]

This is a synonym for INT.

• BIGINT[(M)] [UNSIGNED] [ZEROFILL]

A large integer. The signed range is -9223372036854775808 to
9223372036854775807. The unsigned range is 0 to 18446744073709551615.

Some things you should be aware of with respect to BIGINT columns:

•
All arithmetic is done using signed BIGINT or DOUBLE values, so you shouldn't use un-
signed big integers larger than 9223372036854775807 (63 bits) except with bit func-
tions! If you do that, some of the last digits in the result may be wrong because of rounding
errors when converting a BIGINT value to a DOUBLE.

MySQL 4.0 can handle BIGINT in the following cases:

• When using integers to store big unsigned values in a BIGINT column.

• In MIN(col_name) or MAX(col_name), where col_name refers to a BIGINT
column.

• When using operators (+, -, *, and so on) where both operands are integers.

• You can always store an exact integer value in a BIGINT column by storing it using a
string. In this case, MySQL performs a string-to-number conversion that involves no inter-
mediate double-precision representation.

• The -, +, and * operators use BIGINT arithmetic when both operands are integer values.
This means that if you multiply two big integers (or results from functions that return in-
tegers), you may get unexpected results when the result is larger than
9223372036854775807.

• FLOAT(p) [UNSIGNED] [ZEROFILL]

A floating-point number. p represents the precision. It can be from 0 to 24 for a single-precision
floating-point number and from 25 to 53 for a double-precision floating-point number. These

Column Types

544

types are like the FLOAT and DOUBLE types described immediately following. FLOAT(p) has
the same range as the corresponding FLOAT and DOUBLE types, but the display width and num-
ber of decimals are undefined.

As of MySQL 3.23, this is a true floating-point value. In earlier MySQL versions, FLOAT(p)
always has two decimals.

This syntax is provided for ODBC compatibility.

Using FLOAT might give you some unexpected problems because all calculations in MySQL are
done with double precision. See Section A.5.7, “Solving Problems with No Matching Rows”.

• FLOAT[(M,D)] [UNSIGNED] [ZEROFILL]

A small (single-precision) floating-point number. Allowable values are -3.402823466E+38
to -1.175494351E-38, 0, and 1.175494351E-38 to 3.402823466E+38. If UN-
SIGNED is specified, negative values are disallowed. M is the display width and D is the number
of decimals. FLOAT without arguments or FLOAT(p) (where p is in the range from 0 to 24)
stands for a single-precision floating-point number.

• DOUBLE[(M,D)] [UNSIGNED] [ZEROFILL]

A normal-size (double-precision) floating-point number. Allowable values are -
1.7976931348623157E+308 to -2.2250738585072014E-308, 0, and
2.2250738585072014E-308 to 1.7976931348623157E+308. If UNSIGNED is spe-
cified, negative values are disallowed. M is the display width and D is the number of decimals.
DOUBLE without arguments or FLOAT(p) (where p is in the range from 25 to 53) stands for a
double-precision floating-point number.

• DOUBLE PRECISION[(M,D)] [UNSIGNED] [ZEROFILL] , REAL[(M,D)]
[UNSIGNED] [ZEROFILL]

These are synonyms for DOUBLE. Exception: If the server SQL mode includes the
REAL_AS_FLOAT option, REAL is a synonym for FLOAT rather than DOUBLE.

• DECIMAL[(M[,D])] [UNSIGNED] [ZEROFILL]

An unpacked fixed-point number. Behaves like a CHAR column; ``unpacked'' means the number
is stored as a string, using one character for each digit of the value. M is the total number of di-
gits and D is the number of decimals. The decimal point and (for negative numbers) the '-' sign
are not counted in M, although space for them is reserved. If D is 0, values have no decimal point
or fractional part. The maximum range of DECIMAL values is the same as for DOUBLE, but the
actual range for a given DECIMAL column may be constrained by the choice of M and D. If UN-
SIGNED is specified, negative values are disallowed.

If D is omitted, the default is 0. If M is omitted, the default is 10.

Prior to MySQL 3.23, the M argument must be large enough to include the space needed for the
sign and the decimal point.

• DEC[(M[,D])] [UNSIGNED] [ZEROFILL] , NUMERIC[(M[,D])] [UNSIGNED]
[ZEROFILL] , FIXED[(M[,D])] [UNSIGNED] [ZEROFILL]

These are synonyms for DECIMAL.

The FIXED synonym was added in MySQL 4.1.0 for compatibility with other servers.

Column Types

545

11.1.2. Overview of Date and Time Types
A summary of the temporal column types follows. For additional information, see Section 11.3,
“Date and Time Types”. Column storage requirements are given in Section 11.5, “Column Type
Storage Requirements”.

• DATE

A date. The supported range is '1000-01-01' to '9999-12-31'. MySQL displays DATE
values in 'YYYY-MM-DD' format, but allows you to assign values to DATE columns using
either strings or numbers.

• DATETIME

A date and time combination. The supported range is '1000-01-01 00:00:00' to
'9999-12-31 23:59:59'. MySQL displays DATETIME values in 'YYYY-MM-DD
HH:MM:SS' format, but allows you to assign values to DATETIME columns using either
strings or numbers.

• TIMESTAMP[(M)]

A timestamp. The range is '1970-01-01 00:00:00' to partway through the year 2037.

A TIMESTAMP column is useful for recording the date and time of an INSERT or UPDATE op-
eration. The first TIMESTAMP column in a table is automatically set to the date and time of the
most recent operation if you don't assign it a value yourself. You can also set any TIMESTAMP
column to the current date and time by assigning it a NULL value.

From MySQL 4.1 on, TIMESTAMP is returned as a string with the format 'YYYY-MM-DD
HH:MM:SS'. If you want to obtain the value as a number, you should add +0 to the timestamp
column. Different timestamp display widths are not supported.

In MySQL 4.0 and earlier, TIMESTAMP values are displayed in YYYYMMDDHHMMSS, YYMM-
DDHHMMSS, YYYYMMDD, or YYMMDD format, depending on whether M is 14 (or missing), 12, 8,
or 6, but allows you to assign values to TIMESTAMP columns using either strings or numbers.
The M argument affects only how a TIMESTAMP column is displayed, not storage. Its values al-
ways are stored using four bytes each. From MySQL 4.0.12, the --new option can be used to
make the server behave as in MySQL 4.1.

Note that TIMESTAMP(M) columns where M is 8 or 14 are reported to be numbers, whereas
other TIMESTAMP(M) columns are reported to be strings. This is just to ensure that you can re-
liably dump and restore the table with these types.

• TIME

A time. The range is '-838:59:59' to '838:59:59'. MySQL displays TIME values in
'HH:MM:SS' format, but allows you to assign values to TIME columns using either strings or
numbers.

• YEAR[(2|4)]

A year in two-digit or four-digit format. The default is four-digit format. In four-digit format, the
allowable values are 1901 to 2155, and 0000. In two-digit format, the allowable values are
70 to 69, representing years from 1970 to 2069. MySQL displays YEAR values in YYYY format,

Column Types

546

but allows you to assign values to YEAR columns using either strings or numbers. The YEAR
type is unavailable prior to MySQL 3.22.

11.1.3. Overview of String Types
A summary of the string column types follows. For additional information, see Section 11.4, “String
Types”. Column storage requirements are given in Section 11.5, “Column Type Storage Require-
ments”.

In some cases, MySQL may change a string column to a type different from that given in a CREATE
TABLE or ALTER TABLE statement. See Section 13.2.6.1, “Silent Column Specification
Changes”.

A change that affects many string column types is that, as of MySQL 4.1, character column defini-
tions can include a CHARACTER SET attribute to specify the character set and, optionally, a colla-
tion. This applies to CHAR, VARCHAR, the TEXT types, ENUM, and SET. For example:

CREATE TABLE t
(

c1 CHAR(20) CHARACTER SET utf8,
c2 CHAR(20) CHARACTER SET latin1 COLLATE latin1_bin

);

This table definition creates a column named c1 that has a character set of utf8 with the default
collation for that character set, and a column named c2 that has a character set of latin1 and the
binary collation for the character set. The binary collation is not case sensitive.

For CHAR, VARCHAR, and the TEXT types, the BINARY attribute causes the column to be assigned
the binary collation of the column character set as of MySQL 4.1. Before 4.1, BINARY is disal-
lowed for the TEXT types, and causes CHAR and VARCHAR to be treated as binary strings.

Character column sorting and comparison are based on the character set assigned to the column. Be-
fore MySQL 4.1, sorting and comparison are based on the collation of the server character set. For
CHAR and VARCHAR columns, you can declare the column with the BINARY attribute to cause sort-
ing and comparison to use the underlying character code values rather then a lexical ordering.

For more details, see Chapter 10, Character Set Support.

Also as of 4.1, MySQL interprets length specifications in character column definitions in characters.
(Earlier versions interpret them in bytes.)

• [NATIONAL] CHAR(M) [BINARY | ASCII | UNICODE]

A fixed-length string that is always right-padded with spaces to the specified length when stored.
M represents the column length. The range of M is 0 to 255 characters (1 to 255 prior to MySQL
3.23).

Note: Trailing spaces are removed when CHAR values are retrieved.

From MySQL 4.1.0, a CHAR column with a length specification greater than 255 is converted to
the smallest TEXT type that can hold values of the given length. For example, CHAR(500) is
converted to TEXT, and CHAR(200000) is converted to MEDIUMTEXT. This is a compatibil-
ity feature. However, this conversion causes the column to become a variable-length column,
and also affects trailing-space removal.

CHAR is shorthand for CHARACTER. NATIONAL CHAR (or its equivalent short form, NCHAR)
is the standard SQL way to define that a CHAR column should use the default character set. This
is the default in MySQL.

As of MySQL 4.1.2, the BINARY attribute is shorthand for specifying the binary collation of the

Column Types

547

column character set. Before 4.1.2, BINARY attribute causes the column to be treated as a binary
string. In either case, sorting and comparisons become case sensitive.

From MySQL 4.1.0 on, the ASCII attribute can be specified. It assigns the latin1 character
set to a CHAR column.

From MySQL 4.1.1 on, the UNICODE attribute can be specified. It assigns the ucs2 character
set to a CHAR column.

MySQL allows you to create a column of type CHAR(0). This is mainly useful when you have
to be compliant with some old applications that depend on the existence of a column but that do
not actually use the value. This is also quite nice when you need a column that can take only two
values: A CHAR(0) column that is not defined as NOT NULL occupies only one bit and can
take only the values NULL and '' (the empty string).

• CHAR

This is a synonym for CHAR(1).

• [NATIONAL] VARCHAR(M) [BINARY]

A variable-length string. M represents the maximum column length. The range of M is 0 to 255
characters (1 to 255 prior to MySQL 4.0.2). In MySQL 5.0.3 this is extended to 65535 bytes.
(The exact number of characters is depending on the character set).

Note: Before 5.0.3, trailing spaces where removed when VARCHAR values was stored, which
differs from the standard SQL specification.

From MySQL 4.1.0 - 5.0.2 on, a VARCHAR column with a length specification greater than 255
is converted to the smallest TEXT type that can hold values of the given length. For example,
VARCHAR(500) is converted to TEXT, and VARCHAR(200000) is converted to MEDIUM-
TEXT. This is a compatibility feature. However, this conversion affects trailing-space removal.

VARCHAR is shorthand for CHARACTER VARYING.

As of MySQL 4.1.2, the BINARY attribute is shorthand for specifying the binary collation of the
column character set. Before 4.1.2, BINARY attribute causes the column to be treated as a binary
string. In either case, sorting and comparisons become case sensitive.

Starting from MySQL 5.0.3, VARCHAR is stored with a 1 byte or 2 byte length prefix + data.
The length prefix is 1 byte if the storage size for the VARCHAR column is less than 256.

• BINARY(M)

The BINARY type is similar to the CHAR type, but stores binary strings rather than non-binary
strings.

This type was added in MySQL 4.1.2.

• VARBINARY(M)

The VARBINARY type is similar to the VARCHAR type, but stores binary strings rather than non-
binary strings.

This type was added in MySQL 4.1.2.

Column Types

548

• TINYBLOB , TINYTEXT

A BLOB or TEXT column with a maximum length of 255 (2^8 # 1) characters.

• BLOB , TEXT

A BLOB or TEXT column with a maximum length of 65,535 (2^16 #1) characters.

• MEDIUMBLOB , MEDIUMTEXT

A BLOB or TEXT column with a maximum length of 16,777,215 (2^24 # 1) characters.

• LONGBLOB , LONGTEXT

A BLOB or TEXT column with a maximum length of 4,294,967,295 or 4GB (2^32 # 1) charac-
ters. Up to MySQL 3.23, the client/server protocol and MyISAM tables had a limit of 16MB per
communication packet / table row. From MySQL 4.0, the maximum allowed length of
LONGBLOB or LONGTEXT columns depends on the configured maximum packet size in the cli-
ent/server protocol and available memory.

• ENUM('value1','value2',...)

An enumeration. A string object that can have only one value, chosen from the list of values
'value1', 'value2', ..., NULL or the special '' error value. An ENUM column can have
a maximum of 65,535 distinct values. ENUM values are represented internally as integers.

• SET('value1','value2',...)

A set. A string object that can have zero or more values, each of which must be chosen from the
list of values 'value1', 'value2', ... A SET column can have a maximum of 64 mem-
bers. SET values are represented internally as integers.

11.2. Numeric Types
MySQL supports all of the standard SQL numeric data types. These types include the exact numeric
data types (INTEGER, SMALLINT, DECIMAL, and NUMERIC), as well as the approximate numeric
data types (FLOAT, REAL, and DOUBLE PRECISION). The keyword INT is a synonym for IN-
TEGER, and the keyword DEC is a synonym for DECIMAL.

As an extension to the SQL standard, MySQL also supports the integer types TINYINT, MEDI-
UMINT, and BIGINT as listed in the following table.

Type Bytes Minimum Value Maximum Value

(Signed/Unsigned) (Signed/Unsigned)

TINYINT 1 -128 127

0 255

SMALLINT 2 -32768 32767

0 65535

Column Types

549

MEDIUMINT 3 -8388608 8388607

0 16777215

INT 4 -2147483648 2147483647

0 4294967295

BIGINT 8 -9223372036854775808 9223372036854775807

0 18446744073709551615

Another extension is supported by MySQL for optionally specifying the display width of an integer
value in parentheses following the base keyword for the type (for example, INT(4)). This optional
display width specification is used to left-pad the display of values having a width less than the
width specified for the column.

The display width does not constrain the range of values that can be stored in the column, nor the
number of digits that are displayed for values having a width exceeding that specified for the
column.

When used in conjunction with the optional extension attribute ZEROFILL, the default padding of
spaces is replaced with zeros. For example, for a column declared as INT(5) ZEROFILL, a value
of 4 is retrieved as 00004. Note that if you store larger values than the display width in an integer
column, you may experience problems when MySQL generates temporary tables for some complic-
ated joins, because in these cases MySQL trusts that the data did fit into the original column width.

All integer types can have an optional (non-standard) attribute UNSIGNED. Unsigned values can be
used when you want to allow only non-negative numbers in a column and you need a bigger upper
numeric range for the column.

As of MySQL 4.0.2, floating-point and fixed-point types also can be UNSIGNED. As with integer
types, this attribute prevents negative values from being stored in the column. However, unlike the
integer types, the upper range of column values remains the same.

If you specify ZEROFILL for a numeric column, MySQL automatically adds the UNSIGNED attrib-
ute to the column.

The DECIMAL and NUMERIC types are implemented as the same type by MySQL. They are used to
store values for which it is important to preserve exact precision, for example with monetary data.
When declaring a column of one of these types, the precision and scale can be (and usually is) spe-
cified; for example:

salary DECIMAL(5,2)

In this example, 5 is the precision and 2 is the scale. The precision represents the number of signi-
ficant decimal digits that are stored for values, and the scale represents the number of digits that can
be stored following the decimal point.

MySQL stores DECIMAL and NUMERIC values as strings, rather than as binary floating-point num-
bers, in order to preserve the decimal precision of those values. One character is used for each digit
of the value, the decimal point (if the scale is greater than 0), and the '-' sign (for negative numbers).
If the scale is 0, DECIMAL and NUMERIC values contain no decimal point or fractional part.

Standard SQL requires that the salary column be able to store any value with five digits and two
decimals. In this case, therefore, the range of values that can be stored in the salary column is
from -999.99 to 999.99. MySQL varies from this in two ways:

• On the positive end of the range, the column actually can store numbers up to 9999.99. For
positive numbers, MySQL uses the byte reserved for the sign to extend the upper end of the
range.

• DECIMAL columns in MySQL before 3.23 are stored differently and cannot represent all the

Column Types

550

values required by standard SQL. This is because for a type of DECIMAL(M,D), the value of M
includes the bytes for the sign and the decimal point. The range of the salary column before
MySQL 3.23 would be -9.99 to 99.99.

In standard SQL, the syntax DECIMAL(M) is equivalent to DECIMAL(M,0). Similarly, the syntax
DECIMAL is equivalent to DECIMAL(M,0), where the implementation is allowed to decide the
value of M. As of MySQL 3.23.6, both of these variant forms of the DECIMAL and NUMERIC data
types are supported. The default value of M is 10. Before 3.23.6, M and D both must be specified ex-
plicitly.

The maximum range of DECIMAL and NUMERIC values is the same as for DOUBLE, but the actual
range for a given DECIMAL or NUMERIC column can be constrained by the precision or scale for a
given column. When such a column is assigned a value with more digits following the decimal point
than are allowed by the specified scale, the value is converted to that scale. (The precise behavior is
operating system-specific, but generally the effect is truncation to the allowable number of digits.)
When a DECIMAL or NUMERIC column is assigned a value that exceeds the range implied by the
specified (or default) precision and scale, MySQL stores the value representing the corresponding
end point of that range.

For floating-point column types, MySQL uses four bytes for single-precision values and eight bytes
for double-precision values.

The FLOAT type is used to represent approximate numeric data types. The SQL standard allows an
optional specification of the precision (but not the range of the exponent) in bits following the
keyword FLOAT in parentheses. The MySQL implementation also supports this optional precision
specification, but the precision value is used only to determine storage size. A precision from 0 to 23
results in four-byte single-precision FLOAT column. A precision from 24 to 53 results in eight-byte
double-precision DOUBLE column.

When the keyword FLOAT is used for a column type without a precision specification, MySQL uses
four bytes to store the values. MySQL also supports variant syntax with two numbers given in par-
entheses following the FLOAT keyword. The first number represents the display width and the
second number specifies the number of digits to be stored and displayed following the decimal point
(as with DECIMAL and NUMERIC). When MySQL is asked to store a number for such a column
with more decimal digits following the decimal point than specified for the column, the value is
rounded to eliminate the extra digits when the value is stored.

In standard SQL, the REAL and DOUBLE PRECISION types do not accept precision specifica-
tions. MySQL supports a variant syntax with two numbers given in parentheses following the type
name. The first number represents the display width and the second number specifies the number of
digits to be stored and displayed following the decimal point. As an extension to the SQL standard,
MySQL recognizes DOUBLE as a synonym for the DOUBLE PRECISION type. In contrast with the
standard's requirement that the precision for REAL be smaller than that used for DOUBLE PRECI-
SION, MySQL implements both as eight-byte double-precision floating-point values (unless the
server SQL mode includes the REAL_AS_FLOAT option).

For maximum portability, code requiring storage of approximate numeric data values should use
FLOAT or DOUBLE PRECISION with no specification of precision or number of decimal points.

When asked to store a value in a numeric column that is outside the column type's allowable range,
MySQL clips the value to the appropriate endpoint of the range and stores the resulting value in-
stead.

For example, the range of an INT column is -2147483648 to 2147483647. If you try to insert
-9999999999 into an INT column, MySQL clips the value to the lower endpoint of the range and
stores -2147483648 instead. Similarly, if you try to insert 9999999999, MySQL clips the value
to the upper endpoint of the range and stores 2147483647 instead.

If the INT column is UNSIGNED, the size of the column's range is the same but its endpoints shift
up to 0 and 4294967295. If you try to store -9999999999 and 9999999999, the values
stored in the column are 0 and 4294967296.

Column Types

551

Conversions that occur due to clipping are reported as ``warnings'' for ALTER TABLE, LOAD
DATA INFILE, UPDATE, and multiple-row INSERT statements.

11.3. Date and Time Types
The date and time types for representing temporal values are DATETIME, DATE, TIMESTAMP,
TIME, and YEAR. Each temporal type has a range of legal values, as well as a ``zero'' value that is
used when you specify an illegal value that MySQL cannot represent. The TIMESTAMP type has
special automatic updating behavior, described later on.

Starting from MySQL 5.0.2, MySQL gives warnings/errors if you try to insert an illegal date. You
can get MySQL to accept certain dates, such as '1999-11-31', by using the AL-
LOW_INVALID_DATES SQL mode. (Before 5.0.2, this mode was the default behavior for
MySQL). This is useful when you want to store the ``possibly wrong'' value the user has specified
(for example, in a web form) in the database for future processing. Under this mode, MySQL veri-
fies only that the month is in the range from 0 to 12 and that the day is in the range from 0 to 31.
These ranges are defined to include zero because MySQL allows you to store dates where the day or
month and day are zero in a DATE or DATETIME column. This is extremely useful for applications
that need to store a birthdate for which you don't know the exact date. In this case, you simply store
the date as '1999-00-00' or '1999-01-00'. If you store dates such as these, you should not
expect to get correct results for functions such as DATE_SUB() or DATE_ADD that require com-
plete dates. (If you don't want to allow zero in dates, you can use the NO_ZERO_IN_DATE SQL
mode).

MySQL also allows you to store '0000-00-00' as a ``dummy date'' (if you are not using the
NO_ZERO_DATE SQL mode). This is in some cases is more convenient (and uses less space in data
and index) than using NULL values.

By setting the sql_mode system variable to the appropriate mode values, You can more exactly
what kind of dates you want MySQL to support. See Section 5.2.2, “The Server SQL Mode”.

Here are some general considerations to keep in mind when working with date and time types:

• MySQL retrieves values for a given date or time type in a standard output format, but it attempts
to interpret a variety of formats for input values that you supply (for example, when you specify
a value to be assigned to or compared to a date or time type). Only the formats described in the
following sections are supported. It is expected that you supply legal values, and unpredictable
results may occur if you use values in other formats.

• Dates containing two-digit year values are ambiguous because the century is unknown. MySQL
interprets two-digit year values using the following rules:

• Year values in the range 00-69 are converted to 2000-2069.

• Year values in the range 70-99 are converted to 1970-1999.

• Although MySQL tries to interpret values in several formats, dates always must be given in
year-month-day order (for example, '98-09-04'), rather than in the month-day-year or day-
month-year orders commonly used elsewhere (for example, '09-04-98', '04-09-98').

• MySQL automatically converts a date or time type value to a number if the value is used in a nu-
meric context and vice versa.

• When MySQL encounters a value for a date or time type that is out of range or otherwise illegal
for the type (as described at the beginning of this section), it converts the value to the ``zero''
value for that type. The exception is that out-of-range TIME values are clipped to the appropri-
ate endpoint of the TIME range.

The following table shows the format of the ``zero'' value for each type. Note that the use of
these values produces warnings if the NO_ZERO_DATE SQL mode is enabled.

Column Types

552

Column Type ``Zero'' Value

DATETIME '0000-00-00 00:00:00'

DATE '0000-00-00'

TIMESTAMP 00000000000000

TIME '00:00:00'

YEAR 0000

• The ``zero'' values are special, but you can store or refer to them explicitly using the values
shown in the table. You can also do this using the values '0' or 0, which are easier to write.

• ``Zero'' date or time values used through MyODBC are converted automatically to NULL in My-
ODBC 2.50.12 and above, because ODBC can't handle such values.

11.3.1. The DATETIME, DATE, and TIMESTAMP Types
The DATETIME, DATE, and TIMESTAMP types are related. This section describes their character-
istics, how they are similar, and how they differ.

The DATETIME type is used when you need values that contain both date and time information.
MySQL retrieves and displays DATETIME values in 'YYYY-MM-DD HH:MM:SS' format. The
supported range is '1000-01-01 00:00:00' to '9999-12-31 23:59:59'. (``Supported''
means that although earlier values might work, there is no guarantee)

The DATE type is used when you need only a date value, without a time part. MySQL retrieves and
displays DATE values in 'YYYY-MM-DD' format. The supported range is '1000-01-01' to
'9999-12-31'.

The TIMESTAMP column type has varying properties, depending on the MySQL version and the
SQL mode the server is running in. These properties are described later in this section.

You can specify DATETIME, DATE, and TIMESTAMP values using any of a common set of
formats:

• As a string in either 'YYYY-MM-DD HH:MM:SS' or 'YY-MM-DD HH:MM:SS' format. A
``relaxed'' syntax is allowed: Any punctuation character may be used as the delimiter between
date parts or time parts. For example, '98-12-31 11:30:45', '98.12.31 11+30+45',
'98/12/31 11*30*45', and '98@12@31 11^30^45' are equivalent.

• As a string in either 'YYYY-MM-DD' or 'YY-MM-DD' format. A ``relaxed'' syntax is allowed
here, too. For example, '98-12-31', '98.12.31', '98/12/31', and '98@12@31' are
equivalent.

• As a string with no delimiters in either 'YYYYMMDDHHMMSS' or 'YYMMDDHHMMSS' format,
provided that the string makes sense as a date. For example, '19970523091528' and
'970523091528' are interpreted as '1997-05-23 09:15:28', but '971122129015'
is illegal (it has a nonsensical minute part) and becomes '0000-00-00 00:00:00'.

• As a string with no delimiters in either 'YYYYMMDD' or 'YYMMDD' format, provided that the
string makes sense as a date. For example, '19970523' and '970523' are interpreted as
'1997-05-23', but '971332' is illegal (it has nonsensical month and day parts) and be-
comes '0000-00-00'.

• As a number in either YYYYMMDDHHMMSS or YYMMDDHHMMSS format, provided that the num-
ber makes sense as a date. For example, 19830905132800 and 830905132800 are inter-
preted as '1983-09-05 13:28:00'.

Column Types

553

• As a number in either YYYYMMDD or YYMMDD format, provided that the number makes sense as
a date. For example, 19830905 and 830905 are interpreted as '1983-09-05'.

• As the result of a function that returns a value that is acceptable in a DATETIME, DATE, or
TIMESTAMP context, such as NOW() or CURRENT_DATE.

Illegal DATETIME, DATE, or TIMESTAMP values are converted to the ``zero'' value of the appro-
priate type ('0000-00-00 00:00:00', '0000-00-00', or 00000000000000).

For values specified as strings that include date part delimiters, it is not necessary to specify two di-
gits for month or day values that are less than 10. '1979-6-9' is the same as '1979-06-09'.
Similarly, for values specified as strings that include time part delimiters, it is not necessary to spe-
cify two digits for hour, minute, or second values that are less than 10. '1979-10-30 1:2:3'
is the same as '1979-10-30 01:02:03'.

Values specified as numbers should be 6, 8, 12, or 14 digits long. If a number is 8 or 14 digits long,
it is assumed to be in YYYYMMDD or YYYYMMDDHHMMSS format and that the year is given by the
first 4 digits. If the number is 6 or 12 digits long, it is assumed to be in YYMMDD or YYMMDDH-
HMMSS format and that the year is given by the first 2 digits. Numbers that are not one of these
lengths are interpreted as though padded with leading zeros to the closest length.

Values specified as non-delimited strings are interpreted using their length as given. If the string is 8
or 14 characters long, the year is assumed to be given by the first 4 characters. Otherwise, the year is
assumed to be given by the first 2 characters. The string is interpreted from left to right to find year,
month, day, hour, minute, and second values, for as many parts as are present in the string. This
means you should not use strings that have fewer than 6 characters. For example, if you specify
'9903', thinking that represents March, 1999, MySQL inserts a ``zero'' date into your table. This
is because the year and month values are 99 and 03, but the day part is completely missing, so the
value is not a legal date. However, as of MySQL 3.23, you can explicitly specify a value of zero to
represent missing month or day parts. For example, you can use '990300' to insert the value
'1999-03-00'.

You can to some extent assign values of one date type to an object of a different date type.
However, there may be some alteration of the value or loss of information:

• If you assign a DATE value to a DATETIME or TIMESTAMP object, the time part of the result-
ing value is set to '00:00:00' because the DATE value contains no time information.

• If you assign a DATETIME or TIMESTAMP value to a DATE object, the time part of the result-
ing value is deleted because the DATE type stores no time information.

• Remember that although DATETIME, DATE, and TIMESTAMP values all can be specified using
the same set of formats, the types do not all have the same range of values. For example,
TIMESTAMP values cannot be earlier than 1970 or later than 2037. This means that a date
such as '1968-01-01', while legal as a DATETIME or DATE value, is not a valid
TIMESTAMP value and is converted to 0 if assigned to such an object.

Be aware of certain pitfalls when specifying date values:

• The relaxed format allowed for values specified as strings can be deceiving. For example, a
value such as '10:11:12' might look like a time value because of the ':' delimiter, but if
used in a date context is interpreted as the year '2010-11-12'. The value '10:45:15' is
converted to '0000-00-00' because '45' is not a legal month.

• The MySQL server performs only basic checking on the validity of a date: The ranges for year,
month, and day are 1000 to 9999, 00 to 12, and 00 to 31, respectively. Any date containing parts
not within these ranges is subject to conversion to '0000-00-00'. Please note that this still
allows you to store invalid dates such as '2002-04-31'. To ensure that a date is valid, per-
form a check in your application.

Column Types

554

• Dates containing two-digit year values are ambiguous because the century is unknown. MySQL
interprets two-digit year values using the following rules:

• Year values in the range 00-69 are converted to 2000-2069.

• Year values in the range 70-99 are converted to 1970-1999.

11.3.1.1. TIMESTAMP Properties Prior to MySQL 4.1

The TIMESTAMP column type provides a type that you can use to automatically mark INSERT or
UPDATE operations with the current date and time. If you have multiple TIMESTAMP columns in a
table, only the first one is updated automatically. (From MySQL 4.1.2 on, you can specify which
TIMESTAMP column updates; see Section 11.3.1.2, “TIMESTAMP Properties as of MySQL 4.1”.)

Automatic updating of the first TIMESTAMP column in a table occurs under any of the following
conditions:

• You explicitly set the column to NULL.

• The column is not specified explicitly in an INSERT or LOAD DATA INFILE statement.

• The column is not specified explicitly in an UPDATE statement and some other column changes
value. An UPDATE that sets a column to the value it does not cause the TIMESTAMP column to
be updated; if you set a column to its current value, MySQL ignores the update for efficiency.

TIMESTAMP columns other than the first can also be set to the current date and time. Just set the
column to NULL or to any function that produces the current date and time (NOW(), CUR-
RENT_TIMESTAMP).

You can set any TIMESTAMP column to a value different from the current date and time by setting
it explicitly to the desired value. This is true even for the first TIMESTAMP column. You can use
this property if, for example, you want a TIMESTAMP to be set to the current date and time when
you create a row, but not to be changed whenever the row is updated later:

• Let MySQL set the column when the row is created. This initializes it to the current date and
time.

• When you perform subsequent updates to other columns in the row, set the TIMESTAMP
column explicitly to its current value:

UPDATE tbl_name
SET timestamp_col = timestamp_col,

other_col1 = new_value1,
other_col2 = new_value2, ...

Another way to maintain a column that records row-creation time is to use a DATETIME column
that you initialize to NOW() when the row is created and leave alone for subsequent updates.

TIMESTAMP values may range from the beginning of 1970 to partway through the year 2037, with
a resolution of one second. Values are displayed as numbers. When you store a value in a
TIMESTAMP column, it is assumed to be represented in the current time zone, and is converted to
UTC for storage. When you retrieve the value, it is converted from UTC back to the local time zone
for display. Before MySQL 4.1.3, the server has a single time zone. As of 4.1.3, clients can set their
time zone on a per-connection basis, as described in Time zone support.

The format in which MySQL retrieves and displays TIMESTAMP values depends on the display
size, as illustrated by the following table. The ``full'' TIMESTAMP format is 14 digits, but
TIMESTAMP columns may be created with shorter display sizes:

Column Types

555

Column Type Display Format

TIMESTAMP(14) YYYYMMDDHHMMSS

TIMESTAMP(12) YYMMDDHHMMSS

TIMESTAMP(10) YYMMDDHHMM

TIMESTAMP(8) YYYYMMDD

TIMESTAMP(6) YYMMDD

TIMESTAMP(4) YYMM

TIMESTAMP(2) YY

All TIMESTAMP columns have the same storage size, regardless of display size. The most common
display sizes are 6, 8, 12, and 14. You can specify an arbitrary display size at table creation time, but
values of 0 or greater than 14 are coerced to 14. Odd-valued sizes in the range from 1 to 13 are co-
erced to the next higher even number.

TIMESTAMP columns store legal values using the full precision with which the value was specified,
regardless of the display size. This has several implications:

• Always specify year, month, and day, even if your column types are TIMESTAMP(4) or
TIMESTAMP(2). Otherwise, the value is not a legal date and 0 is stored.

• If you use ALTER TABLE to widen a narrow TIMESTAMP column, information is displayed
that previously was ``hidden.''

• Similarly, narrowing a TIMESTAMP column does not cause information to be lost, except in the
sense that less information is shown when the values are displayed.

• Although TIMESTAMP values are stored to full precision, the only function that operates dir-
ectly on the underlying stored value is UNIX_TIMESTAMP(). Other functions operate on the
formatted retrieved value. This means you cannot use a function such as HOUR() or
SECOND() unless the relevant part of the TIMESTAMP value is included in the formatted
value. For example, the HH part of a TIMESTAMP column is not displayed unless the display
size is at least 10, so trying to use HOUR() on shorter TIMESTAMP values produces a meaning-
less result.

11.3.1.2. TIMESTAMP Properties as of MySQL 4.1

In MySQL 4.1 and up, the properties of the TIMESTAMP column type change in the ways described
in this section.

From MySQL 4.1.0 on, TIMESTAMP display format differs from that of earlier MySQL releases:

• TIMESTAMP columns are displayed in the same format as DATETIME columns.

• Display widths (used as described in the preceding section) are no longer supported. In other
words, for declarations such as TIMESTAMP(2), TIMESTAMP(4), and so on, the display
width is ignored.

Beginning with MySQL 4.1.1, the MySQL server can be run in MAXDB mode. When the server runs
in this mode, TIMESTAMP is identical with DATETIME. That is, if the server is running in MAXDB
mode at the time that a table is created, TIMESTAMP columns are created as DATETIME columns.
As a result, such columns use DATETIME display format, have the same range of values, and there
is no automatic initialization or updating to the current date and time.

To enable MAXDB mode, set the server SQL mode to MAXDB at startup using the -
-sql-mode=MAXDB server option or by setting the global sql_mode variable at runtime:

Column Types

556

mysql> SET GLOBAL sql_mode=MAXDB;

A client can cause the server to run in MAXDB mode for its own connection as follows:

mysql> SET SESSION sql_mode=MAXDB;

As of MySQL 5.0.2, MySQL does not accept timestamp values that include a zero in the day or
month column or values that are not a valid date. (The exception is the special value '0000-00-00
00:00:00'.)

Beginning with MySQL 4.1.2, you have more flexible control over when automatic TIMESTAMP
initialization and updating occur and which column should have those behaviors:

• You can assign the current timestamp as the default value and the auto-update value, as before.
But it is possible to have just one automatic behavior or the other, or neither of them.

• You can specify which TIMESTAMP column to automatically initialize or update to the current
date and time. This no longer need be the first TIMESTAMP column.

The following discussion describes the revised syntax and behavior. Note that this information ap-
plies only to TIMESTAMP columns for tables not created with MAXDB mode enabled. As noted
earlier in this section, MAXDB mode causes columns to be created as DATETIME columns.

The following items summarize the pre-4.1.2 properties for TIMESTAMP initialization and updat-
ing:

The first TIMESTAMP column in table row automatically is set to the current timestamp when the
record is created if the column is set to NULL or is not specified at all.

The first TIMESTAMP column in table row automatically is updated to the current timestamp when
the value of any other column in the row is changed, unless the TIMESTAMP column explicitly is
assigned a value other than NULL.

If a DEFAULT value is specified for the first TIMESTAMP column when the table is created, it is si-
lently ignored.

Other TIMESTAMP columns in the table can be set to the current TIMESTAMP by assigning NULL
to them, but they do not update automatically.

As of 4.1.2, you have more flexibility in deciding which TIMESTAMP column automatically is ini-
tialized and updated to the current timestamp. The rules are as follows:

If a DEFAULT value is specified for the first TIMESTAMP column in a table, it is not ignored. The
default can be CURRENT_TIMESTAMP or a constant date and time value.

DEFAULT NULL is the same as DEFAULT CURRENT_TIMESTAMP for the first TIMESTAMP
column. For any other TIMESTAMP column, DEFAULT NULL is treated as DEFAULT 0.

Any single TIMESTAMP column in a table can be set to be the one that is initialized to the current
timestamp and/or updated automatically.

In a CREATE TABLE statement, the first TIMESTAMP column can be declared in any of the fol-
lowing ways:

• With both DEFAULT CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP
clauses, the column has the current timestamp for its default value, and is automatically updated.

• With neither DEFAULT nor ON UPDATE clauses, it is the same as DEFAULT CUR-
RENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP.

Column Types

557

• With a DEFAULT CURRENT_TIMESTAMP clause and no ON UPDATE clause, the column has
the current timestamp for its default value but is not automatically updated.

• With no DEFAULT clause and with an ON UPDATE CURRENT_TIMESTAMP clause, the
column has a default of 0 and is automatically updated.

• With a constant DEFAULT value and with ON UPDATE CURRENT_TIMESTAMP clause, the
column has the given default and is automatically updated.

In other words, you can use the current timestamp for both the initial value and the auto-update
value, or either one, or neither. (For example, you can specify ON UPDATE to get auto-update
without also having the column auto-initialized.)

Any of CURRENT_TIMESTAMP, CURRENT_TIMESTAMP(), or NOW() can be used in the DE-
FAULT and ON UPDATE clauses. They all have the same effect.

The order of the two attributes does not matter. If both DEFAULT and ON UPDATE are specified
for a TIMESTAMP column, either can precede the other.

Example. These statements are equivalent:

CREATE TABLE t (ts TIMESTAMP);
CREATE TABLE t (ts TIMESTAMP DEFAULT CURRENT_TIMESTAMP

ON UPDATE CURRENT_TIMESTAMP);
CREATE TABLE t (ts TIMESTAMP ON UPDATE CURRENT_TIMESTAMP

DEFAULT CURRENT_TIMESTAMP);

To specify automatic default or updating for a TIMESTAMP column other than the first one, you
must suppress the automatic initialization and update behaviors for the first TIMESTAMP column by
explicitly assigning it a constant DEFAULT value (for example, DEFAULT 0 or DEFAULT
'2003-01-01 00:00:00'). Then for the other TIMESTAMP column, the rules are the same as
for the first TIMESTAMP column, except that you cannot omit both of the DEFAULT and ON UP-
DATE clauses. If you do that, no automatic initialization or updating occurs.

Example. These statements are equivalent:

CREATE TABLE t (
ts1 TIMESTAMP DEFAULT 0,
ts2 TIMESTAMP DEFAULT CURRENT_TIMESTAMP

ON UPDATE CURRENT_TIMESTAMP);
CREATE TABLE t (

ts1 TIMESTAMP DEFAULT 0,
ts2 TIMESTAMP ON UPDATE CURRENT_TIMESTAMP

DEFAULT CURRENT_TIMESTAMP);

Beginning with MySQL 4.1.3, you can set the current time zone on a per-connection basis, as de-
scribed in Time zone support. TIMESTAMP values still are stored in UTC, but are converted
from the current time zone for storage, and converted back to the current time zone for retrieval. As
long as the time zone setting remains the same, you get back the same value you store. If you store a
TIMESTAMP value, then change the time zone and retrieve the value, it is different than the value
you stored. This occurs because the same time zone is not used for conversion in both directions.
The current time zone is available as the value of the time_zone system variable.

Beginning with MySQL 4.1.6, you can include the NULL attribute in the definition of a
TIMESTAMP column to allow the column to contain NULL values. For example:

CREATE TABLE t
(

ts1 TIMESTAMP NULL DEFAULT NULL,
ts2 TIMESTAMP NULL DEFAULT 0,
ts3 TIMESTAMP NULL DEFAULT CURRENT_TIMESTAMP

);

Column Types

558

Before MySQL 4.1.6 (and even as of 4.1.6 if the NULL attribute is not specified), setting the column
to NULL sets it to the current timestamp.

11.3.2. The TIME Type
MySQL retrieves and displays TIME values in 'HH:MM:SS' format (or 'HHH:MM:SS' format
for large hours values). TIME values may range from '-838:59:59' to '838:59:59'. The
reason the hours part may be so large is that the TIME type may be used not only to represent a time
of day (which must be less than 24 hours), but also elapsed time or a time interval between two
events (which may be much greater than 24 hours, or even negative).

You can specify TIME values in a variety of formats:

• As a string in 'D HH:MM:SS.fraction' format. You can also use one of the following
``relaxed'' syntaxes: 'HH:MM:SS.fraction', 'HH:MM:SS', 'HH:MM', 'D HH:MM:SS',
'D HH:MM', 'D HH', or 'SS'. Here D represents days and can have a value from 0 to 34.
Note that MySQL doesn't yet store the fraction part.

• As a string with no delimiters in 'HHMMSS' format, provided that it makes sense as a time. For
example, '101112' is understood as '10:11:12', but '109712' is illegal (it has a non-
sensical minute part) and becomes '00:00:00'.

• As a number in HHMMSS format, provided that it makes sense as a time. For example, 101112
is understood as '10:11:12'. The following alternative formats are also understood: SS,
MMSS, HHMMSS, HHMMSS.fraction. Note that MySQL doesn't yet store the fraction part.

• As the result of a function that returns a value that is acceptable in a TIME context, such as
CURRENT_TIME.

For TIME values specified as strings that include a time part delimiter, it is not necessary to specify
two digits for hours, minutes, or seconds values that are less than 10. '8:3:2' is the same as
'08:03:02'.

Be careful about assigning ``short'' TIME values to a TIME column. Without colons, MySQL inter-
prets values using the assumption that the rightmost digits represent seconds. (MySQL interprets
TIME values as elapsed time rather than as time of day.) For example, you might think of '1112'
and 1112 as meaning '11:12:00' (12 minutes after 11 o'clock), but MySQL interprets them as
'00:11:12' (11 minutes, 12 seconds). Similarly, '12' and 12 are interpreted as '00:00:12'.
TIME values with colons, by contrast, are always treated as time of the day. That is '11:12' mean
'11:12:00', not '00:11:12'.

Values that lie outside the TIME range but are otherwise legal are clipped to the closest endpoint of
the range. For example, '-850:00:00' and '850:00:00' are converted to '-838:59:59'
and '838:59:59'.

Illegal TIME values are converted to '00:00:00'. Note that because '00:00:00' is itself a
legal TIME value, there is no way to tell, from a value of '00:00:00' stored in a table, whether
the original value was specified as '00:00:00' or whether it was illegal.

11.3.3. The YEAR Type
The YEAR type is a one-byte type used for representing years.

MySQL retrieves and displays YEAR values in YYYY format. The range is 1901 to 2155.

You can specify YEAR values in a variety of formats:

Column Types

559

• As a four-digit string in the range '1901' to '2155'.

• As a four-digit number in the range 1901 to 2155.

• As a two-digit string in the range '00' to '99'. Values in the ranges '00' to '69' and
'70' to '99' are converted to YEAR values in the ranges 2000 to 2069 and 1970 to 1999.

• As a two-digit number in the range 1 to 99. Values in the ranges 1 to 69 and 70 to 99 are con-
verted to YEAR values in the ranges 2001 to 2069 and 1970 to 1999. Note that the range for
two-digit numbers is slightly different from the range for two-digit strings, because you cannot
specify zero directly as a number and have it be interpreted as 2000. You must specify it as a
string '0' or '00' or it is interpreted as 0000.

• As the result of a function that returns a value that is acceptable in a YEAR context, such as
NOW().

Illegal YEAR values are converted to 0000.

11.3.4. Y2K Issues and Date Types
MySQL itself is year 2000 (Y2K) safe (see Section 1.2.5, “Year 2000 Compliance”), but input val-
ues presented to MySQL may not be. Any input containing two-digit year values is ambiguous, be-
cause the century is unknown. Such values must be interpreted into four-digit form because MySQL
stores years internally using four digits.

For DATETIME, DATE, TIMESTAMP, and YEAR types, MySQL interprets dates with ambiguous
year values using the following rules:

• Year values in the range 00-69 are converted to 2000-2069.

• Year values in the range 70-99 are converted to 1970-1999.

Remember that these rules provide only reasonable guesses as to what your data values mean. If the
heuristics used by MySQL do not produce the correct values, you should provide unambiguous in-
put containing four-digit year values.

ORDER BY properly sorts TIMESTAMP or YEAR values that have two-digit years.

Some functions like MIN() and MAX() convert a TIMESTAMP or YEAR to a number. This means
that a value with a two-digit year does not work properly with these functions. The fix in this case is
to convert the TIMESTAMP or YEAR to four-digit year format or use something like
MIN(DATE_ADD(timestamp,INTERVAL 0 DAYS)).

11.4. String Types
The string types are CHAR, VARCHAR, BINARY, VARBINARY, BLOB, TEXT, ENUM, and SET. This
section describes how these types work and how to use them in your queries.

11.4.1. The CHAR and VARCHAR Types
The CHAR and VARCHAR types are similar, but differ in the way they are stored and retrieved.

The length of a CHAR column is fixed to the length that you declare when you create the table. The
length can be any value from 0 to 255. (Before MySQL 3.23, the length of CHAR may be from 1 to
255.) When CHAR values are stored, they are right-padded with spaces to the specified length. When
CHAR values are retrieved, trailing spaces are removed.

Values in VARCHAR columns are variable-length strings. You can declare a VARCHAR column to be

Column Types

560

any length from 0 to 255, just as for CHAR columns. (Before MySQL 4.0.2, the length of VARCHAR
may be from 1 to 255.) However, in contrast to CHAR, VARCHAR values are stored using only as
many characters as are needed, plus one byte to record the length. Values are not padded; instead,
trailing spaces are removed when values are stored. This space removal differs from the standard
SQL specification.

No lettercase conversion takes place during storage or retrieval.

If you assign a value to a CHAR or VARCHAR column that exceeds the column's maximum length,
the value is truncated to fit.

If you need a column for which trailing spaces are not removed, consider using a BLOB or TEXT
type. If you want to store binary values such as results from an encryption or compression function
that might contain arbitrary byte values, use a BLOB column rather than a CHAR or VARCHAR
column, to avoid potential problems with trailing space removal that would change data values.

The following table illustrates the differences between the two types of columns by showing the res-
ult of storing various string values into CHAR(4) and VARCHAR(4) columns:

Value CHAR(4) Storage Required VARCHAR(4) Storage Required

'' ' ' 4 bytes '' 1 byte

'ab' 'ab ' 4 bytes 'ab' 3 bytes

'abcd' 'abcd' 4 bytes 'abcd' 5 bytes

'abcdefgh' 'abcd' 4 bytes 'abcd' 5 bytes

The values retrieved from the CHAR(4) and VARCHAR(4) columns are the same in each case, be-
cause trailing spaces are removed from CHAR columns upon retrieval.

As of MySQL 4.1, values in CHAR and VARCHAR columns are sorted and compared according to
the collation of the character set assigned to the column. Before MySQL 4.1, sorting and comparis-
on are based on the collation of the server character set; you can declare the column with the BIN-
ARY attribute to cause sorting and comparison to be case sensitive using the underlying character
code values rather then a lexical ordering. BINARY doesn't affect how the column is stored or re-
trieved.

From MySQL 4.1.0 on, column type CHAR BYTE is an alias for CHAR BINARY. This is a compat-
ibility feature.

The BINARY attribute is sticky. This means that if a column marked BINARY is used in an expres-
sion, the whole expression is treated as a BINARY value.

From MySQL 4.1.0 on, the ASCII attribute can be specified for CHAR. It assigns the latin1
character set.

From MySQL 4.1.1 on, the UNICODE attribute can be specified for CHAR. It assigns the ucs2
character set.

MySQL may silently change the type of a CHAR or VARCHAR column at table creation time. See
Section 13.2.6.1, “Silent Column Specification Changes”.

11.4.2. The BINARY and VARBINARY Types
The BINARY and VARBINARY types are like CHAR and VARCHAR, except that they contain binary
strings rather than non-binary strings. That is, they contain byte strings rather than character strings.
This means they have no character set and compare in case sensitive fashion.

Before MySQL 4.1.2, BINARY(M) and VARBINARY(M) are treated as CHAR(M) BINARY and
VARCHAR(M) BINARY. As of MySQL 4.1.2, BINARY and VARBINARY are available as distinct
data types, and for CHAR(M) BINARY and VARCHAR(M) BINARY, the BINARY attribute does
not cause the column to be treated as a binary string column. Instead, it causes the binary collation
for the column character set to be used, but the column itself contains non-binary character strings

Column Types

561

rather than binary byte strings. For example, in 4.1 and up, CHAR(5) BINARY is treated as
CHAR(5) CHARACTER SET latin1 COLLATE latin1_bin, assuming that the default
character set is latin1.

11.4.3. The BLOB and TEXT Types
A BLOB is a binary large object that can hold a variable amount of data. The four BLOB types,
TINYBLOB, BLOB, MEDIUMBLOB, and LONGBLOB, differ only in the maximum length of the val-
ues they can hold.

See Section 11.5, “Column Type Storage Requirements”.

The four TEXT types, TINYTEXT, TEXT, MEDIUMTEXT, and LONGTEXT, correspond to the four
BLOB types and have the same maximum lengths and storage requirements.

BLOB columns are treated as binary strings (byte strings). TEXT columns are treated as non-binary
strings (character strings). BLOB columns have no character set, and sorting and comparison is
based on the numeric values of the bytes in column values. TEXT columns have a character set, and
values are sorted and compared based on the collation of the character set assigned to the column as
of MySQL 4.1. Before 4.1, TEXT sorting and comparison are based on the collation of the server
character set.

No lettercase conversion takes place during storage or retrieval.

If you assign a value to a BLOB or TEXT column that exceeds the column type's maximum length,
the value is truncated to fit.

In most respects, you can regard a TEXT column as a VARCHAR column that can be as big as you
like. Similarly, you can regard a BLOB column as a VARCHAR BINARY column. The ways in
which BLOB and TEXT differ from CHAR and VARCHAR are:

• There is no trailing-space removal for BLOB and TEXT columns when values are stored or re-
trieved. This differs from CHAR columns (trailing spaces are removed when values are retrieved)
and from VARCHAR columns (trailing spaces are removed when values are stored).

• You can have indexes on BLOB and TEXT columns only as of MySQL 3.23.2 for MyISAM
tables or MySQL 4.0.14 for InnoDB tables. Older versions of MySQL did not support indexing
these column types.

• For indexes on BLOB and TEXT columns, you must specify an index prefix length. For CHAR
and VARCHAR, a prefix length is optional.

• BLOB and TEXT columns cannot have DEFAULT values.

From MySQL 4.1.0 on, LONG and LONG VARCHAR map to the MEDIUMTEXT data type. This is a
compatibility feature. If you use the BINARY attribute with a TEXT column type, the column is as-
signed the binary collation of the column character set.

MySQL Connector/ODBC defines BLOB values as LONGVARBINARY and TEXT values as
LONGVARCHAR.

Because BLOB and TEXT values may be extremely long, you may encounter some constraints in us-
ing them:

• Only the first max_sort_length bytes of the column are used when sorting. The default
value of max_sort_length is 1024; this value can be changed using the -
-max_sort_length option when starting the mysqld server. See Section 5.2.3, “Server Sys-
tem Variables”.

As of MySQL 4.0.3, you can make more bytes significant in sorting or grouping by increasing
the value of max_sort_length at runtime. Any client can change the value of its session

Column Types

562

max_sort_length variable:

mysql> SET max_sort_length = 2000;
mysql> SELECT id, comment FROM tbl_name

-> ORDER BY comment;

Another way to use GROUP BY or ORDER BY on a BLOB or TEXT column containing long
values when you want more than max_sort_length bytes to be significant is to convert the
column value into a fixed-length object. The standard way to do this is with the SUBSTRING
function. For example, the following statement causes 2000 bytes of the comment column to be
taken into account for sorting:

mysql> SELECT id, SUBSTRING(comment,1,2000) FROM tbl_name
-> ORDER BY SUBSTRING(comment,1,2000);

Before MySQL 3.23.2, you can group on an expression involving BLOB or TEXT values by us-
ing a column alias or by specifying the column position:

mysql> SELECT id, SUBSTRING(comment,1,2000) AS b
-> FROM tbl_name GROUP BY b;

mysql> SELECT id, SUBSTRING(comment,1,2000)
-> FROM tbl_name GROUP BY 2;

• The maximum size of a BLOB or TEXT object is determined by its type, but the largest value
you actually can transmit between the client and server is determined by the amount of available
memory and the size of the communications buffers. You can change the message buffer size by
changing the value of the max_allowed_packet variable, but you must do so for both the
server and your client program. For example, both mysql and mysqldump allow you to change
the client-side max_allowed_packet value. See Section 7.5.2, “Tuning Server Parameters”,
Section 8.3, “mysql, the Command-Line Tool”, and Section 8.8, “The mysqldump Database
Backup Program”.

Each BLOB or TEXT value is represented internally by a separately allocated object. This is in con-
trast to all other column types, for which storage is allocated once per column when the table is
opened.

11.4.4. The ENUM Type
An ENUM is a string object with a value chosen from a list of allowed values that are enumerated ex-
plicitly in the column specification at table creation time.

The value may also be the empty string ('') or NULL under certain circumstances:

• If you insert an invalid value into an ENUM (that is, a string not present in the list of allowed val-
ues), the empty string is inserted instead as a special error value. This string can be distinguished
from a ``normal'' empty string by the fact that this string has the numerical value 0. More about
this later.

• If an ENUM column is declared to allow NULL, the NULL value is a legal value for the column,
and the default value is NULL. If an ENUM column is declared NOT NULL, its default value is
the first element of the list of allowed values.

Each enumeration value has an index:

• Values from the list of allowable elements in the column specification are numbered beginning
with 1.

Column Types

563

• The index value of the empty string error value is 0. This means that you can use the following
SELECT statement to find rows into which invalid ENUM values were assigned:

mysql> SELECT * FROM tbl_name WHERE enum_col=0;

• The index of the NULL value is NULL.

For example, a column specified as ENUM('one', 'two', 'three') can have any of the
values shown here. The index of each value is also shown:

Value Index

NULL NULL

'' 0

'one' 1

'two' 2

'three' 3

An enumeration can have a maximum of 65,535 elements.

Starting from MySQL 3.23.51, trailing spaces are automatically deleted from ENUM member values
when the table is created.

Lettercase is irrelevant when you assign values to an ENUM column. However, values retrieved from
the column later are displayed using the lettercase that was used in the column definition.

If you retrieve an ENUM value in a numeric context, the column value's index is returned. For ex-
ample, you can retrieve numeric values from an ENUM column like this:

mysql> SELECT enum_col+0 FROM tbl_name;

If you store a number into an ENUM column, the number is treated as an index, and the value stored
is the enumeration member with that index. (However, this does not work with LOAD DATA, which
treats all input as strings.) It's not advisable to define an ENUM column with enumeration values that
look like numbers, because this can easily become confusing. For example, the following column
has enumeration members with string values of '0', '1', and '2', but numeric index values of 1,
2, and 3:

numbers ENUM('0','1','2')

ENUM values are sorted according to the order in which the enumeration members were listed in the
column specification. (In other words, ENUM values are sorted according to their index numbers.)
For example, 'a' sorts before 'b' for ENUM('a', 'b'), but 'b' sorts before 'a' for
ENUM('b', 'a'). The empty string sorts before non-empty strings, and NULL values sort before
all other enumeration values. To prevent unexpected results, specify the ENUM list in alphabetical
order. You can also use GROUP BY CAST(col AS VARCHAR) or GROUP BY CON-
CAT(col) to make sure that the column is sorted lexically rather than by index number.

If you want to determine all possible values for an ENUM column, use SHOW COLUMNS FROM
tbl_name LIKE enum_col and parse the ENUM definition in the second column of the output.

11.4.5. The SET Type
A SET is a string object that can have zero or more values, each of which must be chosen from a list
of allowed values specified when the table is created. SET column values that consist of multiple set
members are specified with members separated by commas (','). A consequence of this is that SET
member values cannot themselves contain commas.

Column Types

564

For example, a column specified as SET('one', 'two') NOT NULL can have any of these
values:

''
'one'
'two'
'one,two'

A SET can have a maximum of 64 different members.

Starting from MySQL 3.23.51, trailing spaces are automatically deleted from SET member values
when the table is created.

MySQL stores SET values numerically, with the low-order bit of the stored value corresponding to
the first set member. If you retrieve a SET value in a numeric context, the value retrieved has bits
set corresponding to the set members that make up the column value. For example, you can retrieve
numeric values from a SET column like this:

mysql> SELECT set_col+0 FROM tbl_name;

If a number is stored into a SET column, the bits that are set in the binary representation of the num-
ber determine the set members in the column value. For a column specified as
SET('a','b','c','d'), the members have the following decimal and binary values:

SET Member Decimal Value Binary Value

'a' 1 0001

'b' 2 0010

'c' 4 0100

'd' 8 1000

If you assign a value of 9 to this column, that is 1001 in binary, so the first and fourth SET value
members 'a' and 'd' are selected and the resulting value is 'a,d'.

For a value containing more than one SET element, it does not matter what order the elements are
listed in when you insert the value. It also does not matter how many times a given element is listed
in the value. When the value is retrieved later, each element in the value appears once, with ele-
ments listed according to the order in which they were specified at table creation time. If a column is
specified as SET('a','b','c','d'), then 'a,d', 'd,a', and 'd,a,a,d,d' all appear as
'a,d' when retrieved.

If you set a SET column to an unsupported value, the value is ignored.

SET values are sorted numerically. NULL values sort before non-NULL SET values.

Normally, you search for SET values using the FIND_IN_SET() function or the LIKE operator:

mysql> SELECT * FROM tbl_name WHERE FIND_IN_SET('value',set_col)>0;
mysql> SELECT * FROM tbl_name WHERE set_col LIKE '%value%';

The first statement finds rows where set_col contains the value set member. The second is sim-
ilar, but not the same: It finds rows where set_col contains value anywhere, even as a substring
of another set member.

The following statements also are legal:

mysql> SELECT * FROM tbl_name WHERE set_col & 1;
mysql> SELECT * FROM tbl_name WHERE set_col = 'val1,val2';

Column Types

565

The first of these statements looks for values containing the first set member. The second looks for
an exact match. Be careful with comparisons of the second type. Comparing set values to
'val1,val2' returns different results than comparing values to 'val2,val1'. You should
specify the values in the same order they are listed in the column definition.

If you want to determine all possible values for a SET column, use SHOW COLUMNS FROM
tbl_name LIKE set_col and parse the SET definition in the second column of the output.

11.5. Column Type Storage Requirements
The storage requirements for each of the column types supported by MySQL are listed by category.

The maximum size of a row in a MyISAM table is 65,534 bytes. Each BLOB and TEXT column ac-
counts for only five to nine bytes toward this size.

If a MyISAM or ISAM table includes any variable-length column types, the record format is also
variable length. When a table is created, MySQL may, under certain conditions, change a column
from a variable-length type to a fixed-length type or vice versa. See Section 13.2.6.1, “Silent
Column Specification Changes”.

Storage Requirements for Numeric Types

Column Type Storage Required

TINYINT 1 byte

SMALLINT 2 bytes

MEDIUMINT 3 bytes

INT, INTEGER 4 bytes

BIGINT 8 bytes

FLOAT(p) 4 bytes if 0 <= p <= 24, 8 bytes if 25 <= p <= 53

FLOAT 4 bytes

DOUBLE [PRECISION], item
REAL

8 bytes

DECIMAL(M,D), NUMERIC(M,D) M+2 bytes if D > 0, M+1 bytes if D = 0 (D+2, if M < D)

Storage Requirements for Date and Time Types

Column Type Storage Required

DATE 3 bytes

DATETIME 8 bytes

TIMESTAMP 4 bytes

TIME 3 bytes

YEAR 1 byte

Storage Requirements for String Types

Column Type Storage Required

CHAR(M) M bytes, 0 <= M <= 255

VARCHAR(M) L+1 bytes, where L <= M and 0 <= M <= 255

TINYBLOB, TINYTEXT L+1 bytes, where L < 2^8

BLOB, TEXT L+2 bytes, where L < 2^16

MEDIUMBLOB, MEDIUMTEXT L+3 bytes, where L < 2^24

Column Types

566

LONGBLOB, LONGTEXT L+4 bytes, where L < 2^32

',...
ENUM('value1','value2)

1 or 2 bytes, depending on the number of enumeration val-
ues (65,535 values maximum)

SET('value1','value2',...) 1, 2, 3, 4, or 8 bytes, depending on the number of set mem-
bers (64 members maximum)

VARCHAR and the BLOB and TEXT types are variable-length types. For each, the storage require-
ments depend on the actual length of column values (represented by L in the preceding table), rather
than on the type's maximum possible size. For example, a VARCHAR(10) column can hold a string
with a maximum length of 10 characters. The actual storage required is the length of the string (L),
plus 1 byte to record the length of the string. For the string 'abcd', L is 4 and the storage require-
ment is 5 bytes.

The BLOB and TEXT types require 1, 2, 3, or 4 bytes to record the length of the column value, de-
pending on the maximum possible length of the type. See Section 11.4.3, “The BLOB and TEXT
Types”.

The size of an ENUM object is determined by the number of different enumeration values. One byte
is used for enumerations with up to 255 possible values. Two bytes are used for enumerations with
up to 65,535 values. See Section 11.4.4, “The ENUM Type”.

The size of a SET object is determined by the number of different set members. If the set size is N,
the object occupies (N+7)/8 bytes, rounded up to 1, 2, 3, 4, or 8 bytes. A SET can have a maxim-
um of 64 members. See Section 11.4.5, “The SET Type”.

11.6. Choosing the Right Type for a Column
For the most efficient use of storage, try to use the most precise type in all cases. For example, if an
integer column is used for values in the range from 1 to 99999, MEDIUMINT UNSIGNED is the
best type. Of the types that represent all the required values, it uses the least amount of storage.

Accurate representation of monetary values is a common problem. In MySQL, you should use the
DECIMAL type. This is stored as a string, so no loss of accuracy should occur. (Calculations on
DECIMAL values may still be done using double-precision operations, however.) If accuracy is not
too important, the DOUBLE type may also be good enough.

For high precision, you can always convert to a fixed-point type stored in a BIGINT. This allows
you to do all calculations with integers and convert results back to floating-point values only when
necessary.

11.7. Using Column Types from Other Data-
base Engines

To make it easier to use code written for SQL implementations from other vendors, MySQL maps
column types as shown in the following table. These mappings make it easier to import table defini-
tions from other database engines into MySQL:

Other Vendor Type MySQL Type

BINARY(M) CHAR(M) BINARY (before MySQL 4.1.2)

CHAR VARYING(M) VARCHAR(M)

FLOAT4 FLOAT

FLOAT8 DOUBLE

INT1 TINYINT

INT2 SMALLINT

INT3 MEDIUMINT

Column Types

567

INT4 INT

INT8 BIGINT

LONG VARBINARY MEDIUMBLOB

LONG VARCHAR MEDIUMTEXT

LONG MEDIUMTEXT (MySQL 4.1.0 on)

MIDDLEINT MEDIUMINT

VARBINARY(M) VARCHAR(M) BINARY (before MySQL 4.1.2)

As of MySQL 4.1.2, BINARY and VARBINARY are distinct data types and are not converted to
CHAR BINARY and VARCHAR BINARY.

Column type mapping occurs at table creation time, after which the original type specifications are
discarded. If you create a table with types used by other vendors and then issue a DESCRIBE
tbl_name statement, MySQL reports the table structure using the equivalent MySQL types.

Column Types

568

Chapter 12. Functions and Operators
Expressions can be used at several points in SQL statements, such as in the ORDER BY or HAVING
clauses of SELECT statements, in the WHERE clause of a SELECT, DELETE, or UPDATE statement,
or in SET statements. Expressions can be written using literal values, column values, NULL, func-
tions, and operators. This chapter describes the functions and operators that are allowed for writing
expressions in MySQL.

An expression that contains NULL always produces a NULL value unless otherwise indicated in the
documentation for a particular function or operator.

Note: By default, there must be no whitespace between a function name and the parenthesis follow-
ing it. This helps the MySQL parser distinguish between function calls and references to tables or
columns that happen to have the same name as a function. Spaces around function arguments are
permitted, though.

You can tell the MySQL server to accept spaces after function names by starting it with the -
-sql-mode=IGNORE_SPACE option. Individual client programs can request this behavior by us-
ing the CLIENT_IGNORE_SPACE option for mysql_real_connect(). In either case, all
function names become reserved words. See Section 5.2.2, “The Server SQL Mode”.

For the sake of brevity, most examples in this chapter display the output from the mysql program in
abbreviated form. Instead of showing examples in this format:

mysql> SELECT MOD(29,9);
+-----------+
| mod(29,9) |
+-----------+
| 2 |
+-----------+
1 rows in set (0.00 sec)

This format is used instead:

mysql> SELECT MOD(29,9);
-> 2

12.1. Operators
12.1.1. Operator Precedence

Operator precedences are shown in the following list, from lowest precedence to the highest. Oper-
ators that are shown together on a line have the same precedence.

:=
||, OR, XOR
&&, AND
NOT
BETWEEN, CASE, WHEN, THEN, ELSE
=, <=>, >=, >, <=, <, <>, !=, IS, LIKE, REGEXP, IN
|
&
<<, >>
-, +
*, /, DIV, %, MOD
^
- (unary minus), ~ (unary bit inversion)
!
BINARY, COLLATE

569

The precedence shown for NOT is as of MySQL 5.0.2. For earlier versions, or from 5.0.2 on if the
HIGH_NOT_PRECEDENCE SQL mode is enabled, the precedence of NOT is the same as that of the
! operator. See Section 5.2.2, “The Server SQL Mode”.

12.1.2. Parentheses

• (...)

Use parentheses to force the order of evaluation in an expression. For example:

mysql> SELECT 1+2*3;
-> 7

mysql> SELECT (1+2)*3;
-> 9

12.1.3. Comparison Functions and Operators
Comparison operations result in a value of 1 (TRUE), 0 (FALSE), or NULL. These operations work
for both numbers and strings. Strings are automatically converted to numbers and numbers to strings
as necessary.

Some of the functions in this section (such as LEAST() and GREATEST()) return values other
than 1 (TRUE), 0 (FALSE), or NULL. However, the value they return is based on comparison oper-
ations performed as described by the following rules.

MySQL compares values using the following rules:

• If one or both arguments are NULL, the result of the comparison is NULL, except for the NULL-
safe <=> equality comparison operator.

• If both arguments in a comparison operation are strings, they are compared as strings.

• If both arguments are integers, they are compared as integers.

• Hexadecimal values are treated as binary strings if not compared to a number.

•
If one of the arguments is a TIMESTAMP or DATETIME column and the other argument is a
constant, the constant is converted to a timestamp before the comparison is performed. This is
done to be more ODBC-friendly. Note that this is not done for arguments in IN()! To be safe,
always use complete datetime/date/time strings when doing comparisons.

• In all other cases, the arguments are compared as floating-point (real) numbers.

By default, string comparisons are not case sensitive and use the current character set (ISO-8859-1
Latin1 by default, which also works excellently for English).

To convert a value to a specific type for comparison purposes, you can use the CAST() function.
String values can be converted to a different character set using CONVERT(). See Section 12.7,
“Cast Functions and Operators”.

The following examples illustrate conversion of strings to numbers for comparison operations:

mysql> SELECT 1 > '6x';
-> 0

mysql> SELECT 7 > '6x';
-> 1

mysql> SELECT 0 > 'x6';

Functions and Operators

570

-> 0
mysql> SELECT 0 = 'x6';

-> 1

Note that when you are comparing a string column with a number, MySQL can't use an index on the
column to quickly look up the value. If str_col is an indexed string column, the index cannot be
used when performing the lookup in the following statement:

SELECT * FROM tbl_name WHERE str_col=1;

The reason for this is that there are many different strings that may convert to the value 1: '1',
' 1', '1a', ...

• =

Equal:

mysql> SELECT 1 = 0;
-> 0

mysql> SELECT '0' = 0;
-> 1

mysql> SELECT '0.0' = 0;
-> 1

mysql> SELECT '0.01' = 0;
-> 0

mysql> SELECT '.01' = 0.01;
-> 1

• <=>

NULL-safe equal. This operator performs an equality comparison like the = operator, but returns
1 rather than NULL if both operands are NULL, and 0 rather than NULL if one operand is NULL.

mysql> SELECT 1 <=> 1, NULL <=> NULL, 1 <=> NULL;
-> 1, 1, 0

mysql> SELECT 1 = 1, NULL = NULL, 1 = NULL;
-> 1, NULL, NULL

<=> was added in MySQL 3.23.0.

• <> , !=

Not equal:

mysql> SELECT '.01' <> '0.01';
-> 1

mysql> SELECT .01 <> '0.01';
-> 0

mysql> SELECT 'zapp' <> 'zappp';
-> 1

Functions and Operators

571

• <=

Less than or equal:

mysql> SELECT 0.1 <= 2;
-> 1

• <

Less than:

mysql> SELECT 2 < 2;
-> 0

• >=

Greater than or equal:

mysql> SELECT 2 >= 2;
-> 1

• >

Greater than:

mysql> SELECT 2 > 2;
-> 0

• IS boolean_value , IS NOT boolean_value

Tests whether a value against a boolean value, where boolean_value can be TRUE, FALSE,
or UNKNOWN.

mysql> SELECT 1 IS TRUE, 0 IS FALSE, NULL IS UNKNOWN;
-> 1, 1, 1

mysql> SELECT 1 IS NOT UNKNOWN, 0 IS NOT UNKNOWN, NULL IS NOT UNKNOWN;
-> 1, 1, 0

IS [NOT] boolean_value syntax was added in MySQL 5.0.2.

Functions and Operators

572

• IS NULL , IS NOT NULL

Tests whether a value is or is not NULL.

mysql> SELECT 1 IS NULL, 0 IS NULL, NULL IS NULL;
-> 0, 0, 1

mysql> SELECT 1 IS NOT NULL, 0 IS NOT NULL, NULL IS NOT NULL;
-> 1, 1, 0

To be able to work well with ODBC programs, MySQL supports the following extra features
when using IS NULL:

• You can find the row that contains the most recent AUTO_INCREMENT value by issuing a
statement of the following form immediately after generating the value:

SELECT * FROM tbl_name WHERE auto_col IS NULL

This behavior can be disabled by setting SQL_AUTO_IS_NULL=0. See Section 13.5.3,
“SET Syntax”.

• For DATE and DATETIME columns that are declared as NOT NULL, you can find the spe-
cial date '0000-00-00' by using a statement like this:

SELECT * FROM tbl_name WHERE date_column IS NULL

This is needed to get some ODBC applications to work because ODBC doesn't support a
'0000-00-00' date value.

• expr BETWEEN min AND max

If expr is greater than or equal to min and expr is less than or equal to max, BETWEEN re-
turns 1, otherwise it returns 0. This is equivalent to the expression (min <= expr AND ex-
pr <= max) if all the arguments are of the same type. Otherwise type conversion takes place
according to the rules described at the beginning of this section, but applied to all the three argu-
ments. Note: Before MySQL 4.0.5, arguments were converted to the type of expr instead.

mysql> SELECT 1 BETWEEN 2 AND 3;
-> 0

mysql> SELECT 'b' BETWEEN 'a' AND 'c';
-> 1

mysql> SELECT 2 BETWEEN 2 AND '3';
-> 1

mysql> SELECT 2 BETWEEN 2 AND 'x-3';
-> 0

• expr NOT BETWEEN min AND max

This is the same as NOT (expr BETWEEN min AND max).

Functions and Operators

573

• COALESCE(value,...)

Returns the first non-NULL value in the list.

mysql> SELECT COALESCE(NULL,1);
-> 1

mysql> SELECT COALESCE(NULL,NULL,NULL);
-> NULL

COALESCE() was added in MySQL 3.23.3.

• GREATEST(value1,value2,...)

With two or more arguments, returns the largest (maximum-valued) argument. The arguments
are compared using the same rules as for LEAST().

mysql> SELECT GREATEST(2,0);
-> 2

mysql> SELECT GREATEST(34.0,3.0,5.0,767.0);
-> 767.0

mysql> SELECT GREATEST('B','A','C');
-> 'C'

Before MySQL 3.22.5, you can use MAX() instead of GREATEST().

• expr IN (value,...)

Returns 1 if expr is any of the values in the IN list, else returns 0. If all values are constants,
they are evaluated according to the type of expr and sorted. The search for the item then is
done using a binary search. This means IN is very quick if the IN value list consists entirely of
constants. If expr is a case-sensitive string expression, the string comparison is performed in
case-sensitive fashion.

mysql> SELECT 2 IN (0,3,5,'wefwf');
-> 0

mysql> SELECT 'wefwf' IN (0,3,5,'wefwf');
-> 1

The number of values in the IN list is only limited by the max_allowed_packet value.

To comply with the SQL standard, from MySQL 4.1 on IN returns NULL not only if the expres-
sion on the left hand side is NULL, but also if no match is found in the list and one of the expres-
sions in the list is NULL.

From MySQL 4.1 on, IN() syntax also is used to write certain types of subqueries. See Sec-
tion 13.1.8.3, “Subqueries with ANY, IN, and SOME”.

• expr NOT IN (value,...)

This is the same as NOT (expr IN (value,...)).

Functions and Operators

574

• ISNULL(expr)

If expr is NULL, ISNULL() returns 1, otherwise it returns 0.

mysql> SELECT ISNULL(1+1);
-> 0

mysql> SELECT ISNULL(1/0);
-> 1

A comparison of NULL values using = is always false.

• INTERVAL(N,N1,N2,N3,...)

Returns 0 if N < N1, 1 if N < N2 and so on or -1 if N is NULL. All arguments are treated as in-
tegers. It is required that N1 < N2 < N3 < ... < Nn for this function to work correctly. This is
because a binary search is used (very fast).

mysql> SELECT INTERVAL(23, 1, 15, 17, 30, 44, 200);
-> 3

mysql> SELECT INTERVAL(10, 1, 10, 100, 1000);
-> 2

mysql> SELECT INTERVAL(22, 23, 30, 44, 200);
-> 0

• LEAST(value1,value2,...)

With two or more arguments, returns the smallest (minimum-valued) argument. The arguments
are compared using the following rules.

• If the return value is used in an INTEGER context or all arguments are integer-valued, they
are compared as integers.

• If the return value is used in a REAL context or all arguments are real-valued, they are com-
pared as reals.

• If any argument is a case-sensitive string, the arguments are compared as case-sensitive
strings.

• In other cases, the arguments are compared as case-insensitive strings.

mysql> SELECT LEAST(2,0);
-> 0

mysql> SELECT LEAST(34.0,3.0,5.0,767.0);
-> 3.0

mysql> SELECT LEAST('B','A','C');
-> 'A'

Before MySQL 3.22.5, you can use MIN() instead of LEAST().

Note that the preceding conversion rules can produce strange results in some borderline cases:

Functions and Operators

575

mysql> SELECT CAST(LEAST(3600, 9223372036854775808.0) as SIGNED);
-> -9223372036854775808

This happens because MySQL reads 9223372036854775808.0 in an integer context. The
integer representation is not good enough to hold the value, so it wraps to a signed integer.

12.1.4. Logical Operators
In SQL, all logical operators evaluate to TRUE, FALSE, or NULL (UNKNOWN). In MySQL, these
are implemented as 1 (TRUE), 0 (FALSE), and NULL. Most of this is common to different SQL
database servers, although some servers may return any non-zero value for TRUE.

• NOT , !

Logical NOT. Evaluates to 1 if the operand is 0, to 0 if the operand is non-zero, and NOT
NULL returns NULL.

mysql> SELECT NOT 10;
-> 0

mysql> SELECT NOT 0;
-> 1

mysql> SELECT NOT NULL;
-> NULL

mysql> SELECT ! (1+1);
-> 0

mysql> SELECT ! 1+1;
-> 1

The last example produces 1 because the expression evaluates the same way as (!1)+1.

• AND , &&

Logical AND. Evaluates to 1 if all operands are non-zero and not NULL, to 0 if one or more op-
erands are 0, otherwise NULL is returned.

mysql> SELECT 1 && 1;
-> 1

mysql> SELECT 1 && 0;
-> 0

mysql> SELECT 1 && NULL;
-> NULL

mysql> SELECT 0 && NULL;
-> 0

mysql> SELECT NULL && 0;
-> 0

Please note that MySQL versions prior to 4.0.5 stop evaluation when a NULL is encountered,
rather than continuing the process to check for possible 0 values. This means that in these ver-
sions, SELECT (NULL AND 0) returns NULL instead of 0. As of MySQL 4.0.5, the code has
been re-engineered so that the result is always as prescribed by the SQL standards while still us-
ing the optimization wherever possible.

Functions and Operators

576

• OR , ||

Logical OR. When both operands are non-NULL, the result is 1 if any operand is non-zero, and
0 otherwise. With a NULL operand, the result is 1 if the other operand is non-zero, and NULL
otherwise. If both operands are NULL, the result is NULL.

mysql> SELECT 1 || 1;
-> 1

mysql> SELECT 1 || 0;
-> 1

mysql> SELECT 0 || 0;
-> 0

mysql> SELECT 0 || NULL;
-> NULL

mysql> SELECT 1 || NULL;
-> 1

• XOR

Logical XOR. Returns NULL if either operand is NULL. For non-NULL operands, evaluates to 1
if an odd number of operands is non-zero, otherwise 0 is returned.

mysql> SELECT 1 XOR 1;
-> 0

mysql> SELECT 1 XOR 0;
-> 1

mysql> SELECT 1 XOR NULL;
-> NULL

mysql> SELECT 1 XOR 1 XOR 1;
-> 1

a XOR b is mathematically equal to (a AND (NOT b)) OR ((NOT a) and b).

XOR was added in MySQL 4.0.2.

12.2. Control Flow Functions

• CASE value WHEN [compare-value] THEN result [WHEN
[compare-value] THEN result ...] [ELSE result] END , CASE WHEN
[condition] THEN result [WHEN [condition] THEN result ...] [ELSE
result] END

The first version returns the result where value=compare-value. The second version
returns the result for the first condition that is true. If there was no matching result value, the res-
ult after ELSE is returned, or NULL if there is no ELSE part.

mysql> SELECT CASE 1 WHEN 1 THEN 'one'
-> WHEN 2 THEN 'two' ELSE 'more' END;

-> 'one'
mysql> SELECT CASE WHEN 1>0 THEN 'true' ELSE 'false' END;

-> 'true'
mysql> SELECT CASE BINARY 'B'

-> WHEN 'a' THEN 1 WHEN 'b' THEN 2 END;
-> NULL

Functions and Operators

577

The type of the return value (INTEGER, DOUBLE, or STRING) is the same as the type of the
first returned value (the expression after the first THEN).

CASE was added in MySQL 3.23.3.

• IF(expr1,expr2,expr3)

If expr1 is TRUE (expr1 <> 0 and expr1 <> NULL) then IF() returns expr2, else it
returns expr3. IF() returns a numeric or string value, depending on the context in which it is
used.

mysql> SELECT IF(1>2,2,3);
-> 3

mysql> SELECT IF(1<2,'yes','no');
-> 'yes'

mysql> SELECT IF(STRCMP('test','test1'),'no','yes');
-> 'no'

If only one of expr2 or expr3 is explicitly NULL, the result type of the IF() function is the
type of non-NULL expression. (This behavior is new in MySQL 4.0.3.)

expr1 is evaluated as an integer value, which means that if you are testing floating-point or
string values, you should do so using a comparison operation.

mysql> SELECT IF(0.1,1,0);
-> 0

mysql> SELECT IF(0.1<>0,1,0);
-> 1

In the first case shown, IF(0.1) returns 0 because 0.1 is converted to an integer value, res-
ulting in a test of IF(0). This may not be what you expect. In the second case, the comparison
tests the original floating-point value to see whether it is non-zero. The result of the comparison
is used as an integer.

The default return type of IF() (which may matter when it is stored into a temporary table) is
calculated in MySQL 3.23 as follows:

Expression Return Value

expr2 or expr3 returns a string string

expr2 or expr3 returns a floating-point value floating-point

expr2 or expr3 returns an integer integer

If expr2 and expr3 are strings, the result is case sensitive if either string is case sensitive
(starting from MySQL 3.23.51).

• IFNULL(expr1,expr2)

If expr1 is not NULL, IFNULL() returns expr1, else it returns expr2. IFNULL() returns a
numeric or string value, depending on the context in which it is used.

Functions and Operators

578

mysql> SELECT IFNULL(1,0);
-> 1

mysql> SELECT IFNULL(NULL,10);
-> 10

mysql> SELECT IFNULL(1/0,10);
-> 10

mysql> SELECT IFNULL(1/0,'yes');
-> 'yes'

In MySQL 4.0.6 and above, the default result value of IFNULL(expr1,expr2) is the more
``general'' of the two expressions, in the order STRING, REAL, or INTEGER. The difference
from earlier MySQL versions is mostly notable when you create a table based on expressions or
MySQL has to internally store a value from IFNULL() in a temporary table.

CREATE TABLE tmp SELECT IFNULL(1,'test') AS test;

As of MySQL 4.0.6, the type for the test column is CHAR(4), whereas in earlier versions the
type would be BIGINT.

• NULLIF(expr1,expr2)

Returns NULL if expr1 = expr2 is true, else returns expr1. This is the same as CASE
WHEN expr1 = expr2 THEN NULL ELSE expr1 END.

mysql> SELECT NULLIF(1,1);
-> NULL

mysql> SELECT NULLIF(1,2);
-> 1

Note that MySQL evaluates expr1 twice if the arguments are not equal.

NULLIF() was added in MySQL 3.23.15.

12.3. String Functions
String-valued functions return NULL if the length of the result would be greater than the value of the
max_allowed_packet system variable. See Section 7.5.2, “Tuning Server Parameters”.

For functions that operate on string positions, the first position is numbered 1.

• ASCII(str)

Returns the numeric value of the leftmost character of the string str. Returns 0 if str is the
empty string. Returns NULL if str is NULL. ASCII() works for characters with numeric val-
ues from 0 to 255.

mysql> SELECT ASCII('2');
-> 50

mysql> SELECT ASCII(2);
-> 50

mysql> SELECT ASCII('dx');

Functions and Operators

579

-> 100

See also the ORD() function.

• BIN(N)

Returns a string representation of the binary value of N, where N is a longlong (BIGINT) num-
ber. This is equivalent to CONV(N,10,2). Returns NULL if N is NULL.

mysql> SELECT BIN(12);
-> '1100'

• BIT_LENGTH(str)

Returns the length of the string str in bits.

mysql> SELECT BIT_LENGTH('text');
-> 32

BIT_LENGTH() was added in MySQL 4.0.2.

• CHAR(N,...)

CHAR() interprets the arguments as integers and returns a string consisting of the characters
given by the code values of those integers. NULL values are skipped.

mysql> SELECT CHAR(77,121,83,81,'76');
-> 'MySQL'

mysql> SELECT CHAR(77,77.3,'77.3');
-> 'MMM'

• CHAR_LENGTH(str)

Returns the length of the string str, measured in characters. A multi-byte character counts as a
single character. This means that for a string containing five two-byte characters, LENGTH() re-
turns 10, whereas CHAR_LENGTH() returns 5.

• CHARACTER_LENGTH(str)

CHARACTER_LENGTH() is a synonym for CHAR_LENGTH().

• COMPRESS(string_to_compress)

Compresses a string. This function requires MySQL to have been compiled with a compression

Functions and Operators

580

library such as zlib. Otherwise, the return value is always NULL. The compressed string can
be uncompressed with UNCOMPRESS().

mysql> SELECT LENGTH(COMPRESS(REPEAT('a',1000)));
-> 21

mysql> SELECT LENGTH(COMPRESS(''));
-> 0

mysql> SELECT LENGTH(COMPRESS('a'));
-> 13

mysql> SELECT LENGTH(COMPRESS(REPEAT('a',16)));
-> 15

The compressed string contents are stored the following way:

• Empty strings are stored as empty strings.

• Non-empty strings are stored as a four-byte length of the uncompressed string (low byte
first), followed by the compressed string. If the string ends with space, an extra '.' character
is added to avoid problems with endspace trimming should the result be stored in a CHAR or
VARCHAR column. (Use of CHAR or VARCHAR to store compressed strings is not recom-
mended. It is better to use a BLOB column instead.)

COMPRESS() was added in MySQL 4.1.1.

• CONCAT(str1,str2,...)

Returns the string that results from concatenating the arguments. Returns NULL if any argument
is NULL. May have one or more arguments. If all arguments are non-binary strings, the result is
a non-binary string. If the arguments include any binary strings, the result is a binary string. A
numeric argument is converted to its equivalent binary string form.

mysql> SELECT CONCAT('My', 'S', 'QL');
-> 'MySQL'

mysql> SELECT CONCAT('My', NULL, 'QL');
-> NULL

mysql> SELECT CONCAT(14.3);
-> '14.3'

• CONCAT_WS(separator,str1,str2,...)

CONCAT_WS() stands for CONCAT With Separator and is a special form of CONCAT(). The
first argument is the separator for the rest of the arguments. The separator is added between the
strings to be concatenated. The separator can be a string as can the rest of the arguments. If the
separator is NULL, the result is NULL. The function skips any NULL values after the separator
argument.

mysql> SELECT CONCAT_WS(',','First name','Second name','Last Name');
-> 'First name,Second name,Last Name'

mysql> SELECT CONCAT_WS(',','First name',NULL,'Last Name');
-> 'First name,Last Name'

Before MySQL 4.0.14, CONCAT_WS() skips empty strings as well as NULL values.

Functions and Operators

581

• CONV(N,from_base,to_base)

Converts numbers between different number bases. Returns a string representation of the num-
ber N, converted from base from_base to base to_base. Returns NULL if any argument is
NULL. The argument N is interpreted as an integer, but may be specified as an integer or a string.
The minimum base is 2 and the maximum base is 36. If to_base is a negative number, N is
regarded as a signed number. Otherwise, N is treated as unsigned. CONV() works with 64-bit
precision.

mysql> SELECT CONV('a',16,2);
-> '1010'

mysql> SELECT CONV('6E',18,8);
-> '172'

mysql> SELECT CONV(-17,10,-18);
-> '-H'

mysql> SELECT CONV(10+'10'+'10'+0xa,10,10);
-> '40'

• ELT(N,str1,str2,str3,...)

Returns str1 if N = 1, str2 if N = 2, and so on. Returns NULL if N is less than 1 or greater
than the number of arguments. ELT() is the complement of FIELD().

mysql> SELECT ELT(1, 'ej', 'Heja', 'hej', 'foo');
-> 'ej'

mysql> SELECT ELT(4, 'ej', 'Heja', 'hej', 'foo');
-> 'foo'

• EXPORT_SET(bits,on,off[,separator[,number_of_bits]])

Returns a string in which for every bit set in the value bits, you get an on string and for every
reset bit you get an off string. Bits in bits are examined from right to left (from low-order to
high-order bits). Strings are added to the result from left to right, separated by the separator
string (default ','). The number of bits examined is given by number_of_bits (default 64).

mysql> SELECT EXPORT_SET(5,'Y','N',',',4);
-> 'Y,N,Y,N'

mysql> SELECT EXPORT_SET(6,'1','0',',',10);
-> '0,1,1,0,0,0,0,0,0,0'

• FIELD(str,str1,str2,str3,...)

Returns the index of str in the str1, str2, str3, ... list. Returns 0 if str is not found. If
str is NULL, the return value is 0 because NULL fails equality comparison with any value.
FIELD() is the complement of ELT().

Functions and Operators

582

mysql> SELECT FIELD('ej', 'Hej', 'ej', 'Heja', 'hej', 'foo');
-> 2

mysql> SELECT FIELD('fo', 'Hej', 'ej', 'Heja', 'hej', 'foo');
-> 0

• FIND_IN_SET(str,strlist)

Returns a value 1 to N if the string str is in the string list strlist consisting of N substrings.
A string list is a string composed of substrings separated by ',' characters. If the first argument is
a constant string and the second is a column of type SET, the FIND_IN_SET() function is op-
timized to use bit arithmetic. Returns 0 if str is not in strlist or if strlist is the empty
string. Returns NULL if either argument is NULL. This function does not work properly if the
first argument contains a comma (',') character.

mysql> SELECT FIND_IN_SET('b','a,b,c,d');
-> 2

• HEX(N_or_S)

If N_OR_S is a number, returns a string representation of the hexadecimal value of N, where N is
a longlong (BIGINT) number. This is equivalent to CONV(N,10,16).

From MySQL 4.0.1 and up, if N_OR_S is a string, returns a hexadecimal string of N_OR_S
where each character in N_OR_S is converted to two hexadecimal digits.

mysql> SELECT HEX(255);
-> 'FF'

mysql> SELECT 0x616263;
-> 'abc'

mysql> SELECT HEX('abc');
-> 616263

• INSERT(str,pos,len,newstr)

Returns the string str, with the substring beginning at position pos and len characters long
replaced by the string newstr. Returns the original string if pos is not within the length of the
string. Replaces the rest of the string from position pos is len is not within the length of the
rest of the string. Returns NULL if any argument is null.

mysql> SELECT INSERT('Quadratic', 3, 4, 'What');
-> 'QuWhattic'

mysql> SELECT INSERT('Quadratic', -1, 4, 'What');
-> 'Quadratic'

mysql> SELECT INSERT('Quadratic', 3, 100, 'What');
-> 'QuWhat'

This function is multi-byte safe.

Functions and Operators

583

• INSTR(str,substr)

Returns the position of the first occurrence of substring substr in string str. This is the same
as the two-argument form of LOCATE(), except that the arguments are swapped.

mysql> SELECT INSTR('foobarbar', 'bar');
-> 4

mysql> SELECT INSTR('xbar', 'foobar');
-> 0

This function is multi-byte safe. In MySQL 3.23, this function is case sensitive. For 4.0 on, it is
case sensitive only if either argument is a binary string.

• LCASE(str)

LCASE() is a synonym for LOWER().

• LEFT(str,len)

Returns the leftmost len characters from the string str.

mysql> SELECT LEFT('foobarbar', 5);
-> 'fooba'

• LENGTH(str)

Returns the length of the string str, measured in bytes. A multi-byte character counts as mul-
tiple bytes. This means that for a string containing five two-byte characters, LENGTH() returns
10, whereas CHAR_LENGTH() returns 5.

mysql> SELECT LENGTH('text');
-> 4

• LOAD_FILE(file_name)

Reads the file and returns the file contents as a string. The file must be located on the server, you
must specify the full pathname to the file, and you must have the FILE privilege. The file must
be readable by all and be smaller than max_allowed_packet bytes.

If the file doesn't exist or cannot be read because one of the preceding conditions is not satisfied,
the function returns NULL.

mysql> UPDATE tbl_name
SET blob_column=LOAD_FILE('/tmp/picture')
WHERE id=1;

Functions and Operators

584

Before MySQL 3.23, you must read the file inside your application and create an INSERT state-
ment to update the database with the file contents. If you are using the MySQL++ library, one
way to do this can be found in the MySQL++ manual, available at http://dev.mysql.com/doc/.

• LOCATE(substr,str) , LOCATE(substr,str,pos)

The first syntax returns the position of the first occurrence of substring substr in string str.
The second syntax returns the position of the first occurrence of substring substr in string
str, starting at position pos. Returns 0 if substr is not in str.

mysql> SELECT LOCATE('bar', 'foobarbar');
-> 4

mysql> SELECT LOCATE('xbar', 'foobar');
-> 0

mysql> SELECT LOCATE('bar', 'foobarbar',5);
-> 7

This function is multi-byte safe. In MySQL 3.23, this function is case sensitive. For 4.0 on, it is
case sensitive only if either argument is a binary string.

• LOWER(str)

Returns the string str with all characters changed to lowercase according to the current charac-
ter set mapping (the default is ISO-8859-1 Latin1).

mysql> SELECT LOWER('QUADRATICALLY');
-> 'quadratically'

This function is multi-byte safe.

• LPAD(str,len,padstr)

Returns the string str, left-padded with the string padstr to a length of len characters. If
str is longer than len, the return value is shortened to len characters.

mysql> SELECT LPAD('hi',4,'??');
-> '??hi'

mysql> SELECT LPAD('hi',1,'??');
-> 'h'

• LTRIM(str)

Returns the string str with leading space characters removed.

mysql> SELECT LTRIM(' barbar');
-> 'barbar'

Functions and Operators

585

http://dev.mysql.com/doc/

This function is multi-byte safe.

• MAKE_SET(bits,str1,str2,...)

Returns a set value (a string containing substrings separated by ',' characters) consisting of the
strings that have the corresponding bit in bits set. str1 corresponds to bit 0, str2 to bit 1,
and so on. NULL values in str1, str2, ... are not appended to the result.

mysql> SELECT MAKE_SET(1,'a','b','c');
-> 'a'

mysql> SELECT MAKE_SET(1 | 4,'hello','nice','world');
-> 'hello,world'

mysql> SELECT MAKE_SET(1 | 4,'hello','nice',NULL,'world');
-> 'hello'

mysql> SELECT MAKE_SET(0,'a','b','c');
-> ''

• MID(str,pos,len)

MID(str,pos,len) is a synonym for SUBSTRING(str,pos,len).

• OCT(N)

Returns a string representation of the octal value of N, where N is a longlong (BIGINT)number.
This is equivalent to CONV(N,10,8). Returns NULL if N is NULL.

mysql> SELECT OCT(12);
-> '14'

• OCTET_LENGTH(str)

OCTET_LENGTH() is a synonym for LENGTH().

• ORD(str)

If the leftmost character of the string str is a multi-byte character, returns the code for that
character, calculated from the numeric values of its constituent bytes using this formula:

(1st byte code)
+ (2nd byte code * 256)
+ (3rd byte code * 256^2) ...

If the leftmost character is not a multi-byte character, ORD() returns the same value as the AS-
CII() function.

Functions and Operators

586

mysql> SELECT ORD('2');
-> 50

• POSITION(substr IN str)

POSITION(substr IN str) is a synonym for LOCATE(substr,str).

• QUOTE(str)

Quotes a string to produce a result that can be used as a properly escaped data value in an SQL
statement. The string is returned surrounded by single quotes and with each instance of single
quote ('''), backslash ('\'), ASCII NUL, and Control-Z preceded by a backslash. If the argument
is NULL, the return value is the word ``NULL'' without surrounding single quotes. The
QUOTE() function was added in MySQL 4.0.3.

mysql> SELECT QUOTE('Don\'t!');
-> 'Don\'t!'

mysql> SELECT QUOTE(NULL);
-> NULL

• REPEAT(str,count)

Returns a string consisting of the string str repeated count times. If count <= 0, returns
an empty string. Returns NULL if str or count are NULL.

mysql> SELECT REPEAT('MySQL', 3);
-> 'MySQLMySQLMySQL'

• REPLACE(str,from_str,to_str)

Returns the string str with all occurrences of the string from_str replaced by the string
to_str.

mysql> SELECT REPLACE('www.mysql.com', 'w', 'Ww');
-> 'WwWwWw.mysql.com'

This function is multi-byte safe.

• REVERSE(str)

Returns the string str with the order of the characters reversed.

mysql> SELECT REVERSE('abc');

Functions and Operators

587

-> 'cba'

This function is multi-byte safe.

• RIGHT(str,len)

Returns the rightmost len characters from the string str.

mysql> SELECT RIGHT('foobarbar', 4);
-> 'rbar'

This function is multi-byte safe.

• RPAD(str,len,padstr)

Returns the string str, right-padded with the string padstr to a length of len characters. If
str is longer than len, the return value is shortened to len characters.

mysql> SELECT RPAD('hi',5,'?');
-> 'hi???'

mysql> SELECT RPAD('hi',1,'?');
-> 'h'

This function is multi-byte safe.

• RTRIM(str)

Returns the string str with trailing space characters removed.

mysql> SELECT RTRIM('barbar ');
-> 'barbar'

This function is multi-byte safe.

• SOUNDEX(str)

Returns a soundex string from str. Two strings that sound almost the same should have
identical soundex strings. A standard soundex string is four characters long, but the SOUN-
DEX() function returns an arbitrarily long string. You can use SUBSTRING() on the result to
get a standard soundex string. All non-alphabetic characters are ignored in the given string. All
international alphabetic characters outside the A-Z range are treated as vowels.

mysql> SELECT SOUNDEX('Hello');
-> 'H400'

mysql> SELECT SOUNDEX('Quadratically');
-> 'Q36324'

Functions and Operators

588

Note: This function implements the original Soundex algorithm, not the more popular enhanced
version (also described by D. Knuth). The difference is that original version discards vowels first
and then duplicates, whereas the enhanced version discards duplicates first and then vowels.

• expr1 SOUNDS LIKE expr2

This is the same as SOUNDEX(expr1) = SOUNDEX(expr2). It is available only in
MySQL 4.1 or later.

• SPACE(N)

Returns a string consisting of N space characters.

mysql> SELECT SPACE(6);
-> ' '

• SUBSTRING(str,pos) , SUBSTRING(str FROM pos) ,
SUBSTRING(str,pos,len) , SUBSTRING(str FROM pos FOR len)

The forms without a len argument return a substring from string str starting at position pos.
The forms with a len argument return a substring len characters long from string str, start-
ing at position pos. The forms that use FROM are standard SQL syntax.

mysql> SELECT SUBSTRING('Quadratically',5);
-> 'ratically'

mysql> SELECT SUBSTRING('foobarbar' FROM 4);
-> 'barbar'

mysql> SELECT SUBSTRING('Quadratically',5,6);
-> 'ratica'

This function is multi-byte safe.

• SUBSTRING_INDEX(str,delim,count)

Returns the substring from string str before count occurrences of the delimiter delim. If
count is positive, everything to the left of the final delimiter (counting from the left) is re-
turned. If count is negative, everything to the right of the final delimiter (counting from the
right) is returned.

mysql> SELECT SUBSTRING_INDEX('www.mysql.com', '.', 2);
-> 'www.mysql'

mysql> SELECT SUBSTRING_INDEX('www.mysql.com', '.', -2);
-> 'mysql.com'

This function is multi-byte safe.

Functions and Operators

589

• TRIM([{BOTH | LEADING | TRAILING} [remstr] FROM] str) , TRIM(rem-
str FROM] str)

Returns the string str with all remstr prefixes and/or suffixes removed. If none of the spe-
cifiers BOTH, LEADING, or TRAILING is given, BOTH is assumed. If remstr is optional and
not specified, spaces are removed.

mysql> SELECT TRIM(' bar ');
-> 'bar'

mysql> SELECT TRIM(LEADING 'x' FROM 'xxxbarxxx');
-> 'barxxx'

mysql> SELECT TRIM(BOTH 'x' FROM 'xxxbarxxx');
-> 'bar'

mysql> SELECT TRIM(TRAILING 'xyz' FROM 'barxxyz');
-> 'barx'

This function is multi-byte safe.

• UCASE(str)

UCASE() is a synonym for UPPER().

• UNCOMPRESS(string_to_uncompress)

Uncompresses a string compressed by the COMPRESS() function. If the argument is not a com-
pressed value, the result is NULL. This function requires MySQL to have been compiled with a
compression library such as zlib. Otherwise, the return value is always NULL.

mysql> SELECT UNCOMPRESS(COMPRESS('any string'));
-> 'any string'

mysql> SELECT UNCOMPRESS('any string');
-> NULL

UNCOMPRESS() was added in MySQL 4.1.1.

• UNCOMPRESSED_LENGTH(compressed_string)

Returns the length of a compressed string before compression.

mysql> SELECT UNCOMPRESSED_LENGTH(COMPRESS(REPEAT('a',30)));
-> 30

UNCOMPRESSED_LENGTH() was added in MySQL 4.1.1.

• UNHEX(str)

Does the opposite of HEX(str). That is, it interprets each pair of hexadecimal digits in the ar-

Functions and Operators

590

gument as a number and converts it to the character represented by the number. The resulting
characters are returned as a binary string.

mysql> SELECT UNHEX('4D7953514C');
-> 'MySQL'

mysql> SELECT 0x4D7953514C;
-> 'MySQL'

mysql> SELECT UNHEX(HEX('string'));
-> 'string'

mysql> SELECT HEX(UNHEX('1267'));
-> '1267'

UNHEX() was added in MySQL 4.1.2.

• UPPER(str)

Returns the string str with all characters changed to uppercase according to the current charac-
ter set mapping (the default is ISO-8859-1 Latin1).

mysql> SELECT UPPER('Hej');
-> 'HEJ'

This function is multi-byte safe.

12.3.1. String Comparison Functions
MySQL automatically converts numbers to strings as necessary, and vice versa.

mysql> SELECT 1+'1';
-> 2

mysql> SELECT CONCAT(2,' test');
-> '2 test'

If you want to convert a number to a string explicitly, use the CAST() or CONCAT() function:

mysql> SELECT 38.8, CAST(38.8 AS CHAR);
-> 38.8, '38.8'

mysql> SELECT 38.8, CONCAT(38.8);
-> 38.8, '38.8'

CAST() is preferable, but it is unavailable before MySQL 4.0.2.

If a string function is given a binary string as an argument, the resulting string is also a binary string.
A number converted to a string is treated as a binary string. This affects only comparisons.

Normally, if any expression in a string comparison is case sensitive, the comparison is performed in
case-sensitive fashion.

• expr LIKE pat [ESCAPE 'escape-char']

Pattern matching using SQL simple regular expression comparison. Returns 1 (TRUE) or 0
(FALSE). If either expr or pat is NULL, the result is NULL.

The pattern need not be a literal string. For example, it can be specified as a string expression or

Functions and Operators

591

table column.

With LIKE you can use the following two wildcard characters in the pattern:

Character Description

% Matches any number of characters, even zero characters

_ Matches exactly one character

mysql> SELECT 'David!' LIKE 'David_';
-> 1

mysql> SELECT 'David!' LIKE '%D%v%';
-> 1

To test for literal instances of a wildcard character, precede the character with the escape charac-
ter. If you don't specify the ESCAPE character, '\' is assumed.

String Description

\% Matches one '%' character

_ Matches one '_' character

mysql> SELECT 'David!' LIKE 'David_';
-> 0

mysql> SELECT 'David_' LIKE 'David_';
-> 1

To specify a different escape character, use the ESCAPE clause:

mysql> SELECT 'David_' LIKE 'David|_' ESCAPE '|';
-> 1

The following two statements illustrate that string comparisons are not case sensitive unless one
of the operands is a binary string:

mysql> SELECT 'abc' LIKE 'ABC';
-> 1

mysql> SELECT 'abc' LIKE BINARY 'ABC';
-> 0

In MySQL, LIKE is allowed on numeric expressions. (This is an extension to the standard SQL
LIKE.)

mysql> SELECT 10 LIKE '1%';
-> 1

Note: Because MySQL uses the C escape syntax in strings (for example, '\n' to represent
newline), you must double any '\' that you use in your LIKE strings. For example, to search for
'\n', specify it as '\\n'. To search for '\', specify it as '\\\\' (the backslashes are stripped once
by the parser and another time when the pattern match is done, leaving a single backslash to be
matched).

Functions and Operators

592

• expr NOT LIKE pat [ESCAPE 'escape-char']

This is the same as NOT (expr LIKE pat [ESCAPE 'escape-char']).

• expr NOT REGEXP pat , expr NOT RLIKE pat

This is the same as NOT (expr REGEXP pat).

• expr REGEXP pat , expr RLIKE pat

Performs a pattern match of a string expression expr against a pattern pat. The pattern can be
an extended regular expression. The syntax for regular expressions is discussed in Appendix G,
MySQL Regular Expressions. Returns 1 if expr matches pat, otherwise returns 0. If either
expr or pat is NULL, the result is NULL. RLIKE is a synonym for REGEXP, provided for
mSQL compatibility.

The pattern need not be a literal string. For example, it can be specified as a string expression or
table column.

Note: Because MySQL uses the C escape syntax in strings (for example, '\n' to represent
newline), you must double any '\' that you use in your REGEXP strings.

As of MySQL 3.23.4, REGEXP is not case sensitive for normal (not binary) strings.

mysql> SELECT 'Monty!' REGEXP 'm%y%%';
-> 0

mysql> SELECT 'Monty!' REGEXP '.*';
-> 1

mysql> SELECT 'new*\n*line' REGEXP 'new*.*line';
-> 1

mysql> SELECT 'a' REGEXP 'A', 'a' REGEXP BINARY 'A';
-> 1 0

mysql> SELECT 'a' REGEXP '^[a-d]';
-> 1

REGEXP and RLIKE use the current character set (ISO-8859-1 Latin1 by default) when decid-
ing the type of a character. However, these operators are not multi-byte safe.

• STRCMP(expr1,expr2)

STRCMP() returns 0 if the strings are the same, -1 if the first argument is smaller than the
second according to the current sort order, and 1 otherwise.

mysql> SELECT STRCMP('text', 'text2');
-> -1

mysql> SELECT STRCMP('text2', 'text');
-> 1

mysql> SELECT STRCMP('text', 'text');
-> 0

As of MySQL 4.0, STRCMP() uses the current character set when performing comparisons.
This makes the default comparison behavior case insensitive unless one or both of the operands

Functions and Operators

593

are binary strings. Before MySQL 4.0, STRCMP() is case sensitive.

12.4. Numeric Functions
12.4.1. Arithmetic Operators

The usual arithmetic operators are available. Note that in the case of -, +, and *, the result is calcu-
lated with BIGINT (64-bit) precision if both arguments are integers. If one of the arguments is an
unsigned integer, and the other argument is also an integer, the result is an unsigned integer. See
Section 12.7, “Cast Functions and Operators”.

• +

Addition:

mysql> SELECT 3+5;
-> 8

• -

Subtraction:

mysql> SELECT 3-5;
-> -2

• -

Unary minus. Changes the sign of the argument.

mysql> SELECT - 2;
-> -2

Note that if this operator is used with a BIGINT, the return value is a BIGINT! This means that
you should avoid using - on integers that may have the value of -2^63!

• *

Multiplication:

mysql> SELECT 3*5;
-> 15

mysql> SELECT 18014398509481984*18014398509481984.0;
-> 324518553658426726783156020576256.0

mysql> SELECT 18014398509481984*18014398509481984;
-> 0

Functions and Operators

594

The result of the last expression is incorrect because the result of the integer multiplication ex-
ceeds the 64-bit range of BIGINT calculations.

• /

Division:

mysql> SELECT 3/5;
-> 0.60

Division by zero produces a NULL result:

mysql> SELECT 102/(1-1);
-> NULL

A division is calculated with BIGINT arithmetic only if performed in a context where its result
are converted to an integer.

• DIV

Integer division. Similar to FLOOR() but safe with BIGINT values.

mysql> SELECT 5 DIV 2;
-> 2

DIV is new in MySQL 4.1.0.

12.4.2. Mathematical Functions
All mathematical functions return NULL in case of an error.

• ABS(X)

Returns the absolute value of X.

mysql> SELECT ABS(2);
-> 2

mysql> SELECT ABS(-32);
-> 32

This function is safe to use with BIGINT values.

• ACOS(X)

Returns the arc cosine of X, that is, the value whose cosine is X. Returns NULL if X is not in the

Functions and Operators

595

range -1 to 1.

mysql> SELECT ACOS(1);
-> 0.000000

mysql> SELECT ACOS(1.0001);
-> NULL

mysql> SELECT ACOS(0);
-> 1.570796

• ASIN(X)

Returns the arc sine of X, that is, the value whose sine is X. Returns NULL if X is not in the range
-1 to 1.

mysql> SELECT ASIN(0.2);
-> 0.201358

mysql> SELECT ASIN('foo');
-> 0.000000

• ATAN(X)

Returns the arc tangent of X, that is, the value whose tangent is X.

mysql> SELECT ATAN(2);
-> 1.107149

mysql> SELECT ATAN(-2);
-> -1.107149

• ATAN(Y,X) , ATAN2(Y,X)

Returns the arc tangent of the two variables X and Y. It is similar to calculating the arc tangent of
Y / X, except that the signs of both arguments are used to determine the quadrant of the result.

mysql> SELECT ATAN(-2,2);
-> -0.785398

mysql> SELECT ATAN2(PI(),0);
-> 1.570796

• CEILING(X) , CEIL(X)

Returns the smallest integer value not less than X.

mysql> SELECT CEILING(1.23);
-> 2

mysql> SELECT CEIL(-1.23);

Functions and Operators

596

-> -1

Note that the return value is converted to a BIGINT!

The CEIL() alias was added in MySQL 4.0.6.

• COS(X)

Returns the cosine of X, where X is given in radians.

mysql> SELECT COS(PI());
-> -1.000000

• COT(X)

Returns the cotangent of X.

mysql> SELECT COT(12);
-> -1.57267341

mysql> SELECT COT(0);
-> NULL

• CRC32(expr)

Computes a cyclic redundancy check value and returns a 32-bit unsigned value. The result is
NULL if the argument is NULL. The argument is expected be a string and is treated as one if it is
not.

mysql> SELECT CRC32('MySQL');
-> 3259397556

CRC32() is available as of MySQL 4.1.0.

• DEGREES(X)

Returns the argument X, converted from radians to degrees.

mysql> SELECT DEGREES(PI());
-> 180.000000

• EXP(X)

Returns the value of e (the base of natural logarithms) raised to the power of X.

Functions and Operators

597

mysql> SELECT EXP(2);
-> 7.389056

mysql> SELECT EXP(-2);
-> 0.135335

• FLOOR(X)

Returns the largest integer value not greater than X.

mysql> SELECT FLOOR(1.23);
-> 1

mysql> SELECT FLOOR(-1.23);
-> -2

Note that the return value is converted to a BIGINT!

• LN(X)

Returns the natural logarithm of X.

mysql> SELECT LN(2);
-> 0.693147

mysql> SELECT LN(-2);
-> NULL

This function was added in MySQL 4.0.3. It is synonymous with LOG(X) in MySQL.

• LOG(X) , LOG(B,X)

If called with one parameter, this function returns the natural logarithm of X.

mysql> SELECT LOG(2);
-> 0.693147

mysql> SELECT LOG(-2);
-> NULL

If called with two parameters, this function returns the logarithm of X for an arbitrary base B.

mysql> SELECT LOG(2,65536);
-> 16.000000

mysql> SELECT LOG(1,100);
-> NULL

The arbitrary base option was added in MySQL 4.0.3. LOG(B,X) is equivalent to
LOG(X)/LOG(B).

Functions and Operators

598

• LOG2(X)

Returns the base-2 logarithm of X.

mysql> SELECT LOG2(65536);
-> 16.000000

mysql> SELECT LOG2(-100);
-> NULL

LOG2() is useful for finding out how many bits a number would require for storage. This func-
tion was added in MySQL 4.0.3. In earlier versions, you can use LOG(X)/LOG(2) instead.

• LOG10(X)

Returns the base-10 logarithm of X.

mysql> SELECT LOG10(2);
-> 0.301030

mysql> SELECT LOG10(100);
-> 2.000000

mysql> SELECT LOG10(-100);
-> NULL

• MOD(N,M) , N % M , N MOD M

Modulo operation. Returns the remainder of N divided by M.

mysql> SELECT MOD(234, 10);
-> 4

mysql> SELECT 253 % 7;
-> 1

mysql> SELECT MOD(29,9);
-> 2

mysql> SELECT 29 MOD 9;
-> 2

This function is safe to use with BIGINT values. The N MOD M syntax works only as of
MySQL 4.1.

As of MySQL 4.1.7, MOD() works on values with a fractional part and returns the exact re-
mainder after division:

mysql> SELECT MOD(34.5,3);
-> 1.5

Before MySQL 4.1.7, MOD() rounds arguments with a fractional value to integers and returns
an integer result:

mysql> SELECT MOD(34.5,3);

Functions and Operators

599

-> 2

• PI()

Returns the value of PI. The default number of decimals displayed is five, but MySQL internally
uses the full double-precision value for PI.

mysql> SELECT PI();
-> 3.141593

mysql> SELECT PI()+0.000000000000000000;
-> 3.141592653589793116

• POW(X,Y) , POWER(X,Y)

Returns the value of X raised to the power of Y.

mysql> SELECT POW(2,2);
-> 4.000000

mysql> SELECT POW(2,-2);
-> 0.250000

• RADIANS(X)

Returns the argument X, converted from degrees to radians.

mysql> SELECT RADIANS(90);
-> 1.570796

• RAND() , RAND(N)

Returns a random floating-point value in the range from 0 to 1.0. If an integer argument N is
specified, it is used as the seed value (producing a repeatable sequence).

mysql> SELECT RAND();
-> 0.9233482386203

mysql> SELECT RAND(20);
-> 0.15888261251047

mysql> SELECT RAND(20);
-> 0.15888261251047

mysql> SELECT RAND();
-> 0.63553050033332

mysql> SELECT RAND();
-> 0.70100469486881

You can't use a column with RAND() values in an ORDER BY clause, because ORDER BY

Functions and Operators

600

would evaluate the column multiple times. As of MySQL 3.23, you can retrieve rows in random
order like this:

mysql> SELECT * FROM tbl_name ORDER BY RAND();

ORDER BY RAND() combined with LIMIT is useful for selecting a random sample of a set of
rows:

mysql> SELECT * FROM table1, table2 WHERE a=b AND c<d
-> ORDER BY RAND() LIMIT 1000;

Note that RAND() in a WHERE clause is re-evaluated every time the WHERE is executed.

RAND() is not meant to be a perfect random generator, but instead a fast way to generate ad hoc
random numbers that is portable between platforms for the same MySQL version.

• ROUND(X) , ROUND(X,D)

Returns the argument X, rounded to the nearest integer. With two arguments, returns X rounded
to D decimals. If D is negative, the integer part of the number is zeroed out.

mysql> SELECT ROUND(-1.23);
-> -1

mysql> SELECT ROUND(-1.58);
-> -2

mysql> SELECT ROUND(1.58);
-> 2

mysql> SELECT ROUND(1.298, 1);
-> 1.3

mysql> SELECT ROUND(1.298, 0);
-> 1

mysql> SELECT ROUND(23.298, -1);
-> 20

Note that the behavior of ROUND() when the argument is halfway between two integers de-
pends on the C library implementation. Different implementations round to the nearest even
number, always up, always down, or always toward zero. If you need one kind of rounding, you
should use a well-defined function such as TRUNCATE() or FLOOR() instead.

• SIGN(X)

Returns the sign of the argument as -1, 0, or 1, depending on whether X is negative, zero, or
positive.

mysql> SELECT SIGN(-32);
-> -1

mysql> SELECT SIGN(0);
-> 0

mysql> SELECT SIGN(234);
-> 1

Functions and Operators

601

• SIN(X)

Returns the sine of X, where X is given in radians.

mysql> SELECT SIN(PI());
-> 0.000000

• SQRT(X)

Returns the non-negative square root of X.

mysql> SELECT SQRT(4);
-> 2.000000

mysql> SELECT SQRT(20);
-> 4.472136

• TAN(X)

Returns the tangent of X, where X is given in radians.

mysql> SELECT TAN(PI()+1);
-> 1.557408

• TRUNCATE(X,D)

Returns the number X, truncated to D decimals. If D is 0, the result has no decimal point or frac-
tional part. If D is negative, the integer part of the number is zeroed out.

mysql> SELECT TRUNCATE(1.223,1);
-> 1.2

mysql> SELECT TRUNCATE(1.999,1);
-> 1.9

mysql> SELECT TRUNCATE(1.999,0);
-> 1

mysql> SELECT TRUNCATE(-1.999,1);
-> -1.9

mysql> SELECT TRUNCATE(122,-2);
-> 100

Starting from MySQL 3.23.51, all numbers are rounded toward zero.

Note that decimal numbers are normally not stored as exact numbers in computers, but as
double-precision values, so you may be surprised by the following result:

mysql> SELECT TRUNCATE(10.28*100,0);
-> 1027

Functions and Operators

602

This happens because 10.28 is actually stored as something like 10.2799999999999999.

12.5. Date and Time Functions
This section describes the functions that can be used to manipulate temporal values. See Sec-
tion 11.3, “Date and Time Types” for a description of the range of values each date and time type
has and the valid formats in which values may be specified.

Here is an example that uses date functions. The following query selects all records with a
date_col value from within the last 30 days:

mysql> SELECT something FROM tbl_name
-> WHERE DATE_SUB(CURDATE(),INTERVAL 30 DAY) <= date_col;

Note that the query also selects records with dates that lie in the future.

Functions that expect date values usually accept datetime values and ignore the time part. Functions
that expect time values usually accept datetime values and ignore the date part.

Functions that return the current date or time each are evaluated only once per query at the start of
query execution. This means that multiple references to a function such as NOW() within a single
query always produce the same result. This principle also applies to CURDATE(), CURTIME(),
UTC_DATE(), UTC_TIME(), UTC_TIMESTAMP(), and to any of their synonyms.

Beginning with MySQL 4.1.3, the CURRENT_TIMESTAMP(), CURRENT_TIME(), CUR-
RENT_DATE(), and FROM_UNIXTIME() functions return values in the connection's current time
zone, which is available as the value of the time_zone system variable. Also,
UNIX_TIMESTAMP() assumes that its argument is a datetime value in the current time zone. See
Section 5.8.8, “MySQL Server Time Zone Support”.

The return value ranges in the following function descriptions apply for complete dates. If a date is a
``zero'' value or an incomplete date such as '2001-11-00', functions that extract a part of a date
may return 0. For example, DAYOFMONTH('2001-11-00') returns 0.

• ADDDATE(date,INTERVAL expr type) , ADDDATE(expr,days)

When invoked with the INTERVAL form of the second argument, ADDDATE() is a synonym
for DATE_ADD(). The related function SUBDATE() is a synonym for DATE_SUB(). For in-
formation on the INTERVAL argument, see the discussion for DATE_ADD().

mysql> SELECT DATE_ADD('1998-01-02', INTERVAL 31 DAY);
-> '1998-02-02'

mysql> SELECT ADDDATE('1998-01-02', INTERVAL 31 DAY);
-> '1998-02-02'

As of MySQL 4.1.1, the second syntax is allowed, where expr is a date or datetime expression
and days is the number of days to be added to expr.

mysql> SELECT ADDDATE('1998-01-02', 31);
-> '1998-02-02'

• ADDTIME(expr,expr2)

Functions and Operators

603

ADDTIME() adds expr2 to expr and returns the result. expr is a time or datetime expres-
sion, and expr2 is a time expression.

mysql> SELECT ADDTIME('1997-12-31 23:59:59.999999',
-> '1 1:1:1.000002');

-> '1998-01-02 01:01:01.000001'
mysql> SELECT ADDTIME('01:00:00.999999', '02:00:00.999998');

-> '03:00:01.999997'

ADDTIME() was added in MySQL 4.1.1.

• CONVERT_TZ(dt,from_tz,to_tz)

CONVERT_TZ() converts a datetime value dt from time zone given by from_tz to the time
zone given by to_tz and returns the resulting value. Time zones may be specified as described
in Section 5.8.8, “MySQL Server Time Zone Support”. This function returns NULL if the argu-
ments are invalid.

If the value falls out of the supported range of the TIMESTAMP type when converted fom
from_tz to UTC, no conversion occurs. The TIMESTAMP range is described at Sec-
tion 11.1.2, “Overview of Date and Time Types”.

mysql> SELECT CONVERT_TZ('2004-01-01 12:00:00','GMT','MET');
-> '2004-01-01 13:00:00'

mysql> SELECT CONVERT_TZ('2004-01-01 12:00:00','+00:00','-07:00');
-> '2004-01-01 05:00:00'

To use named time zones such as 'MET' or 'Europe/Moscow', the time zone tables must be
properly set up. See Section 5.8.8, “MySQL Server Time Zone Support” for instructions.

CONVERT_TZ() was added in MySQL 4.1.3.

• CURDATE()

Returns the current date as a value in 'YYYY-MM-DD' or YYYYMMDD format, depending on
whether the function is used in a string or numeric context.

mysql> SELECT CURDATE();
-> '1997-12-15'

mysql> SELECT CURDATE() + 0;
-> 19971215

• CURRENT_DATE , CURRENT_DATE()

CURRENT_DATE and CURRENT_DATE() are synonyms for CURDATE().

• CURTIME()

Functions and Operators

604

Returns the current time as a value in 'HH:MM:SS' or HHMMSS format, depending on whether
the function is used in a string or numeric context.

mysql> SELECT CURTIME();
-> '23:50:26'

mysql> SELECT CURTIME() + 0;
-> 235026

• CURRENT_TIME , CURRENT_TIME()

CURRENT_TIME and CURRENT_TIME() are synonyms for CURTIME().

• CURRENT_TIMESTAMP , CURRENT_TIMESTAMP()

CURRENT_TIMESTAMP and CURRENT_TIMESTAMP() are synonyms for NOW().

• DATE(expr)

Extracts the date part of the date or datetime expression expr.

mysql> SELECT DATE('2003-12-31 01:02:03');
-> '2003-12-31'

DATE() is available as of MySQL 4.1.1.

• DATEDIFF(expr,expr2)

DATEDIFF() returns the number of days between the start date expr and the end date
expr2. expr and expr2 are date or date-and-time expressions. Only the date parts of the val-
ues are used in the calculation.

mysql> SELECT DATEDIFF('1997-12-31 23:59:59','1997-12-30');
-> 1

mysql> SELECT DATEDIFF('1997-11-30 23:59:59','1997-12-31');
-> -31

DATEDIFF() was added in MySQL 4.1.1.

• DATE_ADD(date,INTERVAL expr type) , DATE_SUB(date,INTERVAL expr
type)

These functions perform date arithmetic. date is a DATETIME or DATE value specifying the
starting date. expr is an expression specifying the interval value to be added or subtracted from
the starting date. expr is a string; it may start with a '-' for negative intervals. type is a
keyword indicating how the expression should be interpreted.

Functions and Operators

605

The INTERVAL keyword and the type specifier are not case sensitive.

The following table shows how the type and expr arguments are related:

type Value Expected expr Format

MICROSECOND MICROSECONDS

SECOND SECONDS

MINUTE MINUTES

HOUR HOURS

DAY DAYS

WEEK WEEKS

MONTH MONTHS

QUARTER QUARTERS

YEAR YEARS

SECOND_MICROSECOND 'SECONDS.MICROSECONDS'

MINUTE_MICROSECOND 'MINUTES.MICROSECONDS'

MINUTE_SECOND 'MINUTES:SECONDS'

HOUR_MICROSECOND 'HOURS.MICROSECONDS'

HOUR_SECOND 'HOURS:MINUTES:SECONDS'

HOUR_MINUTE 'HOURS:MINUTES'

DAY_MICROSECOND 'DAYS.MICROSECONDS'

DAY_SECOND 'DAYS HOURS:MINUTES:SECONDS'

DAY_MINUTE 'DAYS HOURS:MINUTES'

DAY_HOUR 'DAYS HOURS'

YEAR_MONTH 'YEARS-MONTHS'

The type values DAY_MICROSECOND, HOUR_MICROSECOND, MINUTE_MICROSECOND,
SECOND_MICROSECOND, and MICROSECOND are allowed as of MySQL 4.1.1. The values
QUARTER and WEEK are allowed as of MySQL 5.0.0.

MySQL allows any punctuation delimiter in the expr format. Those shown in the table are the
suggested delimiters. If the date argument is a DATE value and your calculations involve only
YEAR, MONTH, and DAY parts (that is, no time parts), the result is a DATE value. Otherwise, the
result is a DATETIME value.

As of MySQL 3.23, INTERVAL expr type is allowed on either side of the + operator if the
expression on the other side is a date or datetime value. For the - operator, INTERVAL expr
type is allowed only on the right side, because it makes no sense to subtract a date or datetime
value from an interval. (See examples below.)

mysql> SELECT '1997-12-31 23:59:59' + INTERVAL 1 SECOND;
-> '1998-01-01 00:00:00'

mysql> SELECT INTERVAL 1 DAY + '1997-12-31';
-> '1998-01-01'

mysql> SELECT '1998-01-01' - INTERVAL 1 SECOND;
-> '1997-12-31 23:59:59'

mysql> SELECT DATE_ADD('1997-12-31 23:59:59',
-> INTERVAL 1 SECOND);

-> '1998-01-01 00:00:00'
mysql> SELECT DATE_ADD('1997-12-31 23:59:59',

-> INTERVAL 1 DAY);
-> '1998-01-01 23:59:59'

Functions and Operators

606

mysql> SELECT DATE_ADD('1997-12-31 23:59:59',
-> INTERVAL '1:1' MINUTE_SECOND);

-> '1998-01-01 00:01:00'
mysql> SELECT DATE_SUB('1998-01-01 00:00:00',

-> INTERVAL '1 1:1:1' DAY_SECOND);
-> '1997-12-30 22:58:59'

mysql> SELECT DATE_ADD('1998-01-01 00:00:00',
-> INTERVAL '-1 10' DAY_HOUR);

-> '1997-12-30 14:00:00'
mysql> SELECT DATE_SUB('1998-01-02', INTERVAL 31 DAY);

-> '1997-12-02'
mysql> SELECT DATE_ADD('1992-12-31 23:59:59.000002',

-> INTERVAL '1.999999' SECOND_MICROSECOND);
-> '1993-01-01 00:00:01.000001'

If you specify an interval value that is too short (does not include all the interval parts that would
be expected from the type keyword), MySQL assumes that you have left out the leftmost parts
of the interval value. For example, if you specify a type of DAY_SECOND, the value of expr
is expected to have days, hours, minutes, and seconds parts. If you specify a value like '1:10',
MySQL assumes that the days and hours parts are missing and the value represents minutes and
seconds. In other words, '1:10' DAY_SECOND is interpreted in such a way that it is equival-
ent to '1:10' MINUTE_SECOND. This is analogous to the way that MySQL interprets TIME
values as representing elapsed time rather than as time of day.

If you add to or subtract from a date value something that contains a time part, the result is auto-
matically converted to a datetime value:

mysql> SELECT DATE_ADD('1999-01-01', INTERVAL 1 DAY);
-> '1999-01-02'

mysql> SELECT DATE_ADD('1999-01-01', INTERVAL 1 HOUR);
-> '1999-01-01 01:00:00'

If you use really malformed dates, the result is NULL. If you add MONTH, YEAR_MONTH, or
YEAR and the resulting date has a day that is larger than the maximum day for the new month,
the day is adjusted to the maximum days in the new month:

mysql> SELECT DATE_ADD('1998-01-30', INTERVAL 1 MONTH);
-> '1998-02-28'

• DATE_FORMAT(date,format)

Formats the date value according to the format string. The following specifiers may be used
in the format string:

Specifier Description

%a Abbreviated weekday name (Sun..Sat)

%b Abbreviated month name (Jan..Dec)

%c Month, numeric (0..12)

%D Day of the month with English suffix (0th, 1st, 2nd, 3rd, ...)

%d Day of the month, numeric (00..31)

%e Day of the month, numeric (0..31)

%f Microseconds (000000..999999)

%H Hour (00..23)

%h Hour (01..12)

Functions and Operators

607

%I Hour (01..12)

%i Minutes, numeric (00..59)

%j Day of year (001..366)

%k Hour (0..23)

%l Hour (1..12)

%M Month name (January..December)

%m Month, numeric (00..12)

%p AM or PM

%r Time, 12-hour (hh:mm:ss followed by AM or PM)

%S Seconds (00..59)

%s Seconds (00..59)

%T Time, 24-hour (hh:mm:ss)

%U Week (00..53), where Sunday is the first day of the week

%u Week (00..53), where Monday is the first day of the week

%V Week (01..53), where Sunday is the first day of the week; used with %X

%v Week (01..53), where Monday is the first day of the week; used with %x

%W Weekday name (Sunday..Saturday)

%w Day of the week (0=Sunday..6=Saturday)

%X Year for the week where Sunday is the first day of the week, numeric,
four digits; used with %V

%x Year for the week, where Monday is the first day of the week, numeric,
four digits; used with %v

%Y Year, numeric, four digits

%y Year, numeric, two digits

%% A literal '%'.

All other characters are copied to the result without interpretation.

The %v, %V, %x, and %X format specifiers are available as of MySQL 3.23.8. %f is available as
of MySQL 4.1.1.

As of MySQL 3.23, the '%' character is required before format specifier characters. In earlier ver-
sions of MySQL, '%' was optional.

The reason the ranges for the month and day specifiers begin with zero is that MySQL allows in-
complete dates such as '2004-00-00' to be stored as of MySQL 3.23.

mysql> SELECT DATE_FORMAT('1997-10-04 22:23:00', '%W %M %Y');
-> 'Saturday October 1997'

mysql> SELECT DATE_FORMAT('1997-10-04 22:23:00', '%H:%i:%s');
-> '22:23:00'

mysql> SELECT DATE_FORMAT('1997-10-04 22:23:00',
'%D %y %a %d %m %b %j');

-> '4th 97 Sat 04 10 Oct 277'
mysql> SELECT DATE_FORMAT('1997-10-04 22:23:00',

'%H %k %I %r %T %S %w');
-> '22 22 10 10:23:00 PM 22:23:00 00 6'

mysql> SELECT DATE_FORMAT('1999-01-01', '%X %V');
-> '1998 52'

Functions and Operators

608

• DAY(date)

DAY() is a synonym for DAYOFMONTH(). It is available as of MySQL 4.1.1.

• DAYNAME(date)

Returns the name of the weekday for date.

mysql> SELECT DAYNAME('1998-02-05');
-> 'Thursday'

• DAYOFMONTH(date)

Returns the day of the month for date, in the range 1 to 31.

mysql> SELECT DAYOFMONTH('1998-02-03');
-> 3

• DAYOFWEEK(date)

Returns the weekday index for date (1 = Sunday, 2 = Monday, ..., 7 = Saturday). These index
values correspond to the ODBC standard.

mysql> SELECT DAYOFWEEK('1998-02-03');
-> 3

• DAYOFYEAR(date)

Returns the day of the year for date, in the range 1 to 366.

mysql> SELECT DAYOFYEAR('1998-02-03');
-> 34

• EXTRACT(type FROM date)

The EXTRACT() function uses the same kinds of interval type specifiers as DATE_ADD() or
DATE_SUB(), but extracts parts from the date rather than performing date arithmetic.

mysql> SELECT EXTRACT(YEAR FROM '1999-07-02');
-> 1999

Functions and Operators

609

mysql> SELECT EXTRACT(YEAR_MONTH FROM '1999-07-02 01:02:03');
-> 199907

mysql> SELECT EXTRACT(DAY_MINUTE FROM '1999-07-02 01:02:03');
-> 20102

mysql> SELECT EXTRACT(MICROSECOND
-> FROM '2003-01-02 10:30:00.00123');

-> 123

EXTRACT() was added in MySQL 3.23.0.

• FROM_DAYS(N)

Given a daynumber N, returns a DATE value.

mysql> SELECT FROM_DAYS(729669);
-> '1997-10-07'

FROM_DAYS() is not intended for use with values that precede the advent of the Gregorian cal-
endar (1582), because it does not take into account the days that were lost when the calendar was
changed.

• FROM_UNIXTIME(unix_timestamp) ,
FROM_UNIXTIME(unix_timestamp,format)

Returns a representation of the unix_timestamp argument as a value in 'YYYY-MM-DD
HH:MM:SS' or YYYYMMDDHHMMSS format, depending on whether the function is used in a
string or numeric context.

mysql> SELECT FROM_UNIXTIME(875996580);
-> '1997-10-04 22:23:00'

mysql> SELECT FROM_UNIXTIME(875996580) + 0;
-> 19971004222300

If format is given, the result is formatted according to the format string. format may con-
tain the same specifiers as those listed in the entry for the DATE_FORMAT() function.

mysql> SELECT FROM_UNIXTIME(UNIX_TIMESTAMP(),
-> '%Y %D %M %h:%i:%s %x');

-> '2003 6th August 06:22:58 2003'

• GET_FORMAT(DATE|TIME|DATETIME,
'EUR'|'USA'|'JIS'|'ISO'|'INTERNAL')

Returns a format string. This function is useful in combination with the DATE_FORMAT() and
the STR_TO_DATE() functions.

The three possible values for the first argument and the five possible values for the second argu-

Functions and Operators

610

ment result in 15 possible format strings (for the specifiers used, see the table in the
DATE_FORMAT() function description).

Function Call Result

GET_FORMAT(DATE,'USA') '%m.%d.%Y'

GET_FORMAT(DATE,'JIS') '%Y-%m-%d'

GET_FORMAT(DATE,'ISO') '%Y-%m-%d'

GET_FORMAT(DATE,'EUR') '%d.%m.%Y'

GET_FORMAT(DATE,'INTERNAL') '%Y%m%d'

GET_FORMAT(DATETIME,'USA') '%Y-%m-%d-%H.%i.%s'

GET_FORMAT(DATETIME,'JIS') '%Y-%m-%d %H:%i:%s'

GET_FORMAT(DATETIME,'ISO') '%Y-%m-%d %H:%i:%s'

GET_FORMAT(DATETIME,'EUR') '%Y-%m-%d-%H.%i.%s'

GET_FORMAT(DATETIME,'INTERNAL') '%Y%m%d%H%i%s'

GET_FORMAT(TIME,'USA') '%h:%i:%s %p'

GET_FORMAT(TIME,'JIS') '%H:%i:%s'

GET_FORMAT(TIME,'ISO') '%H:%i:%s'

GET_FORMAT(TIME,'EUR') '%H.%i.%S'

GET_FORMAT(TIME,'INTERNAL') '%H%i%s'

ISO format is ISO 9075, not ISO 8601.

As of MySQL 4.1.4, TIMESTAMP can also be used; GET_FORMAT() returns the same values
as for DATETIME.

mysql> SELECT DATE_FORMAT('2003-10-03',GET_FORMAT(DATE,'EUR'));
-> '03.10.2003'

mysql> SELECT STR_TO_DATE('10.31.2003',GET_FORMAT(DATE,'USA'));
-> 2003-10-31

GET_FORMAT() is available as of MySQL 4.1.1. See Section 13.5.3, “SET Syntax”.

• HOUR(time)

Returns the hour for time. The range of the return value is 0 to 23 for time-of-day values.

mysql> SELECT HOUR('10:05:03');
-> 10

However, the range of TIME values actually is much larger, so HOUR can return values greater
than 23.

mysql> SELECT HOUR('272:59:59');
-> 272

Functions and Operators

611

• LAST_DAY(date)

Takes a date or datetime value and returns the corresponding value for the last day of the month.
Returns NULL if the argument is invalid.

mysql> SELECT LAST_DAY('2003-02-05');
-> '2003-02-28'

mysql> SELECT LAST_DAY('2004-02-05');
-> '2004-02-29'

mysql> SELECT LAST_DAY('2004-01-01 01:01:01');
-> '2004-01-31'

mysql> SELECT LAST_DAY('2003-03-32');
-> NULL

LAST_DAY() is available as of MySQL 4.1.1.

• LOCALTIME , LOCALTIME()

LOCALTIME and LOCALTIME() are synonyms for NOW().

They were added in MySQL 4.0.6.

• LOCALTIMESTAMP , LOCALTIMESTAMP()

LOCALTIMESTAMP and LOCALTIMESTAMP() are synonyms for NOW().

They were added in MySQL 4.0.6.

• MAKEDATE(year,dayofyear)

Returns a date, given year and day-of-year values. dayofyear must be greater than 0 or the
result is NULL.

mysql> SELECT MAKEDATE(2001,31), MAKEDATE(2001,32);
-> '2001-01-31', '2001-02-01'

mysql> SELECT MAKEDATE(2001,365), MAKEDATE(2004,365);
-> '2001-12-31', '2004-12-30'

mysql> SELECT MAKEDATE(2001,0);
-> NULL

MAKEDATE() is available as of MySQL 4.1.1.

• MAKETIME(hour,minute,second)

Returns a time value calculated from the hour, minute, and second arguments.

mysql> SELECT MAKETIME(12,15,30);
-> '12:15:30'

Functions and Operators

612

MAKETIME() is available as of MySQL 4.1.1.

• MICROSECOND(expr)

Returns the microseconds from the time or datetime expression expr as a number in the range
from 0 to 999999.

mysql> SELECT MICROSECOND('12:00:00.123456');
-> 123456

mysql> SELECT MICROSECOND('1997-12-31 23:59:59.000010');
-> 10

MICROSECOND() is available as of MySQL 4.1.1.

• MINUTE(time)

Returns the minute for time, in the range 0 to 59.

mysql> SELECT MINUTE('98-02-03 10:05:03');
-> 5

• MONTH(date)

Returns the month for date, in the range 1 to 12.

mysql> SELECT MONTH('1998-02-03');
-> 2

• MONTHNAME(date)

Returns the full name of the month for date.

mysql> SELECT MONTHNAME('1998-02-05');
-> 'February'

• NOW()

Returns the current date and time as a value in 'YYYY-MM-DD HH:MM:SS' or YYYYMMDDH-
HMMSS format, depending on whether the function is used in a string or numeric context.

Functions and Operators

613

mysql> SELECT NOW();
-> '1997-12-15 23:50:26'

mysql> SELECT NOW() + 0;
-> 19971215235026

• PERIOD_ADD(P,N)

Adds N months to period P (in the format YYMM or YYYYMM). Returns a value in the format
YYYYMM. Note that the period argument P is not a date value.

mysql> SELECT PERIOD_ADD(9801,2);
-> 199803

• PERIOD_DIFF(P1,P2)

Returns the number of months between periods P1 and P2. P1 and P2 should be in the format
YYMM or YYYYMM. Note that the period arguments P1 and P2 are not date values.

mysql> SELECT PERIOD_DIFF(9802,199703);
-> 11

• QUARTER(date)

Returns the quarter of the year for date, in the range 1 to 4.

mysql> SELECT QUARTER('98-04-01');
-> 2

• SECOND(time)

Returns the second for time, in the range 0 to 59.

mysql> SELECT SECOND('10:05:03');
-> 3

• SEC_TO_TIME(seconds)

Returns the seconds argument, converted to hours, minutes, and seconds, as a value in
'HH:MM:SS' or HHMMSS format, depending on whether the function is used in a string or nu-
meric context.

Functions and Operators

614

mysql> SELECT SEC_TO_TIME(2378);
-> '00:39:38'

mysql> SELECT SEC_TO_TIME(2378) + 0;
-> 3938

• STR_TO_DATE(str,format)

This is the reverse function of the DATE_FORMAT() function. It takes a string str and a
format string format. STR_TO_DATE() returns a DATETIME value if the format string con-
tains both date and time parts, or a DATE or TIME value if the string contains only date or time
parts.

The date, time, or datetime values contained in str should be given in the format indicated by
format. For the specifiers that can be used in format, see the table in the DATE_FORMAT()
function description. All other characters are just taken verbatim, thus not being interpreted. If
str contains an illegal date, time, or datetime value, STR_TO_DATE() returns NULL.

mysql> SELECT STR_TO_DATE('03.10.2003 09.20',
-> '%d.%m.%Y %H.%i');

-> '2003-10-03 09:20:00'
mysql> SELECT STR_TO_DATE('10arp', '%carp');

-> '0000-10-00 00:00:00'
mysql> SELECT STR_TO_DATE('2003-15-10 00:00:00',

-> '%Y-%m-%d %H:%i:%s');
-> NULL

Range checking on the parts of date values is as described in Section 11.3.1, “The DATETIME,
DATE, and TIMESTAMP Types”. This means, for example, that a date with a day part larger
than the number of days in a month is allowable as long as the day part is in the range from 1 to
31. Also, ``zero'' dates or dates with part values of 0 are allowed.

mysql> SELECT STR_TO_DATE('00/00/0000', '%m/%d/%Y');
-> '0000-00-00'

mysql> SELECT STR_TO_DATE('04/31/2004', '%m/%d/%Y');
-> '2004-04-31'

STR_TO_DATE() is available as of MySQL 4.1.1.

• SUBDATE(date,INTERVAL expr type) , SUBDATE(expr,days)

When invoked with the INTERVAL form of the second argument, SUBDATE() is a synonym
for DATE_SUB(). For information on the INTERVAL argument, see the discussion for
DATE_ADD().

Functions and Operators

615

mysql> SELECT DATE_SUB('1998-01-02', INTERVAL 31 DAY);
-> '1997-12-02'

mysql> SELECT SUBDATE('1998-01-02', INTERVAL 31 DAY);
-> '1997-12-02'

As of MySQL 4.1.1, the second syntax is allowed, where expr is a date or datetime expression
and days is the number of days to be subtracted from expr.

mysql> SELECT SUBDATE('1998-01-02 12:00:00', 31);
-> '1997-12-02 12:00:00'

• SUBTIME(expr,expr2)

SUBTIME() subtracts expr2 from expr and returns the result. expr is a time or datetime ex-
pression, and expr2 is a time expression.

mysql> SELECT SUBTIME('1997-12-31 23:59:59.999999',
-> '1 1:1:1.000002');

-> '1997-12-30 22:58:58.999997'
mysql> SELECT SUBTIME('01:00:00.999999', '02:00:00.999998');

-> '-00:59:59.999999'

SUBTIME() was added in MySQL 4.1.1.

• SYSDATE()

SYSDATE() is a synonym for NOW().

• TIME(expr)

Extracts the time part of the time or datetime expression expr.

mysql> SELECT TIME('2003-12-31 01:02:03');
-> '01:02:03'

mysql> SELECT TIME('2003-12-31 01:02:03.000123');
-> '01:02:03.000123'

TIME() is available as of MySQL 4.1.1.

• TIMEDIFF(expr,expr2)

TIMEDIFF() returns the time between the start time expr and the end time expr2. expr
and expr2 are time or date-and-time expressions, but both must be of the same type.

Functions and Operators

616

mysql> SELECT TIMEDIFF('2000:01:01 00:00:00',
-> '2000:01:01 00:00:00.000001');

-> '-00:00:00.000001'
mysql> SELECT TIMEDIFF('1997-12-31 23:59:59.000001',

-> '1997-12-30 01:01:01.000002');
-> '46:58:57.999999'

TIMEDIFF() was added in MySQL 4.1.1.

• TIMESTAMP(expr) , TIMESTAMP(expr,expr2)

With one argument, returns the date or datetime expression expr as a datetime value. With two
arguments, adds the time expression expr2 to the date or datetime expression expr and re-
turns a datetime value.

mysql> SELECT TIMESTAMP('2003-12-31');
-> '2003-12-31 00:00:00'

mysql> SELECT TIMESTAMP('2003-12-31 12:00:00','12:00:00');
-> '2004-01-01 00:00:00'

TIMESTAMP() is available as of MySQL 4.1.1.

• TIMESTAMPADD(interval,int_expr,datetime_expr)

Adds the integer expression int_expr to the date or datetime expression datetime_expr.
The unit for int_expr is given by the interval argument, which should be one of the fol-
lowing values: FRAC_SECOND, SECOND, MINUTE, HOUR, DAY, WEEK, MONTH, QUARTER, or
YEAR.

The interval value may be specified using one of keywords as shown, or with a prefix of
SQL_TSI_. For example, DAY or SQL_TSI_DAY both are legal.

mysql> SELECT TIMESTAMPADD(MINUTE,1,'2003-01-02');
-> '2003-01-02 00:01:00'

mysql> SELECT TIMESTAMPADD(WEEK,1,'2003-01-02');
-> '2003-01-09'

TIMESTAMPADD() is available as of MySQL 5.0.0.

• TIMESTAMPDIFF(interval,datetime_expr1,datetime_expr2)

Returns the integer difference between the date or datetime expressions datetime_expr1
and datetime_expr2. The unit for the result is given by the interval argument. The legal
values for interval are the same as those listed in the description of the TIMESTAMPADD()
function.

mysql> SELECT TIMESTAMPDIFF(MONTH,'2003-02-01','2003-05-01');
-> 3

mysql> SELECT TIMESTAMPDIFF(YEAR,'2002-05-01','2001-01-01');
-> -1

Functions and Operators

617

TIMESTAMPDIFF() is available as of MySQL 5.0.0.

• TIME_FORMAT(time,format)

This is used like the DATE_FORMAT() function, but the format string may contain only those
format specifiers that handle hours, minutes, and seconds. Other specifiers produce a NULL
value or 0.

If the time value contains an hour part that is greater than 23, the %H and %k hour format spe-
cifiers produce a value larger than the usual range of 0..23. The other hour format specifiers
produce the hour value modulo 12.

mysql> SELECT TIME_FORMAT('100:00:00', '%H %k %h %I %l');
-> '100 100 04 04 4'

• TIME_TO_SEC(time)

Returns the time argument, converted to seconds.

mysql> SELECT TIME_TO_SEC('22:23:00');
-> 80580

mysql> SELECT TIME_TO_SEC('00:39:38');
-> 2378

• TO_DAYS(date)

Given a date date, returns a daynumber (the number of days since year 0).

mysql> SELECT TO_DAYS(950501);
-> 728779

mysql> SELECT TO_DAYS('1997-10-07');
-> 729669

TO_DAYS() is not intended for use with values that precede the advent of the Gregorian calen-
dar (1582), because it does not take into account the days that were lost when the calendar was
changed.

Remember that MySQL converts two-digit year values in dates to four-digit form using the rules
in Section 11.3, “Date and Time Types”. For example, '1997-10-07' and '97-10-07' are
seen as identical dates:

mysql> SELECT TO_DAYS('1997-10-07'), TO_DAYS('97-10-07');
-> 729669, 729669

For other dates before 1582, results from this function are undefined.

Functions and Operators

618

• UNIX_TIMESTAMP() , UNIX_TIMESTAMP(date)

If called with no argument, returns a Unix timestamp (seconds since '1970-01-01
00:00:00' GMT) as an unsigned integer. If UNIX_TIMESTAMP() is called with a date ar-
gument, it returns the value of the argument as seconds since '1970-01-01 00:00:00'
GMT. date may be a DATE string, a DATETIME string, a TIMESTAMP, or a number in the
format YYMMDD or YYYYMMDD in local time.

mysql> SELECT UNIX_TIMESTAMP();
-> 882226357

mysql> SELECT UNIX_TIMESTAMP('1997-10-04 22:23:00');
-> 875996580

When UNIX_TIMESTAMP is used on a TIMESTAMP column, the function returns the internal
timestamp value directly, with no implicit ``string-to-Unix-timestamp'' conversion. If you pass
an out-of-range date to UNIX_TIMESTAMP(), it returns 0, but please note that only basic
range checking is performed (year from 1970 to 2037, month from 01 to 12, day from 01
from 31).

If you want to subtract UNIX_TIMESTAMP() columns, you might want to cast the result to
signed integers. See Section 12.7, “Cast Functions and Operators”.

• UTC_DATE , UTC_DATE()

Returns the current UTC date as a value in 'YYYY-MM-DD' or YYYYMMDD format, depending
on whether the function is used in a string or numeric context.

mysql> SELECT UTC_DATE(), UTC_DATE() + 0;
-> '2003-08-14', 20030814

UTC_DATE() is available as of MySQL 4.1.1.

• UTC_TIME , UTC_TIME()

Returns the current UTC time as a value in 'HH:MM:SS' or HHMMSS format, depending on
whether the function is used in a string or numeric context.

mysql> SELECT UTC_TIME(), UTC_TIME() + 0;
-> '18:07:53', 180753

UTC_TIME() is available as of MySQL 4.1.1.

• UTC_TIMESTAMP , UTC_TIMESTAMP()

Returns the current UTC date and time as a value in 'YYYY-MM-DD HH:MM:SS' or YYYYM-
MDDHHMMSS format, depending on whether the function is used in a string or numeric context.

Functions and Operators

619

mysql> SELECT UTC_TIMESTAMP(), UTC_TIMESTAMP() + 0;
-> '2003-08-14 18:08:04', 20030814180804

UTC_TIMESTAMP() is available as of MySQL 4.1.1.

• WEEK(date[,mode])

The function returns the week number for date. The two-argument form of WEEK() allows
you to specify whether the week starts on Sunday or Monday and whether the return value
should be in the range from 0 to 53 or from 1 to 53. If the mode argument is omitted, the value
of the default_week_format system variable is used (or 0 before MySQL 4.0.14). See
Section 5.2.3, “Server System Variables”.

The following table describes how the mode argument works:

First day

Mod
e

of week Range Week 1 is the first week...

0 Sunday 0-53 with a Sunday in this year

1 Monday 0-53 with more than 3 days this year

2 Sunday 1-53 with a Sunday in this year

3 Monday 1-53 with more than 3 days this year

4 Sunday 0-53 with more than 3 days this year

5 Monday 0-53 with a Monday in this year

6 Sunday 1-53 with more than 3 days this year

7 Monday 1-53 with a Monday in this year

A mode value of 3 can be used as of MySQL 4.0.5. Values of 4 and above can be used as of
MySQL 4.0.17.

mysql> SELECT WEEK('1998-02-20');
-> 7

mysql> SELECT WEEK('1998-02-20',0);
-> 7

mysql> SELECT WEEK('1998-02-20',1);
-> 8

mysql> SELECT WEEK('1998-12-31',1);
-> 53

Note: In MySQL 4.0, WEEK(date,0) was changed to match the calendar in the USA. Before
that, WEEK() was calculated incorrectly for dates in the USA. (In effect, WEEK(date) and
WEEK(date,0) were incorrect for all cases.)

Note that if a date falls in the last week of the previous year, MySQL returns 0 if you don't use
2, 3, 6, or 7 as the optional mode argument:

mysql> SELECT YEAR('2000-01-01'), WEEK('2000-01-01',0);
-> 2000, 0

One might argue that MySQL should return 52 for the WEEK() function, because the given
date actually occurs in the 52nd week of 1999. We decided to return 0 instead because we want

Functions and Operators

620

the function to return ``the week number in the given year.'' This makes use of the WEEK()
function reliable when combined with other functions that extract a date part from a date.

If you would prefer the result to be evaluated with respect to the year that contains the first day
of the week for the given date, you should use 0, 2, 5, or 7 as the optional mode argument.

mysql> SELECT WEEK('2000-01-01',2);
-> 52

Alternatively, use the YEARWEEK() function:

mysql> SELECT YEARWEEK('2000-01-01');
-> 199952

mysql> SELECT MID(YEARWEEK('2000-01-01'),5,2);
-> '52'

• WEEKDAY(date)

Returns the weekday index for date (0 = Monday, 1 = Tuesday, ... 6 = Sunday).

mysql> SELECT WEEKDAY('1998-02-03 22:23:00');
-> 1

mysql> SELECT WEEKDAY('1997-11-05');
-> 2

• WEEKOFYEAR(date)

Returns the calendar week of the date as a number in the range from 1 to 53. It is a compatibil-
ity function that is equivalent to WEEK(date,3).

mysql> SELECT WEEKOFYEAR('1998-02-20');
-> 8

WEEKOFYEAR() is available as of MySQL 4.1.1.

• YEAR(date)

Returns the year for date, in the range 1000 to 9999.

mysql> SELECT YEAR('98-02-03');
-> 1998

• YEARWEEK(date) , YEARWEEK(date,start)

Returns year and week for a date. The start argument works exactly like the start argument
to WEEK(). The year in the result may be different from the year in the date argument for the

Functions and Operators

621

first and the last week of the year.

mysql> SELECT YEARWEEK('1987-01-01');
-> 198653

Note that the week number is different from what the WEEK() function would return (0) for op-
tional arguments 0 or 1, as WEEK() then returns the week in the context of the given year.

YEARWEEK() was added in MySQL 3.23.8.

12.6. Full-Text Search Functions

• MATCH (col1,col2,...) AGAINST (expr [IN BOOLEAN MODE | WITH
QUERY EXPANSION])

As of MySQL 3.23.23, MySQL has support for full-text indexing and searching. A full-text in-
dex in MySQL is an index of type FULLTEXT. FULLTEXT indexes are used with MyISAM
tables only and can be created from CHAR, VARCHAR, or TEXT columns at CREATE TABLE
time or added later with ALTER TABLE or CREATE INDEX. For large datasets, it is much
faster to load your data into a table that has no FULLTEXT index, then create the index with
ALTER TABLE (or CREATE INDEX). Loading data into a table that has an existing FULL-
TEXT index could be significantly slower.

Constraints on full-text searching are listed in Section 12.6.3, “Full-Text Restrictions”.

Full-text searching is performed with the MATCH() function.

mysql> CREATE TABLE articles (
-> id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
-> title VARCHAR(200),
-> body TEXT,
-> FULLTEXT (title,body)
->);

Query OK, 0 rows affected (0.00 sec)
mysql> INSERT INTO articles (title,body) VALUES

-> ('MySQL Tutorial','DBMS stands for DataBase ...'),
-> ('How To Use MySQL Well','After you went through a ...'),
-> ('Optimizing MySQL','In this tutorial we will show ...'),
-> ('1001 MySQL Tricks','1. Never run mysqld as root. 2. ...'),
-> ('MySQL vs. YourSQL','In the following database comparison ...'),
-> ('MySQL Security','When configured properly, MySQL ...');

Query OK, 6 rows affected (0.00 sec)
Records: 6 Duplicates: 0 Warnings: 0
mysql> SELECT * FROM articles

-> WHERE MATCH (title,body) AGAINST ('database');
+----+-------------------+--+
| id | title | body |
+----+-------------------+--+
| 5 | MySQL vs. YourSQL | In the following database comparison ... |
| 1 | MySQL Tutorial | DBMS stands for DataBase ... |
+----+-------------------+--+
2 rows in set (0.00 sec)

The MATCH() function performs a natural language search for a string against a text collection. A
collection is a set of one or more columns included in a FULLTEXT index. The search string is giv-
en as the argument to AGAINST(). For every row in the table, MATCH() returns a relevance value,
that is, a similarity measure between the search string and the text in that row in the columns named

Functions and Operators

622

in the MATCH() list.

By default, the search is performed in case-insensitive fashion. In MySQL 4.1 and up, you can make
a full-text search by using a binary collation for the indexed columns. For example, a column that
has a character set of latin1 can be assigned a collation of latin1_bin to make it case sensit-
ive for full-text searches.

When MATCH() is used in a WHERE clause, as in the preceding example, the rows returned are
automatically sorted with the highest relevance first. Relevance values are non-negative floating-
point numbers. Zero relevance means no similarity. Relevance is computed based on the number of
words in the row, the number of unique words in that row, the total number of words in the collec-
tion, and the number of documents (rows) that contain a particular word.

For natural-language full-text searches, it is a requirement that the columns named in the MATCH()
function be the same columns included in some FULLTEXT index in your table. For the preceding
query, note that the columns named in the MATCH() function (title and body) are the same as
those named in the definition of the article table's FULLTEXT index. If you wanted to search the
title or body separately, you would need to create FULLTEXT indexes for each column.

It is also possible to perform a boolean search or a search with query expansion. These search types
are described in Section 12.6.1, “Boolean Full-Text Searches” and Section 12.6.2, “Full-Text
Searches with Query Expansion”.

The preceding example is a basic illustration showing how to use the MATCH() function where
rows are returned in order of decreasing relevance. The next example shows how to retrieve the rel-
evance values explicitly. Returned rows are not ordered because the SELECT statement includes
neither WHERE nor ORDER BY clauses:

mysql> SELECT id, MATCH (title,body) AGAINST ('Tutorial')
-> FROM articles;

+----+---+
| id | MATCH (title,body) AGAINST ('Tutorial') |
+----+---+
1	0.65545833110809
2	0
3	0.66266459226608
4	0
5	0
6	0
+----+---+
6 rows in set (0.00 sec)

The following example is more complex. The query returns the relevance values and it also sorts the
rows in order of decreasing relevance. To achieve this result, you should specify MATCH() twice:
once in the SELECT list and once in the WHERE clause. This causes no additional overhead, because
the MySQL optimizer notices that the two MATCH() calls are identical and invokes the full-text
search code only once.

mysql> SELECT id, body, MATCH (title,body) AGAINST
-> ('Security implications of running MySQL as root') AS score
-> FROM articles WHERE MATCH (title,body) AGAINST
-> ('Security implications of running MySQL as root');

+----+-------------------------------------+-----------------+
| id | body | score |
+----+-------------------------------------+-----------------+
| 4 | 1. Never run mysqld as root. 2. ... | 1.5219271183014 |
| 6 | When configured properly, MySQL ... | 1.3114095926285 |
+----+-------------------------------------+-----------------+
2 rows in set (0.00 sec)

MySQL uses a very simple parser to split text into words. A ``word'' is any sequence of true word
characters (letters, digits, and underscores), optionally separated by no more than one sequential '''
character. For example, wasn't is parsed as a single word, but wasn''t is parsed as two words
wasn and t. (And then t would be ignored as too short according to the rules following.) Also,

Functions and Operators

623

single quotes at the ends of words are stripped; only embedded single quotes are retained.

Some words are ignored in full-text searches:

• Any word that is too short is ignored. The default minimum length of words that are found by
full-text searches is four characters.

• Words in the stopword list are ignored. A stopword is a word such as ``the'' or ``some'' that is so
common that it is considered to have zero semantic value. There is a built-in stopword list.

The default minimum word length and stopword list can be changed as described in Section 12.6.4,
“Fine-Tuning MySQL Full-Text Search”.

Every correct word in the collection and in the query is weighted according to its significance in the
collection or query. This way, a word that is present in many documents has a lower weight (and
may even have a zero weight), because it has lower semantic value in this particular collection. Con-
versely, if the word is rare, it receives a higher weight. The weights of the words are then combined
to compute the relevance of the row.

Such a technique works best with large collections (in fact, it was carefully tuned this way). For
very small tables, word distribution does not adequately reflect their semantic value, and this model
may sometimes produce bizarre results. For example, although the word ``MySQL'' is present in
every row of the articles table, a search for the word produces no results:

mysql> SELECT * FROM articles
-> WHERE MATCH (title,body) AGAINST ('MySQL');

Empty set (0.00 sec)

The search result is empty because the word ``MySQL'' is present in at least 50% of the rows. As
such, it is effectively treated as a stopword. For large datasets, this is the most desirable behavior---a
natural language query should not return every second row from a 1GB table. For small datasets, it
may be less desirable.

A word that matches half of rows in a table is less likely to locate relevant documents. In fact, it
most likely finds plenty of irrelevant documents. We all know this happens far too often when we
are trying to find something on the Internet with a search engine. It is with this reasoning that rows
containing the word are assigned a low semantic value for the particular dataset in which they
occur. A given word may exceed the 50% threshold in one dataset but not another.

The 50% threshold has a significant implication when you first try full-text searching to see how it
works: If you create a table and insert only one or two rows of text into it, every word in the text oc-
curs in at least 50% of the rows. As a result, no search returns any results. Be sure to insert at least
three rows, and preferably many more.

12.6.1. Boolean Full-Text Searches
As of Version 4.0.1, MySQL can also perform boolean full-text searches using the IN BOOLEAN
MODE modifier.

mysql> SELECT * FROM articles WHERE MATCH (title,body)
-> AGAINST ('+MySQL -YourSQL' IN BOOLEAN MODE);

+----+-----------------------+-------------------------------------+
| id | title | body |
+----+-----------------------+-------------------------------------+
1	MySQL Tutorial	DBMS stands for DataBase ...
2	How To Use MySQL Well	After you went through a ...
3	Optimizing MySQL	In this tutorial we will show ...
4	1001 MySQL Tricks	1. Never run mysqld as root. 2. ...
6	MySQL Security	When configured properly, MySQL ...
+----+-----------------------+-------------------------------------+

Functions and Operators

624

This query retrieves all the rows that contain the word ``MySQL'' but that do not contain the word
``YourSQL''.

Boolean full-text searches have these characteristics:

• They do not use the 50% threshold.

• They do not automatically sort rows in order of decreasing relevance. You can see this from the
preceding query result: The row with the highest relevance is the one that contains ``MySQL''
twice, but it is listed last, not first.

• They can work even without a FULLTEXT index, although this would be slow.

• The minimum and maximum word length full-text parameters apply.

• The stopword list applies.

The boolean full-text search capability supports the following operators:

• +

A leading plus sign indicates that this word must be present in every row returned.

• -

A leading minus sign indicates that this word must not be present in any row returned.

• (no operator)

By default (when neither + nor - is specified) the word is optional, but the rows that contain it
are rated higher. This mimics the behavior of MATCH() ... AGAINST() without the IN
BOOLEAN MODE modifier.

• > <

These two operators are used to change a word's contribution to the relevance value that is as-
signed to a row. The > operator increases the contribution and the < operator decreases it. See
the example below.

• ()

Parentheses are used to group words into subexpressions. Parenthesized groups can be nested.

• ~

A leading tilde acts as a negation operator, causing the word's contribution to the row relevance
to be negative. It's useful for marking noise words. A row that contains such a word is rated
lower than others, but is not excluded altogether, as it would be with the - operator.

• *

An asterisk is the truncation operator. Unlike the other operators, it should be appended to the
word.

• "

A phrase that is enclosed within double quote ('"') characters matches only rows that contain the
phrase literally, as it was typed.

The following examples demonstrate some search strings that use boolean full-text operators:

Functions and Operators

625

• 'apple banana'

Find rows that contain at least one of the two words.

• '+apple +juice'

Find rows that contain both words.

• '+apple macintosh'

Find rows that contain the word ``apple'', but rank rows higher if they also contain ``macintosh''.

• '+apple -macintosh'

Find rows that contain the word ``apple'' but not ``macintosh''.

• '+apple +(>turnover <strudel)'

Find rows that contain the words ``apple'' and ``turnover'', or ``apple'' and ``strudel'' (in any or-
der), but rank ``apple turnover'' higher than ``apple strudel''.

• 'apple*'

Find rows that contain words such as ``apple'', ``apples'', ``applesauce'', or ``applet''.

• '"some words"'

Find rows that contain the exact phrase ``some words'' (for example, rows that contain ``some
words of wisdom'' but not ``some noise words''). Note that the '"' characters that surround the
phrase are operator characters that delimit the phrase. They are not the quotes that surround the
search string itself.

The full-text engine splits the phrase into words, performs a search in the FULLTEXT index for
the words, and then performs a substring search for the phrase in the records that are found. If
the phrase contains no words that are in the index, the result is empty. For example, if all words
are either stopwords or shorter than the minimum length of indexed words, the result is empty.

12.6.2. Full-Text Searches with Query Expansion
As of MySQL 4.1.1, full-text search supports query expansion (in particular, its variant ``blind
query expansion''). This is generally useful when a search phrase is too short, which often means
that the user is relying on implied knowledge that the full-text search engine usually lacks. For ex-
ample, a user searching for ``database'' may really mean that ``MySQL'', ``Oracle'', ``DB2'', and
``RDBMS'' all are phrases that should match ``databases'' and should be returned, too. This is im-
plied knowledge.

Blind query expansion (also known as automatic relevance feedback) is enabled by adding WITH
QUERY EXPANSION following the search phrase. It works by performing the search twice, where
the search phrase for the second search is the original search phrase concatenated with the few top
found documents from the first search. Thus, if one of these documents contains the word
``databases'' and the word ``MySQL'', the second search finds the documents that contain the word
``MySQL'' even if they do not contain the word ``database''. The following example shows this dif-
ference:

mysql> SELECT * FROM articles
-> WHERE MATCH (title,body) AGAINST ('database');

+----+-------------------+--+
| id | title | body |
+----+-------------------+--+
| 5 | MySQL vs. YourSQL | In the following database comparison ... |
| 1 | MySQL Tutorial | DBMS stands for DataBase ... |
+----+-------------------+--+
2 rows in set (0.00 sec)

Functions and Operators

626

mysql> SELECT * FROM articles
-> WHERE MATCH (title,body)
-> AGAINST ('database' WITH QUERY EXPANSION);

+----+-------------------+--+
| id | title | body |
+----+-------------------+--+
1	MySQL Tutorial	DBMS stands for DataBase ...
5	MySQL vs. YourSQL	In the following database comparison ...
3	Optimizing MySQL	In this tutorial we will show ...
+----+-------------------+--+
3 rows in set (0.00 sec)

Another example could be searching for books by Georges Simenon about Maigret, when a user is
not sure how to spell ``Maigret''. A search for ``Megre and the reluctant witnesses'' finds only
``Maigret and the Reluctant Witnesses'' without query expansion. A search with query expansion
finds all books with the word ``Maigret'' on the second pass.

Note: Because blind query expansion tends to increase noise significantly by returning non-relevant
documents, it's only meaningful to use when a search phrase is rather short.

12.6.3. Full-Text Restrictions

• Full-text searches are supported for MyISAM tables only.

• As of MySQL 4.1.1, full-text searches can be used with most multi-byte character sets. The ex-
ception is that for Unicode, the utf8 character set can be used, but not the ucs2 character set.

• As of MySQL 4.1, the use of multiple character sets within a single table is supported. However,
all columns in a FULLTEXT index must have the same character set and collation.

• The MATCH() column list must exactly match the column list in some FULLTEXT index defini-
tion for the table, unless this MATCH() is IN BOOLEAN MODE.

• The argument to AGAINST() must be a constant string.

12.6.4. Fine-Tuning MySQL Full-Text Search
The MySQL full-text search capability has few user-tunable parameters yet, although adding more
is very high on the TODO. You can exert more control over full-text searching behavior if you have
a MySQL source distribution because some changes require source code modfications. See Sec-
tion 2.8, “MySQL Installation Using a Source Distribution”.

Note that full-text search was carefully tuned for the best searching effectiveness. Modifying the de-
fault behavior, in most cases, makes the search results worse. Do not alter the MySQL sources un-
less you know what you are doing!

Most full-text variables described in the following items must be set at server startup time. For these
variables, a server restart is required to change them and you cannot modify them dynamically while
the server is running.

Some variable changes require that you rebuild the FULLTEXT indexes in your tables. Instructions
for doing this are given at the end of this section.

• The minimum and maximum length of words to be indexed is defined by the
ft_min_word_len and ft_max_word_len system variables (available as of MySQL
4.0.0). See Section 5.2.3, “Server System Variables”. The default minimum value is four charac-
ters. The default maximum depends on your version of MySQL. If you change either value, you
must rebuild your FULLTEXT indexes. For example, if you want three-character words to be
searchable, you can set the ft_min_word_len variable by putting the following lines in an

Functions and Operators

627

option file:

[mysqld]
ft_min_word_len=3

Then restart the server and rebuild your FULLTEXT indexes. Also note particularly the remarks
regarding myisamchk in the instructions following this list.

• To override the default stopword list, set the ft_stopword_file system variable (available
as of MySQL 4.0.10). See Section 5.2.3, “Server System Variables”. The variable value should
be the pathname of the file containing the stopword list, or the empty string to disable stopword
filtering. After changing the value, rebuild your FULLTEXT indexes.

• The 50% threshold for natural language searches is determined by the particular weighting
scheme chosen. To disable it, look for the following line in myisam/ftdefs.h:

#define GWS_IN_USE GWS_PROB

Change the line to this:

#define GWS_IN_USE GWS_FREQ

Then recompile MySQL. There is no need to rebuild the indexes in this case. Note: By doing
this you severely decrease MySQL's ability to provide adequate relevance values for the
MATCH() function. If you really need to search for such common words, it would be better to
search using IN BOOLEAN MODE instead, which does not observe the 50% threshold.

• To change the operators used for boolean full-text searches, set the ft_boolean_syntax
system variable (available as of MySQL 4.0.1). The variable also can be changed while the serv-
er is running, but you must have the SUPER privilege to do so. No index rebuilding is necessary.
Section 5.2.3, “Server System Variables” describes the rules that define how to set this variable.

If you modify full-text variables that affect indexing (ft_min_word_len, ft_max_word_len,
or ft_stopword_file), you must rebuild your FULLTEXT indexes after making the changes
and restarting the server. To rebuild the indexes in this case, it's sufficient to do a QUICK repair op-
eration:

mysql> REPAIR TABLE tbl_name QUICK;

With regard specifically to using the IN BOOLEAN MODE capability, if you upgrade from MySQL
3.23 to 4.0 or later, it's necessary to replace the index header as well. To do this, do a USE_FRM re-
pair operation:

mysql> REPAIR TABLE tbl_name USE_FRM;

This is necessary because boolean full-text searches require a flag in the index header that was not
present in MySQL 3.23, and that is not added if you do only a QUICK repair. If you attempt a
boolean full-text search without rebuilding the indexes this way, the search returns incorrect results.

Note that if you use myisamchk to perform an operation that modifies table indexes (such as repair
or analyze), the FULLTEXT indexes are rebuilt using the default full-text parameter values for min-
imum and maximum word length and the stopword file unless you specify otherwise. This can result
in queries failing.

The problem occurs because these parameters are known only by the server. They are not stored in
MyISAM index files. To avoid the problem if you have modified the minimum or maximum word
length or the stopword file in the server, specify the same ft_min_word_len,
ft_max_word_len, and ft_stopword_file values to myisamchk that you use for mysqld.
For example, if you have set the minimum word length to 3, you can repair a table with myisamchk

Functions and Operators

628

like this:

shell> myisamchk --recover --ft_min_word_len=3 tbl_name.MYI

To ensure that myisamchk and the server use the same values for full-text parameters, you can
place each one in both the [mysqld] and [myisamchk] sections of an option file:

[mysqld]
ft_min_word_len=3
[myisamchk]
ft_min_word_len=3

An alternative to using myisamchk is to use the REPAIR TABLE, ANALYZE TABLE, OPTIMIZE
TABLE, or ALTER TABLE. These statements are performed by the server, which knows the proper
full-text parameter values to use.

12.6.5. Full-Text Search TODO

• Improved performance for all FULLTEXT operations.

• Proximity operators.

• Support for ``always-index words.'' These could be any strings the user wants to treat as words,
such as ``C++'', ``AS/400'', or ``TCP/IP''.

• Support for full-text search in MERGE tables.

• Support for the ucs2 character set.

• Make the stopword list dependent on the language of the dataset.

• Stemming (dependent on the language of the dataset).

• Generic user-suppliable UDF preparser.

• Make the model more flexible (by adding some adjustable parameters to FULLTEXT in CRE-
ATE TABLE and ALTER TABLE statements).

12.7. Cast Functions and Operators

• BINARY

The BINARY operator casts the string following it to a binary string. This is an easy way to
force a column comparison to be done byte by byte rather than character by character. This
causes the comparison to be case sensitive even if the column isn't defined as BINARY or BLOB.
BINARY also causes trailing spaces to be significant.

mysql> SELECT 'a' = 'A';
-> 1

mysql> SELECT BINARY 'a' = 'A';
-> 0

mysql> SELECT 'a' = 'a ';
-> 1

mysql> SELECT BINARY 'a' = 'a ';
-> 0

BINARY affects the entire comparison; it can be given before either operand with the same res-

Functions and Operators

629

ult.

BINARY was added in MySQL 3.23.0. As of MySQL 4.0.2, BINARY str is a shorthand for
CAST(str AS BINARY).

Note that in some contexts, if you cast an indexed column to BINARY, MySQL is not able to use
the index efficiently.

If you want to compare a BLOB value or other binary string in case-insensitive fashion, you can
do so as follows:

• Before MySQL 4.1.1, use the UPPER() function to convert the binary string to uppercase
before performing the comparison:

SELECT 'A' LIKE UPPER(blob_col) FROM tbl_name;

If the comparison value is lowercase, convert the string value using LOWER() instead.

• For MySQL 4.1.1 and up, binary strings have no character set, and thus no concept of letter-
case. To perform a case-insensitive comparison, use the CONVERT() function to convert the
string value to a character set that is not case sensitive. The result is a non-binary string, so
the LIKE operation is not case sensitive:

SELECT 'A' LIKE CONVERT(blob_col USING latin1) FROM tbl_name;

To use a different character set, substitute its name for latin1 in the preceding statement.

CONVERT() can be used more generally for comparing strings that are represented in different
character sets.

• CAST(expr AS type) , CONVERT(expr,type) , CONVERT(expr USING
transcoding_name)

The CAST() and CONVERT() functions can be used to take a value of one type and produce a
value of another type.

The type can be one of the following values:

• BINARY

• CHAR

• DATE

• DATETIME

• SIGNED [INTEGER]

• TIME

• UNSIGNED [INTEGER]

BINARY produces a binary string. See the entry for the BINARY operator in this section for a
description of how this affects comparisons.

CAST() and CONVERT() are available as of MySQL 4.0.2. The CHAR conversion type is
available as of 4.0.6. The USING form of CONVERT() is available as of 4.1.0.

CAST() and CONVERT(... USING ...) are standard SQL syntax. The non-USING form

Functions and Operators

630

of CONVERT() is ODBC syntax.

CONVERT() with USING is used to convert data between different character sets. In MySQL,
transcoding names are the same as the corresponding character set names. For example, this
statement converts the string 'abc' in the server's default character set to the corresponding
string in the utf8 character set:

SELECT CONVERT('abc' USING utf8);

The cast functions are useful when you want to create a column with a specific type in a CREATE
... SELECT statement:

CREATE TABLE new_table SELECT CAST('2000-01-01' AS DATE);

The functions also can be useful for sorting ENUM columns in lexical order. Normally sorting of
ENUM columns occurs using the internal numeric values. Casting the values to CHAR results in a lex-
ical sort:

SELECT enum_col FROM tbl_name ORDER BY CAST(enum_col AS CHAR);

CAST(str AS BINARY) is the same thing as BINARY str. CAST(expr AS CHAR) treats
the expression as a string with the default character set.

Note: In MySQL 4.0, a CAST() to DATE, DATETIME, or TIME only marks the column to be a
specific type but doesn't change the value of the column.

As of MySQL 4.1.0, the value is converted to the correct column type when it's sent to the user (this
is a feature of how the new protocol in 4.1 sends date information to the client):

mysql> SELECT CAST(NOW() AS DATE);
-> 2003-05-26

As of MySQL 4.1.1, CAST() also changes the result if you use it as part of a more complex expres-
sion such as CONCAT('Date: ',CAST(NOW() AS DATE)).

You should not use CAST() to extract data in different formats but instead use string functions like
LEFT() or EXTRACT(). See Section 12.5, “Date and Time Functions”.

To cast a string to a numeric value in numeric context, you don't normally have to do anything. Just
use the string value as though it were a number:

mysql> SELECT 1+'1';
-> 2

If you use a number in string context, the number automatically is converted to a BINARY string.

mysql> SELECT CONCAT('hello you ',2);
-> 'hello you 2'

MySQL supports arithmetic with both signed and unsigned 64-bit values. If you are using numeric
operators (such as +) and one of the operands is an unsigned integer, the result is unsigned. You can
override this by using the SIGNED and UNSIGNED cast operators to cast the operation to a signed
or unsigned 64-bit integer, respectively.

mysql> SELECT CAST(1-2 AS UNSIGNED)
-> 18446744073709551615

mysql> SELECT CAST(CAST(1-2 AS UNSIGNED) AS SIGNED);
-> -1

Functions and Operators

631

Note that if either operand is a floating-point value, the result is a floating-point value and is not af-
fected by the preceding rule. (In this context, DECIMAL column values are regarded as floating-
point values.)

mysql> SELECT CAST(1 AS UNSIGNED) - 2.0;
-> -1.0

If you are using a string in an arithmetic operation, this is converted to a floating-point number.

The handing of unsigned values was changed in MySQL 4.0 to be able to support BIGINT values
properly. If you have some code that you want to run in both MySQL 4.0 and 3.23, you probably
can't use the CAST() function. You can use the following technique to get a signed result when
subtracting two unsigned integer columns ucol1 and ucol2:

mysql> SELECT (ucol1+0.0)-(ucol2+0.0) FROM ...;

The idea is that the columns are converted to floating-point values before the subtraction occurs.

If you have a problem with UNSIGNED columns in old MySQL applications when porting them to
MySQL 4.0, you can use the --sql-mode=NO_UNSIGNED_SUBTRACTION option when start-
ing mysqld. However, as long as you use this option, you are not able to make efficient use of the
BIGINT UNSIGNED column type.

12.8. Other Functions
12.8.1. Bit Functions

MySQL uses BIGINT (64-bit) arithmetic for bit operations, so these operators have a maximum
range of 64 bits.

• |

Bitwise OR:

mysql> SELECT 29 | 15;
-> 31

The result is an unsigned 64-bit integer.

• &

Bitwise AND:

mysql> SELECT 29 & 15;
-> 13

The result is an unsigned 64-bit integer.

• ^

Functions and Operators

632

Bitwise XOR:

mysql> SELECT 1 ^ 1;
-> 0

mysql> SELECT 1 ^ 0;
-> 1

mysql> SELECT 11 ^ 3;
-> 8

The result is an unsigned 64-bit integer.

Bitwise XOR was added in MySQL 4.0.2.

Shifts a longlong (BIGINT) number to the left.

• <<

mysql> SELECT 1 << 2;
-> 4

The result is an unsigned 64-bit integer.

• >>

Shifts a longlong (BIGINT) number to the right.

mysql> SELECT 4 >> 2;
-> 1

The result is an unsigned 64-bit integer.

• ~

Invert all bits.

mysql> SELECT 5 & ~1;
-> 4

The result is an unsigned 64-bit integer.

• BIT_COUNT(N)

Returns the number of bits that are set in the argument N.

mysql> SELECT BIT_COUNT(29);

Functions and Operators

633

-> 4

12.8.2. Encryption Functions
The functions in this section encrypt and decrypt data values. If you want to store results from an
encryption function that might contain arbitrary byte values, use a BLOB column rather than a CHAR
or VARCHAR column to avoid potential problems with trailing space removal that would change
data values.

• AES_ENCRYPT(str,key_str) , AES_DECRYPT(crypt_str,key_str)

These functions allow encryption and decryption of data using the official AES (Advanced En-
cryption Standard) algorithm, previously known as "Rijndael." Encoding with a 128-bit key
length is used, but you can extend it up to 256 bits by modifying the source. We chose 128 bits
because it is much faster and it is usually secure enough.

The input arguments may be any length. If either argument is NULL, the result of this function is
also NULL.

Because AES is a block-level algorithm, padding is used to encode uneven length strings and so
the result string length may be calculated as 16*(trunc(string_length/16)+1).

If AES_DECRYPT() detects invalid data or incorrect padding, it returns NULL. However, it is
possible for AES_DECRYPT() to return a non-NULL value (possibly garbage) if the input data
or the key is invalid.

You can use the AES functions to store data in an encrypted form by modifying your queries:

INSERT INTO t VALUES (1,AES_ENCRYPT('text','password'));

You can get even more security by not transferring the key over the connection for each query,
which can be accomplished by storing it in a server-side variable at connection time. For ex-
ample:

SELECT @password:='my password';
INSERT INTO t VALUES (1,AES_ENCRYPT('text',@password));

AES_ENCRYPT() and AES_DECRYPT() were added in MySQL 4.0.2, and can be considered
the most cryptographically secure encryption functions currently available in MySQL.

• DECODE(crypt_str,pass_str)

Decrypts the encrypted string crypt_str using pass_str as the password. crypt_str
should be a string returned from ENCODE().

• ENCODE(str,pass_str)

Encrypt str using pass_str as the password. To decrypt the result, use DECODE().

The result is a binary string of the same length as str. If you want to save it in a column, use a
BLOB column type.

Functions and Operators

634

• DES_DECRYPT(crypt_str[,key_str])

Decrypts a string encrypted with DES_ENCRYPT(). On error, this function returns NULL.

Note that this function works only if MySQL has been configured with SSL support. See Sec-
tion 5.6.7, “Using Secure Connections”.

If no key_str argument is given, DES_DECRYPT() examines the first byte of the encrypted
string to determine the DES key number that was used to encrypt the original string, and then
reads the key from the DES key file to decrypt the message. For this to work, the user must have
the SUPER privilege. The key file can be specified with the --des-key-file server option.

If you pass this function a key_str argument, that string is used as the key for decrypting the
message.

If the crypt_str argument doesn't look like an encrypted string, MySQL returns the given
crypt_str.

DES_DECRYPT() was added in MySQL 4.0.1.

• DES_ENCRYPT(str[,(key_num|key_str)])

Encrypts the string with the given key using the Triple-DES algorithm. On error, this function
returns NULL.

Note that this function works only if MySQL has been configured with SSL support. See Sec-
tion 5.6.7, “Using Secure Connections”.

The encryption key to use is chosen based on the second argument to DES_ENCRYPT(), if one
was given:

Argument Description

No argument The first key from the DES key file is used.

key_num The given key number (0-9) from the DES key file is used.

key_str The given key string is used to encrypt str.

The key file can be specified with the --des-key-file server option.

The return string is a binary string where the first character is CHAR(128 | key_num).

The 128 is added to make it easier to recognize an encrypted key. If you use a string key,
key_num is 127.

The string length for the result is new_len = orig_len + (8-(orig_len % 8))+1.

Each line in the DES key file has the following format:

key_num des_key_str

Each key_num must be a number in the range from 0 to 9. Lines in the file may be in any or-
der. des_key_str is the string that is used to encrypt the message. Between the number and
the key there should be at least one space. The first key is the default key that is used if you don't
specify any key argument to DES_ENCRYPT()

Functions and Operators

635

You can tell MySQL to read new key values from the key file with the FLUSH
DES_KEY_FILE statement. This requires the RELOAD privilege.

One benefit of having a set of default keys is that it gives applications a way to check for the ex-
istence of encrypted column values, without giving the end user the right to decrypt those val-
ues.

mysql> SELECT customer_address FROM customer_table WHERE
crypted_credit_card = DES_ENCRYPT('credit_card_number');

DES_ENCRYPT() was added in MySQL 4.0.1.

• ENCRYPT(str[,salt])

Encrypt str using the Unix crypt() system call. The salt argument should be a string with
two characters. (As of MySQL 3.22.16, salt may be longer than two characters.) If no salt
argument is given, a random value is used.

mysql> SELECT ENCRYPT('hello');
-> 'VxuFAJXVARROc'

ENCRYPT() ignores all but the first eight characters of str, at least on some systems. This be-
havior is determined by the implementation of the underlying crypt() system call.

If crypt() is not available on your system, ENCRYPT() always returns NULL. Because of
this, we recommend that you use MD5() or SHA1() instead, because those two functions exist
on all platforms.

• MD5(str)

Calculates an MD5 128-bit checksum for the string. The value is returned as a binary string of
32 hex digits, or NULL if the argument was NULL. The return value can, for example, be used as
a hash key.

mysql> SELECT MD5('testing');
-> 'ae2b1fca515949e5d54fb22b8ed95575'

This is the "RSA Data Security, Inc. MD5 Message-Digest Algorithm."

If you want to convert the value to uppercase, see the description of binary string conversion
given in the entry for the BINARY operator in Section 12.7, “Cast Functions and Operators”.

MD5() was added in MySQL 3.23.2.

• OLD_PASSWORD(str)

OLD_PASSWORD() is available as of MySQL 4.1, when the implementation of PASSWORD()
was changed to improve security. OLD_PASSWORD() returns the value of the pre-4.1 imple-
mentation of PASSWORD(). Section 5.5.9, “Password Hashing in MySQL 4.1”.

Functions and Operators

636

• PASSWORD(str)

Calculates and returns a password string from the plaintext password str, or NULL if the argu-
ment was NULL. This is the function that is used for encrypting MySQL passwords for storage
in the Password column of the user grant table.

mysql> SELECT PASSWORD('badpwd');
-> '7f84554057dd964b'

PASSWORD() encryption is one-way (not reversible).

PASSWORD() does not perform password encryption in the same way that Unix passwords are
encrypted. See ENCRYPT().

Note: The PASSWORD() function is used by the authentication system in MySQL Server, you
should not use it in your own applications. For that purpose, use MD5() or SHA1() instead.
Also see RFC 2195 for more information about handling passwords and authentication securely
in your application.

• SHA1(str) , SHA(str)

Calculates an SHA1 160-bit checksum for the string, as described in RFC 3174 (Secure Hash
Algorithm). The value is returned as a string of 40 hex digits, or NULL if the argument was
NULL. One of the possible uses for this function is as a hash key. You can also use it as a crypto-
graphically safe function for storing passwords.

mysql> SELECT SHA1('abc');
-> 'a9993e364706816aba3e25717850c26c9cd0d89d'

SHA1() was added in MySQL 4.0.2, and can be considered a cryptographically more secure
equivalent of MD5(). SHA() is synonym for SHA1().

12.8.3. Information Functions

• BENCHMARK(count,expr)

The BENCHMARK() function executes the expression expr repeatedly count times. It may be
used to time how fast MySQL processes the expression. The result value is always 0. The inten-
ded use is from within the mysql client, which reports query execution times:

mysql> SELECT BENCHMARK(1000000,ENCODE('hello','goodbye'));
+--+
| BENCHMARK(1000000,ENCODE('hello','goodbye')) |
+--+
| 0 |
+--+
1 row in set (4.74 sec)

Functions and Operators

637

The time reported is elapsed time on the client end, not CPU time on the server end. It is advis-
able to execute BENCHMARK() several times, and to interpret the result with regard to how
heavily loaded the server machine is.

• CHARSET(str)

Returns the character set of the string argument.

mysql> SELECT CHARSET('abc');
-> 'latin1'

mysql> SELECT CHARSET(CONVERT('abc' USING utf8));
-> 'utf8'

mysql> SELECT CHARSET(USER());
-> 'utf8'

CHARSET() was added in MySQL 4.1.0.

• COERCIBILITY(str)

Returns the collation coercibility value of the string argument.

mysql> SELECT COERCIBILITY('abc' COLLATE latin1_swedish_ci);
-> 0

mysql> SELECT COERCIBILITY('abc');
-> 3

mysql> SELECT COERCIBILITY(USER());
-> 2

The return values have the following meanings:

Coercibility Meaning

0 Explicit collation

1 No collation

2 Implicit collation

3 Coercible

Lower values have higher precedence.

COERCIBILITY() was added in MySQL 4.1.1.

• COLLATION(str)

Returns the collation for the character set of the string argument.

mysql> SELECT COLLATION('abc');
-> 'latin1_swedish_ci'

mysql> SELECT COLLATION(_utf8'abc');
-> 'utf8_general_ci'

Functions and Operators

638

COLLATION() was added in MySQL 4.1.0.

• CONNECTION_ID()

Returns the connection ID (thread ID) for the connection. Every connection has its own unique
ID.

mysql> SELECT CONNECTION_ID();
-> 23786

CONNECTION_ID() was added in MySQL 3.23.14.

• CURRENT_USER()

Returns the username and hostname combination that the current session was authenticated as.
This value corresponds to the MySQL account that determines your access privileges. It can be
different from the value of USER().

mysql> SELECT USER();
-> 'davida@localhost'

mysql> SELECT * FROM mysql.user;
ERROR 1044: Access denied for user ''@'localhost' to
database 'mysql'
mysql> SELECT CURRENT_USER();

-> '@localhost'

The example illustrates that although the client specified a username of davida (as indicated
by the value of the USER() function), the server authenticated the client using an anonymous
user account (as seen by the empty username part of the CURRENT_USER() value). One way
this might occur is that there is no account listed in the grant tables for davida.

CURRENT_USER() was added in MySQL 4.0.6.

• DATABASE()

Returns the default (current) database name.

mysql> SELECT DATABASE();
-> 'test'

If there is no default database, DATABASE() returns NULL as of MySQL 4.1.1, and the empty
string before that.

• FOUND_ROWS()

A SELECT statement may include a LIMIT clause to restrict the number of rows the server re-
turns to the client. In some cases, it is desirable to know how many rows the statement would

Functions and Operators

639

have returned without the LIMIT, but without running the statement again. To get this row
count, include a SQL_CALC_FOUND_ROWS option in the SELECT statement, then invoke
FOUND_ROWS() afterward:

mysql> SELECT SQL_CALC_FOUND_ROWS * FROM tbl_name
-> WHERE id > 100 LIMIT 10;

mysql> SELECT FOUND_ROWS();

The second SELECT returns a number indicating how many rows the first SELECT would have
returned had it been written without the LIMIT clause. (If the preceding SELECT statement
does not include the SQL_CALC_FOUND_ROWS option, then FOUND_ROWS() may return a
different result when LIMIT is used than when it is not.)

Note that if you are using SELECT SQL_CALC_FOUND_ROWS, MySQL must calculate how
many rows are in the full result set. However, this is faster than running the query again without
LIMIT, because the result set need not be sent to the client.

SQL_CALC_FOUND_ROWS and FOUND_ROWS() can be useful in situations when you want to
restrict the number of rows that a query returns, but also determine the number of rows in the
full result set without running the query again. An example is a Web script that presents a paged
display containing links to the pages that show other sections of a search result. Using
FOUND_ROWS() allows you to determine how many other pages are needed for the rest of the
result.

The use of SQL_CALC_FOUND_ROWS and FOUND_ROWS() is more complex for UNION
queries than for simple SELECT statements, because LIMIT may occur at multiple places in a
UNION. It may be applied to individual SELECT statements in the UNION, or global to the
UNION result as a whole.

The intent of SQL_CALC_FOUND_ROWS for UNION is that it should return the row count that
would be returned without a global LIMIT. The conditions for use of
SQL_CALC_FOUND_ROWS with UNION are:

• The SQL_CALC_FOUND_ROWS keyword must appear in the first SELECT of the UNION.

• The value of FOUND_ROWS() is exact only if UNION ALL is used. If UNION without ALL
is used, duplicate removal occurs and the value of FOUND_ROWS() is only approximate.

• If no LIMIT is present in the UNION, SQL_CALC_FOUND_ROWS is ignored and returns the
number of rows in the temporary table that is created to process the UNION.

SQL_CALC_FOUND_ROWS and FOUND_ROWS() are available starting at MySQL 4.0.0.

• LAST_INSERT_ID() , LAST_INSERT_ID(expr)

Returns the last automatically generated value that was inserted into an AUTO_INCREMENT
column.

mysql> SELECT LAST_INSERT_ID();
-> 195

The last ID that was generated is maintained in the server on a per-connection basis. This means
the value the function returns to a given client is the most recent AUTO_INCREMENT value gen-
erated by that client. The value cannot be affected by other clients, even if they generate
AUTO_INCREMENT values of their own. This behavior ensures that you can retrieve your own
ID without concern for the activity of other clients, and without the need for locks or transac-

Functions and Operators

640

tions.

The value of LAST_INSERT_ID() is not changed if you update the AUTO_INCREMENT
column of a row with a non-magic value (that is, a value that is not NULL and not 0).

If you insert many rows at the same time with an insert statement, LAST_INSERT_ID() re-
turns the value for the first inserted row. The reason for this is to make it possible to easily re-
produce the same INSERT statement against some other server.

If you use INSERT IGNORE and the record is ignored, the AUTO_INCREMENT counter still is
incremented and LAST_INSERT_ID() returns the new value.

If expr is given as an argument to LAST_INSERT_ID(), the value of the argument is re-
turned by the function and is remembered as the next value to be returned by
LAST_INSERT_ID(). This can be used to simulate sequences:

• Create a table to hold the sequence counter and initialize it:

mysql> CREATE TABLE sequence (id INT NOT NULL);
mysql> INSERT INTO sequence VALUES (0);

• Use the table to generate sequence numbers like this:

mysql> UPDATE sequence SET id=LAST_INSERT_ID(id+1);
mysql> SELECT LAST_INSERT_ID();

The UPDATE statement increments the sequence counter and causes the next call to
LAST_INSERT_ID() to return the updated value. The SELECT statement retrieves that
value. The mysql_insert_id() C API function can also be used to get the value. See
Section 22.2.3.33, “mysql_insert_id()”.

You can generate sequences without calling LAST_INSERT_ID(), but the utility of using the
function this way is that the ID value is maintained in the server as the last automatically gener-
ated value. It is multi-user safe because multiple clients can issue the UPDATE statement and get
their own sequence value with the SELECT statement (or mysql_insert_id()), without af-
fecting or being affected by other clients that generate their own sequence values.

Note that mysql_insert_id() is only updated after INSERT and UPDATE statements, so
you cannot use the C API function to retrieve the value for LAST_INSERT_ID(expr) after
executing other SQL statements like SELECT or SET.

• ROW_COUNT()

ROW_COUNT() returns the number of rows updated, inserted, or deleted by the preceding state-
ment. This is the same as the row count that the mysql client displays and the value from the
mysql_affected_rows() C API function.

mysql> INSERT INTO t VALUES(1),(2),(3);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0
mysql> SELECT ROW_COUNT();
+-------------+
| ROW_COUNT() |
+-------------+
| 3 |
+-------------+
1 row in set (0.00 sec)
mysql> DELETE FROM t WHERE i IN(1,2);

Functions and Operators

641

Query OK, 2 rows affected (0.00 sec)
mysql> SELECT ROW_COUNT();
+-------------+
| ROW_COUNT() |
+-------------+
| 2 |
+-------------+
1 row in set (0.00 sec)

ROW_COUNT() was added in MySQL 5.0.1.

• SESSION_USER()

SESSION_USER() is a synonym for USER().

• SYSTEM_USER()

SYSTEM_USER() is a synonym for USER().

• USER()

Returns the current MySQL username and hostname.

mysql> SELECT USER();
-> 'davida@localhost'

The value indicates the username you specified when connecting to the server, and the client
host from which you connected. The value can be different than that of CURRENT_USER().

Prior to MySQL 3.22.11, the function value does not include the client hostname. You can ex-
tract just the username part, regardless of whether the value includes a hostname part, like this:

mysql> SELECT SUBSTRING_INDEX(USER(),'@',1);
-> 'davida'

As of MySQL 4.1, USER() returns a value in the utf8 character set, so you should also make
sure that the '@' string literal is interpreted in that character set:

mysql> SELECT SUBSTRING_INDEX(USER(),_utf8'@',1);
-> 'davida'

• VERSION()

Returns a string that indicates the MySQL server version.

mysql> SELECT VERSION();
-> '4.1.3-beta-log'

Functions and Operators

642

Note that if your version string ends with -log this means that logging is enabled.

12.8.4. Miscellaneous Functions

• DEFAULT(col_name)

Returns the default value for a table column. Starting from MySQL 5.0.2, you get an error if the
column doesn't have a default value.

mysql> UPDATE t SET i = DEFAULT(i)+1 WHERE id < 100;

DEFAULT() was added in MySQL 4.1.0.

• FORMAT(X,D)

Formats the number X to a format like '#,###,###.##', rounded to D decimals, and returns
the result as a string. If D is 0, the result has no decimal point or fractional part.

mysql> SELECT FORMAT(12332.123456, 4);
-> '12,332.1235'

mysql> SELECT FORMAT(12332.1,4);
-> '12,332.1000'

mysql> SELECT FORMAT(12332.2,0);
-> '12,332'

• GET_LOCK(str,timeout)

Tries to obtain a lock with a name given by the string str, with a timeout of timeout
seconds. Returns 1 if the lock was obtained successfully, 0 if the attempt timed out (for ex-
ample, because another client has previously locked the name), or NULL if an error occurred
(such as running out of memory or the thread was killed with mysqladmin kill). If you have a
lock obtained with GET_LOCK(), it is released when you execute RELEASE_LOCK(), ex-
ecute a new GET_LOCK(), or your connection terminates (either normally or abnormally).

This function can be used to implement application locks or to simulate record locks. Names are
locked on a server-wide basis. If a name has been locked by one client, GET_LOCK() blocks
any request by another client for a lock with the same name. This allows clients that agree on a
given lock name to use the name to perform cooperative advisory locking.

mysql> SELECT GET_LOCK('lock1',10);
-> 1

mysql> SELECT IS_FREE_LOCK('lock2');
-> 1

mysql> SELECT GET_LOCK('lock2',10);
-> 1

mysql> SELECT RELEASE_LOCK('lock2');
-> 1

mysql> SELECT RELEASE_LOCK('lock1');
-> NULL

Functions and Operators

643

Note that the second RELEASE_LOCK() call returns NULL because the lock 'lock1' was
automatically released by the second GET_LOCK() call.

• INET_ATON(expr)

Given the dotted-quad representation of a network address as a string, returns an integer that rep-
resents the numeric value of the address. Addresses may be 4- or 8-byte addresses.

mysql> SELECT INET_ATON('209.207.224.40');
-> 3520061480

The generated number is always in network byte order. For the example just shown, the number
is calculated as 209*256^3 + 207*256^2 + 224*256 + 40.

As of MySQL 4.1.2, INET_ATON() also understands short-form IP addresses:

mysql> SELECT INET_ATON('127.0.0.1'), INET_ATON('127.1');
-> 2130706433, 2130706433

INET_ATON() was added in MySQL 3.23.15.

• INET_NTOA(expr)

Given a numeric network address (4 or 8 byte), returns the dotted-quad representation of the ad-
dress as a string.

mysql> SELECT INET_NTOA(3520061480);
-> '209.207.224.40'

INET_NTOA() was added in MySQL 3.23.15.

• IS_FREE_LOCK(str)

Checks whether the lock named str is free to use (that is, not locked). Returns 1 if the lock is
free (no one is using the lock), 0 if the lock is in use, and NULL on errors (such as incorrect ar-
guments).

IS_FREE_LOCK() was added in MySQL 4.0.2.

• IS_USED_LOCK(str)

Checks whether the lock named str is in use (that is, locked). If so, it returns the connection
identifier of the client that holds the lock. Otherwise, it returns NULL.

IS_USED_LOCK() was added in MySQL 4.1.0.

• MASTER_POS_WAIT(log_name,log_pos[,timeout])

Functions and Operators

644

This function is useful for control of master/slave synchronization. It blocks until the slave has
read and applied all updates up to the specified position in the master log. The return value is the
number of log events it had to wait for to get to the specified position. The function returns
NULL if the slave SQL thread is not started, the slave's master information is not initialized, the
arguments are incorrect, or an error occurs. It returns -1 if the timeout has been exceeded. If the
slave SQL thread stops while MASTER_POS_WAIT() is waiting, the function returns NULL. If
the slave is past the specified position, the function returns immediately.

If a timeout value is specified, MASTER_POS_WAIT() stops waiting when timeout
seconds have elapsed. timeout must be greater than 0; a zero or negative timeout means no
timeout.

MASTER_POS_WAIT() was added in MySQL 3.23.32. The timeout argument was added in
4.0.10.

• RELEASE_LOCK(str)

Releases the lock named by the string str that was obtained with GET_LOCK(). Returns 1 if
the lock was released, 0 if the lock wasn't locked by this thread (in which case the lock is not re-
leased), and NULL if the named lock didn't exist. The lock does not exist if it was never obtained
by a call to GET_LOCK() or if it has previously been released.

The DO statement is convenient to use with RELEASE_LOCK(). See Section 13.1.2, “DO Syn-
tax”.

• UUID()

Returns a Universal Unique Identifier (UUID) generated according to ``DCE 1.1: Remote Pro-
cedure Call'' (Appendix A) CAE (Common Applications Environment) Specifications published
by The Open Group in October 1997 (Document Number C706).

A UUID is designed as a number that is globally unique in space and time. Two calls to
UUID() are expected to generate two different values, even if these calls are performed on two
separate computers that are not connected to each other.

A UUID is a 128-bit number represented by a string of five hexadecimal numbers in
aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee format:

• The first three numbers are generated from a timestamp.

• The fourth number preserves temporal uniqueness in case the timestamp value loses mono-
tonicity (for example, due to daylight saving time).

• The fifth number is an IEEE 802 node number that provides spatial uniqueness. A random
number is substituted if the latter is not available (for example, because the host computer
has no Ethernet card, or we do not know how to find the hardware address of an interface on
your operating system). In this case, spatial uniqueness cannot be guaranteed. Nevertheless,
a collision should have very low probability.

Currently, the MAC address of an interface is taken into account only on FreeBSD and
Linux. On other operating systems, MySQL uses a randomly generated 48-bit number.

mysql> SELECT UUID();
-> '6ccd780c-baba-1026-9564-0040f4311e29'

Functions and Operators

645

Note that UUID() does not yet work with replication.

UUID() was added in MySQL 4.1.2.

12.9. Functions and Modifiers for Use with
GROUP BY Clauses
12.9.1. GROUP BY (Aggregate) Functions

If you use a group function in a statement containing no GROUP BY clause, it is equivalent to
grouping on all rows.

• AVG(expr)

Returns the average value of expr.

mysql> SELECT student_name, AVG(test_score)
-> FROM student
-> GROUP BY student_name;

• BIT_AND(expr)

Returns the bitwise AND of all bits in expr. The calculation is performed with 64-bit (BIGINT)
precision.

As of MySQL 4.0.17, this function returns 18446744073709551615 if there were no
matching rows. (This is an unsigned BIGINT value with all bits set to 1.) Before 4.0.17, the
function returns -1 if there were no matching rows.

• BIT_OR(expr)

Returns the bitwise OR of all bits in expr. The calculation is performed with 64-bit (BIGINT)
precision.

This function returns 0 if there were no matching rows.

• BIT_XOR(expr)

Returns the bitwise XOR of all bits in expr. The calculation is performed with 64-bit (BIGINT)
precision.

This function returns 0 if there were no matching rows.

This function is available as of MySQL 4.1.1.

• COUNT(expr)

Returns a count of the number of non-NULL values in the rows retrieved by a SELECT state-

Functions and Operators

646

ment.

mysql> SELECT student.student_name,COUNT(*)
-> FROM student,course
-> WHERE student.student_id=course.student_id
-> GROUP BY student_name;

COUNT(*) is somewhat different in that it returns a count of the number of rows retrieved,
whether or not they contain NULL values.

COUNT(*) is optimized to return very quickly if the SELECT retrieves from one table, no other
columns are retrieved, and there is no WHERE clause. For example:

mysql> SELECT COUNT(*) FROM student;

This optimization applies only to MyISAM and ISAM tables only, because an exact record count
is stored for these table types and can be accessed very quickly. For transactional storage en-
gines (InnoDB, BDB), storing an exact row count is more problematic because multiple transac-
tions may be occurring, each of which may affect the count.

• COUNT(DISTINCT expr,[expr...])

Returns a count of the number of different non-NULL values.

mysql> SELECT COUNT(DISTINCT results) FROM student;

In MySQL, you can get the number of distinct expression combinations that don't contain NULL
by giving a list of expressions. In standard SQL, you would have to do a concatenation of all ex-
pressions inside COUNT(DISTINCT ...).

COUNT(DISTINCT ...) was added in MySQL 3.23.2.

• GROUP_CONCAT(expr)

This function returns a string result with the concatenated non-NULL values from a group. It re-
turns NULL if there are no non-NULL values. The full syntax is as follows:

GROUP_CONCAT([DISTINCT] expr [,expr ...]
[ORDER BY {unsigned_integer | col_name | expr}

[ASC | DESC] [,col_name ...]]
[SEPARATOR str_val])

mysql> SELECT student_name,
-> GROUP_CONCAT(test_score)
-> FROM student
-> GROUP BY student_name;

Or:

Functions and Operators

647

mysql> SELECT student_name,
-> GROUP_CONCAT(DISTINCT test_score
-> ORDER BY test_score DESC SEPARATOR ' ')
-> FROM student
-> GROUP BY student_name;

In MySQL, you can get the concatenated values of expression combinations. You can eliminate
duplicate values by using DISTINCT. If you want to sort values in the result, you should use
ORDER BY clause. To sort in reverse order, add the DESC (descending) keyword to the name of
the column you are sorting by in the ORDER BY clause. The default is ascending order; this may
be specified explicitly using the ASC keyword. SEPARATOR is followed by the string value that
should be inserted between values of result. The default is a comma (','). You can remove the
separator altogether by specifying SEPARATOR ''.

You can set a maximum allowed length with the group_concat_max_len system variable.
The syntax to do this at runtime is as follows, where val is an unsigned integer:

SET [SESSION | GLOBAL] group_concat_max_len = val;

If a maximum length has been set, the result is truncated to this maximum length.

GROUP_CONCAT() was added in MySQL 4.1.

Note: Before MySQL 4.1.6, there are some small limitations with GROUP_CONCAT() for
BLOB and TEXT values when it comes to using DISTINCT together with ORDER BY. To work
around this limitation, use MID(expr,1,255) instead.

• MIN(expr) , MAX(expr)

Returns the minimum or maximum value of expr. MIN() and MAX() may take a string argu-
ment; in such cases they return the minimum or maximum string value. See Section 7.4.5, “How
MySQL Uses Indexes”.

mysql> SELECT student_name, MIN(test_score), MAX(test_score)
-> FROM student
-> GROUP BY student_name;

For MIN(), MAX(), and other aggregate functions, MySQL currently compares ENUM and SET
columns by their string value rather than by the string's relative position in the set. This differs
from how ORDER BY compares them. This will be rectified.

• STD(expr) , STDDEV(expr)

Returns the standard deviation of expr (the square root of VARIANCE()). This is an extension
to standard SQL. The STDDEV() form of this function is provided for Oracle compatibility.

Functions and Operators

648

• SUM(expr)

Returns the sum of expr. If the return set has no rows, SUM() returns NULL.

• VARIANCE(expr)

Returns the standard variance of expr (considering rows as the whole population, not as a
sample; so it has the number of rows as denominator). This is an extension to standard SQL,
available only in MySQL 4.1 or later.

12.9.2. GROUP BY Modifiers
As of MySQL 4.1.1, the GROUP BY clause allows a WITH ROLLUP modifier that causes extra
rows to be added to the summary output. These rows represent higher-level (or super-aggregate)
summary operations. ROLLUP thus allows you to answer questions at multiple levels of analysis
with a single query. It can be used, for example, to provide support for OLAP (Online Analytical
Processing) operations.

As an illustration, suppose that a table named sales has year, country, product, and
profit columns for recording sales profitability:

CREATE TABLE sales
(

year INT NOT NULL,
country VARCHAR(20) NOT NULL,
product VARCHAR(32) NOT NULL,
profit INT

);

The table's contents can be summarized per year with a simple GROUP BY like this:

mysql> SELECT year, SUM(profit) FROM sales GROUP BY year;
+------+-------------+
| year | SUM(profit) |
+------+-------------+
| 2000 | 4525 |
| 2001 | 3010 |
+------+-------------+

This output shows the total profit for each year, but if you also want to determine the total profit
summed over all years, you must add up the individual values yourself or run an additional query.

Or you can use ROLLUP, which provides both levels of analysis with a single query. Adding a
WITH ROLLUP modifier to the GROUP BY clause causes the query to produce another row that
shows the grand total over all year values:

mysql> SELECT year, SUM(profit) FROM sales GROUP BY year WITH ROLLUP;
+------+-------------+
| year | SUM(profit) |
+------+-------------+
2000	4525
2001	3010
NULL	7535
+------+-------------+

The grand total super-aggregate line is identified by the value NULL in the year column.

Functions and Operators

649

ROLLUP has a more complex effect when there are multiple GROUP BY columns. In this case, each
time there is a ``break'' (change in value) in any but the last grouping column, the query produces an
extra super-aggregate summary row.

For example, without ROLLUP, a summary on the sales table based on year, country, and
product might look like this:

mysql> SELECT year, country, product, SUM(profit)
-> FROM sales
-> GROUP BY year, country, product;

+------+---------+------------+-------------+
| year | country | product | SUM(profit) |
+------+---------+------------+-------------+
2000	Finland	Computer	1500
2000	Finland	Phone	100
2000	India	Calculator	150
2000	India	Computer	1200
2000	USA	Calculator	75
2000	USA	Computer	1500
2001	Finland	Phone	10
2001	USA	Calculator	50
2001	USA	Computer	2700
2001	USA	TV	250
+------+---------+------------+-------------+

The output indicates summary values only at the year/country/product level of analysis. When
ROLLUP is added, the query produces several extra rows:

mysql> SELECT year, country, product, SUM(profit)
-> FROM sales
-> GROUP BY year, country, product WITH ROLLUP;

+------+---------+------------+-------------+
| year | country | product | SUM(profit) |
+------+---------+------------+-------------+
2000	Finland	Computer	1500
2000	Finland	Phone	100
2000	Finland	NULL	1600
2000	India	Calculator	150
2000	India	Computer	1200
2000	India	NULL	1350
2000	USA	Calculator	75
2000	USA	Computer	1500
2000	USA	NULL	1575
2000	NULL	NULL	4525
2001	Finland	Phone	10
2001	Finland	NULL	10
2001	USA	Calculator	50
2001	USA	Computer	2700
2001	USA	TV	250
2001	USA	NULL	3000
2001	NULL	NULL	3010
NULL	NULL	NULL	7535
+------+---------+------------+-------------+

For this query, adding ROLLUP causes the output to include summary information at four levels of
analysis, not just one. Here's how to interpret the ROLLUP output:

• Following each set of product rows for a given year and country, an extra summary row is pro-
duced showing the total for all products. These rows have the product column set to NULL.

• Following each set of rows for a given year, an extra summary row is produced showing the
total for all countries and products. These rows have the country and products columns set
to NULL.

Functions and Operators

650

• Finally, following all other rows, an extra summary row is produced showing the grand total for
all years, countries, and products. This row has the year, country, and products columns
set to NULL.

Other Considerations When using ROLLUP

The following items list some behaviors specific to the MySQL implementation of ROLLUP:

When you use ROLLUP, you cannot also use an ORDER BY clause to sort the results. In other
words, ROLLUP and ORDER BY are mutually exclusive. However, you still have some control over
sort order. GROUP BY in MySQL sorts results, and you can use explicit ASC and DESC keywords
with columns named in the GROUP BY list to specify sort order for individual columns. (The high-
er-level summary rows added by ROLLUP still appear after the rows from which they are calculated,
regardless of the sort order.)

LIMIT can be used to restrict the number of rows returned to the client. LIMIT is applied after
ROLLUP, so the limit applies against the extra rows added by ROLLUP. For example:

mysql> SELECT year, country, product, SUM(profit)
-> FROM sales
-> GROUP BY year, country, product WITH ROLLUP
-> LIMIT 5;

+------+---------+------------+-------------+
| year | country | product | SUM(profit) |
+------+---------+------------+-------------+
2000	Finland	Computer	1500
2000	Finland	Phone	100
2000	Finland	NULL	1600
2000	India	Calculator	150
2000	India	Computer	1200
+------+---------+------------+-------------+

Using LIMIT with ROLLUP may produce results that are more difficult to interpret, because you
have less context for understanding the super-aggregate rows.

The NULL indicators in each super-aggregate row are produced when the row is sent to the client.
The server looks at the columns named in the GROUP BY clause following the leftmost one that has
changed value. For any column in the result set with a name that is a lexical match to any of those
names, its value is set to NULL. (If you specify grouping columns by column number, the server
identifies which columns to set to NULL by number.)

Because the NULL values in the super-aggregate rows are placed into the result set at such a late
stage in query processing, you cannot test them as NULL values within the query itself. For example,
you cannot add HAVING product IS NULL to the query to eliminate from the output all but the
super-aggregate rows.

On the other hand, the NULL values do appear as NULL on the client side and can be tested as such
using any MySQL client programming interface.

12.9.3. GROUP BY with Hidden Fields
MySQL extends the use of GROUP BY so that you can use columns or calculations in the SELECT
list that don't appear in the GROUP BY clause. This stands for any possible value for this group.
You can use this to get better performance by avoiding sorting and grouping on unnecessary items.
For example, you don't need to group on customer.name in the following query:

mysql> SELECT order.custid, customer.name, MAX(payments)
-> FROM order,customer
-> WHERE order.custid = customer.custid
-> GROUP BY order.custid;

Functions and Operators

651

In standard SQL, you would have to add customer.name to the GROUP BY clause. In MySQL,
the name is redundant if you don't run in ANSI mode.

Do not use this feature if the columns you omit from the GROUP BY part are not unique in the
group! You get unpredictable results.

In some cases, you can use MIN() and MAX() to obtain a specific column value even if it isn't
unique. The following gives the value of column from the row containing the smallest value in the
sort column:

SUBSTR(MIN(CONCAT(RPAD(sort,6,' '),column)),7)

See Section 3.6.4, “The Rows Holding the Group-wise Maximum of a Certain Field”.

Note that if you are using MySQL 3.22 (or earlier) or if you are trying to follow standard SQL, you
can't use expressions in GROUP BY or ORDER BY clauses. You can work around this limitation by
using an alias for the expression:

mysql> SELECT id,FLOOR(value/100) AS val FROM tbl_name
-> GROUP BY id, val ORDER BY val;

In MySQL 3.23 and up, aliases are unnecessary. You can use expressions in GROUP BY and OR-
DER BY clauses. For example:

mysql> SELECT id, FLOOR(value/100) FROM tbl_name ORDER BY RAND();

Functions and Operators

652

Chapter 13. SQL Statement Syntax
This chapter describes the syntax for the SQL statements supported in MySQL.

13.1. Data Manipulation Statements
13.1.1. DELETE Syntax

Single-table syntax:

DELETE [LOW_PRIORITY] [QUICK] [IGNORE] FROM tbl_name
[WHERE where_definition]
[ORDER BY ...]
[LIMIT row_count]

Multiple-table syntax:

DELETE [LOW_PRIORITY] [QUICK] [IGNORE]
tbl_name[.*] [, tbl_name[.*] ...]
FROM table_references
[WHERE where_definition]

Or:

DELETE [LOW_PRIORITY] [QUICK] [IGNORE]
FROM tbl_name[.*] [, tbl_name[.*] ...]
USING table_references
[WHERE where_definition]

DELETE deletes rows from tbl_name that satisfy the condition given by where_definition,
and returns the number of records deleted.

If you issue a DELETE statement with no WHERE clause, all rows are deleted. A faster way to do
this, when you don't want to know the number of deleted rows, is to use TRUNCATE TABLE. See
Section 13.1.9, “TRUNCATE Syntax”.

In MySQL 3.23, DELETE without a WHERE clause returns zero as the number of affected records.

In MySQL 3.23, if you really want to know how many records are deleted when you are deleting all
rows, and are willing to suffer a speed penalty, you can use a DELETE statement that includes a
WHERE clause with an expression that is true for every row. For example:

mysql> DELETE FROM tbl_name WHERE 1>0;

This is much slower than TRUNCATE tbl_name, because it deletes rows one at a time.

If you delete the row containing the maximum value for an AUTO_INCREMENT column, the value
is reused for an ISAM or BDB table, but not for a MyISAM or InnoDB table. If you delete all rows
in the table with DELETE FROM tbl_name (without a WHERE) in AUTOCOMMIT mode, the se-
quence starts over for all table types except for InnoDB and (as of MySQL 4.0) MyISAM. There are
some exceptions to this behavior for InnoDB tables, discussed in Section 15.7.3, “How an
AUTO_INCREMENT Column Works in InnoDB”.

For MyISAM and BDB tables, you can specify an AUTO_INCREMENT secondary column in a mul-
tiple-column key. In this case, reuse of values deleted from the top of the sequence occurs even for
MyISAM tables. See Section 3.6.9, “Using AUTO_INCREMENT”.

The DELETE statement supports the following modifiers:

653

• If you specify the LOW_PRIORITY keyword, execution of the DELETE is delayed until no oth-
er clients are reading from the table.

• For MyISAM tables, if you specify the QUICK keyword, the storage engine does not merge in-
dex leaves during delete, which may speed up certain kind of deletes.

• The IGNORE keyword causes MySQL to ignore all errors during the process of deleting rows.
(Errors encountered during the parsing stage are processed in the usual manner.) Errors that are
ignored due to the use of this option are returned as warnings. This option first appeared in
MySQL 4.1.1.

The speed of delete operations may also be affected by factors discussed in Section 7.2.16, “Speed
of DELETE Statements”.

In MyISAM tables, deleted records are maintained in a linked list and subsequent INSERT opera-
tions reuse old record positions. To reclaim unused space and reduce file sizes, use the OPTIMIZE
TABLE statement or the myisamchk utility to reorganize tables. OPTIMIZE TABLE is easier, but
myisamchk is faster. See Section 13.5.2.5, “OPTIMIZE TABLE Syntax” and Section 5.7.3.10,
“Table Optimization”.

The QUICK modifier affects whether index leaves are merged for delete operations. DELETE
QUICK is most useful for applications where index values for deleted rows are replaced by similar
index values from rows inserted later. In this case, the holes left by deleted values are reused.

DELETE QUICK is not useful when deleted values lead to underfilled index blocks spanning a
range of index values for which new inserts occur again. In this case, use of QUICK can lead to
wasted space in the index that remains unreclaimed. Here is an example of such a scenario:

1. Create a table that contains an indexed AUTO_INCREMENT column.

2. Insert many records into the table. Each insert results in an index values that is added to the
high end of the index.

3. Delete a block of records at the low end of the column range using DELETE QUICK.

In this scenario, the index blocks associated with the deleted index values become underfilled but
are not merged with other index blocks due to the use of QUICK. They remain underfilled when new
inserts occur, because new records does not have index values in the deleted range. Furthermore,
they remain underfilled even if you later use DELETE without QUICK, unless some of the deleted
index values happen to lie in index blocks within or adjacent to the underfilled blocks. To reclaim
unused index space under these circumstances, you can use OPTIMIZE TABLE.

If you are going to delete many rows from a table, it might be faster to use DELETE QUICK fol-
lowed by OPTIMIZE TABLE. This rebuilds the index rather than performing many index block
merge operations.

The MySQL-specific LIMIT row_count option to DELETE tells the server the maximum num-
ber of rows to be deleted before control is returned to the client. This can be used to ensure that a
specific DELETE statement doesn't take too much time. You can simply repeat the DELETE state-
ment until the number of affected rows is less than the LIMIT value.

If the DELETE statement includes an ORDER BY clause, the rows are deleted in the order specified
by the clause. This is really useful only in conjunction with LIMIT. For example, the following
statement finds rows matching the WHERE clause, sorts them in timestamp order, and deletes the
first (oldest) one:

DELETE FROM somelog
WHERE user = 'jcole'
ORDER BY timestamp
LIMIT 1

SQL Statement Syntax

654

ORDER BY can be used with DELETE beginning with MySQL 4.0.0.

From MySQL 4.0, you can specify multiple tables in the DELETE statement to delete rows from one
or more tables depending on a particular condition in multiple tables. However, you cannot use OR-
DER BY or LIMIT in a multiple-table DELETE.

The first multiple-table DELETE syntax is supported starting from MySQL 4.0.0. The second is sup-
ported starting from MySQL 4.0.2. The table_references part lists the tables involved in the
join. Its syntax is described in Section 13.1.7.1, “JOIN Syntax”.

For the first syntax, only matching rows from the tables listed before the FROM clause are deleted.
For the second syntax, only matching rows from the tables listed in the FROM clause (before the
USING clause) are deleted. The effect is that you can delete rows from many tables at the same time
and also have additional tables that are used for searching:

DELETE t1, t2 FROM t1, t2, t3 WHERE t1.id=t2.id AND t2.id=t3.id;

Or:

DELETE FROM t1, t2 USING t1, t2, t3 WHERE t1.id=t2.id AND t2.id=t3.id;

These statements use all three files when searching for rows to delete, but delete matching rows only
from tables t1 and t2.

The examples show inner joins using the comma operator, but multiple-table DELETE statements
can use any type of join allowed in SELECT statements, such as LEFT JOIN.

The syntax allows .* after the table names for compatibility with Access.

If you use a multiple-table DELETE statement involving InnoDB tables for which there are foreign
key constraints, the MySQL optimizer might process tables in an order that differs from that of their
parent/child relationship. In this case, the statement fails and rolls back. Instead, delete from a single
table and rely on the ON DELETE capabilities that InnoDB provides to cause the other tables to be
modified accordingly.

Note: In MySQL 4.0, you should refer to the table names to be deleted with the true table name. In
MySQL 4.1, you must use the alias (if one was given) when referring to a table name:

In MySQL 4.0:

DELETE test FROM test AS t1, test2 WHERE ...

In MySQL 4.1:

DELETE t1 FROM test AS t1, test2 WHERE ...

The reason we didn't make this change in 4.0 is that we didn't want to break any old 4.0 applications
that were using the old syntax.

Currently, you cannot delete from a table and select from the same table in a subquery.

13.1.2. DO Syntax
DO expr [, expr] ...

DO executes the expressions but doesn't return any results. This is shorthand for SELECT expr,
..., but has the advantage that it's slightly faster when you don't care about the result.

DO is useful mainly with functions that have side effects, such as RELEASE_LOCK().

SQL Statement Syntax

655

DO was added in MySQL 3.23.47.

13.1.3. HANDLER Syntax
HANDLER tbl_name OPEN [AS alias]
HANDLER tbl_name READ index_name { = | >= | <= | < } (value1,value2,...)

[WHERE where_condition] [LIMIT ...]
HANDLER tbl_name READ index_name { FIRST | NEXT | PREV | LAST }

[WHERE where_condition] [LIMIT ...]
HANDLER tbl_name READ { FIRST | NEXT }

[WHERE where_condition] [LIMIT ...]
HANDLER tbl_name CLOSE

The HANDLER statement provides direct access to table storage engine interfaces. It is available for
MyISAM tables as MySQL 4.0.0 and InnoDB tables as of MySQL 4.0.3.

The HANDLER ... OPEN statement opens a table, making it accessible via subsequent HANDLER
... READ statements. This table object is not shared by other threads and is not closed until the
thread calls HANDLER ... CLOSE or the thread terminates. If you open the table using an alias,
further references to the table with other HANDLER statements must use the alias rather than the ta-
ble name.

The first HANDLER ... READ syntax fetches a row where the index specified satisfies the given
values and the WHERE condition is met. If you have a multiple-column index, specify the index
column values as a comma-separated list. Either specify values for all the columns in the index, or
specify values for a leftmost prefix of the index columns. Suppose that an index includes three
columns named col_a, col_b, and col_c, in that order. The HANDLER statement can specify
values for all three columns in the index, or for the columns in a leftmost prefix. For example:

HANDLER ... index_name = (col_a_val,col_b_val,col_c_val) ...
HANDLER ... index_name = (col_a_val,col_b_val) ...
HANDLER ... index_name = (col_a_val) ...

The second HANDLER ... READ syntax fetches a row from the table in index order that matches
WHERE condition.

The third HANDLER ... READ syntax fetches a row from the table in natural row order that
matches the WHERE condition. It is faster than HANDLER tbl_name READ index_name
when a full table scan is desired. Natural row order is the order in which rows are stored in a MyIS-
AM table data file. This statement works for InnoDB tables as well, but there is no such concept be-
cause there is no separate data file.

Without a LIMIT clause, all forms of HANDLER ... READ fetch a single row if one is available.
To return a specific number of rows, include a LIMIT clause. It has the same syntax as for the SE-
LECT statement. See Section 13.1.7, “SELECT Syntax”.

HANDLER ... CLOSE closes a table that was opened with HANDLER ... OPEN.

Note: To use the HANDLER interface to refer to a table's PRIMARY KEY, use the quoted identifier
`PRIMARY`:

HANDLER tbl_name READ `PRIMARY` > (...);

HANDLER is a somewhat low-level statement. For example, it does not provide consistency. That is,
HANDLER ... OPEN does not take a snapshot of the table, and does not lock the table. This
means that after a HANDLER ... OPEN statement is issued, table data can be modified (by this or
any other thread) and these modifications might appear only partially in HANDLER ... NEXT or
HANDLER ... PREV scans.

There are several reasons to use the HANDLER interface instead of normal SELECT statements:

SQL Statement Syntax

656

• HANDLER is faster than SELECT:

• A designated storage engine handler object is allocated for the HANDLER ... OPEN. The
object is reused for the following HANDLER statements for the table; it need not be reinitial-
ized for each one.

• There is less parsing involved.

• There is no optimizer or query-checking overhead.

• The table doesn't have to be locked between two handler requests.

• The handler interface doesn't have to provide a consistent look of the data (for example, dirty
reads are allowed), so the storage engine can use optimizations that SELECT doesn't nor-
mally allow.

• HANDLER makes it much easier to port applications that use an ISAM-like interface to MySQL.

• HANDLER allows you to traverse a database in a manner that is not easy (or perhaps even im-
possible) to do with SELECT. The HANDLER interface is a more natural way to look at data
when working with applications that provide an interactive user interface to the database.

13.1.4. INSERT Syntax
INSERT [LOW_PRIORITY | DELAYED | HIGH_PRIORITY] [IGNORE]

[INTO] tbl_name [(col_name,...)]
VALUES ({expr | DEFAULT},...),(...),...
[ON DUPLICATE KEY UPDATE col_name=expr, ...]

Or:

INSERT [LOW_PRIORITY | DELAYED | HIGH_PRIORITY] [IGNORE]
[INTO] tbl_name
SET col_name={expr | DEFAULT}, ...
[ON DUPLICATE KEY UPDATE col_name=expr, ...]

Or:

INSERT [LOW_PRIORITY | DELAYED | HIGH_PRIORITY] [IGNORE]
[INTO] tbl_name [(col_name,...)]
SELECT ...
[ON DUPLICATE KEY UPDATE col_name=expr, ...]

INSERT inserts new rows into an existing table. The INSERT ... VALUES and INSERT ...
SET forms of the statement insert rows based on explicitly specified values. The INSERT ...
SELECT form inserts rows selected from another table or tables. The INSERT ... VALUES form
with multiple value lists is supported in MySQL 3.22.5 or later. The INSERT ... SET syntax is
supported in MySQL 3.22.10 or later. INSERT ... SELECT is discussed further in See Sec-
tion 13.1.4.1, “INSERT ... SELECT Syntax”.

tbl_name is the table into which rows should be inserted. The columns for which the statement
provides values can be specified as follows:

• The column name list or the SET clause indicates the columns explicitly.

• If you do not specify the column list for INSERT ... VALUES or INSERT ... SELECT,
values for every column in the table must be provided in the VALUES() list or by the SELECT.
If you don't know the order of the columns in the table, use DESCRIBE tbl_name to find out.

Column values can be given in several ways:

SQL Statement Syntax

657

•
If you are not running in strict mode, any column not explicitly given a value is set to its default
(explicit or implicit) value. For example, if you specify a column list that doesn't name all the
columns in the table, unnamed columns are set to their default values. Default value assignment
is described in Section 13.2.6, “CREATE TABLE Syntax”. See Section 1.5.6.2, “Constraints on
Invalid Data”.

If you want INSERT statements to generate an error unless you explicitly specify values for all
columns that don't have a default value, you should use STRICT mode. See Section 5.2.2, “The
Server SQL Mode”.

• You can use the keyword DEFAULT to explicitly set a column to its default value. (New in
MySQL 4.0.3.) This makes it easier to write INSERT statements that assign values to all but a
few columns, because it allows you to avoid writing an incomplete VALUES list that does not in-
clude a value for each column in the table. Otherwise, you would have to write out the list of
column names corresponding to each value in the VALUES list.

As of MySQL 4.1.0, you can use DEFAULT(col_name) as a more general form that can be
used in expressions to produce a column's default value.

• If both the column list and the VALUES list are empty, INSERT creates a row with each column
set to its default value:

mysql> INSERT INTO tbl_name () VALUES();

• You can specify an expression expr to provide a column value. This might involve type con-
version if the type of the expression does not match the type of the column, and conversion of a
given value can result in different inserted values depending on the column type. For example,
inserting the string '1999.0e-2' into an INT, FLOAT, DECIMAL(10,6), or YEAR column
results in the values 1999, 19.9921, 19.992100, and 1999. The reason the value stored in
the INT and YEAR columns is 1999 is that the string-to-integer conversion looks only at as
much of the initial part of the string as may be considered a valid integer or year. For the float-
ing-point and fixed-point columns, the string-to-floating-point conversion considers the entire
string as a valid floating-point value.

An expression expr can refer to any column that was set earlier in a value list. For example,
you can do this because the value for col2 refers to col1, which has previously been assigned:

mysql> INSERT INTO tbl_name (col1,col2) VALUES(15,col1*2);

But you cannot do this because the value for col1 refers to col2, which is assigned after
col1:

mysql> INSERT INTO tbl_name (col1,col2) VALUES(col2*2,15);

One exception involves columns that contain AUTO_INCREMENT values. Because the
AUTO_INCREMENT value is generated after other value assignments, any reference to an
AUTO_INCREMENT column in the assignment returns a 0.

The INSERT statement supports the following modifiers:

• If you specify the DELAYED keyword, the server puts the row or rows to be inserted into a buf-
fer, and the client issuing the INSERT DELAYED statement then can continue on. If the table is
busy, the server holds the rows. When the table becomes free, it begins inserting rows, checking
periodically to see whether there are new read requests for the table. If there are, the delayed row
queue is suspended until the table becomes free again. See Section 13.1.4.2, “INSERT
DELAYED Syntax”. DELAYED was added in MySQL 3.22.5.

• If you specify the LOW_PRIORITY keyword, execution of the INSERT is delayed until no oth-

SQL Statement Syntax

658

er clients are reading from the table. This includes other clients that began reading while existing
clients are reading, and while the INSERT LOW_PRIORITY statement is waiting. It is pos-
sible, therefore, for a client that issues an INSERT LOW_PRIORITY statement to wait for a
very long time (or even forever) in a read-heavy environment. (This is in contrast to INSERT
DELAYED, which lets the client continue at once.) See Section 13.1.4.2, “INSERT DELAYED
Syntax”. Note that LOW_PRIORITY should normally not be used with MyISAM tables because
doing so disables concurrent inserts. See Section 14.1, “The MyISAM Storage Engine”.
LOW_PRIORITY was added in MySQL 3.22.5.

• If you specify the HIGH_PRIORITY keyword, it overrides the effect of the -
-low-priority-updates option if the server was started with that option. It also causes
concurrent inserts not to be used. HIGH_PRIORITY was added in MySQL 3.23.11.

• The rows-affected value for an INSERT can be obtained using the
mysql_affected_rows() C API function. See Section 22.2.3.1,
“mysql_affected_rows()”.

• If you specify the IGNORE keyword in an INSERT statement, errors that occur while executing
the statement are treated as warnings instead. For example, without IGNORE, a row that duplic-
ates an existing UNIQUE index or PRIMARY KEY value in the table causes a duplicate-key er-
ror and the statement is aborted. With IGNORE, the error is ignored and the row is not inserted.
Data conversions that would trigger errors abort the statement if IGNORE is not specified. With
IGNORE, invalid values are adjusted to the closest value values and inserted; warnings are pro-
duced but the statement does not abort. You can determine with the mysql_info() C API
function how many rows were inserted into the table.

If you specify the ON DUPLICATE KEY UPDATE clause (new in MySQL 4.1.0), and a row is in-
serted that would cause a duplicate value in a UNIQUE index or PRIMARY KEY, an UPDATE of the
old row is performed. For example, if column a is declared as UNIQUE and contains the value 1,
the following two statements have identical effect:

mysql> INSERT INTO table (a,b,c) VALUES (1,2,3)
-> ON DUPLICATE KEY UPDATE c=c+1;

mysql> UPDATE table SET c=c+1 WHERE a=1;

The rows-affected value is 1 if the row is inserted as a new record and 2 if an existing record is up-
dated.

Note: If column b is unique too, the INSERT would be equivalent to this UPDATE statement in-
stead:

mysql> UPDATE table SET c=c+1 WHERE a=1 OR b=2 LIMIT 1;

If a=1 OR b=2 matches several rows, only one row is updated! In general, you should try to avoid
using the ON DUPLICATE KEY clause on tables with multiple UNIQUE keys.

As of MySQL 4.1.1, you can use the VALUES(col_name) function in the UPDATE clause to
refer to column values from the INSERT part of the INSERT ... UPDATE statement. In other
words, VALUES(col_name) in the UPDATE clause refers to the value of col_name that would
be inserted if no duplicate-key conflict occurred. This function is especially useful in multiple-row
inserts. The VALUES() function is meaningful only in INSERT ... UPDATE statements and re-
turns NULL otherwise.

Example:

mysql> INSERT INTO table (a,b,c) VALUES (1,2,3),(4,5,6)
-> ON DUPLICATE KEY UPDATE c=VALUES(a)+VALUES(b);

That statement is identical to the following two statements:

SQL Statement Syntax

659

mysql> INSERT INTO table (a,b,c) VALUES (1,2,3)
-> ON DUPLICATE KEY UPDATE c=3;

mysql> INSERT INTO table (a,b,c) VALUES (4,5,6)
-> ON DUPLICATE KEY UPDATE c=9;

When you use ON DUPLICATE KEY UPDATE, the DELAYED option is ignored.

You can find the value used for an AUTO_INCREMENT column by using the
LAST_INSERT_ID() function. From within the C API, use the mysql_insert_id() func-
tion. However, note that the two functions do not behave quite identically under all circumstances.
The behavior of INSERT statements with respect to AUTO_INCREMENT columns is discussed fur-
ther in Section 12.8.3, “Information Functions” and Section 22.2.3.33, “mysql_insert_id()”.

If you use an INSERT ... VALUES statement with multiple value lists or INSERT ... SE-
LECT, the statement returns an information string in this format:

Records: 100 Duplicates: 0 Warnings: 0

Records indicates the number of rows processed by the statement. (This is not necessarily the
number of rows actually inserted. Duplicates can be non-zero.) Duplicates indicates the
number of rows that couldn't be inserted because they would duplicate some existing unique index
value. Warnings indicates the number of attempts to insert column values that were problematic in
some way. Warnings can occur under any of the following conditions:

• Inserting NULL into a column that has been declared NOT NULL. For multiple-row INSERT
statements or INSERT ... SELECT statements, the column is set to the default value appro-
priate for the column type. This is 0 for numeric types, the empty string ('') for string types,
and the ``zero'' value for date and time types.

• Setting a numeric column to a value that lies outside the column's range. The value is clipped to
the closest endpoint of the range.

• Assigning a value such as '10.34 a' to a numeric column. The trailing non-numeric text is
stripped off and the remaining numeric part is inserted. If the string value has no leading numer-
ic part, the column is set to 0.

• Inserting a string into a string column (CHAR, VARCHAR, TEXT, or BLOB) that exceeds the
column's maximum length. The value is truncated to the column's maximum length.

• Inserting a value into a date or time column that is illegal for the column type. The column is set
to the appropriate zero value for the type.

If you are using the C API, the information string can be obtained by invoking the mysql_info()
function. See Section 22.2.3.31, “mysql_info()”.

13.1.4.1. INSERT ... SELECT Syntax

INSERT [LOW_PRIORITY] [IGNORE] [INTO] tbl_name [(column_list)]
SELECT ...

With INSERT ... SELECT, you can quickly insert many rows into a table from one or many
tables.

For example:

INSERT INTO tbl_temp2 (fld_id)
SELECT tbl_temp1.fld_order_id
FROM tbl_temp1 WHERE tbl_temp1.fld_order_id > 100;

SQL Statement Syntax

660

The following conditions hold for an INSERT ... SELECT statement:

• Prior to MySQL 4.0.1, INSERT ... SELECT implicitly operates in IGNORE mode. As of
MySQL 4.0.1, specify IGNORE explicitly to ignore records that would cause duplicate-key viol-
ations.

• Do not use DELAYED with INSERT ... SELECT.

• Prior to MySQL 4.0.14, the target table of the INSERT statement cannot appear in the FROM
clause of the SELECT part of the query. This limitation is lifted in 4.0.14.

• AUTO_INCREMENT columns work as usual.

• To ensure that the binary log can be used to re-create the original tables, MySQL does not allow
concurrent inserts during INSERT ... SELECT.

• Currently, you cannot insert into a table and select from the same table in a subquery.

You can use REPLACE instead of INSERT to overwrite old rows. REPLACE is the counterpart to
INSERT IGNORE in the treatment of new rows that contain unique key values that duplicate old
rows: The new rows are used to replace the old rows rather than being discarded.

13.1.4.2. INSERT DELAYED Syntax

INSERT DELAYED ...

The DELAYED option for the INSERT statement is a MySQL extension to standard SQL that is
very useful if you have clients that can't wait for the INSERT to complete. This is a common prob-
lem when you use MySQL for logging and you also periodically run SELECT and UPDATE state-
ments that take a long time to complete. DELAYED was introduced in MySQL 3.22.15.

When a client uses INSERT DELAYED, it gets an okay from the server at once, and the row is
queued to be inserted when the table is not in use by any other thread.

Another major benefit of using INSERT DELAYED is that inserts from many clients are bundled
together and written in one block. This is much faster than doing many separate inserts.

There are some constraints on the use of DELAYED:

• INSERT DELAYED works only with MyISAM and ISAM tables. For MyISAM tables, if there
are no free blocks in the middle of the data file, concurrent SELECT and INSERT statements
are supported. Under these circumstances, you very seldom need to use INSERT DELAYED
with MyISAM. See Section 14.1, “The MyISAM Storage Engine”.

• INSERT DELAYED should be used only for INSERT statements that specify value lists. This is
enforced as of MySQL 4.0.18. The server ignores DELAYED for INSERT DELAYED ...
SELECT statements.

• The server ignores DELAYED for INSERT DELAYED ... ON DUPLICATE UPDATE state-
ments.

• Because the statement returns immediately before the rows are inserted, you cannot use
LAST_INSERT_ID() to get the AUTO_INCREMENT value the statement might generate.

• DELAYED rows are not visible to SELECT statements until they actually have been inserted.

Note that currently the queued rows are held only in memory until they are inserted into the table.
This means that if you terminate mysqld forcibly (for example, with kill -9) or if mysqld dies
unexpectedly, any queued rows that have not been written to disk are lost!

SQL Statement Syntax

661

The following describes in detail what happens when you use the DELAYED option to INSERT or
REPLACE. In this description, the ``thread'' is the thread that received an INSERT DELAYED state-
ment and ``handler'' is the thread that handles all INSERT DELAYED statements for a particular ta-
ble.

• When a thread executes a DELAYED statement for a table, a handler thread is created to process
all DELAYED statements for the table, if no such handler previously exists.

• The thread checks whether the handler has previously acquired a DELAYED lock; if not, it tells
the handler thread to do so. The DELAYED lock can be obtained even if other threads have a
READ or WRITE lock on the table. However, the handler waits for all ALTER TABLE locks or
FLUSH TABLES to ensure that the table structure is up to date.

• The thread executes the INSERT statement, but instead of writing the row to the table, it puts a
copy of the final row into a queue that is managed by the handler thread. Any syntax errors are
noticed by the thread and reported to the client program.

• The client cannot obtain from the server the number of duplicate records or the
AUTO_INCREMENT value for the resulting row, because the INSERT returns before the insert
operation has been completed. (If you use the C API, the mysql_info() function doesn't re-
turn anything meaningful, for the same reason.)

• The binary log is updated by the handler thread when the row is inserted into the table. In case of
multiple-row inserts, the binary log is updated when the first row is inserted.

• After every delayed_insert_limit rows are written, the handler checks whether any SE-
LECT statements are still pending. If so, it allows these to execute before continuing.

• When the handler has no more rows in its queue, the table is unlocked. If no new INSERT
DELAYED statements are received within delayed_insert_timeout seconds, the handler
terminates.

• If more than delayed_queue_size rows are pending in a specific handler queue, the thread
requesting INSERT DELAYED waits until there is room in the queue. This is done to ensure
that the mysqld server doesn't use all memory for the delayed memory queue.

• The handler thread shows up in the MySQL process list with delayed_insert in the Com-
mand column. It is killed if you execute a FLUSH TABLES statement or kill it with KILL
thread_id. However, before exiting, it first stores all queued rows into the table. During this
time it does not accept any new INSERT statements from another thread. If you execute an IN-
SERT DELAYED statement after this, a new handler thread is created.

Note that this means that INSERT DELAYED statements have higher priority than normal IN-
SERT statements if there is an INSERT DELAYED handler running. Other update statements
have to wait until the INSERT DELAYED queue is empty, someone terminates the handler
thread (with KILL thread_id), or someone executes FLUSH TABLES.

• The following status variables provide information about INSERT DELAYED statements:

Status Variable Meaning

Delayed_insert_threads Number of handler threads

Delayed_writes Number of rows written with INSERT
DELAYED

Not_flushed_delayed_rows Number of rows waiting to be written

You can view these variables by issuing a SHOW STATUS statement or by executing a mysql-
admin extended-status command.

Note that INSERT DELAYED is slower than a normal INSERT if the table is not in use. There is

SQL Statement Syntax

662

also the additional overhead for the server to handle a separate thread for each table for which there
are delayed rows. This means that you should use INSERT DELAYED only when you are really
sure that you need it!

13.1.5. LOAD DATA INFILE Syntax
LOAD DATA [LOW_PRIORITY | CONCURRENT] [LOCAL] INFILE 'file_name.txt'

[REPLACE | IGNORE]
INTO TABLE tbl_name
[FIELDS

[TERMINATED BY '\t']
[[OPTIONALLY] ENCLOSED BY '']
[ESCAPED BY '\\']

]
[LINES

[STARTING BY '']
[TERMINATED BY '\n']

]
[IGNORE number LINES]
[(col_name,...)]

The LOAD DATA INFILE statement reads rows from a text file into a table at a very high speed.
For more information about the efficiency of INSERT versus LOAD DATA INFILE and speeding
up LOAD DATA INFILE, Section 7.2.14, “Speed of INSERT Statements”.

You can also load data files by using the mysqlimport utility; it operates by sending a LOAD DATA
INFILE statement to the server. The --local option causes mysqlimport to read data files from
the client host. You can specify the --compress option to get better performance over slow net-
works if the client and server support the compressed protocol. See Section 8.10, “The
mysqlimport Data Import Program”.

If you specify the LOW_PRIORITY keyword, execution of the LOAD DATA statement is delayed
until no other clients are reading from the table.

If you specify the CONCURRENT keyword with a MyISAM table that satisfies the condition for con-
current inserts (that is, it contains no free blocks in the middle), then other threads can retrieve data
from the table while LOAD DATA is executing. Using this option affects the performance of LOAD
DATA a bit, even if no other thread is using the table at the same time.

If the LOCAL keyword is specified, it is interpreted with respect to the client end of the connection:

• If LOCAL is specified, the file is read by the client program on the client host and sent to the
server. The file can be given as a full pathname to specify its exact location. If given as a relative
pathname, the name is interpreted relative to the directory in which the client program was star-
ted.

• If LOCAL is not specified, the file must be located on the server host and is read directly by the
server.

LOCAL is available in MySQL 3.22.6 or later.

When locating files on the server host, the server uses the following rules:

• If an absolute pathname is given, the server uses the pathname as is.

• If a relative pathname with one or more leading components is given, the server searches for the
file relative to the server's data directory.

• If a filename with no leading components is given, the server looks for the file in the database
directory of the default database.

SQL Statement Syntax

663

Note that these rules mean that a file named as ./myfile.txt is read from the server's data dir-
ectory, whereas the same file named as myfile.txt is read from the database directory of the de-
fault database. For example, the following LOAD DATA statement reads the file data.txt from
the database directory for db1 because db1 is the current database, even though the statement ex-
plicitly loads the file into a table in the db2 database:

mysql> USE db1;
mysql> LOAD DATA INFILE 'data.txt' INTO TABLE db2.my_table;

Note that Windows pathnames are specified using forward slashes rather than backslashes. If you do
use backslashes, you must double them.

For security reasons, when reading text files located on the server, the files must either reside in the
database directory or be readable by all. Also, to use LOAD DATA INFILE on server files, you
must have the FILE privilege.

See Section 5.5.3, “Privileges Provided by MySQL”.

Using LOCAL is a bit slower than letting the server access the files directly, because the contents of
the file must be sent over the connection by the client to the server. On the other hand, you do not
need the FILE privilege to load local files.

As of MySQL 3.23.49 and MySQL 4.0.2 (4.0.13 on Windows), LOCAL works only if your server
and your client both have been enabled to allow it. For example, if mysqld was started with -
-local-infile=0, LOCAL does not work. See Section 5.4.4, “Security Issues with LOAD
DATA LOCAL”.

If you need LOAD DATA to read from a pipe, you can use the following technique (here we load the
listing of the '/' directory into a table):

mkfifo /mysql/db/x/x
chmod 666 /mysql/db/x/x
find / -ls > /mysql/db/x/x
mysql -e "LOAD DATA INFILE 'x' INTO TABLE x" x

If you are using a version of MySQL older than 3.23.25, you can use this technique only with LOAD
DATA LOCAL INFILE.

If you are using MySQL before Version 3.23.24, you can't read from a FIFO with LOAD DATA
INFILE. If you need to read from a FIFO (for example, the output from gunzip), use LOAD
DATA LOCAL INFILE instead.

The REPLACE and IGNORE keywords control handling of input records that duplicate existing re-
cords on unique key values.

If you specify REPLACE, input rows replace existing rows (in other words, rows that have the same
value for a primary or unique index as an existing row). See Section 13.1.6, “REPLACE Syntax”.

If you specify IGNORE, input rows that duplicate an existing row on a unique key value are
skipped. If you don't specify either option, the behavior depends on whether or not the LOCAL
keyword is specified. Without LOCAL, an error occurs when a duplicate key value is found, and the
rest of the text file is ignored. With LOCAL, the default behavior is the same as if IGNORE is spe-
cified; this is because the server has no way to stop transmission of the file in the middle of the op-
eration.

If you want to ignore foreign key constraints during the load operation, you can issue a SET FOR-
EIGN_KEY_CHECKS=0 statement before executing LOAD DATA.

If you use LOAD DATA INFILE on an empty MyISAM table, all non-unique indexes are created
in a separate batch (as for REPAIR TABLE). This normally makes LOAD DATA INFILE much
faster when you have many indexes. Normally this is very fast, but in some extreme cases, you can
create the indexes even faster by turning them off with ALTER TABLE .. DISABLE KEYS be-

SQL Statement Syntax

664

fore loading the file into the table and using ALTER TABLE .. ENABLE KEYS to re-create the
indexes after loading the file. See Section 7.2.14, “Speed of INSERT Statements”.

LOAD DATA INFILE is the complement of SELECT ... INTO OUTFILE. See Sec-
tion 13.1.7, “SELECT Syntax”. To write data from a table to a file, use SELECT ... INTO
OUTFILE. To read the file back into a table, use LOAD DATA INFILE. The syntax of the
FIELDS and LINES clauses is the same for both statements. Both clauses are optional, but
FIELDS must precede LINES if both are specified.

If you specify a FIELDS clause, each of its subclauses (TERMINATED BY, [OPTIONALLY]
ENCLOSED BY, and ESCAPED BY) is also optional, except that you must specify at least one of
them.

If you don't specify a FIELDS clause, the defaults are the same as if you had written this:

FIELDS TERMINATED BY '\t' ENCLOSED BY '' ESCAPED BY '\\'

If you don't specify a LINES clause, the default is the same as if you had written this:

LINES TERMINATED BY '\n' STARTING BY ''

In other words, the defaults cause LOAD DATA INFILE to act as follows when reading input:

• Look for line boundaries at newlines.

• Do not skip over any line prefix.

• Break lines into fields at tabs.

• Do not expect fields to be enclosed within any quoting characters.

• Interpret occurrences of tab, newline, or '\' preceded by '\' as literal characters that are part of
field values.

Conversely, the defaults cause SELECT ... INTO OUTFILE to act as follows when writing
output:

• Write tabs between fields.

• Do not enclose fields within any quoting characters.

• Use '\' to escape instances of tab, newline, or '\' that occur within field values.

• Write newlines at the ends of lines.

Note that to write FIELDS ESCAPED BY '\\', you must specify two backslashes for the value
to be read as a single backslash.

Note: If you have generated the text file on a Windows system, you might have to use LINES
TERMINATED BY '\r\n' to read the file properly, because Windows programs typically use
two characters as a line terminator. Some programs, such as WordPad, might use \r as a line ter-
minator when writing files. To read such files, use LINES TERMINATED BY '\r'.

If all the lines you want to read in have a common prefix that you want to ignore, you can use
LINES STARTING BY 'prefix_string' to skip over the prefix (and anything before it). If
a line doesn't include the prefix, the entire line is skipped. Note that prefix_string may be in
the middle of the line!

Example:

SQL Statement Syntax

665

mysql> LOAD DATA INFILE '/tmp/test.txt'
-> INTO TABLE test LINES STARTING BY "xxx";

With this you can read in a file that contains something like:

xxx"Row",1
something xxx"Row",2

And just get the data ("row",1) and ("row",2).

The IGNORE number LINES option can be used to ignore lines at the start of the file. For ex-
ample, you can use IGNORE 1 LINES to skip over an initial header line containing column
names:

mysql> LOAD DATA INFILE '/tmp/test.txt'
-> INTO TABLE test IGNORE 1 LINES;

When you use SELECT ... INTO OUTFILE in tandem with LOAD DATA INFILE to write
data from a database into a file and then read the file back into the database later, the field- and line-
handling options for both statements must match. Otherwise, LOAD DATA INFILE does not inter-
pret the contents of the file properly. Suppose that you use SELECT ... INTO OUTFILE to
write a file with fields delimited by commas:

mysql> SELECT * INTO OUTFILE 'data.txt'
-> FIELDS TERMINATED BY ','
-> FROM table2;

To read the comma-delimited file back in, the correct statement would be:

mysql> LOAD DATA INFILE 'data.txt' INTO TABLE table2
-> FIELDS TERMINATED BY ',';

If instead you tried to read in the file with the statement shown here, it wouldn't work because it in-
structs LOAD DATA INFILE to look for tabs between fields:

mysql> LOAD DATA INFILE 'data.txt' INTO TABLE table2
-> FIELDS TERMINATED BY '\t';

The likely result is that each input line would be interpreted as a single field.

LOAD DATA INFILE can be used to read files obtained from external sources, too. For example,
a file in dBASE format has fields separated by commas and enclosed within double quotes. If lines
in the file are terminated by newlines, the statement shown here illustrates the field- and line-
handling options you would use to load the file:

mysql> LOAD DATA INFILE 'data.txt' INTO TABLE tbl_name
-> FIELDS TERMINATED BY ',' ENCLOSED BY '"'
-> LINES TERMINATED BY '\n';

Any of the field- or line-handling options can specify an empty string (''). If not empty, the
FIELDS [OPTIONALLY] ENCLOSED BY and FIELDS ESCAPED BY values must be a single
character. The FIELDS TERMINATED BY, LINES STARTING BY, and LINES TERMIN-
ATED BY values can be more than one character. For example, to write lines that are terminated by
carriage return/linefeed pairs, or to read a file containing such lines, specify a LINES TERMIN-
ATED BY '\r\n' clause.

To read a file containing jokes that are separated by lines consisting of %%, you can do this

mysql> CREATE TABLE jokes

SQL Statement Syntax

666

-> (a INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
-> joke TEXT NOT NULL);

mysql> LOAD DATA INFILE '/tmp/jokes.txt' INTO TABLE jokes
-> FIELDS TERMINATED BY ''
-> LINES TERMINATED BY '\n%%\n' (joke);

FIELDS [OPTIONALLY] ENCLOSED BY controls quoting of fields. For output (SELECT ...
INTO OUTFILE), if you omit the word OPTIONALLY, all fields are enclosed by the ENCLOSED
BY character. An example of such output (using a comma as the field delimiter) is shown here:

"1","a string","100.20"
"2","a string containing a , comma","102.20"
"3","a string containing a \" quote","102.20"
"4","a string containing a \", quote and comma","102.20"

If you specify OPTIONALLY, the ENCLOSED BY character is used only to enclose CHAR and
VARCHAR fields:

1,"a string",100.20
2,"a string containing a , comma",102.20
3,"a string containing a \" quote",102.20
4,"a string containing a \", quote and comma",102.20

Note that occurrences of the ENCLOSED BY character within a field value are escaped by prefixing
them with the ESCAPED BY character. Also note that if you specify an empty ESCAPED BY
value, it is possible to generate output that cannot be read properly by LOAD DATA INFILE. For
example, the preceding output just shown would appear as follows if the escape character is empty.
Observe that the second field in the fourth line contains a comma following the quote, which
(erroneously) appears to terminate the field:

1,"a string",100.20
2,"a string containing a , comma",102.20
3,"a string containing a " quote",102.20
4,"a string containing a ", quote and comma",102.20

For input, the ENCLOSED BY character, if present, is stripped from the ends of field values. (This is
true whether or not OPTIONALLY is specified; OPTIONALLY has no effect on input interpreta-
tion.) Occurrences of the ENCLOSED BY character preceded by the ESCAPED BY character are in-
terpreted as part of the current field value.

If the field begins with the ENCLOSED BY character, instances of that character are recognized as
terminating a field value only if followed by the field or line TERMINATED BY sequence. To avoid
ambiguity, occurrences of the ENCLOSED BY character within a field value can be doubled and are
interpreted as a single instance of the character. For example, if ENCLOSED BY '"' is specified,
quotes are handled as shown here:

"The ""BIG"" boss" -> The "BIG" boss
The "BIG" boss -> The "BIG" boss
The ""BIG"" boss -> The ""BIG"" boss

FIELDS ESCAPED BY controls how to write or read special characters. If the FIELDS ES-
CAPED BY character is not empty, it is used to prefix the following characters on output:

• The FIELDS ESCAPED BY character

• The FIELDS [OPTIONALLY] ENCLOSED BY character

• The first character of the FIELDS TERMINATED BY and LINES TERMINATED BY values

• ASCII 0 (what is actually written following the escape character is ASCII '0', not a zero-valued

SQL Statement Syntax

667

byte)

If the FIELDS ESCAPED BY character is empty, no characters are escaped and NULL is output as
NULL, not \N. It is probably not a good idea to specify an empty escape character, particularly if
field values in your data contain any of the characters in the list just given.

For input, if the FIELDS ESCAPED BY character is not empty, occurrences of that character are
stripped and the following character is taken literally as part of a field value. The exceptions are an
escaped '0' or 'N' (for example, \0 or \N if the escape character is '\'). These sequences are inter-
preted as ASCII NUL (a zero-valued byte) and NULL. The rules for NULL handling are described
later in this section.

For more information about '\'-escape syntax, see Section 9.1, “Literal Values”.

In certain cases, field- and line-handling options interact:

• If LINES TERMINATED BY is an empty string and FIELDS TERMINATED BY is non-
empty, lines are also terminated with FIELDS TERMINATED BY.

• If the FIELDS TERMINATED BY and FIELDS ENCLOSED BY values are both empty (''),
a fixed-row (non-delimited) format is used. With fixed-row format, no delimiters are used
between fields (but you can still have a line terminator). Instead, column values are written and
read using the ``display'' widths of the columns. For example, if a column is declared as
INT(7), values for the column are written using seven-character fields. On input, values for the
column are obtained by reading seven characters.

LINES TERMINATED BY is still used to separate lines. If a line doesn't contain all fields, the
rest of the columns are set to their default values. If you don't have a line terminator, you should
set this to ''. In this case, the text file must contain all fields for each row.

Fixed-row format also affects handling of NULL values, as described later. Note that fixed-size
format does not work if you are using a multi-byte character set.

Handling of NULL values varies according to the FIELDS and LINES options in use:

• For the default FIELDS and LINES values, NULL is written as a field value of \N for output,
and a field value of \N is read as NULL for input (assuming that the ESCAPED BY character is
'\').

• If FIELDS ENCLOSED BY is not empty, a field containing the literal word NULL as its value
is read as a NULL value. This differs from the word NULL enclosed within FIELDS EN-
CLOSED BY characters, which is read as the string 'NULL'.

• If FIELDS ESCAPED BY is empty, NULL is written as the word NULL.

• With fixed-row format (which happens when FIELDS TERMINATED BY and FIELDS EN-
CLOSED BY are both empty), NULL is written as an empty string. Note that this causes both
NULL values and empty strings in the table to be indistinguishable when written to the file be-
cause they are both written as empty strings. If you need to be able to tell the two apart when
reading the file back in, you should not use fixed-row format.

Some cases are not supported by LOAD DATA INFILE:

• Fixed-size rows (FIELDS TERMINATED BY and FIELDS ENCLOSED BY both empty) and
BLOB or TEXT columns.

• If you specify one separator that is the same as or a prefix of another, LOAD DATA INFILE
won't be able to interpret the input properly. For example, the following FIELDS clause would

SQL Statement Syntax

668

cause problems:

FIELDS TERMINATED BY '"' ENCLOSED BY '"'

• If FIELDS ESCAPED BY is empty, a field value that contains an occurrence of FIELDS EN-
CLOSED BY or LINES TERMINATED BY followed by the FIELDS TERMINATED BY
value causes LOAD DATA INFILE to stop reading a field or line too early. This happens be-
cause LOAD DATA INFILE cannot properly determine where the field or line value ends.

The following example loads all columns of the persondata table:

mysql> LOAD DATA INFILE 'persondata.txt' INTO TABLE persondata;

By default, when no column list is provided at the end of the LOAD DATA INFILE statement, in-
put lines are expected to contain a field for each table column. If you want to load only some of a ta-
ble's columns, specify a column list:

mysql> LOAD DATA INFILE 'persondata.txt'
-> INTO TABLE persondata (col1,col2,...);

You must also specify a column list if the order of the fields in the input file differs from the order
of the columns in the table. Otherwise, MySQL cannot tell how to match up input fields with table
columns.

If an input line has too many fields, the extra fields are ignored and the number of warnings is incre-
mented.

If an input line has too few fields, the table columns for which input fields are missing are set to
their default values. Default value assignment is described in Section 13.2.6, “CREATE TABLE
Syntax”.

An empty field value is interpreted differently than if the field value is missing:

• For string types, the column is set to the empty string.

• For numeric types, the column is set to 0.

• For date and time types, the column is set to the appropriate ``zero'' value for the type. See Sec-
tion 11.3, “Date and Time Types”.

These are the same values that result if you assign an empty string explicitly to a string, numeric, or
date or time type explicitly in an INSERT or UPDATE statement.

TIMESTAMP columns are set to the current date and time only if there is a NULL value for the
column (that is, \N), or (for the first TIMESTAMP column only) if the TIMESTAMP column is omit-
ted from the field list when a field list is specified.

LOAD DATA INFILE regards all input as strings, so you can't use numeric values for ENUM or
SET columns the way you can with INSERT statements. All ENUM and SET values must be spe-
cified as strings!

When the LOAD DATA INFILE statement finishes, it returns an information string in the follow-
ing format:

Records: 1 Deleted: 0 Skipped: 0 Warnings: 0

If you are using the C API, you can get information about the statement by calling the
mysql_info() function. See Section 22.2.3.31, “mysql_info()”.

SQL Statement Syntax

669

Warnings occur under the same circumstances as when values are inserted via the INSERT state-
ment (see Section 13.1.4, “INSERT Syntax”), except that LOAD DATA INFILE also generates
warnings when there are too few or too many fields in the input row. The warnings are not stored
anywhere; the number of warnings can be used only as an indication of whether everything went
well.

From MySQL 4.1.1 on, you can use SHOW WARNINGS to get a list of the first
max_error_count warnings as information about what went wrong. See Section 13.5.4.20,
“SHOW WARNINGS Syntax”.

Before MySQL 4.1.1, only a warning count is available to indicate that something went wrong. If
you get warnings and want to know exactly why you got them, one way to do this is to dump the ta-
ble into another file using SELECT ... INTO OUTFILE and compare the file to your original
input file.

13.1.6. REPLACE Syntax
REPLACE [LOW_PRIORITY | DELAYED]

[INTO] tbl_name [(col_name,...)]
VALUES ({expr | DEFAULT},...),(...),...

Or:

REPLACE [LOW_PRIORITY | DELAYED]
[INTO] tbl_name
SET col_name={expr | DEFAULT}, ...

Or:

REPLACE [LOW_PRIORITY | DELAYED]
[INTO] tbl_name [(col_name,...)]
SELECT ...

REPLACE works exactly like INSERT, except that if an old record in the table has the same value
as a new record for a PRIMARY KEY or a UNIQUE index, the old record is deleted before the new
record is inserted. See Section 13.1.4, “INSERT Syntax”.

Note that unless the table has a PRIMARY KEY or UNIQUE index, using a REPLACE statement
makes no sense. It becomes equivalent to INSERT, because there is no index to be used to determ-
ine whether a new row duplicates another.

Values for all columns are taken from the values specified in the REPLACE statement. Any missing
columns are set to their default values, just as happens for INSERT. You can't refer to values from
the old row and use them in the new row. It appeared that you could do this in some old MySQL
versions, but that was a bug that has been corrected.

To be able to use REPLACE, you must have INSERT and DELETE privileges for the table.

The REPLACE statement returns a count to indicate the number of rows affected. This is the sum of
the rows deleted and inserted. If the count is 1 for a single-row REPLACE, a row was inserted and
no rows were deleted. If the count is greater than 1, one or more old rows were deleted before the
new row was inserted. It is possible for a single row to replace more than one old row if the table
contains multiple unique indexes and the new row duplicates values for different old rows in differ-
ent unique indexes.

The affected-rows count makes it easy to determine whether REPLACE only added a row or wheth-
er it also replaced any rows: Check whether the count is 1 (added) or greater (replaced).

If you are using the C API, the affected-rows count can be obtained using the
mysql_affected_rows() function.

Currently, you cannot replace into a table and select from the same table in a subquery.

SQL Statement Syntax

670

Here follows in more detail the algorithm that is used (it is also used with LOAD DATA ... RE-
PLACE):

1. Try to insert the new row into the table

2. While the insertion fails because a duplicate-key error occurs for a primary or unique key:

a. Delete from the table the conflicting row that has the duplicate key value

b. Try again to insert the new row into the table

13.1.7. SELECT Syntax
SELECT

[ALL | DISTINCT | DISTINCTROW]
[HIGH_PRIORITY]
[STRAIGHT_JOIN]
[SQL_SMALL_RESULT] [SQL_BIG_RESULT] [SQL_BUFFER_RESULT]
[SQL_CACHE | SQL_NO_CACHE] [SQL_CALC_FOUND_ROWS]

select_expr, ...
[INTO OUTFILE 'file_name' export_options
| INTO DUMPFILE 'file_name']

[FROM table_references
[WHERE where_definition]
[GROUP BY {col_name | expr | position}
[ASC | DESC], ... [WITH ROLLUP]]

[HAVING where_definition]
[ORDER BY {col_name | expr | position}
[ASC | DESC] , ...]

[LIMIT {[offset,] row_count | row_count OFFSET offset}]
[PROCEDURE procedure_name(argument_list)]
[FOR UPDATE | LOCK IN SHARE MODE]]

SELECT is used to retrieve rows selected from one or more tables. Support for UNION statements
and subqueries is available as of MySQL 4.0 and 4.1, respectively. See Section 13.1.7.2, “UNION
Syntax” and Section 13.1.8, “Subquery Syntax”.

• Each select_expr indicates a column you want to retrieve.

• table_references indicates the table or tables from which to retrieve rows. Its syntax is
described in Section 13.1.7.1, “JOIN Syntax”.

• where_definition consists of the keyword WHERE followed by an expression that indic-
ates the condition or conditions that rows must satisfy to be selected.

SELECT can also be used to retrieve rows computed without reference to any table.

For example:

mysql> SELECT 1 + 1;
-> 2

All clauses used must be given in exactly the order shown in the syntax description. For example, a
HAVING clause must come after any GROUP BY clause and before any ORDER BY clause.

•
A select_expr can be given an alias using AS alias_name. The alias is used as the ex-
pression's column name and can be used in GROUP BY, ORDER BY, or HAVING clauses. For

SQL Statement Syntax

671

example:

mysql> SELECT CONCAT(last_name,', ',first_name) AS full_name
-> FROM mytable ORDER BY full_name;

The AS keyword is optional when aliasing a select_expr. The preceding example could
have been written like this:

mysql> SELECT CONCAT(last_name,', ',first_name) full_name
-> FROM mytable ORDER BY full_name;

Because the AS is optional, a subtle problem can occur if you forget the comma between two
select_expr expressions: MySQL interprets the second as an alias name. For example, in
the following statement, columnb is treated as an alias name:

mysql> SELECT columna columnb FROM mytable;

• It is not allowable to use a column alias in a WHERE clause, because the column value might not
yet be determined when the WHERE clause is executed. See Section A.5.4, “Problems with
Column Aliases”.

• The FROM table_references clause indicates the tables from which to retrieve rows. If
you name more than one table, you are performing a join. For information on join syntax, see
Section 13.1.7.1, “JOIN Syntax”. For each table specified, you can optionally specify an alias.

tbl_name [[AS] alias]
[[USE INDEX (key_list)]
| [IGNORE INDEX (key_list)]
| [FORCE INDEX (key_list)]]

The use of USE INDEX, IGNORE INDEX, FORCE INDEX to give the optimizer hints about
how to choose indexes is described in Section 13.1.7.1, “JOIN Syntax”.

In MySQL 4.0.14, you can use SET max_seeks_for_key=value as an alternative way to
force MySQL to prefer key scans instead of table scans.

• You can refer to a table within the current database as tbl_name (within the current database),
or as db_name.tbl_name to explicitly specify a database. You can refer to a column as
col_name, tbl_name.col_name, or db_name.tbl_name.col_name. You need not
specify a tbl_name or db_name.tbl_name prefix for a column reference unless the refer-
ence would be ambiguous. See Section 9.2, “Database, Table, Index, Column, and Alias Names”
for examples of ambiguity that require the more explicit column reference forms.

• From MySQL 4.1.0 on, you are allowed to specify DUAL as a dummy table name in situations
where no tables are referenced:

mysql> SELECT 1 + 1 FROM DUAL;
-> 2

DUAL is purely a compatibility feature. Some other servers require this syntax.

• A table reference can be aliased using tbl_name AS alias_name or tbl_name ali-
as_name:

mysql> SELECT t1.name, t2.salary FROM employee AS t1, info AS t2
-> WHERE t1.name = t2.name;

mysql> SELECT t1.name, t2.salary FROM employee t1, info t2
-> WHERE t1.name = t2.name;

• In the WHERE clause, you can use any of the functions that MySQL supports, except for aggreg-

SQL Statement Syntax

672

ate (summary) functions. See Chapter 12, Functions and Operators.

• Columns selected for output can be referred to in ORDER BY and GROUP BY clauses using
column names, column aliases, or column positions. Column positions are integers and begin
with 1:

mysql> SELECT college, region, seed FROM tournament
-> ORDER BY region, seed;

mysql> SELECT college, region AS r, seed AS s FROM tournament
-> ORDER BY r, s;

mysql> SELECT college, region, seed FROM tournament
-> ORDER BY 2, 3;

To sort in reverse order, add the DESC (descending) keyword to the name of the column in the
ORDER BY clause that you are sorting by. The default is ascending order; this can be specified
explicitly using the ASC keyword.

Use of column positions is deprecated because the syntax has been removed from the SQL
standard.

• If you use GROUP BY, output rows are sorted according to the GROUP BY columns as if you
had an ORDER BY for the same columns. MySQL has extended the GROUP BY clause as of
version 3.23.34 so that you can also specify ASC and DESC after columns named in the clause:

SELECT a, COUNT(b) FROM test_table GROUP BY a DESC

• MySQL extends the use of GROUP BY to allow you to select fields that are not mentioned in the
GROUP BY clause. If you are not getting the results you expect from your query, please read the
GROUP BY description. See Section 12.9, “Functions and Modifiers for Use with GROUP BY
Clauses”.

• As of MySQL 4.1.1, GROUP BY allows a WITH ROLLUP modifier. See Section 12.9.2,
“GROUP BY Modifiers”.

• The HAVING clause is applied nearly last, just before items are sent to the client, with no optim-
ization. (LIMIT is applied after HAVING.)

Before MySQL 5.0.2, a HAVING clause can refer to any column or alias named in a se-
lect_expr in the SELECT list or in outer subqueries, and to aggregate functions. Standard
SQL requires that HAVING must reference only columns in the GROUP BY clause or columns
used in aggregate functions. To accommodate both standard SQL and the MySQL-specific beha-
vior of being able to refer columns in the SELECT list, MySQL 5.0.2 and up allows HAVING to
refer to columns in the SELECT list, columns in the GROUP BY clause, columns in outer sub-
queries, and to aggregate functions.

For example, the following statement works in MySQL 5.0.2 but produces an error for earlier
versions:

mysql> SELECT COUNT(*) FROM t GROUP BY col1 HAVING col1 = 2;

If the HAVING clause refers to a column that is ambiguous, a warning occurs. In the following
statement, col2 is ambiguous because it is used both as an alias and as a column name:

mysql> SELECT COUNT(col1) AS col2 FROM t GROUP BY col2 HAVING col2 = 2;

Preference is given to standard SQL behavior, so that if a HAVING column name is used both in
GROUP BY and as an aliased column in the output column list, preferences is given to the
column in the GROUP BY column.

• Don't use HAVING for items that should be in the WHERE clause. For example, do not write this:

SQL Statement Syntax

673

mysql> SELECT col_name FROM tbl_name HAVING col_name > 0;

Write this instead:

mysql> SELECT col_name FROM tbl_name WHERE col_name > 0;

• The HAVING clause can refer to aggregate functions, which the WHERE clause cannot:

mysql> SELECT user, MAX(salary) FROM users
-> GROUP BY user HAVING MAX(salary)>10;

However, that does not work in older MySQL servers (before version 3.22.5). Instead, you can
use a column alias in the select list and refer to the alias in the HAVING clause:

mysql> SELECT user, MAX(salary) AS max_salary FROM users
-> GROUP BY user HAVING max_salary>10;

• The LIMIT clause can be used to constrain the number of rows returned by the SELECT state-
ment. LIMIT takes one or two numeric arguments, which must be integer constants.

With two arguments, the first argument specifies the offset of the first row to return, and the
second specifies the maximum number of rows to return. The offset of the initial row is 0 (not
1):

mysql> SELECT * FROM table LIMIT 5,10; # Retrieve rows 6-15

For compatibility with PostgreSQL, MySQL also supports the LIMIT row_count OFFSET
offset syntax.

To retrieve all rows from a certain offset up to the end of the result set, you can use some large
number for the second parameter. This statement retrieves all rows from the 96th row to the last:

mysql> SELECT * FROM table LIMIT 95,18446744073709551615;

With one argument, the value specifies the number of rows to return from the beginning of the
result set:

mysql> SELECT * FROM table LIMIT 5; # Retrieve first 5 rows

In other words, LIMIT n is equivalent to LIMIT 0,n.

• The SELECT ... INTO OUTFILE 'file_name' form of SELECT writes the selected
rows to a file. The file is created on the server host, so you must have the FILE privilege to use
this syntax. The file cannot currently exist, which among other things prevents files such as /
etc/passwd and database tables from being destroyed.

The SELECT ... INTO OUTFILE statement is intended primarily to let you very quickly
dump a table on the server machine. If you want to create the resulting file on some client host
other than the server host, you can't use SELECT ... INTO OUTFILE. In that case, you
should instead use some command like mysql -e "SELECT ..." > file_name on the
client host to generate the file.

SELECT ... INTO OUTFILE is the complement of LOAD DATA INFILE; the syntax for
the export_options part of the statement consists of the same FIELDS and LINES clauses
that are used with the LOAD DATA INFILE statement. See Section 13.1.5, “LOAD DATA
INFILE Syntax”.

SQL Statement Syntax

674

FIELDS ESCAPED BY controls how to write special characters. If the FIELDS ESCAPED
BY character is not empty, it is used to prefix the following characters on output:

• The FIELDS ESCAPED BY character

• The FIELDS [OPTIONALLY] ENCLOSED BY character

• The first character of the FIELDS TERMINATED BY and LINES TERMINATED BY val-
ues

• ASCII 0 (what is actually written following the escape character is ASCII '0', not a zero-
valued byte)

If the FIELDS ESCAPED BY character is empty, no characters are escaped and NULL is out-
put as NULL, not \N. It is probably not a good idea to specify an empty escape character, partic-
ularly if field values in your data contain any of the characters in the list just given.

The reason for the above is that you must escape any FIELDS TERMINATED BY, ENCLOSED
BY, ESCAPED BY, or LINES TERMINATED BY characters to reliably be able to read the file
back. ASCII NUL is escaped to make it easier to view with some pagers.

The resulting file doesn't have to conform to SQL syntax, so nothing else need be escaped.

Here is an example that produces a file in the comma-separated values format used by many pro-
grams:

SELECT a,b,a+b INTO OUTFILE '/tmp/result.text'
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
LINES TERMINATED BY '\n'
FROM test_table;

• If you use INTO DUMPFILE instead of INTO OUTFILE, MySQL writes only one row into
the file, without any column or line termination and without performing any escape processing.
This is useful if you want to store a BLOB value in a file.

• Note: Any file created by INTO OUTFILE or INTO DUMPFILE is writable by all users on the
server host. The reason for this is that the MySQL server can't create a file that is owned by any-
one other than the user it's running as (you should never run mysqld as root). The file thus
must be world-writable so that you can manipulate its contents.

• A PROCEDURE clause names a procedure that should process the data in the result set. For an
example, see Section 25.3.1, “Procedure Analyse”.

• If you use FOR UPDATE on a storage engine that uses page or row locks, rows examined by the
query are write-locked until the end of the current transaction. Using LOCK IN SHARE MODE
sets a shared lock that prevents other transactions from updating or deleting the examined rows.
See Section 15.11.4, “Locking Reads SELECT ... FOR UPDATE and SELECT ... LOCK
IN SHARE MODE”.

Following the SELECT keyword, you can give a number of options that affect the operation of the
statement.

The ALL, DISTINCT, and DISTINCTROW options specify whether duplicate rows should be re-
turned. If none of these options are given, the default is ALL (all matching rows are returned). DIS-
TINCT and DISTINCTROW are synonyms and specify that duplicate rows in the result set should
be removed.

HIGH_PRIORITY, STRAIGHT_JOIN, and options beginning with SQL_ are MySQL extensions
to standard SQL.

SQL Statement Syntax

675

• HIGH_PRIORITY gives the SELECT higher priority than a statement that updates a table. You
should use this only for queries that are very fast and must be done at once. A SELECT
HIGH_PRIORITY query that is issued while the table is locked for reading runs even if there is
an update statement waiting for the table to be free.

HIGH_PRIORITY cannot be used with SELECT statements that are part of a UNION.

• STRAIGHT_JOIN forces the optimizer to join the tables in the order in which they are listed in
the FROM clause. You can use this to speed up a query if the optimizer joins the tables in non-
optimal order. See Section 7.2.1, “EXPLAIN Syntax (Get Information About a SELECT)”.
STRAIGHT_JOIN also can be used in the table_references list. See Section 13.1.7.1,
“JOIN Syntax”.

• SQL_BIG_RESULT can be used with GROUP BY or DISTINCT to tell the optimizer that the
result set has many rows. In this case, MySQL directly uses disk-based temporary tables if
needed. MySQL also, in this case, prefers sorting to using a temporary table with a key on the
GROUP BY elements.

• SQL_BUFFER_RESULT forces the result to be put into a temporary table. This helps MySQL
free the table locks early and helps in cases where it takes a long time to send the result set to the
client.

• SQL_SMALL_RESULT can be used with GROUP BY or DISTINCT to tell the optimizer that
the result set is small. In this case, MySQL uses fast temporary tables to store the resulting table
instead of using sorting. In MySQL 3.23 and up, this shouldn't normally be needed.

• SQL_CALC_FOUND_ROWS (available in MySQL 4.0.0 and up) tells MySQL to calculate how
many rows there would be in the result set, disregarding any LIMIT clause. The number of rows
can then be retrieved with SELECT FOUND_ROWS(). See Section 12.8.3, “Information Func-
tions”.

Before MySQL 4.1.0, this option does not work with LIMIT 0, which is optimized to return in-
stantly (resulting in a row count of 0). See Section 7.2.12, “How MySQL Optimizes LIMIT”.

• SQL_CACHE tells MySQL to store the query result in the query cache if you are using a
query_cache_type value of 2 or DEMAND. For a query that uses UNION or subqueries, this
option takes effect to be used in any SELECT of the query. See Section 5.11, “The MySQL
Query Cache”.

• SQL_NO_CACHE tells MySQL not to store the query result in the query cache. See Sec-
tion 5.11, “The MySQL Query Cache”. For a query that uses UNION or subqueries, this option
takes effect to be used in any SELECT of the query.

13.1.7.1. JOIN Syntax

MySQL supports the following JOIN syntaxes for the table_references part of SELECT
statements and multiple-table DELETE and UPDATE statements:

table_reference, table_reference
table_reference [INNER | CROSS] JOIN table_reference [join_condition]
table_reference STRAIGHT_JOIN table_reference
table_reference LEFT [OUTER] JOIN table_reference [join_condition]
table_reference NATURAL [LEFT [OUTER]] JOIN table_reference
{ OJ table_reference LEFT OUTER JOIN table_reference

ON conditional_expr }
table_reference RIGHT [OUTER] JOIN table_reference [join_condition]
table_reference NATURAL [RIGHT [OUTER]] JOIN table_reference

table_reference is defined as:

tbl_name [[AS] alias]
[[USE INDEX (key_list)]

SQL Statement Syntax

676

| [IGNORE INDEX (key_list)]
| [FORCE INDEX (key_list)]]

join_condition is defined as:

ON conditional_expr | USING (column_list)

You should generally not have any conditions in the ON part that are used to restrict which rows you
want in the result set, but rather specify these conditions in the WHERE clause. There are exceptions
to this rule.

Note that INNER JOIN syntax allows a join_condition only from MySQL 3.23.17 on. The
same is true for JOIN and CROSS JOIN only as of MySQL 4.0.11.

The { OJ ... LEFT OUTER JOIN ...} syntax shown in the preceding list exists only for
compatibility with ODBC.

• A table reference can be aliased using tbl_name AS alias_name or tbl_name ali-
as_name:

mysql> SELECT t1.name, t2.salary FROM employee AS t1, info AS t2
-> WHERE t1.name = t2.name;

mysql> SELECT t1.name, t2.salary FROM employee t1, info t2
-> WHERE t1.name = t2.name;

• The ON conditional is any conditional expression of the form that can be used in a WHERE
clause.

• If there is no matching record for the right table in the ON or USING part in a LEFT JOIN, a
row with all columns set to NULL is used for the right table. You can use this fact to find records
in a table that have no counterpart in another table:

mysql> SELECT table1.* FROM table1
-> LEFT JOIN table2 ON table1.id=table2.id
-> WHERE table2.id IS NULL;

This example finds all rows in table1 with an id value that is not present in table2 (that is,
all rows in table1 with no corresponding row in table2). This assumes that table2.id is
declared NOT NULL. See Section 7.2.9, “How MySQL Optimizes LEFT JOIN and RIGHT
JOIN”.

• The USING (column_list) clause names a list of columns that must exist in both tables.
The following two clauses are semantically identical:

a LEFT JOIN b USING (c1,c2,c3)
a LEFT JOIN b ON a.c1=b.c1 AND a.c2=b.c2 AND a.c3=b.c3

• The NATURAL [LEFT] JOIN of two tables is defined to be semantically equivalent to an
INNER JOIN or a LEFT JOIN with a USING clause that names all columns that exist in both
tables.

•
INNER JOIN and , (comma) are semantically equivalent in the absence of a join condition:
both produce a Cartesian product between the specified tables (that is, each and every row in the
first table are joined to all rows in the second table).

• RIGHT JOIN works analogously to LEFT JOIN. To keep code portable across databases, it's
recommended to use LEFT JOIN instead of RIGHT JOIN.

•

SQL Statement Syntax

677

STRAIGHT_JOIN is identical to JOIN, except that the left table is always read before the right
table. This can be used for those (few) cases for which the join optimizer puts the tables in the
wrong order.

As of MySQL 3.23.12, you can give hints about which index MySQL should use when retrieving
information from a table. By specifying USE INDEX (key_list), you can tell MySQL to use
only one of the possible indexes to find rows in the table. The alternative syntax IGNORE INDEX
(key_list) can be used to tell MySQL to not use some particular index. These hints are useful if
EXPLAIN shows that MySQL is using the wrong index from the list of possible indexes.

From MySQL 4.0.9 on, you can also use FORCE INDEX. This acts likes USE INDEX
(key_list) but with the addition that a table scan is assumed to be very expensive. In other
words, a table scan is only used if there is no way to use one of the given indexes to find rows in the
table.

USE KEY, IGNORE KEY, and FORCE KEY are synonyms for USE INDEX, IGNORE INDEX,
and FORCE INDEX.

Note: USE INDEX, IGNORE INDEX, and FORCE INDEX only affect which indexes are used
when MySQL decides how to find rows in the table and how to do the join. They do not affect
whether an index is used when resolving an ORDER BY or GROUP BY.

Some join examples:

mysql> SELECT * FROM table1,table2 WHERE table1.id=table2.id;
mysql> SELECT * FROM table1 LEFT JOIN table2 ON table1.id=table2.id;
mysql> SELECT * FROM table1 LEFT JOIN table2 USING (id);
mysql> SELECT * FROM table1 LEFT JOIN table2 ON table1.id=table2.id

-> LEFT JOIN table3 ON table2.id=table3.id;
mysql> SELECT * FROM table1 USE INDEX (key1,key2)

-> WHERE key1=1 AND key2=2 AND key3=3;
mysql> SELECT * FROM table1 IGNORE INDEX (key3)

-> WHERE key1=1 AND key2=2 AND key3=3;

See Section 7.2.9, “How MySQL Optimizes LEFT JOIN and RIGHT JOIN”.

13.1.7.2. UNION Syntax

SELECT ...
UNION [ALL | DISTINCT]
SELECT ...
[UNION [ALL | DISTINCT]
SELECT ...]

UNION is used to combine the result from many SELECT statements into one result set. UNION is
available from MySQL 4.0.0 on.

Selected columns listed in corresponding positions of each SELECT statement should have the same
type. (For example, the first column selected by the first statement should have the same type as the
first column selected by the other statements.) The column names used in the first SELECT state-
ment are used as the column names for the results returned.

The SELECT statements are normal select statements, but with the following restrictions:

• Only the last SELECT statement can have INTO OUTFILE.

• HIGH_PRIORITY cannot be used with SELECT statements that are part of a UNION. If you
specify it for the first SELECT, it has no effect. If you specify it for any subsequent SELECT
statements, a syntax error results.

SQL Statement Syntax

678

If you don't use the keyword ALL for the UNION, all returned rows are unique, as if you had done a
DISTINCT for the total result set. If you specify ALL, you get all matching rows from all the used
SELECT statements.

The DISTINCT keyword is an optional word (introduced in MySQL 4.0.17). It does nothing, but is
allowed in the syntax as required by the SQL standard.

Before MySQL 4.1.2, you cannot mix UNION ALL and UNION DISTINCT in the same query. If
you use ALL for one UNION, it is used for all of them. As of MySQL 4.1.2, mixed UNION types are
treated such that a DISTINCT union overrides any ALL union to its left. A DISTINCT union can
be produced explicitly by using UNION DISTINCT or implicitly by using UNION with no follow-
ing DISTINCT or ALL keyword.

If you want to use an ORDER BY or LIMIT clause to sort or limit the entire UNION result, paren-
thesize the individual SELECT statements and place the ORDER BY or LIMIT after the last one.
The following example uses both clauses:

(SELECT a FROM tbl_name WHERE a=10 AND B=1)
UNION
(SELECT a FROM tbl_name WHERE a=11 AND B=2)
ORDER BY a LIMIT 10;

This kind of ORDER BY cannot use column references that include a table name (that is, names in
tbl_name.col_name format). Instead, provide a column alias in the first SELECT statement
and refer to the alias in the ORDER BY, or else refer to the column in the ORDER BY using its
column position. (An alias is preferable because use of column positions is deprecated.)

To apply ORDER BY or LIMIT to an individual SELECT, place the clause inside the parentheses
that enclose the SELECT:

(SELECT a FROM tbl_name WHERE a=10 AND B=1 ORDER BY a LIMIT 10)
UNION
(SELECT a FROM tbl_name WHERE a=11 AND B=2 ORDER BY a LIMIT 10);

The types and lengths of the columns in the result set of a UNION take into account the values re-
trieved by all the SELECT statements. Before MySQL 4.1.1, a limitation of UNION is that only the
values from the first SELECT are used to determine result column types and lengths. This could res-
ult in value truncation if, for example, the first SELECT retrieves shorter values than the second
SELECT:

mysql> SELECT REPEAT('a',1) UNION SELECT REPEAT('b',10);
+---------------+
| REPEAT('a',1) |
+---------------+
| a |
| b |
+---------------+

That limitation has been removed as of MySQL 4.1.1:

mysql> SELECT REPEAT('a',1) UNION SELECT REPEAT('b',10);
+---------------+
| REPEAT('a',1) |
+---------------+
| a |
| bbbbbbbbbb |
+---------------+

13.1.8. Subquery Syntax
A subquery is a SELECT statement inside another statement.

SQL Statement Syntax

679

Starting with MySQL 4.1, all subquery forms and operations that the SQL standard requires are sup-
ported, as well as a few features that are MySQL-specific.

With MySQL versions prior to 4.1, it was necessary to work around or avoid the use of subqueries.
In many cases, subqueries can successfully be rewritten using joins and other methods. See Sec-
tion 13.1.8.11, “Rewriting Subqueries as Joins for Earlier MySQL Versions”.

Here is an example of a subquery:

SELECT * FROM t1 WHERE column1 = (SELECT column1 FROM t2);

In this example, SELECT * FROM t1 ... is the outer query (or outer statement), and
(SELECT column1 FROM t2) is the subquery. We say that the subquery is nested in the outer
query, and in fact it's possible to nest subqueries within other subqueries, to a great depth. A sub-
query must always appear within parentheses.

The main advantages of subqueries are:

• They allow queries that are structured so that it's possible to isolate each part of a statement.

• They provide alternative ways to perform operations that would otherwise require complex joins
and unions.

• They are, in many people's opinion, readable. Indeed, it was the innovation of subqueries that
gave people the original idea of calling the early SQL ``Structured Query Language.''

Here is an example statement that shows the major points about subquery syntax as specified by the
SQL standard and supported in MySQL:

DELETE FROM t1
WHERE s11 > ANY
(SELECT COUNT(*) /* no hint */ FROM t2
WHERE NOT EXISTS
(SELECT * FROM t3
WHERE ROW(5*t2.s1,77)=
(SELECT 50,11*s1 FROM t4 UNION SELECT 50,77 FROM
(SELECT * FROM t5) AS t5)));

A subquery can return a scalar (a single value), a single row, a single column, or a table (one or
more rows of one or more columns). These are called scalar, column, row, and table subqueries.
Subqueries that return a particular kind of result often can be used only in certain contexts, as de-
scribed in the following sections.

There are few restrictions on the type of statements in which subqueries can be used:

• A subquery's outer statement can be any one of: SELECT, INSERT, UPDATE, DELETE, SET,
or DO.

• A subquery can contain any of the keywords or clauses that an ordinary SELECT can contain:
DISTINCT, GROUP BY, ORDER BY, LIMIT, joins, index hints, UNION constructs, com-
ments, functions, and so on.

One restriction is that currently you cannot modify a table and select from the same table in a sub-
query. This applies to statements such as DELETE, INSERT, REPLACE, and UPDATE.

13.1.8.1. The Subquery as Scalar Operand

In its simplest form, a subquery is a scalar subquery that returns a single value. A scalar subquery is

SQL Statement Syntax

680

a simple operand, and you can use it wherever a single column value or literal is legal, and you can
expect it to have those characteristics that all operands have: a data type, a length, an indication
whether it can be NULL, and so on. For example:

CREATE TABLE t1 (s1 INT, s2 CHAR(5) NOT NULL);
INSERT INTO t1 VALUES(100, 'abcde');
SELECT (SELECT s2 FROM t1);

The subquery in this SELECT returns a single value ('abcde') that has a data type of CHAR, a
length of 5, a character set and collation equal to the defaults in effect at CREATE TABLE time, and
an indication that the value in the column can be NULL. In fact, almost all subqueries can be NULL.
If the table used in the example were empty, the value of the subquery would be NULL.

When you see examples in the following sections that contain the rather spartan construct (SELECT
column1 FROM t1), imagine that your own code contains much more diverse and complex con-
structions.

For example, suppose that we make two tables:

CREATE TABLE t1 (s1 INT);
INSERT INTO t1 VALUES (1);
CREATE TABLE t2 (s1 INT);
INSERT INTO t2 VALUES (2);

Then perform a SELECT:

SELECT (SELECT s1 FROM t2) FROM t1;

The result is 2 because there is a row in t2 containing a column s1 that has a value of 2.

A scalar subquery can be part of an expression. Don't forget the parentheses, even if the subquery is
an operand that provides an argument for a function. For example:

SELECT UPPER((SELECT s1 FROM t1)) FROM t2;

13.1.8.2. Comparisons Using Subqueries

The most common use of a subquery is in the form:

non_subquery_operand comparison_operator (subquery)

Where comparison_operator is one of these operators:

= > < >= <= <>

For example:

... 'a' = (SELECT column1 FROM t1)

At one time the only legal place for a subquery was on the right side of a comparison, and you might
still find some old DBMSs that insist on this.

Here is an example of a common-form subquery comparison that you cannot do with a join. It finds
all the values in table t1 that are equal to a maximum value in table t2:

SELECT column1 FROM t1
WHERE column1 = (SELECT MAX(column2) FROM t2);

SQL Statement Syntax

681

Here is another example, which again is impossible with a join because it involves aggregating for
one of the tables. It finds all rows in table t1 containing a value that occurs twice in a given
column:

SELECT * FROM t1 AS t
WHERE 2 = (SELECT COUNT(*) FROM t1 WHERE t1.id = t.id);

For a comparison performed with one of these comparison operators, the subquery must return a
scalar, with the exception that = can be used with row subqueries. See Section 13.1.8.5, “Row Sub-
queries”.

13.1.8.3. Subqueries with ANY, IN, and SOME

Syntax:

operand comparison_operator ANY (subquery)
operand IN (subquery)
operand comparison_operator SOME (subquery)

The ANY keyword, which must follow a comparison operator, means ``return TRUE if the comparis-
on is TRUE for ANY of the values in the column that the subquery returns.'' For example:

SELECT s1 FROM t1 WHERE s1 > ANY (SELECT s1 FROM t2);

Suppose that there is a row in table t1 containing (10). The expression is TRUE if table t2 con-
tains (21,14,7) because there is a value 7 in t2 that is less than 10. The expression is FALSE if
table t2 contains (20,10), or if table t2 is empty. The expression is UNKNOWN if table t2 con-
tains (NULL,NULL,NULL).

The word IN is an alias for = ANY. Thus these two statements are the same:

SELECT s1 FROM t1 WHERE s1 = ANY (SELECT s1 FROM t2);
SELECT s1 FROM t1 WHERE s1 IN (SELECT s1 FROM t2);

However, NOT IN is not an alias for <> ANY, but for <> ALL. See Section 13.1.8.4, “Subqueries
with ALL”.

The word SOME is an alias for ANY. Thus these two statements are the same:

SELECT s1 FROM t1 WHERE s1 <> ANY (SELECT s1 FROM t2);
SELECT s1 FROM t1 WHERE s1 <> SOME (SELECT s1 FROM t2);

Use of the word SOME is rare, but this example shows why it might be useful. To most people's ears,
the English phrase ``a is not equal to any b'' means ``there is no b which is equal to a,'' but that isn't
what is meant by the SQL syntax. The syntax means ``there is some b to which a is not equal.'' Us-
ing <> SOME instead helps ensure that everyone understands the true meaning of the query.

13.1.8.4. Subqueries with ALL

Syntax:

operand comparison_operator ALL (subquery)

The word ALL, which must follow a comparison operator, means ``return TRUE if the comparison is
TRUE for ALL of the values in the column that the subquery returns.'' For example:

SELECT s1 FROM t1 WHERE s1 > ALL (SELECT s1 FROM t2);

SQL Statement Syntax

682

Suppose that there is a row in table t1 containing (10). The expression is TRUE if table t2 con-
tains (-5,0,+5) because 10 is greater than all three values in t2. The expression is FALSE if ta-
ble t2 contains (12,6,NULL,-100) because there is a single value 12 in table t2 that is greater
than 10. The expression is UNKNOWN if table t2 contains (0,NULL,1).

Finally, if table t2 is empty, the result is TRUE. You might think the result should be UNKNOWN,
but sorry, it's TRUE. So, rather oddly, the following statement is TRUE when table t2 is empty:

SELECT * FROM t1 WHERE 1 > ALL (SELECT s1 FROM t2);

But this statement is UNKNOWN when table t2 is empty:

SELECT * FROM t1 WHERE 1 > (SELECT s1 FROM t2);

In addition, the following statement is UNKNOWN when table t2 is empty:

SELECT * FROM t1 WHERE 1 > ALL (SELECT MAX(s1) FROM t2);

In general, tables with NULL values and empty tables are edge cases. When writing subquery code,
always consider whether you have taken those two possibilities into account.

NOT IN is an alias for <> ALL. Thus these two statements are the same:

SELECT s1 FROM t1 WHERE s1 <> ALL (SELECT s1 FROM t2);
SELECT s1 FROM t1 WHERE s1 NOT IN (SELECT s1 FROM t2);

13.1.8.5. Row Subqueries

The discussion to this point has been of scalar or column subqueries, that is, subqueries that return a
single value or a column of values. A row subquery is a subquery variant that returns a single row
and can thus return more than one column value. Here are two examples:

SELECT * FROM t1 WHERE (1,2) = (SELECT column1, column2 FROM t2);
SELECT * FROM t1 WHERE ROW(1,2) = (SELECT column1, column2 FROM t2);

The queries here are both TRUE if table t2 has a row where column1 = 1 and column2 = 2.

The expressions (1,2) and ROW(1,2) are sometimes called row constructors. The two are equi-
valent. They are legal in other contexts, too. For example, the following two statements are se-
mantically equivalent (although currently only the second one can be optimized):

SELECT * FROM t1 WHERE (column1,column2) = (1,1);
SELECT * FROM t1 WHERE column1 = 1 AND column2 = 1;

The normal use of row constructors, though, is for comparisons with subqueries that return two or
more columns. For example, the following query answers the request, ``find all rows in table t1
that also exist in table t2'':

SELECT column1,column2,column3
FROM t1
WHERE (column1,column2,column3) IN

(SELECT column1,column2,column3 FROM t2);

13.1.8.6. EXISTS and NOT EXISTS

If a subquery returns any rows at all, then EXISTS subquery is TRUE, and NOT EXISTS
subquery is FALSE. For example:

SQL Statement Syntax

683

SELECT column1 FROM t1 WHERE EXISTS (SELECT * FROM t2);

Traditionally, an EXISTS subquery starts with SELECT *, but it could begin with SELECT 5 or
SELECT column1 or anything at all. MySQL ignores the SELECT list in such a subquery, so it
doesn't matter.

For the preceding example, if t2 contains any rows, even rows with nothing but NULL values, then
the EXISTS condition is TRUE. This is actually an unlikely example, since almost always a [NOT]
EXISTS subquery contains correlations. Here are some more realistic examples:

• What kind of store is present in one or more cities?

SELECT DISTINCT store_type FROM Stores
WHERE EXISTS (SELECT * FROM Cities_Stores

WHERE Cities_Stores.store_type = Stores.store_type);

• What kind of store is present in no cities?

SELECT DISTINCT store_type FROM Stores
WHERE NOT EXISTS (SELECT * FROM Cities_Stores

WHERE Cities_Stores.store_type = Stores.store_type);

• What kind of store is present in all cities?

SELECT DISTINCT store_type FROM Stores S1
WHERE NOT EXISTS (
SELECT * FROM Cities WHERE NOT EXISTS (
SELECT * FROM Cities_Stores
WHERE Cities_Stores.city = Cities.city
AND Cities_Stores.store_type = Stores.store_type));

The last example is a double-nested NOT EXISTS query. That is, it has a NOT EXISTS clause
within a NOT EXISTS clause. Formally, it answers the question ``does a city exist with a store that
is not in Stores?'' But it's easier to say that a nested NOT EXISTS answers the question ``is x
TRUE for all y?''

13.1.8.7. Correlated Subqueries

A correlated subquery is a subquery that contains a reference to a table that also appears in the outer
query. For example:

SELECT * FROM t1 WHERE column1 = ANY
(SELECT column1 FROM t2 WHERE t2.column2 = t1.column2);

Notice that the subquery contains a reference to a column of t1, even though the subquery's FROM
clause doesn't mention a table t1. So, MySQL looks outside the subquery, and finds t1 in the outer
query.

Suppose that table t1 contains a row where column1 = 5 and column2 = 6; meanwhile, table
t2 contains a row where column1 = 5 and column2 = 7. The simple expression ...
WHERE column1 = ANY (SELECT column1 FROM t2) would be TRUE, but in this ex-
ample, the WHERE clause within the subquery is FALSE (because (5,6) is not equal to (5,7)),
so the subquery as a whole is FALSE.

Scoping rule: MySQL evaluates from inside to outside. For example:

SELECT column1 FROM t1 AS x
WHERE x.column1 = (SELECT column1 FROM t2 AS x

SQL Statement Syntax

684

WHERE x.column1 = (SELECT column1 FROM t3
WHERE x.column2 = t3.column1));

In this statement, x.column2 must be a column in table t2 because SELECT column1 FROM
t2 AS x ... renames t2. It is not a column in table t1 because SELECT column1 FROM
t1 ... is an outer query that is farther out.

For subqueries in HAVING or ORDER BY clauses, MySQL also looks for column names in the out-
er select list.

For certain cases, a correlated subquery is optimized. For example:

val IN (SELECT key_val FROM tbl_name WHERE correlated_condition)

Otherwise, they are inefficient and likely to be slow. Rewriting the query as a join might improve
performance.

13.1.8.8. Subqueries in the FROM clause

Subqueries are legal in a SELECT statement's FROM clause. The syntax that you'll actually see is:

SELECT ... FROM (subquery) AS name ...

The AS name clause is mandatory, because every table in a FROM clause must have a name. Any
columns in the subquery select list must have unique names. You can find this syntax described
elsewhere in this manual, where the term used is ``derived tables.''

For illustration, assume that you have this table:

CREATE TABLE t1 (s1 INT, s2 CHAR(5), s3 FLOAT);

Here's how to use a subquery in the FROM clause, using the example table:

INSERT INTO t1 VALUES (1,'1',1.0);
INSERT INTO t1 VALUES (2,'2',2.0);
SELECT sb1,sb2,sb3

FROM (SELECT s1 AS sb1, s2 AS sb2, s3*2 AS sb3 FROM t1) AS sb
WHERE sb1 > 1;

Result: 2, '2', 4.0.

Here's another example: Suppose that you want to know the average of a set of sums for a grouped
table. This won't work:

SELECT AVG(SUM(column1)) FROM t1 GROUP BY column1;

But this query provides the desired information:

SELECT AVG(sum_column1)
FROM (SELECT SUM(column1) AS sum_column1

FROM t1 GROUP BY column1) AS t1;

Notice that the column name used within the subquery (sum_column1) is recognized in the outer
query.

Subqueries in the FROM clause can return a scalar, column, row, or table. At the moment, subqueries
in the FROM clause cannot be correlated subqueries.

SQL Statement Syntax

685

Subqueries in the FROM clause are executed even for the EXPLAIN statement (that is, derived tem-
porary tables are built). This occurs because upper level queries need information about all tables
during optimization phase.

13.1.8.9. Subquery Errors

There are some new error returns that apply only to subqueries. This section groups them together
because reviewing them helps remind you of some points.

• Unsupported subquery syntax:

ERROR 1235 (ER_NOT_SUPPORTED_YET)
SQLSTATE = 42000
Message = "This version of MySQL doesn't yet support
'LIMIT & IN/ALL/ANY/SOME subquery'"

This means that statements of the following form do not work, although this happens only in
some early versions, such as MySQL 4.1.1:

SELECT * FROM t1 WHERE s1 IN (SELECT s2 FROM t2 ORDER BY s1 LIMIT 1)

• Incorrect number of columns from subquery:

ERROR 1241 (ER_OPERAND_COL)
SQLSTATE = 21000
Message = "Operand should contain 1 column(s)"

This error occurs in cases like this:

SELECT (SELECT column1, column2 FROM t2) FROM t1;

It's okay to use a subquery that returns multiple columns, if the purpose is comparison. See Sec-
tion 13.1.8.5, “Row Subqueries”. But in other contexts, the subquery must be a scalar operand.

• Incorrect number of rows from subquery:

ERROR 1242 (ER_SUBSELECT_NO_1_ROW)
SQLSTATE = 21000
Message = "Subquery returns more than 1 row"

This error occurs for statements such as the following one, but only when there is more than one
row in t2:

SELECT * FROM t1 WHERE column1 = (SELECT column1 FROM t2);

That means this error might occur in code that had been working for years, because somebody
happened to make a change that affected the number of rows that the subquery can return. Re-
member that if the object is to find any number of rows, not just one, then the correct statement
would look like this:

SELECT * FROM t1 WHERE column1 = ANY (SELECT column1 FROM t2);

• Incorrectly used table in subquery:

Error 1093 (ER_UPDATE_TABLE_USED)
SQLSTATE = HY000
Message = "You can't specify target table 'x'
for update in FROM clause"

SQL Statement Syntax

686

This error occurs in cases like this:

UPDATE t1 SET column2 = (SELECT MAX(column1) FROM t1);

It's okay to use a subquery for assignment within an UPDATE statement, since subqueries are
legal in UPDATE and DELETE statements as well as in SELECT statements. However, you can-
not use the same table, in this case table t1, for both the subquery's FROM clause and the update
target.

For transactional storage engines, a failure of a subquery causes the entire statement to fail. For non-
transactional storage engines, data modifications made before the error was encountered are pre-
served.

13.1.8.10. Optimizing Subqueries

Development is ongoing, so no optimization tip is reliable for the long term. Some interesting tricks
that you might want to play with are:

• Use subquery clauses that affect the number or order of the rows in the subquery. For example:

SELECT * FROM t1 WHERE t1.column1 IN
(SELECT column1 FROM t2 ORDER BY column1);

SELECT * FROM t1 WHERE t1.column1 IN
(SELECT DISTINCT column1 FROM t2);

SELECT * FROM t1 WHERE EXISTS
(SELECT * FROM t2 LIMIT 1);

• Replace a join with a subquery. For example, use this query:

SELECT DISTINCT column1 FROM t1 WHERE t1.column1 IN (
SELECT column1 FROM t2);

Instead of this query:

SELECT DISTINCT t1.column1 FROM t1, t2
WHERE t1.column1 = t2.column1;

• Move clauses from outside to inside the subquery. For example, use this query:

SELECT * FROM t1
WHERE s1 IN (SELECT s1 FROM t1 UNION ALL SELECT s1 FROM t2);

Instead of this query:

SELECT * FROM t1
WHERE s1 IN (SELECT s1 FROM t1) OR s1 IN (SELECT s1 FROM t2);

For another example, use this query:

SELECT (SELECT column1 + 5 FROM t1) FROM t2;

Instead of this query:

SELECT (SELECT column1 FROM t1) + 5 FROM t2;

SQL Statement Syntax

687

• Use a row subquery instead of a correlated subquery. For example, use this query:

SELECT * FROM t1
WHERE (column1,column2) IN (SELECT column1,column2 FROM t2);

Instead of this query:

SELECT * FROM t1
WHERE EXISTS (SELECT * FROM t2 WHERE t2.column1=t1.column1
AND t2.column2=t1.column2);

• Use NOT (a = ANY (...)) rather than a <> ALL (...).

• Use x = ANY (table containing (1,2)) rather than x=1 OR x=2.

• Use = ANY rather than EXISTS.

These tricks might cause programs to go faster or slower. Using MySQL facilities like the BENCH-
MARK() function, you can get an idea about what helps in your own situation. Don't worry too
much about transforming to joins except for compatibility with older versions of MySQL before 4.1
that do not support subqueries.

Some optimizations that MySQL itself makes are:

• MySQL executes non-correlated subqueries only once. Use EXPLAIN to make sure that a given
subquery really is non-correlated.

• MySQL rewrites IN/ALL/ANY/SOME subqueries in an attempt to take advantage of the possibil-
ity that the select-list columns in the subquery are indexed.

• MySQL replaces subqueries of the following form with an index-lookup function, which EX-
PLAIN describes as a special join type:

... IN (SELECT indexed_column FROM single_table ...)

• MySQL enhances expressions of the following form with an expression involving MIN() or
MAX(), unless NULL values or empty sets are involved:

value {ALL|ANY|SOME} {> | < | >= | <=} (non-correlated subquery)

For example, this WHERE clause:

WHERE 5 > ALL (SELECT x FROM t)

might be treated by the optimizer like this:

WHERE 5 > (SELECT MAX(x) FROM t)

There is a chapter titled ``How MySQL Transforms Subqueries'' in the MySQL Internals Manual.
You can obtain this document by downloading the MySQL source package and looking for a file
named internals.texi in the Docs directory.

13.1.8.11. Rewriting Subqueries as Joins for Earlier MySQL Ver-

SQL Statement Syntax

688

sions

Before MySQL 4.1, only nested queries of the form INSERT ... SELECT ... and REPLACE
... SELECT ... are supported. The IN() construct can be used in other contexts to test mem-
bership in a set of values.

It is often possible to rewrite a query without a subquery:

SELECT * FROM t1 WHERE id IN (SELECT id FROM t2);

This can be rewritten as:

SELECT DISTINCT t1.* FROM t1, t2 WHERE t1.id=t2.id;

The queries:

SELECT * FROM t1 WHERE id NOT IN (SELECT id FROM t2);
SELECT * FROM t1 WHERE NOT EXISTS (SELECT id FROM t2 WHERE t1.id=t2.id);

Can be rewritten as:

SELECT table1.* FROM table1 LEFT JOIN table2 ON table1.id=table2.id
WHERE table2.id IS NULL;

A LEFT [OUTER] JOIN can be faster than an equivalent subquery because the server might be
able to optimize it better---a fact that is not specific to MySQL Server alone. Prior to SQL-92, outer
joins did not exist, so subqueries were the only way to do certain things in those bygone days.
Today, MySQL Server and many other modern database systems offer a whole range of outer join
types.

For more complicated subqueries, you can often create temporary tables to hold the subquery. In
some cases, however, this option does not work. The most frequently encountered of these cases
arises with DELETE statements, for which standard SQL does not support joins (except in subquer-
ies). For this situation, there are three options available:

• The first option is to upgrade to MySQL 4.1, which does support subqueries in DELETE state-
ments.

• The second option is to use a procedural programming language (such as Perl or PHP) to submit
a SELECT query to obtain the primary keys for the records to be deleted, and then use these val-
ues to construct the DELETE statement (DELETE FROM ... WHERE key_col IN
(key1, key2, ...)).

• The third option is to use interactive SQL to construct a set of DELETE statements automatic-
ally, using the MySQL extension CONCAT() (in lieu of the standard || operator). For example:

SELECT
CONCAT('DELETE FROM tab1 WHERE pkid = ', "'", tab1.pkid, "'", ';')
FROM tab1, tab2
WHERE tab1.col1 = tab2.col2;

You can place this query in a script file, use the file as input to one instance of the mysql pro-
gram, and use the program output as input to a second instance of mysql:

shell> mysql --skip-column-names mydb < myscript.sql | mysql mydb

MySQL Server 4.0 supports multiple-table DELETE statements that can be used to efficiently delete

SQL Statement Syntax

689

rows based on information from one table or even from many tables at the same time. Multiple-table
UPDATE statements are also supported as of MySQL 4.0.

13.1.9. TRUNCATE Syntax
TRUNCATE TABLE tbl_name

TRUNCATE TABLE empties a table completely. Logically, this is equivalent to a DELETE state-
ment that deletes all rows, but there are practical differences under some circumstances.

For InnoDB before version 5.0.3, TRUNCATE TABLE is mapped to DELETE, so there is no differ-
ence. Starting with MySQL/InnoDB-5.0.3, fast TRUNCATE TABLE is available. The operation is
still mapped to DELETE if there are foreign key constraints that reference the table.

For other storage engines, TRUNCATE TABLE differs from DELETE FROM in the following ways
from MySQL 4.0 and up:

• Truncate operations drop and re-create the table, which is much faster than deleting rows one by
one.

• Truncate operations are not transaction-safe; you get an error if you have an active transaction or
an active table lock.

• The number of deleted rows is not returned.

• As long as the table definition file tbl_name.frm is valid, the table can be re-created as an
empty table with TRUNCATE TABLE, even if the data or index files have become corrupted.

• The table handler does not remember the last used AUTO_INCREMENT value, but starts count-
ing from the beginning. This is true even for MyISAM and InnoDB, which normally does not
reuse sequence values.

In MySQL 3.23, TRUNCATE TABLE is mapped to COMMIT; DELETE FROM tbl_name, so it
behaves like DELETE. See Section 13.1.1, “DELETE Syntax”.

TRUNCATE TABLE is an Oracle SQL extension. This statement was added in MySQL 3.23.28, al-
though from 3.23.28 to 3.23.32, the keyword TABLE must be omitted.

13.1.10. UPDATE Syntax
Single-table syntax:

UPDATE [LOW_PRIORITY] [IGNORE] tbl_name
SET col_name1=expr1 [, col_name2=expr2 ...]
[WHERE where_definition]
[ORDER BY ...]
[LIMIT row_count]

Multiple-table syntax:

UPDATE [LOW_PRIORITY] [IGNORE] tbl_name [, tbl_name ...]
SET col_name1=expr1 [, col_name2=expr2 ...]
[WHERE where_definition]

The UPDATE statement updates columns in existing table rows with new values. The SET clause in-
dicates which columns to modify and the values they should be given. The WHERE clause, if given,
specifies which rows should be updated. Otherwise, all rows are updated. If the ORDER BY clause
is specified, the rows are updated in the order that is specified. The LIMIT clause places a limit on
the number of rows that can be updated.

SQL Statement Syntax

690

The UPDATE statement supports the following modifiers:

• If you specify the LOW_PRIORITY keyword, execution of the UPDATE is delayed until no oth-
er clients are reading from the table.

• If you specify the IGNORE keyword, the update statement does not abort even if errors occur
during the update. Rows for which duplicate-key conflicts occur are not updated. Rows for
which columns are updated to values that would cause data conversion errors are updated to the
closet valid values instead.

If you access a column from tbl_name in an expression, UPDATE uses the current value of the
column. For example, the following statement sets the age column to one more than its current
value:

mysql> UPDATE persondata SET age=age+1;

UPDATE assignments are evaluated from left to right. For example, the following statement doubles
the age column, then increments it:

mysql> UPDATE persondata SET age=age*2, age=age+1;

If you set a column to the value it currently has, MySQL notices this and doesn't update it.

If you update a column that has been declared NOT NULL by setting to NULL, the column is set to
the default value appropriate for the column type and the warning count is incremented. The default
value is 0 for numeric types, the empty string ('') for string types, and the ``zero'' value for date
and time types.

UPDATE returns the number of rows that were actually changed. In MySQL 3.22 or later, the
mysql_info() C API function returns the number of rows that were matched and updated and
the number of warnings that occurred during the UPDATE.

Starting from MySQL 3.23, you can use LIMIT row_count to restrict the scope of the UPDATE.
A LIMIT clause works as follows:

• Before MySQL 4.0.13, LIMIT is a rows-affected restriction. The statement stops as soon as it
has changed row_count rows that satisfy the WHERE clause.

• From 4.0.13 on, LIMIT is a rows-matched restriction. The statement stops as soon as it has
found row_count rows that satisfy the WHERE clause, whether or not they actually were
changed.

If an UPDATE statement includes an ORDER BY clause, the rows are updated in the order specified
by the clause. ORDER BY can be used from MySQL 4.0.0.

Starting with MySQL 4.0.4, you can also perform UPDATE operations that cover multiple tables:

UPDATE items,month SET items.price=month.price
WHERE items.id=month.id;

The example shows an inner join using the comma operator, but multiple-table UPDATE statements
can use any type of join allowed in SELECT statements, such as LEFT JOIN.

Note: You cannot use ORDER BY or LIMIT with multiple-table UPDATE.

Before MySQL 4.0.18, you need the UPDATE privilege for all tables used in a multiple-table UP-
DATE, even if they were not updated. As of MySQL 4.0.18, you need only the SELECT privilege
for any columns that are read but not modified.

SQL Statement Syntax

691

If you use a multiple-table UPDATE statement involving InnoDB tables for which there are foreign
key constraints, the MySQL optimizer might process tables in an order that differs from that of their
parent/child relationship. In this case, the statement fails and rolls back. Instead, update a single ta-
ble and rely on the ON UPDATE capabilities that InnoDB provides to cause the other tables to be
modified accordingly.

Currently, you cannot update a table and select from the same table in a subquery.

13.2. Data Definition Statements
13.2.1. ALTER DATABASE Syntax

ALTER {DATABASE | SCHEMA} [db_name]
alter_specification [, alter_specification] ...

alter_specification:
[DEFAULT] CHARACTER SET charset_name

| [DEFAULT] COLLATE collation_name

ALTER DATABASE allows you to change the overall characteristics of a database. These character-
istics are stored in the db.opt file in the database directory. To use ALTER DATABASE, you need
the ALTER privilege on the database.

The CHARACTER SET clause changes the default database character set. The COLLATE clause
changes the default database collation. Character set and collation names are discussed in
Chapter 10, Character Set Support.

ALTER DATABASE was added in MySQL 4.1.1. Beginning with MySQL 4.1.8, the database name
can be omitted. The statement applies to the default database in this case. ALTER SCHEMA can be
used as of MySQL 5.0.2.

13.2.2. ALTER TABLE Syntax
ALTER [IGNORE] TABLE tbl_name

alter_specification [, alter_specification] ...
alter_specification:

ADD [COLUMN] column_definition [FIRST | AFTER col_name]
| ADD [COLUMN] (column_definition,...)
| ADD INDEX [index_name] [index_type] (index_col_name,...)
| ADD [CONSTRAINT [symbol]]

PRIMARY KEY [index_type] (index_col_name,...)
| ADD [CONSTRAINT [symbol]]

UNIQUE [index_name] [index_type] (index_col_name,...)
| ADD [FULLTEXT|SPATIAL] [index_name] (index_col_name,...)
| ADD [CONSTRAINT [symbol]]

FOREIGN KEY [index_name] (index_col_name,...)
[reference_definition]

| ALTER [COLUMN] col_name {SET DEFAULT literal | DROP DEFAULT}
| CHANGE [COLUMN] old_col_name column_definition

[FIRST|AFTER col_name]
| MODIFY [COLUMN] column_definition [FIRST | AFTER col_name]
| DROP [COLUMN] col_name
| DROP PRIMARY KEY
| DROP INDEX index_name
| DROP FOREIGN KEY fk_symbol
| DISABLE KEYS
| ENABLE KEYS
| RENAME [TO] new_tbl_name
| ORDER BY col_name
| CONVERT TO CHARACTER SET charset_name [COLLATE collation_name]
| [DEFAULT] CHARACTER SET charset_name [COLLATE collation_name]
| DISCARD TABLESPACE
| IMPORT TABLESPACE
| table_options

SQL Statement Syntax

692

ALTER TABLE allows you to change the structure of an existing table. For example, you can add
or delete columns, create or destroy indexes, change the type of existing columns, or rename
columns or the table itself. You can also change the comment for the table and type of the table.

The syntax for many of the allowable alterations is similar to clauses of the CREATE TABLE state-
ment. See Section 13.2.6, “CREATE TABLE Syntax”.

Some operations may result in warnings if attempted on a table for which the storage engine does
not support the operation. In MySQL 4.1 and up, these warnings can be displayed with SHOW
WARNINGS. See Section 13.5.4.20, “SHOW WARNINGS Syntax”.

If you use ALTER TABLE to change a column specification but DESCRIBE tbl_name indicates
that your column was not changed, it is possible that MySQL ignored your modification for one of
the reasons described in Section 13.2.6.1, “Silent Column Specification Changes”. For example, if
you try to change a VARCHAR column to CHAR, MySQL still uses VARCHAR if the table contains
other variable-length columns.

ALTER TABLE works by making a temporary copy of the original table. The alteration is per-
formed on the copy, then the original table is deleted and the new one is renamed. While ALTER
TABLE is executing, the original table is readable by other clients. Updates and writes to the table
are stalled until the new table is ready, then are automatically redirected to the new table without
any failed updates.

Note that if you use any other option to ALTER TABLE than RENAME, MySQL always creates a
temporary table, even if the data wouldn't strictly need to be copied (such as when you change the
name of a column). We plan to fix this in the future, but because ALTER TABLE is not a statement
that is normally used frequently, this isn't high on our TODO list. For MyISAM tables, you can
speed up the index re-creation operation (which is the slowest part of the alteration process) by set-
ting the myisam_sort_buffer_size system variable to a high value.

• To use ALTER TABLE, you need ALTER, INSERT, and CREATE privileges for the table.

• IGNORE is a MySQL extension to standard SQL. It controls how ALTER TABLE works if
there are duplicates on unique keys in the new table. If IGNORE isn't specified, the copy is abor-
ted and rolled back if duplicate-key errors occur. If IGNORE is specified, then for rows with du-
plicates on a unique key, only the first row is used. The others are deleted.

• You can issue multiple ADD, ALTER, DROP, and CHANGE clauses in a single ALTER TABLE
statement. This is a MySQL extension to standard SQL, which allows only one of each clause
per ALTER TABLE statement. For example, to drop multiple columns in a single statement:

mysql> ALTER TABLE t2 DROP COLUMN c, DROP COLUMN d;

• CHANGE col_name, DROP col_name, and DROP INDEX are MySQL extensions to stand-
ard SQL.

• MODIFY is an Oracle extension to ALTER TABLE.

• The word COLUMN is purely optional and can be omitted.

• If you use ALTER TABLE tbl_name RENAME TO new_tbl_name without any other
options, MySQL simply renames any files that correspond to the table tbl_name. There is no
need to create a temporary table. (You can also use the RENAME TABLE statement to rename
tables. See Section 13.2.12, “RENAME TABLE Syntax”.)

• column_definition clauses use the same syntax for ADD and CHANGE as for CREATE
TABLE. Note that this syntax includes the column name, not just the column type. See Sec-
tion 13.2.6, “CREATE TABLE Syntax”.

• You can rename a column using a CHANGE old_col_name column_definition
clause. To do so, specify the old and new column names and the type that the column currently

SQL Statement Syntax

693

has. For example, to rename an INTEGER column from a to b, you can do this:

mysql> ALTER TABLE t1 CHANGE a b INTEGER;

If you want to change a column's type but not the name, CHANGE syntax still requires an old and
new column name, even if they are the same. For example:

mysql> ALTER TABLE t1 CHANGE b b BIGINT NOT NULL;

However, as of MySQL 3.22.16a, you can also use MODIFY to change a column's type without
renaming it:

mysql> ALTER TABLE t1 MODIFY b BIGINT NOT NULL;

• If you use CHANGE or MODIFY to shorten a column for which an index exists on part of the
column (for example, if you have an index on the first 10 characters of a VARCHAR column),
you cannot make the column shorter than the number of characters that are indexed.

• When you change a column type using CHANGE or MODIFY, MySQL tries to convert existing
column values to the new type as well as possible.

• In MySQL 3.22 or later, you can use FIRST or AFTER col_name to add a column at a spe-
cific position within a table row. The default is to add the column last. From MySQL 4.0.1 on,
you can also use FIRST and AFTER in CHANGE or MODIFY operations.

• ALTER COLUMN specifies a new default value for a column or removes the old default value. If
the old default is removed and the column can be NULL, the new default is NULL. If the column
cannot be NULL, MySQL assigns a default value, as described in Section 13.2.6, “CREATE
TABLE Syntax”.

• DROP INDEX removes an index. This is a MySQL extension to standard SQL. See Sec-
tion 13.2.9, “DROP INDEX Syntax”.

• If columns are dropped from a table, the columns are also removed from any index of which
they are a part. If all columns that make up an index are dropped, the index is dropped as well.

• If a table contains only one column, the column cannot be dropped. If what you intend is to re-
move the table, use DROP TABLE instead.

•
DROP PRIMARY KEY drops the primary index. (Prior to MySQL 4.1.2, if no primary index
exists, DROP PRIMARY KEY drops the first UNIQUE index in the table. MySQL marks the
first UNIQUE key as the PRIMARY KEY if no PRIMARY KEY was specified explicitly.)

If you add a UNIQUE INDEX or PRIMARY KEY to a table, it is stored before any non-unique
index so that MySQL can detect duplicate keys as early as possible.

• ORDER BY allows you to create the new table with the rows in a specific order. Note that the ta-
ble does not remain in this order after inserts and deletes. This option is mainly useful when you
know that you are mostly going to query the rows in a certain order; by using this option after
big changes to the table, you might be able to get higher performance. In some cases, it might
make sorting easier for MySQL if the table is in order by the column that you want to order it by
later.

• If you use ALTER TABLE on a MyISAM table, all non-unique indexes are created in a separate
batch (as for REPAIR TABLE). This should make ALTER TABLE much faster when you have
many indexes.

As of MySQL 4.0, this feature can be activated explicitly. ALTER TABLE ... DISABLE
KEYS tells MySQL to stop updating non-unique indexes for a MyISAM table. ALTER TABLE
... ENABLE KEYS then should be used to re-create missing indexes. MySQL does this with

SQL Statement Syntax

694

a special algorithm that is much faster than inserting keys one by one, so disabling keys before
performing bulk insert operations should give a considerable speedup. Using ALTER TABLE
... DISABLE KEYS requires the INDEX privilege in addition to the privileges mentioned
earlier.

•
The FOREIGN KEY and REFERENCES clauses are supported by the InnoDB storage engine,
which implements ADD [CONSTRAINT [symbol]] FOREIGN KEY (...) REFER-
ENCES ... (...). See Section 15.7.4, “FOREIGN KEY Constraints”. For other storage en-
gines, the clauses are parsed but ignored. The CHECK clause is parsed but ignored by all storage
engines. See Section 13.2.6, “CREATE TABLE Syntax”. The reason for accepting but ignoring
syntax clauses is for compatibility, to make it easier to port code from other SQL servers, and to
run applications that create tables with references. See Section 1.5.5, “MySQL Differences from
Standard SQL”.

•
Starting from MySQL 4.0.13, InnoDB supports the use of ALTER TABLE to drop foreign
keys:

ALTER TABLE yourtablename DROP FOREIGN KEY fk_symbol;

For more information, see Section 15.7.4, “FOREIGN KEY Constraints”.

• ALTER TABLE ignores the DATA DIRECTORY and INDEX DIRECTORY table options.

•
From MySQL 4.1.2 on, if you want to change all character columns (CHAR, VARCHAR, TEXT)
to a new character set, use a statement like this:

ALTER TABLE tbl_name CONVERT TO CHARACTER SET charset_name;

This is useful, for example, after upgrading from MySQL 4.0.x to 4.1.x. See Section 10.10,
“Upgrading Character Sets from MySQL 4.0”.

Warning: The preceding operation converts column values between the character sets. This is
not what you want if you have a column in one character set (like latin1) but the stored val-
ues actually use some other, incompatible character set (like utf8). In this case, you have to do
the following for each such column:

ALTER TABLE t1 CHANGE c1 c1 BLOB;
ALTER TABLE t1 CHANGE c1 c1 TEXT CHARACTER SET utf8;

The reason this works is that there is no conversion when you convert to or from BLOB columns.

To change only the default character set for a table, use this statement:

ALTER TABLE tbl_name DEFAULT CHARACTER SET charset_name;

The word DEFAULT is optional. The default character set is the character set that is used if you
don't specify the character set for a new column you add to a table (for example, with ALTER
TABLE ... ADD column).

Warning: From MySQL 4.1.2 and up, ALTER TABLE ... DEFAULT CHARACTER SET
and ALTER TABLE ... CHARACTER SET are equivalent and change only the default table
character set. In MySQL 4.1 releases before 4.1.2, ALTER TABLE ... DEFAULT CHAR-
ACTER SET changes the default character set, but ALTER TABLE ... CHARACTER SET
(without DEFAULT) changes the default character set and also converts all columns to the new
character set.

•
For an InnoDB table that is created with its own tablespace in an .ibd file, that file can be dis-

SQL Statement Syntax

695

carded and imported. To discard the .ibd file, use this statement:

ALTER TABLE tbl_name DISCARD TABLESPACE;

This deletes the current .ibd file, so be sure that you have a backup first. Attempting to access
the table while the tablespace file is discarded results in an error.

To import the backup .ibd file back into the table, copy it into the database directory, then is-
sue this statement:

ALTER TABLE tbl_name IMPORT TABLESPACE;

See Section 15.7.6, “Using Per-Table Tablespaces”.

•
With the mysql_info() C API function, you can find out how many records were copied,
and (when IGNORE is used) how many records were deleted due to duplication of unique key
values. See Section 22.2.3.31, “mysql_info()”.

Here are some examples that show uses of ALTER TABLE. Begin with a table t1 that is created as
shown here:

mysql> CREATE TABLE t1 (a INTEGER,b CHAR(10));

To rename the table from t1 to t2:

mysql> ALTER TABLE t1 RENAME t2;

To change column a from INTEGER to TINYINT NOT NULL (leaving the name the same), and to
change column b from CHAR(10) to CHAR(20) as well as renaming it from b to c:

mysql> ALTER TABLE t2 MODIFY a TINYINT NOT NULL, CHANGE b c CHAR(20);

To add a new TIMESTAMP column named d:

mysql> ALTER TABLE t2 ADD d TIMESTAMP;

To add indexes on column d and on column a:

mysql> ALTER TABLE t2 ADD INDEX (d), ADD INDEX (a);

To remove column c:

mysql> ALTER TABLE t2 DROP COLUMN c;

To add a new AUTO_INCREMENT integer column named c:

mysql> ALTER TABLE t2 ADD c INT UNSIGNED NOT NULL AUTO_INCREMENT,
-> ADD PRIMARY KEY (c);

Note that we indexed c (as a PRIMARY KEY), because AUTO_INCREMENT columns must be in-
dexed, and also that we declare c as NOT NULL, because primary key columns cannot be NULL.

When you add an AUTO_INCREMENT column, column values are filled in with sequence numbers
for you automatically. For MyISAM tables, you can set the first sequence number by executing SET
INSERT_ID=value before ALTER TABLE or by using the AUTO_INCREMENT=value table

SQL Statement Syntax

696

option. See Section 13.5.3, “SET Syntax”.

From MySQL 5.0.3, you can use the ALTER TABLE ... AUTO_INCREMENT=value table op-
tion for InnoDB tables to set the sequence number for new rows if the value is greater than the
maximum value in the AUTO_INCREMENT column. If the value is less than the maximum column
value, no error message is given and the current sequence value is not changed.

With MyISAM tables, if you don't change the AUTO_INCREMENT column, the sequence number is
not affected. If you drop an AUTO_INCREMENT column and then add another AUTO_INCREMENT
column, the numbers are resequenced beginning with 1.

See Section A.7.1, “Problems with ALTER TABLE”.

13.2.3. ALTER VIEW Syntax
ALTER [ALGORITHM = {UNDEFINED | MERGE | TEMPTABLE}]

VIEW view_name [(column_list)]
AS select_statement
[WITH [CASCADED | LOCAL] CHECK OPTION]

This statement changes the definition of an existing view. The syntax is similar to that for CREATE
VIEW. See Section 13.2.7, “CREATE VIEW Syntax”.

This statement was added in MySQL 5.0.1.

13.2.4. CREATE DATABASE Syntax
CREATE {DATABASE | SCHEMA} [IF NOT EXISTS] db_name

[create_specification [, create_specification] ...]
create_specification:

[DEFAULT] CHARACTER SET charset_name
| [DEFAULT] COLLATE collation_name

CREATE DATABASE creates a database with the given name. To use CREATE DATABASE, you
need the CREATE privilege on the database.

Rules for allowable database names are given in Section 9.2, “Database, Table, Index, Column, and
Alias Names”. An error occurs if the database exists and you didn't specify IF NOT EXISTS.

As of MySQL 4.1.1, create_specification options can be given to specify database charac-
teristics. Database characteristics are stored in the db.opt file in the database directory. The
CHARACTER SET clause specifies the default database character set. The COLLATE clause spe-
cifies the default database collation. Character set and collation names are discussed in Chapter 10,
Character Set Support.

Databases in MySQL are implemented as directories containing files that correspond to tables in the
database. Because there are no tables in a database when it is initially created, the CREATE DATA-
BASE statement only creates a directory under the MySQL data directory (and the db.opt file, for
MySQL 4.1.1 and up).

If you manually create a directory under the data directory (for example, with mkdir), the server
considers it a database directory and it shows up in the output of SHOW DATABASES.

CREATE SCHEMA can be used as of MySQL 5.0.2.

You can also use the mysqladmin program to create databases. See Section 8.4, “mysqladmin, Ad-
ministering a MySQL Server”.

13.2.5. CREATE INDEX Syntax
CREATE [UNIQUE|FULLTEXT|SPATIAL] INDEX index_name

SQL Statement Syntax

697

[USING index_type]
ON tbl_name (index_col_name,...)

index_col_name:
col_name [(length)] [ASC | DESC]

In MySQL 3.22 or later, CREATE INDEX is mapped to an ALTER TABLE statement to create in-
dexes. See Section 13.2.2, “ALTER TABLE Syntax”. The CREATE INDEX statement doesn't do
anything prior to MySQL 3.22.

Normally, you create all indexes on a table at the time the table itself is created with CREATE TA-
BLE. See Section 13.2.6, “CREATE TABLE Syntax”. CREATE INDEX allows you to add indexes
to existing tables.

A column list of the form (col1,col2,...) creates a multiple-column index. Index values are
formed by concatenating the values of the given columns.

For CHAR and VARCHAR columns, indexes can be created that use only part of a column, using
col_name(length) syntax to index a prefix consisting of the first length characters of each
column value. BLOB and TEXT columns also can be indexed, but a prefix length must be given.

The statement shown here creates an index using the first 10 characters of the name column:

CREATE INDEX part_of_name ON customer (name(10));

Because most names usually differ in the first 10 characters, this index should not be much slower
than an index created from the entire name column. Also, using partial columns for indexes can
make the index file much smaller, which could save a lot of disk space and might also speed up IN-
SERT operations!

Prefixes can be up to 255 bytes long (or 1000 bytes for MyISAM and InnoDB tables as of MySQL
4.1.2). Note that prefix limits are measured in bytes, whereas the prefix length in CREATE INDEX
statements is interpreted as number of characters. Take this into account when specifying a prefix
length for a column that uses a multi-byte character set.

You can add an index on a column that can have NULL values only if you are using MySQL 3.23.2
or newer and are using the MyISAM, InnoDB, or BDB table type. You can only add an index on a
BLOB or TEXT column if you are using MySQL 3.23.2 or newer and are using the MyISAM or BDB
table type, or MySQL 4.0.14 or newer and the InnoDB table type.

An index_col_name specification can end with ASC or DESC. These keywords are allowed for
future extensions for specifying ascending or descending index value storage. Currently they are
parsed but ignored; index values are always stored in ascending order.

From MySQL 4.1.0 on, some storage engines allow you to specify an index type when creating an
index. The syntax for the index_type specifier is USING type_name. The allowable
type_name values supported by different storage engines are shown in the following table. Where
multiple index types are listed, the first one is the default when no index_type specifier is given.

Storage Engine Allowable Index Types

MyISAM BTREE

InnoDB BTREE

MEMORY/HEAP HASH, BTREE

Example:

CREATE TABLE lookup (id INT) ENGINE = MEMORY;
CREATE INDEX id_index USING BTREE ON lookup (id);

TYPE type_name can be used as a synonym for USING type_name to specify an index type.
However, USING is the preferred form. Also, the index name that precedes the index type in the in-

SQL Statement Syntax

698

dex specification syntax is not optional with TYPE. This is because, unlike USING, TYPE is not a
reserved word and thus is interpreted as an index name.

If you specify an index type that is not legal for a storage engine, but there is another index type
available that the engine can use without affecting query results, the engine uses the available type.

For more information about how MySQL uses indexes, see Section 7.4.5, “How MySQL Uses In-
dexes”.

FULLTEXT indexes can index only CHAR, VARCHAR, and TEXT columns, and only in MyISAM
tables. FULLTEXT indexes are available in MySQL 3.23.23 or later. Section 12.6, “Full-Text
Search Functions”.

SPATIAL indexes can index only spatial columns, and only in MyISAM tables. SPATIAL indexes
are available in MySQL 4.1 or later. Spatial column types are described in Chapter 18, Spatial Ex-
tensions in MySQL.

13.2.6. CREATE TABLE Syntax
CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name

[(create_definition,...)]
[table_options] [select_statement]

Or:

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name
[(] LIKE old_tbl_name [)];

create_definition:
column_definition

| [CONSTRAINT [symbol]] PRIMARY KEY [index_type] (index_col_name,...)
| KEY [index_name] [index_type] (index_col_name,...)
| INDEX [index_name] [index_type] (index_col_name,...)
| [CONSTRAINT [symbol]] UNIQUE [INDEX]

[index_name] [index_type] (index_col_name,...)
| [FULLTEXT|SPATIAL] [INDEX] [index_name] (index_col_name,...)
| [CONSTRAINT [symbol]] FOREIGN KEY

[index_name] (index_col_name,...) [reference_definition]
| CHECK (expr)

column_definition:
col_name type [NOT NULL | NULL] [DEFAULT default_value]

[AUTO_INCREMENT] [UNIQUE [KEY] | [PRIMARY] KEY]
[COMMENT 'string'] [reference_definition]

type:
TINYINT[(length)] [UNSIGNED] [ZEROFILL]

| SMALLINT[(length)] [UNSIGNED] [ZEROFILL]
| MEDIUMINT[(length)] [UNSIGNED] [ZEROFILL]
| INT[(length)] [UNSIGNED] [ZEROFILL]
| INTEGER[(length)] [UNSIGNED] [ZEROFILL]
| BIGINT[(length)] [UNSIGNED] [ZEROFILL]
| REAL[(length,decimals)] [UNSIGNED] [ZEROFILL]
| DOUBLE[(length,decimals)] [UNSIGNED] [ZEROFILL]
| FLOAT[(length,decimals)] [UNSIGNED] [ZEROFILL]
| DECIMAL(length,decimals) [UNSIGNED] [ZEROFILL]
| NUMERIC(length,decimals) [UNSIGNED] [ZEROFILL]
| DATE
| TIME
| TIMESTAMP
| DATETIME
| CHAR(length) [BINARY | ASCII | UNICODE]
| VARCHAR(length) [BINARY]
| TINYBLOB
| BLOB
| MEDIUMBLOB
| LONGBLOB
| TINYTEXT [BINARY]
| TEXT [BINARY]

SQL Statement Syntax

699

| MEDIUMTEXT [BINARY]
| LONGTEXT [BINARY]
| ENUM(value1,value2,value3,...)
| SET(value1,value2,value3,...)
| spatial_type

index_col_name:
col_name [(length)] [ASC | DESC]

reference_definition:
REFERENCES tbl_name [(index_col_name,...)]

[MATCH FULL | MATCH PARTIAL | MATCH SIMPLE]
[ON DELETE reference_option]
[ON UPDATE reference_option]

reference_option:
RESTRICT | CASCADE | SET NULL | NO ACTION | SET DEFAULT

table_options: table_option [table_option] ...
table_option:

{ENGINE|TYPE} = {BDB|HEAP|ISAM|InnoDB|MERGE|MRG_MYISAM|MYISAM}
| AUTO_INCREMENT = value
| AVG_ROW_LENGTH = value
| CHECKSUM = {0 | 1}
| COMMENT = 'string'
| MAX_ROWS = value
| MIN_ROWS = value
| PACK_KEYS = {0 | 1 | DEFAULT}
| PASSWORD = 'string'
| DELAY_KEY_WRITE = {0 | 1}
| ROW_FORMAT = {DEFAULT|DYNAMIC|FIXED|COMPRESSED|REDUNDANT|COMPACT}
| RAID_TYPE = { 1 | STRIPED | RAID0 }

RAID_CHUNKS = value
RAID_CHUNKSIZE = value

| UNION = (tbl_name[,tbl_name]...)
| INSERT_METHOD = { NO | FIRST | LAST }
| DATA DIRECTORY = 'absolute path to directory'
| INDEX DIRECTORY = 'absolute path to directory'
| [DEFAULT] CHARACTER SET charset_name [COLLATE collation_name]

select_statement:
[IGNORE | REPLACE] [AS] SELECT ... (Some legal select statement)

CREATE TABLE creates a table with the given name. You must have the CREATE privilege for the
table.

Rules for allowable table names are given in Section 9.2, “Database, Table, Index, Column, and Ali-
as Names”. By default, the table is created in the current database. An error occurs if the table exists,
if there is no current database, or if the database does not exist.

In MySQL 3.22 or later, the table name can be specified as db_name.tbl_name to create the ta-
ble in a specific database. This works whether or not there is a current database. If you use quoted
identifiers, quote the database and table names separately. For example, `mydb`.`mytbl` is leg-
al, but `mydb.mytbl` is not.

From MySQL 3.23 on, you can use the TEMPORARY keyword when creating a table. A TEMPOR-
ARY table is visible only to the current connection, and is dropped automatically when the connec-
tion is closed. This means that two different connections can use the same temporary table name
without conflicting with each other or with an existing non-TEMPORARY table of the same name.
(The existing table is hidden until the temporary table is dropped.) From MySQL 4.0.2 on, you must
have the CREATE TEMPORARY TABLES privilege to be able to create temporary tables.

In MySQL 3.23 or later, you can use the keywords IF NOT EXISTS so that an error does not oc-
cur if the table exists. Note that there is no verification that the existing table has a structure identic-
al to that indicated by the CREATE TABLE statement.

MySQL represents each table by an .frm table format (definition) file in the database directory.
The storage engine for the table might create other files as well. In the case of MyISAM tables, the
storage engine creates three files for a table named tbl_name:

File Purpose

SQL Statement Syntax

700

tbl_name.frm Table format (definition) file

tbl_name.MYD Data file

tbl_name.MYI Index file

The files created by each storage engine to represent tables are described in Chapter 14, MySQL
Storage Engines and Table Types.

For general information on the properties of the various column types, see Chapter 11, Column
Types. For information about spatial column types, see Chapter 18, Spatial Extensions in MySQL.

• If neither NULL nor NOT NULL is specified, the column is treated as though NULL had been
specified.

• An integer column can have the additional attribute AUTO_INCREMENT. When you insert a
value of NULL (recommended) or 0 into an indexed AUTO_INCREMENT column, the column is
set to the next sequence value. Typically this is value+1, where value is the largest value for
the column currently in the table. AUTO_INCREMENT sequences begin with 1. See Sec-
tion 22.2.3.33, “mysql_insert_id()”.

As of MySQL 4.1.1, specifying the NO_AUTO_VALUE_ON_ZERO flag for the --sql-mode
server option or the sql_mode system variable allows you to store 0 in AUTO_INCREMENT
columns as 0 without generating a new sequence value. See Section 5.2.1, “mysqld Command-
Line Options”.

Note: There can be only one AUTO_INCREMENT column per table, it must be indexed, and it
cannot have a DEFAULT value. As of MySQL 3.23, an AUTO_INCREMENT column works
properly only if it contains only positive values. Inserting a negative number is regarded as in-
serting a very large positive number. This is done to avoid precision problems when numbers
``wrap'' over from positive to negative and also to ensure that you don't accidentally get an
AUTO_INCREMENT column that contains 0.

For MyISAM and BDB tables, you can specify an AUTO_INCREMENT secondary column in a
multiple-column key. See Section 3.6.9, “Using AUTO_INCREMENT”.

To make MySQL compatible with some ODBC applications, you can find the
AUTO_INCREMENT value for the last inserted row with the following query:

SELECT * FROM tbl_name WHERE auto_col IS NULL

• As of MySQL 4.1, character column definitions can include a CHARACTER SET attribute to
specify the character set and, optionally, a collation for the column. For details, see Chapter 10,
Character Set Support.

CREATE TABLE t (c CHAR(20) CHARACTER SET utf8 COLLATE utf8_bin);

Also as of 4.1, MySQL interprets length specifications in character column definitions in charac-
ters. (Earlier versions interpret them in bytes.)

• NULL values are handled differently for TIMESTAMP columns than for other column types. Be-
fore MySQL 4.1.6, you cannot store a literal NULL in a TIMESTAMP column; setting the
column to NULL sets it to the current date and time. Because TIMESTAMP columns behave this
way, the NULL and NOT NULL attributes do not apply in the normal way and are ignored if you
specify them. On the other hand, to make it easier for MySQL clients to use TIMESTAMP
columns, the server reports that such columns can be assigned NULL values (which is true), even
though TIMESTAMP never actually contains a NULL value. You can see this when you use DE-
SCRIBE tbl_name to get a description of your table.

Note that setting a TIMESTAMP column to 0 is not the same as setting it to NULL, because 0 is
a valid TIMESTAMP value.

SQL Statement Syntax

701

•
The DEFAULT clause specifies a default value for a column. With one exception, the default
value must be a constant; it cannot be a function or an expression. This means, for example, that
you cannot set the default for a date column to be the value of a function such as NOW() or
CURRENT_DATE. The exception is that you can specify CURRENT_TIMESTAMP as the default
for a TIMESTAMP column as of MySQL 4.1.2. See Section 11.3.1.2, “TIMESTAMP Properties
as of MySQL 4.1”.

Prior to MySQL 5.0.2, if a column definition includes no explicit DEFAULT value, MySQL de-
termines the default value as follows:

If the column can take NULL as a value, the column is defined with an explicit DEFAULT
NULL clause.

If the column cannot take NULL as the value, MySQL defines the column with an explicit DE-
FAULT clause, using the implicit default value for the column data type. Implicit defaults are
defined as follows:

• For numeric types other than those declared with the AUTO_INCREMENT attribute, the de-
fault is 0. For an AUTO_INCREMENT column, the default value is the next value in the se-
quence.

• For date and time types other than TIMESTAMP, the default is the appropriate ``zero'' value
for the type. For the first TIMESTAMP column in a table, the default value is the current date
and time. See Section 11.3, “Date and Time Types”.

• For string types other than ENUM, the default value is the empty string. For ENUM, the default
is the first enumeration value.

BLOB and TEXT columns cannot be assigned a default value.

As of MySQL 5.0.2, if a column definition includes no explicit DEFAULT value, MySQL de-
termines the default value as follows:

If the column can take NULL as a value, the column is defined with an explicit DEFAULT
NULL clause. This is the same as before 5.0.2.

If the column cannot take NOT NULL as the value, MySQL defines the column with no explicit
DEFAULT clause. For data entry, if an INSERT or REPLACE statement includes no value for
the column, MySQL handles the column according to the SQL mode in effect at the time:

• If strict mode is not enabled, MySQL sets the column to the implicit value for the column
data type.

• If strict mode is enabled, an error occurs for transactional tables and the statement is rolled
back. For non-transactional tables, an error occurs unless the row is the second or subsequent
row of a multiple-row statement, in which case a warning occurs.

See Section 5.2.2, “The Server SQL Mode”.

For a given table, you can use the SHOW CREATE TABLE statement to see which columns
have an explicit DEFAULT clause.

•
A comment for a column can be specified with the COMMENT option. The comment is displayed
by the SHOW CREATE TABLE and SHOW FULL COLUMNS statements. This option is opera-
tional as of MySQL 4.1. (It is allowed but ignored in earlier versions.)

• From MySQL 4.1.0 on, the attribute SERIAL can be used as an alias for BIGINT UNSIGNED
NOT NULL AUTO_INCREMENT UNIQUE.

• KEY is normally a synonym for INDEX. From MySQL 4.1, the key attribute PRIMARY KEY
can also be specified as just KEY when given in a column definition. This was implemented for
compatibility with other database systems.

SQL Statement Syntax

702

• In MySQL, a UNIQUE index is one in which all values in the index must be distinct. An error
occurs if you try to add a new row with a key that matches an existing row. The exception to this
is that if a column in the index is allowed to contain NULL values, it can contain multiple NULL
values. This exception does not apply to BDB tables, for which an indexed column allows only a
single NULL.

•
A PRIMARY KEY is a unique KEY where all key columns must be defined as NOT NULL. If
they are not explicitly declared as NOT NULL, MySQL declares them so implicitly (and si-
lently). A table can have only one PRIMARY KEY. If you don't have a PRIMARY KEY and an
application asks for the PRIMARY KEY in your tables, MySQL returns the first UNIQUE index
that has no NULL columns as the PRIMARY KEY.

• In the created table, a PRIMARY KEY is placed first, followed by all UNIQUE indexes, and then
the non-unique indexes. This helps the MySQL optimizer to prioritize which index to use and
also more quickly to detect duplicated UNIQUE keys.

• A PRIMARY KEY can be a multiple-column index. However, you cannot create a multiple-
column index using the PRIMARY KEY key attribute in a column specification. Doing so only
marks that single column as primary. You must use a separate PRIMARY
KEY(index_col_name, ...) clause.

• If a PRIMARY KEY or UNIQUE index consists of only one column that has an integer type, you
can also refer to the column as _rowid in SELECT statements (new in MySQL 3.23.11).

• In MySQL, the name of a PRIMARY KEY is PRIMARY. For other indexes, if you don't assign a
name, the index is assigned the same name as the first indexed column, with an optional suffix
(_2, _3, ...) to make it unique. You can see index names for a table using SHOW INDEX
FROM tbl_name. See Section 13.5.4.11, “SHOW INDEX Syntax”.

• From MySQL 4.1.0 on, some storage engines allow you to specify an index type when creating
an index. The syntax for the index_type specifier is USING type_name.

Example:

CREATE TABLE lookup
(id INT, INDEX USING BTREE (id))
ENGINE = MEMORY;

For details about USING, see Section 13.2.5, “CREATE INDEX Syntax”.

For more information about how MySQL uses indexes, see Section 7.4.5, “How MySQL Uses
Indexes”.

•
Only the MyISAM, InnoDB, BDB, and (as of MySQL 4.0.2) MEMORY storage engines support
indexes on columns that can have NULL values. In other cases, you must declare indexed
columns as NOT NULL or an error results.

• With col_name(length) syntax in an index specification, you can create an index that uses
only the first length characters of a CHAR or VARCHAR column. Indexing only a prefix of
column values like this can make the index file much smaller. See Section 7.4.3, “Column In-
dexes”.

The MyISAM and (as of MySQL 4.0.14) InnoDB storage engines also support indexing on
BLOB and TEXT columns. When indexing a BLOB or TEXT column, you must specify a prefix
length for the index. For example:

CREATE TABLE test (blob_col BLOB, INDEX(blob_col(10)));

Prefixes can be up to 255 bytes long (or 1000 bytes for MyISAM and InnoDB tables as of
MySQL 4.1.2). Note that prefix limits are measured in bytes, whereas the prefix length in CRE-

SQL Statement Syntax

703

ATE TABLE statements is interpreted as number of characters. Take this into account when
specifying a prefix length for a column that uses a multi-byte character set.

• An index_col_name specification can end with ASC or DESC. These keywords are allowed
for future extensions for specifying ascending or descending index value storage. Currently they
are parsed but ignored; index values are always stored in ascending order.

• When you use ORDER BY or GROUP BY with a TEXT or BLOB column, the server sorts values
using only the initial number of bytes indicated by the max_sort_length system variable.
See Section 11.4.3, “The BLOB and TEXT Types”.

• In MySQL 3.23.23 or later, you can create special FULLTEXT indexes. They are used for full-
text search. Only the MyISAM table type supports FULLTEXT indexes. They can be created
only from CHAR, VARCHAR, and TEXT columns. Indexing always happens over the entire
column; partial indexing is not supported and any prefix length is ignored if specified. See Sec-
tion 12.6, “Full-Text Search Functions” for details of operation.

• In MySQL 4.1 or later, you can create SPATIAL indexes on spatial column types. Spatial types
are supported only for MyISAM tables and indexed columns must be declared as NOT NULL.
See Chapter 18, Spatial Extensions in MySQL.

• In MySQL 3.23.44 or later, InnoDB tables support checking of foreign key constraints. See
Chapter 15, The InnoDB Storage Engine. Note that the FOREIGN KEY syntax in InnoDB is
more restrictive than the syntax presented for the CREATE TABLE statement at the beginning
of this section: The columns of the referenced table must always be explicitly named. InnoDB
supports both ON DELETE and ON UPDATE actions on foreign keys as of MySQL 3.23.50 and
4.0.8, respectively. For the precise syntax, see Section 15.7.4, “FOREIGN KEY Constraints”.

For other storage engines, MySQL Server parses the FOREIGN KEY and REFERENCES syntax
in CREATE TABLE statements, but without further action being taken. The CHECK clause is
parsed but ignored by all storage engines. See Section 1.5.5.5, “Foreign Keys”.

• For MyISAM and ISAM tables, each NULL column takes one bit extra, rounded up to the nearest
byte. The maximum record length in bytes can be calculated as follows:

row length = 1
+ (sum of column lengths)
+ (number of NULL columns + delete_flag + 7)/8
+ (number of variable-length columns)

delete_flag is 1 for tables with static record format. Static tables use a bit in the row record
for a flag that indicates whether the row has been deleted. delete_flag is 0 for dynamic
tables because the flag is stored in the dynamic row header.

These calculations do not apply for InnoDB tables, for which storage size is no different for
NULL columns than for NOT NULL columns.

The table_options part of the CREATE TABLE syntax can be used in MySQL 3.23 and
above.

The ENGINE and TYPE options specify the storage engine for the table. ENGINE was added in
MySQL 4.0.18 (for 4.0) and 4.1.2 (for 4.1). It is the preferred option name as of those versions, and
TYPE has become deprecated. TYPE is supported throughout the 4.x series, but likely will be re-
moved in MySQL 5.1.

The ENGINE and TYPE options take the following values:

Storage Engine Description

BDB Transaction-safe tables with page locking. See Section 14.4, “The BDB
(BerkeleyDB) Storage Engine”.

BerkeleyDB An alias for BDB.

SQL Statement Syntax

704

HEAP The data for this table is stored only in memory. See Section 14.3, “The
MEMORY (HEAP) Storage Engine”.

ISAM The original MySQL storage engine. See Section 14.9, “The ISAM Stor-
age Engine”.

InnoDB Transaction-safe tables with row locking and foreign keys. See
Chapter 15, The InnoDB Storage Engine.

MEMORY An alias for HEAP. (Actually, as of MySQL 4.1, MEMORY is the pre-
ferred term.)

MERGE A collection of MyISAM tables used as one table. See Section 14.2, “The
MERGE Storage Engine”.

MRG_MyISAM An alias for MERGE.

MyISAM The binary portable storage engine that is the improved replacement for
ISAM. See Section 14.1, “The MyISAM Storage Engine”.

See Chapter 14, MySQL Storage Engines and Table Types.

If a storage engine is specified that is not available, MySQL uses MyISAM instead. For example, if a
table definition includes the ENGINE=BDB option but the MySQL server does not support BDB
tables, the table is created as a MyISAM table. This makes it possible to have a replication setup
where you have transactional tables on the master but tables created on the slave are non-
transactional (to get more speed). In MySQL 4.1.1, a warning occurs if the storage engine specifica-
tion is not honored.

The other table options are used to optimize the behavior of the table. In most cases, you don't have
to specify any of them. The options work for all storage engines unless otherwise indicated:

• AUTO_INCREMENT

The initial AUTO_INCREMENT value for the table. This works for MyISAM only. To set the
first auto-increment value for an InnoDB table, insert a dummy row with a value one less than
the desired value after creating the table, and then delete the dummy row.

In MySQL 5.0.3 or later, the initial AUTO_INCREMENT value for the table works also for the
InnoDB table.

• AVG_ROW_LENGTH

An approximation of the average row length for your table. You need to set this only for large
tables with variable-size records.

When you create a MyISAM table, MySQL uses the product of the MAX_ROWS and
AVG_ROW_LENGTH options to decide how big the resulting table is. If you don't specify either
option, the maximum size for a table is 4GB (or 2GB if your operating system only supports
2GB tables). The reason for this is just to keep down the pointer sizes to make the index smaller
and faster if you don't really need big files. If you want all your tables to be able to grow above
the 4GB limit and are willing to have your smaller tables slightly slower and larger than neces-
sary, you may increase the default pointer size by setting the myis-
am_data_pointer_size system variable, which was added in MySQL 4.1.2. See Sec-
tion 5.2.3, “Server System Variables”.

• CHECKSUM

Set this to 1 if you want MySQL to maintain a live checksum for all rows (that is, a checksum
that MySQL updates automatically as the table changes). This makes the table a little slower to
update, but also makes it easier to find corrupted tables. The CHECKSUM TABLE statement re-
ports the checksum. (MyISAM only.)

• COMMENT

SQL Statement Syntax

705

A comment for your table, up to 60 characters long.

• MAX_ROWS

The maximum number of rows you plan to store in the table.

• MIN_ROWS

The minimum number of rows you plan to store in the table.

• PACK_KEYS

Set this option to 1 if you want to have smaller indexes. This usually makes updates slower and
reads faster. Setting the option to 0 disables all packing of keys. Setting it to DEFAULT (MySQL
4.0) tells the storage engine to only pack long CHAR/VARCHAR columns. (MyISAM and ISAM
only.)

If you don't use PACK_KEYS, the default is to only pack strings, not numbers. If you use
PACK_KEYS=1, numbers are packed as well.

When packing binary number keys, MySQL uses prefix compression:

• Every key needs one extra byte to indicate how many bytes of the previous key are the same
for the next key.

• The pointer to the row is stored in high-byte-first order directly after the key, to improve
compression.

This means that if you have many equal keys on two consecutive rows, all following ``same''
keys usually only take two bytes (including the pointer to the row). Compare this to the ordinary
case where the following keys takes storage_size_for_key + pointer_size (where
the pointer size is usually 4). Conversely, you get a big benefit from prefix compression only if
you have many numbers that are the same. If all keys are totally different, you use one byte more
per key, if the key isn't a key that can have NULL values. (In this case, the packed key length is
stored in the same byte that is used to mark if a key is NULL.)

• PASSWORD

Encrypt the .frm file with a password. This option doesn't do anything in the standard MySQL
version.

• DELAY_KEY_WRITE

Set this to 1 if you want to delay key updates for the table until the table is closed. (MyISAM
only.)

• ROW_FORMAT

Defines how the rows should be stored. Currently this option works only with MyISAM tables.
The option value can FIXED or DYNAMIC for static or variable-length row format. myisam-
pack sets the type to COMPRESSED. See Section 14.1.3, “MyISAM Table Storage Formats”.

Starting with MySQL/InnoDB-5.0.3, InnoDB records are stored in a more compact format
(ROW_FORMAT=COMPACT) by default. The old format can be requested by specifying
ROW_FORMAT=REDUNDANT.

• RAID_TYPE

The RAID_TYPE option can help you to exceed the 2GB/4GB limit for the MyISAM data file
(not the index file) on operating systems that don't support big files. This option is unnecessary
and not recommended for filesystems that support big files.

SQL Statement Syntax

706

You can get more speed from the I/O bottleneck by putting RAID directories on different phys-
ical disks. The only allowed RAID_TYPE is STRIPED. 1 and RAID0 are aliases for STRIPED.

If you specify the RAID_TYPE option for a MyISAM table, specify the RAID_CHUNKS and
RAID_CHUNKSIZE options as well. The maximum RAID_CHUNKS value is 255. MyISAM
creates RAID_CHUNKS subdirectories named 00, 01, 02, ... 09, 0a, 0b, ... in the database dir-
ectory. In each of these directories, MyISAM creates a file tbl_name.MYD. When writing data
to the data file, the RAID handler maps the first RAID_CHUNKSIZE*1024 bytes to the first
file, the next RAID_CHUNKSIZE*1024 bytes to the next file, and so on.

RAID_TYPE works on any operating system, as long as you have built MySQL with the -
-with-raid option to configure. To determine whether a server supports RAID tables, use
SHOW VARIABLES LIKE 'have_raid' to see whether the variable value is YES.

• UNION

UNION is used when you want to use a collection of identical tables as one. This works only
with MERGE tables. See Section 14.2, “The MERGE Storage Engine”.

For the moment, you must have SELECT, UPDATE, and DELETE privileges for the tables you
map to a MERGE table. Originally, all used tables had to be in the same database as the MERGE
table itself. This restriction has been lifted as of MySQL 4.1.1.

• INSERT_METHOD

If you want to insert data in a MERGE table, you have to specify with INSERT_METHOD into
which table the row should be inserted. INSERT_METHOD is an option useful for MERGE tables
only. This option was introduced in MySQL 4.0.0. See Section 14.2, “The MERGE Storage En-
gine”.

• DATA DIRECTORY , INDEX DIRECTORY

By using DATA DIRECTORY='directory' or INDEX DIRECTORY='directory' you
can specify where the MyISAM storage engine should put a table's data file and index file. Note
that the directory should be a full path to the directory (not a relative path).

These options work only for MyISAM tables from MySQL 4.0 on, when you are not using the -
-skip-symbolic-links option. Your operating system must also have a working, thread-
safe realpath() call. See Section 7.6.1.2, “Using Symbolic Links for Tables on Unix”.

As of MySQL 3.23, you can create one table from another by adding a SELECT statement at the end
of the CREATE TABLE statement:

CREATE TABLE new_tbl SELECT * FROM orig_tbl;

MySQL creates new columns for all elements in the SELECT. For example:

mysql> CREATE TABLE test (a INT NOT NULL AUTO_INCREMENT,
-> PRIMARY KEY (a), KEY(b))
-> TYPE=MyISAM SELECT b,c FROM test2;

This creates a MyISAM table with three columns, a, b, and c. Notice that the columns from the SE-
LECT statement are appended to the right side of the table, not overlapped onto it. Take the follow-
ing example:

mysql> SELECT * FROM foo;
+---+
| n |
+---+
| 1 |
+---+

SQL Statement Syntax

707

mysql> CREATE TABLE bar (m INT) SELECT n FROM foo;
Query OK, 1 row affected (0.02 sec)
Records: 1 Duplicates: 0 Warnings: 0
mysql> SELECT * FROM bar;
+------+---+
| m | n |
+------+---+
| NULL | 1 |
+------+---+
1 row in set (0.00 sec)

For each row in table foo, a row is inserted in bar with the values from foo and default values for
the new columns.

If any errors occur while copying the data to the table, it is automatically dropped and not created.

CREATE TABLE ... SELECT does not automatically create any indexes for you. This is done
intentionally to make the statement as flexible as possible. If you want to have indexes in the created
table, you should specify these before the SELECT statement:

mysql> CREATE TABLE bar (UNIQUE (n)) SELECT n FROM foo;

Some conversion of column types might occur. For example, the AUTO_INCREMENT attribute is
not preserved, and VARCHAR columns can become CHAR columns.

When creating a table with CREATE ... SELECT, make sure to alias any function calls or ex-
pressions in the query. If you do not, the CREATE statement might fail or result in undesirable
column names.

CREATE TABLE artists_and_works
SELECT artist.name, COUNT(work.artist_id) AS number_of_works
FROM artist LEFT JOIN work ON artist.id = work.artist_id
GROUP BY artist.id;

As of MySQL 4.1, you can explicitly specify the type for a generated column:

CREATE TABLE foo (a TINYINT NOT NULL) SELECT b+1 AS a FROM bar;

In MySQL 4.1, you can also use LIKE to create an empty table based on the definition of another
table, including any column attributes and indexes the original table has:

CREATE TABLE new_tbl LIKE orig_tbl;

CREATE TABLE ... LIKE does not copy any DATA DIRECTORY or INDEX DIRECTORY
table options that were specified for the original table, or any foreign key definitions.

You can precede the SELECT by IGNORE or REPLACE to indicate how to handle records that du-
plicate unique key values. With IGNORE, new records that duplicate an existing record on a unique
key value are discarded. With REPLACE, new records replace records that have the same unique
key value. If neither IGNORE nor REPLACE is specified, duplicate unique key values result in an
error.

To ensure that the update log/binary log can be used to re-create the original tables, MySQL does
not allow concurrent inserts during CREATE TABLE ... SELECT.

13.2.6.1. Silent Column Specification Changes

In some cases, MySQL silently changes column specifications from those given in a CREATE TA-
BLE or ALTER TABLE statement:

SQL Statement Syntax

708

• VARCHAR columns with a length less than four are changed to CHAR.

• If any column in a table has a variable length, the entire row becomes variable-length as a result.
Therefore, if a table contains any variable-length columns (VARCHAR, TEXT, or BLOB), all
CHAR columns longer than three characters are changed to VARCHAR columns. This doesn't af-
fect how you use the columns in any way; in MySQL, VARCHAR is just a different way to store
characters. MySQL performs this conversion because it saves space and makes table operations
faster. See Chapter 14, MySQL Storage Engines and Table Types.

• From MySQL 4.1.0 on, a CHAR or VARCHAR column with a length specification greater than
255 is converted to the smallest TEXT type that can hold values of the given length. For ex-
ample, VARCHAR(500) is converted to TEXT, and VARCHAR(200000) is converted to ME-
DIUMTEXT. This is a compatibility feature.

• TIMESTAMP display sizes are discarded from MySQL 4.1 on, due to changes made to the
TIMESTAMP column type in that version. Before MySQL 4.1, TIMESTAMP display sizes must
be even and in the range from 2 to 14. If you specify a display size of 0 or greater than 14, the
size is coerced to 14. Odd-valued sizes in the range from 1 to 13 are coerced to the next higher
even number.

• You cannot store a literal NULL in a TIMESTAMP column; setting it to NULL sets it to the cur-
rent date and time. Because TIMESTAMP columns behave this way, the NULL and NOT NULL
attributes do not apply in the normal way and are ignored if you specify them. DESCRIBE
tbl_name always reports that a TIMESTAMP column can be assigned NULL values.

• Columns that are part of a PRIMARY KEY are made NOT NULL even if not declared that way.

• Starting from MySQL 3.23.51, trailing spaces are automatically deleted from ENUM and SET
member values when the table is created.

• MySQL maps certain column types used by other SQL database vendors to MySQL types. See
Section 11.7, “Using Column Types from Other Database Engines”.

• If you include a USING clause to specify an index type that is not legal for a storage engine, but
there is another index type available that the engine can use without affecting query results, the
engine uses the available type.

To see whether MySQL used a column type other than the one you specified, issue a DESCRIBE or
SHOW CREATE TABLE statement after creating or altering your table.

Certain other column type changes can occur if you compress a table using myisampack. See Sec-
tion 14.1.3.3, “Compressed Table Characteristics”.

13.2.7. CREATE VIEW Syntax
CREATE [OR REPLACE] [ALGORITHM = {UNDEFINED | MERGE | TEMPTABLE}]

VIEW view_name [(column_list)]
AS select_statement
[WITH [CASCADED | LOCAL] CHECK OPTION]

This statement creates a new view, or replaces an existing one if the OR REPLACE clause is given.
The select_statement is a SELECT statement that provides the definition of the view. The
statement can select from base tables or other views.

A view belongs to a database. By default, a new view is created in the current database. To create
the view explicitly in a given database, specify the name as db_name.view_name when you cre-
ate it.

mysql> CREATE VIEW test.v AS SELECT * FROM t;

SQL Statement Syntax

709

Tables and views share the same namespace within a database, so a database cannot contain a table
and a view that have the same name.

Views must have unique column names with no duplicates, just like base tables. By default, the
names of the columns retrieved by the SELECT statement are used for the view column names. To
define explicit names for the view columns, the optional column list can be given. In this case, the
number of names in column_list must be the same as the number of columns retrieved by the
SELECT statement.

Columns retrieved by the SELECT statement can be simple references to table columns. They can
also be expressions that use operators, functions, constant values, and so forth.

A view can refer to columns of tables or views in other databases by qualifying the table or view
name with the proper database name.

A view definition is subject to the following constraints:

• The SELECT statement cannot contain a subquery in the FROM clause.

• The SELECT statement cannot refer to user variables.

• Within a stored procedure, the definition cannot refer to procedure parameters.

• Any table or view referred to in the definition must exist. However, after a view has been cre-
ated, it is possible to drop a table or view that the definition refers to. To check a view definition
for problems of this kind, use the CHECK TABLE statement.

• The definition cannot refer to a TEMPORARY table, and you cannot create a TEMPORARY view.

• You cannot associate a trigger with a view.

The WITH CHECK OPTION clause can be given for an updatable view to prevent inserts or up-
dates to rows except those for which the WHERE clause in the select_statement is true.

A view can be created from many kinds of SELECT statements. For example, the SELECT can refer
to a single table, a join of multiple tables, or a UNION. The SELECT need not even refer to any
tables. The following example defines a view that selects two columns from another table, as well as
an expression calculated from those columns:

mysql> CREATE TABLE t (qty INT, price INT);
mysql> INSERT INTO t VALUES(3, 50);
mysql> CREATE VIEW v AS SELECT qty, price, qty*price AS value FROM t;
mysql> SELECT * FROM v;
+------+-------+-------+
| qty | price | value |
+------+-------+-------+
| 3 | 50 | 150 |
+------+-------+-------+

In a WITH CHECK OPTION clause for an updatable view, the LOCAL and CASCADED keywords
determine the scope of check testing when the view is defined in terms of another view. LOCAL
keyword restricts the CHECK OPTION only to the view being defined. CASCADED causes the
checks for underlying views to be evaluated as well. When neither keyword is given, the default is
CASCADED. Consider the definitions for the following table and set of views:

mysql> CREATE TABLE t1 (a INT);
mysql> CREATE VIEW v1 AS SELECT * FROM t1 WHERE a < 2

-> WITH CHECK OPTION;
mysql> CREATE VIEW v2 AS SELECT * FROM v1 WHERE a > 0

-> WITH LOCAL CHECK OPTION;
mysql> CREATE VIEW v3 AS SELECT * FROM v1 WHERE a > 0

-> WITH CASCADED CHECK OPTION;

SQL Statement Syntax

710

Here the v2 and v3 views are defined in terms of another view, v1. v2 has a LOCAL check option,
so inserts are tested only against the v2 check. v3 has a CASCADED check option, so inserts are
tested not only against its own check, but against those of underlying views. The following state-
ments illustrate these differences:

ql> INSERT INTO v2 VALUES (2);
Query OK, 1 row affected (0.00 sec)
mysql> INSERT INTO v3 VALUES (2);
ERROR 1369 (HY000): CHECK OPTION failed 'test.v3'

The CREATE VIEW statement was added in MySQL 5.0.1. The WITH CHECK OPTION clause
was implemented in MySQL 5.0.2.

13.2.8. DROP DATABASE Syntax
DROP {DATABASE | SCHEMA} [IF EXISTS] db_name

DROP DATABASE drops all tables in the database and deletes the database. Be very careful with
this statement! To use DROP DATABASE, you need the DROP privilege on the database.

In MySQL 3.22 or later, you can use the keywords IF EXISTS to prevent an error from occurring
if the database doesn't exist.

DROP SCHEMA can be used as of MySQL 5.0.2.

If you use DROP DATABASE on a symbolically linked database, both the link and the original data-
base are deleted.

As of MySQL 4.1.2, DROP DATABASE returns the number of tables that were removed. This cor-
responds to the number of .frm files removed.

The DROP DATABASE statement removes from the given database directory those files and direct-
ories that MySQL itself may create during normal operation:

• All files with these extensions:

.BAK .DAT .HSH .ISD

.ISM .ISM .MRG .MYD

.MYI .db .frm

• All subdirectories with names that consist of two hex digits 00-ff. These are subdirectories
used for RAID tables.

• The db.opt file, if it exists.

If other files or directories remain in the database directory after MySQL removes those just listed,
the database directory cannot be removed. In this case, you must remove any remaining files or dir-
ectories manually and issue the DROP DATABASE statement again.

You can also drop databases with mysqladmin. See Section 8.4, “mysqladmin, Administering a
MySQL Server”.

13.2.9. DROP INDEX Syntax
DROP INDEX index_name ON tbl_name

SQL Statement Syntax

711

DROP INDEX drops the index named index_name from the table tbl_name. In MySQL 3.22
or later, DROP INDEX is mapped to an ALTER TABLE statement to drop the index. See Sec-
tion 13.2.2, “ALTER TABLE Syntax”. DROP INDEX doesn't do anything prior to MySQL 3.22.

13.2.10. DROP TABLE Syntax
DROP [TEMPORARY] TABLE [IF EXISTS]

tbl_name [, tbl_name] ...
[RESTRICT | CASCADE]

DROP TABLE removes one or more tables. You must have the DROP privilege for each table. All
table data and the table definition are removed, so be careful with this statement!

In MySQL 3.22 or later, you can use the keywords IF EXISTS to prevent an error from occurring
for tables that don't exist. As of MySQL 4.1, a NOTE is generated for each non-existent table when
using IF EXISTS. See Section 13.5.4.20, “SHOW WARNINGS Syntax”.

RESTRICT and CASCADE are allowed to make porting easier. For the moment, they do nothing.

Note: DROP TABLE automatically commits the current active transaction, unless you are using
MySQL 4.1 or higher and the TEMPORARY keyword.

The TEMPORARY keyword is ignored in MySQL 4.0. As of 4.1, it has the following effect:

• The statement drops only TEMPORARY tables.

• The statement doesn't end a running transaction.

• No access rights are checked. (A TEMPORARY table is visible only to the client that created it,
so no check is necessary.)

Using TEMPORARY is a good way to ensure that you don't accidentally drop a non-TEMPORARY ta-
ble.

13.2.11. DROP VIEW Syntax
DROP VIEW [IF EXISTS]

view_name [, view_name] ...
[RESTRICT | CASCADE]

DROP VIEW removes one or more views. You must have the DROP privilege for each view.

You can use the keywords IF EXISTS to prevent an error from occurring for views that don't ex-
ist. When this clause is given, a NOTE is generated for each non-existent view. See Sec-
tion 13.5.4.20, “SHOW WARNINGS Syntax”.

RESTRICT and CASCADE, if given, are parsed and ignored.

This statement was added in MySQL 5.0.1.

13.2.12. RENAME TABLE Syntax
RENAME TABLE tbl_name TO new_tbl_name

[, tbl_name2 TO new_tbl_name2] ...

This statement renames one or more tables. It was added in MySQL 3.23.23.

SQL Statement Syntax

712

The rename operation is done atomically, which means that no other thread can access any of the
tables while the rename is running. For example, if you have an existing table old_table, you
can create another table new_table that has the same structure but is empty, and then replace the
existing table with the empty one as follows:

CREATE TABLE new_table (...);
RENAME TABLE old_table TO backup_table, new_table TO old_table;

If the statement renames more than one table, renaming operations are done from left to right. If you
want to swap two table names, you can do so like this (assuming that no table named tmp_table
currently exists):

RENAME TABLE old_table TO tmp_table,
new_table TO old_table,
tmp_table TO new_table;

As long as two databases are on the same filesystem you can also rename a table to move it from
one database to another:

RENAME TABLE current_db.tbl_name TO other_db.tbl_name;

When you execute RENAME, you can't have any locked tables or active transactions. You must also
have the ALTER and DROP privileges on the original table, and the CREATE and INSERT priv-
ileges on the new table.

If MySQL encounters any errors in a multiple-table rename, it does a reverse rename for all re-
named tables to get everything back to the original state.

13.3. MySQL Utility Statements
13.3.1. DESCRIBE Syntax (Get Information About
Columns)

{DESCRIBE | DESC} tbl_name [col_name | wild]

DESCRIBE provides information about a table's columns. It is a shortcut for SHOW COLUMNS
FROM.

See Section 13.5.4.3, “SHOW COLUMNS Syntax”.

col_name can be a column name, or a string containing the SQL '%' and '_' wildcard characters to
obtain output only for the columns with names matching the string. There is no need to enclose the
string in quotes unless it contains spaces or other special characters.

mysql> DESCRIBE city;
+------------+----------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+------------+----------+------+-----+---------+----------------+
Id	int(11)		PRI	NULL	auto_increment
Name	char(35)				
Country	char(3)		UNI		
District	char(20)	YES	MUL		
Population	int(11)			0	
+------------+----------+------+-----+---------+----------------+
5 rows in set (0.00 sec)

The Null column indicates whether NULL values can be stored, with YES displayed when NULL
values are allowed.

SQL Statement Syntax

713

The Key column indicates whether the field is indexed. A value of PRI indicates that the field is
part of the table's primary key. UNI indicates that the field is part of a UNIQUE index. The MUL
value indicates that multiple occurrences of a given value allowed within the field.

A field can be designated as MUL even if a UNIQUE index is used if NULL values are allowed, as
multiple rows in a UNIQUE index can hold a NULL value if the column is not declared NOT NULL.
Another cause for MUL on a UNIQUE index is when two columns form a composite UNIQUE index;
while the combination of the columns is unique, each column can still hold multiple occurences of a
given value. Note that in a composite index only the leftmost field of the index has an entry in the
Key column.

The Default column indicates the default value that is assigned to the field.

The Extra column contains any additional information that is available about a given field. In our
example the Extra column indicates that our Id column was created with the AUTO_INCREMENT
keyword.

If the column types are different from what you expect them to be based on a CREATE TABLE
statement, note that MySQL sometimes changes column types. See Section 13.2.6.1, “Silent
Column Specification Changes”.

The DESCRIBE statement is provided for Oracle compatibility.

The SHOW CREATE TABLE and SHOW TABLE STATUS statements also provide information
about tables. See Section 13.5.4, “SHOW Syntax”.

13.3.2. USE Syntax
USE db_name

The USE db_name statement tells MySQL to use the db_name database as the default (current)
database for subsequent statements. The database remains the default until the end of the session or
until another USE statement is issued:

mysql> USE db1;
mysql> SELECT COUNT(*) FROM mytable; # selects from db1.mytable
mysql> USE db2;
mysql> SELECT COUNT(*) FROM mytable; # selects from db2.mytable

Making a particular database current by means of the USE statement does not preclude you from ac-
cessing tables in other databases. The following example accesses the author table from the db1
database and the editor table from the db2 database:

mysql> USE db1;
mysql> SELECT author_name,editor_name FROM author,db2.editor

-> WHERE author.editor_id = db2.editor.editor_id;

The USE statement is provided for Sybase compatibility.

13.4. MySQL Transactional and Locking
Statements
13.4.1. START TRANSACTION, COMMIT, and ROLLBACK
Syntax

By default, MySQL runs with autocommit mode enabled. This means that as soon as you execute a
statement that updates (modifies) a table, MySQL stores the update on disk.

SQL Statement Syntax

714

If you are using transaction-safe tables (like InnoDB or BDB), you can disable autocommit mode
with the following statement:

SET AUTOCOMMIT=0;

After disabling autocommit mode by setting the AUTOCOMMIT variable to zero, you must use COM-
MIT to store your changes to disk or ROLLBACK if you want to ignore the changes you have made
since the beginning of your transaction.

If you want to disable autocommit mode for a single series of statements, you can use the START
TRANSACTION statement:

START TRANSACTION;
SELECT @A:=SUM(salary) FROM table1 WHERE type=1;
UPDATE table2 SET summary=@A WHERE type=1;
COMMIT;

With START TRANSACTION, autocommit remains disabled until you end the transaction with
COMMIT or ROLLBACK. The autocommit mode then reverts to its previous state.

BEGIN and BEGIN WORK can be used instead of START TRANSACTION to initiate a transaction.
START TRANSACTION was added in MySQL 4.0.11. This is standard SQL syntax and is the re-
commended way to start an ad-hoc transaction. BEGIN and BEGIN WORK are available from
MySQL 3.23.17 and 3.23.19, respectively.

As of MySQL 4.1.8, you can begin a transaction like this:

START TRANSACTION WITH CONSISTENT SNAPSHOT;

The WITH CONSISTENT SNAPSHOT clause starts a consistent read for storage engines that are
capable of it. Currently, this applies only to InnoDB. The effect is the same as issuing a START
TRANSACTION followed by a SELECT from any InnoDB table. See Section 15.11.3, “Consistent
Non-Locking Read”.

Beginning a transaction causes an implicit UNLOCK TABLES to be performed.

Note that if you are not using transaction-safe tables, any changes are stored at once, regardless of
the status of autocommit mode.

If you issue a ROLLBACK statement after updating a non-transactional table within a transaction, an
ER_WARNING_NOT_COMPLETE_ROLLBACK warning occurs. Changes to transaction-safe tables
are rolled back, but not changes to non-transaction-safe tables.

If you are using START TRANSACTION or SET AUTOCOMMIT=0, you should use the MySQL
binary log for backups instead of the older update log. Transactions are stored in the binary log in
one chunk, upon COMMIT. Transactions that are rolled back are not logged. (Exception: Modifica-
tions to non-transactional tables cannot be rolled back. If a transaction that is rolled back includes
modifications to non-transactional tables, the entire transaction is logged with a ROLLBACK state-
ment at the end to ensure that the modifications to those tables are replicated. This is true as of
MySQL 4.0.15.) See Section 5.9.4, “The Binary Log”.

You can change the isolation level for transactions with SET TRANSACTION ISOLATION
LEVEL. See Section 13.4.6, “SET TRANSACTION Syntax”.

Rolling back can be a slow operation that can occur without the user having explicitly asked for it
(for example, when an error occurs). Because of this, SHOW PROCESSLIST displays Rolling
back in the State column for the connection during implicit rollback and explicit (ROLLBACK
SQL command) rollbacks, starting from MySQL 4.1.8.

13.4.2. Statements That Cannot Be Rolled Back

SQL Statement Syntax

715

Some statements cannot be rolled back. In general, these include data definition language (DDL)
statements, such as those that create or drop databases, or those that create, drop, or alter tables.

You should design your transactions not to include such statements. If you issue a statement early in
a transaction that cannot be rolled back, and then another statement later fails, the full effect of the
transaction cannot be rolled back by issuing a ROLLBACK statement.

13.4.3. Statements That Cause an Implicit Commit
Each of the following statements (and any synonyms for them) implicitly end a transaction, as if you
had done a COMMIT before executing the statement:

ALTER TABLE BEGIN CREATE INDEX

DROP DATABASE DROP INDEX DROP TABLE

LOAD MASTER DATA LOCK TABLES RENAME TABLE

SET AUTOCOMMIT=1 START TRANSACTION TRUNCATE TABLE

UNLOCK TABLES also ends a transaction if any tables currently are locked. Prior to MySQL
4.0.13, CREATE TABLE ends a transaction if the binary update log is enabled.

Transactions cannot be nested. This is a consequence of the implicit COMMIT performed for any
current transaction when you issue a START TRANSACTION statement or one of its synonyms.

13.4.4. SAVEPOINT and ROLLBACK TO SAVEPOINT Syn-
tax

SAVEPOINT identifier
ROLLBACK TO SAVEPOINT identifier

Starting from MySQL 4.0.14 and 4.1.1, InnoDB supports the SQL statements SAVEPOINT and
ROLLBACK TO SAVEPOINT.

The SAVEPOINT statement sets a named transaction savepoint with a name of identifier. If
the current transaction has a savepoint with the same name, the old savepoint is deleted and a new
one is set.

The ROLLBACK TO SAVEPOINT statement rolls back a transaction to the named savepoint.
Modifications that the current transaction made to rows after the savepoint was set are undone in the
rollback, but InnoDB does not release the row locks that were stored in memory after the savepoint.
(Note that for a new inserted row, the lock information is carried by the transaction ID stored in the
row; the lock is not separately stored in memory. In this case, the row lock is released in the undo.)
Savepoints that were set at a later time than the named savepoint are deleted.

If the statement returns the following error, it means that no savepoint with the specified name ex-
ists:

ERROR 1181: Got error 153 during ROLLBACK

All savepoints of the current transaction are deleted if you execute a COMMIT, or a ROLLBACK that
does not name a savepoint.

13.4.5. LOCK TABLES and UNLOCK TABLES Syntax
LOCK TABLES

tbl_name [AS alias] {READ [LOCAL] | [LOW_PRIORITY] WRITE}
[, tbl_name [AS alias] {READ [LOCAL] | [LOW_PRIORITY] WRITE}] ...

UNLOCK TABLES

SQL Statement Syntax

716

LOCK TABLES locks tables for the current thread. UNLOCK TABLES releases any locks held by
the current thread. All tables that are locked by the current thread are implicitly unlocked when the
thread issues another LOCK TABLES, or when the connection to the server is closed.

Note the following regarding the use of LOCK TABLES with transactional tables:

• LOCK TABLES is not transaction-safe and implicitly commits any active transactions before at-
tempting to lock the tables. Also, beginning a transaction (for example, with START TRANS-
ACTION) implicitly performs an UNLOCK TABLES.

• The correct way to use LOCK TABLES with transactional tables, like InnoDB, is to set AUTO-
COMMIT = 0 and not to call UNLOCK TABLES until you commit the transaction explicitly.
When you call LOCK TABLES, InnoDB internally takes its own table lock, and MySQL takes
its own table lock. InnoDB releases its table lock at the next commit, but for MySQL to release
its table lock, you have to call UNLOCK TABLES. You should not have AUTOCOMMIT = 1,
because then InnoDB releases its table lock immediately after the call of LOCK TABLES, and
deadlocks can very easily happen. Starting from 4.1.9, we do not acquire the InnoDB table lock
at all if AUTOCOMMIT=1. That helps old applications to avoid unnecessary deadlocks.

As of MySQL 4.0.2, to use LOCK TABLES you must have the LOCK TABLES privilege and a
SELECT privilege for the involved tables. In MySQL 3.23, you must have SELECT, INSERT, DE-
LETE, and UPDATE privileges for the tables.

The main reasons to use LOCK TABLES are for emulating transactions or to get more speed when
updating tables. This is explained in more detail later.

If a thread obtains a READ lock on a table, that thread (and all other threads) can only read from the
table. If a thread obtains a WRITE lock on a table, only the thread holding the lock can write to the
table. Other threads are blocked from doing so until the lock has been released.

The difference between READ LOCAL and READ is that READ LOCAL allows non-conflicting IN-
SERT statements (concurrent inserts) to execute while the lock is held. However, this can't be used
if you are going to manipulate the database files outside MySQL while you hold the lock. For In-
noDB, READ LOCAL essentially does nothing: it does not lock the table at all. The use of READ
LOCAL for InnoDB tables is deprecated, because for InnoDB, a plain consistent read SELECT does
the same thing, and no locks are needed.

When you use LOCK TABLES, you must lock all tables that you are going to use in your queries.
While the locks obtained with a LOCK TABLES statement are in effect, you cannot access any
tables that were not locked by the statement. Also, you cannot use a locked table multiple times in
one query - use aliases for that. Note that in that case you must get a lock for each alias separately.

mysql> LOCK TABLE t WRITE, t AS t1 WRITE;
mysql> INSERT INTO t SELECT * FROM t;
ERROR 1100: Table 't' was not locked with LOCK TABLES
mysql> INSERT INTO t SELECT * FROM t AS t1;

If your queries refer to a table using an alias, then you must lock the table using that same alias. It
does not work to lock the table without specifying the alias:

mysql> LOCK TABLE t READ;
mysql> SELECT * FROM t AS myalias;
ERROR 1100: Table 'myalias' was not locked with LOCK TABLES

Conversely, if you lock a table using an alias, you must refer to it in your queries using that alias:

mysql> LOCK TABLE t AS myalias READ;
mysql> SELECT * FROM t;
ERROR 1100: Table 't' was not locked with LOCK TABLES
mysql> SELECT * FROM t AS myalias;

SQL Statement Syntax

717

WRITE locks normally have higher priority than READ locks to ensure that updates are processed as
soon as possible. This means that if one thread obtains a READ lock and then another thread requests
a WRITE lock, subsequent READ lock requests wait until the WRITE thread has gotten the lock and
released it. You can use LOW_PRIORITY WRITE locks to allow other threads to obtain READ
locks while the thread is waiting for the WRITE lock. You should use LOW_PRIORITY WRITE
locks only if you are sure that there is eventually a time when no threads have a READ lock.

LOCK TABLES works as follows:

1. Sort all tables to be locked in an internally defined order. From the user standpoint, this order is
undefined.

2. If a table is locked with a read and a write lock, put the write lock before the read lock.

3. Lock one table at a time until the thread gets all locks.

This policy ensures that table locking is deadlock free. There are, however, other things you need to
be aware of about this policy:

If you are using a LOW_PRIORITY WRITE lock for a table, it means only that MySQL waits for
this particular lock until there are no threads that want a READ lock. When the thread has gotten the
WRITE lock and is waiting to get the lock for the next table in the lock table list, all other threads
wait for the WRITE lock to be released. If this becomes a serious problem with your application,
you should consider converting some of your tables to transaction-safe tables.

You can safely use KILL to terminate a thread that is waiting for a table lock. See Section 13.5.5.3,
“KILL Syntax”.

Note that you should not lock any tables that you are using with INSERT DELAYED because in
that case the INSERT is done by a separate thread.

Normally, you don't have to lock tables, because all single UPDATE statements are atomic; no other
thread can interfere with any other currently executing SQL statement. There are a few cases when
you would like to lock tables anyway:

• If you are going to run many operations on a set of MyISAM tables, it's much faster to lock the
tables you are going to use. Locking MyISAM tables speeds up inserting, updating, or deleting
on them. The downside is that no thread can update a READ-locked table (including the one
holding the lock) and no thread can access a WRITE-locked table other than the one holding the
lock.

The reason some MyISAM operations are faster under LOCK TABLES is that MySQL does not
flush the key cache for the locked tables until UNLOCK TABLES is called. Normally, the key
cache is flushed after each SQL statement.

• If you are using a storage engine in MySQL that doesn't support transactions, you must use
LOCK TABLES if you want to ensure that no other thread comes between a SELECT and an
UPDATE. The example shown here requires LOCK TABLES to execute safely:

mysql> LOCK TABLES trans READ, customer WRITE;
mysql> SELECT SUM(value) FROM trans WHERE customer_id=some_id;
mysql> UPDATE customer

-> SET total_value=sum_from_previous_statement
-> WHERE customer_id=some_id;

mysql> UNLOCK TABLES;

Without LOCK TABLES, it is possible that another thread might insert a new row in the trans
table between execution of the SELECT and UPDATE statements.

SQL Statement Syntax

718

You can avoid using LOCK TABLES in many cases by using relative updates (UPDATE custom-
er SET value=value+new_value) or the LAST_INSERT_ID() function, See Sec-
tion 1.5.5.3, “Transactions and Atomic Operations”.

You can also avoid locking tables in some cases by using the user-level advisory lock functions
GET_LOCK() and RELEASE_LOCK(). These locks are saved in a hash table in the server and im-
plemented with pthread_mutex_lock() and pthread_mutex_unlock() for high speed.
See Section 12.8.4, “Miscellaneous Functions”.

See Section 7.3.1, “Locking Methods”, for more information on locking policy.

You can lock all tables in all databases with read locks with the FLUSH TABLES WITH READ
LOCK statement. See Section 13.5.5.2, “FLUSH Syntax”. This is a very convenient way to get
backups if you have a filesystem such as Veritas that can take snapshots in time.

Note: If you use ALTER TABLE on a locked table, it may become unlocked. See Section A.7.1,
“Problems with ALTER TABLE”.

13.4.6. SET TRANSACTION Syntax
SET [GLOBAL | SESSION] TRANSACTION ISOLATION LEVEL
{ READ UNCOMMITTED | READ COMMITTED | REPEATABLE READ | SERIALIZABLE }

This statement sets the transaction isolation level for the next transaction, globally, or for the current
session.

The default behavior of SET TRANSACTION is to set the isolation level for the next (not yet star-
ted) transaction. If you use the GLOBAL keyword, the statement sets the default transaction level
globally for all new connections created from that point on. Existing connections are unaffected.
You need the SUPER privilege to do this. Using the SESSION keyword sets the default transaction
level for all future transactions performed on the current connection.

For descriptions of each InnoDB transaction isolation level, see Section 15.11.2, “InnoDB and
TRANSACTION ISOLATION LEVEL”. InnoDB supports each of these levels from MySQL
4.0.5 on. The default level is REPEATABLE READ.

You can set the initial default global isolation level for mysqld with the -
-transaction-isolation option. See Section 5.2.1, “mysqld Command-Line Options”.

13.5. Database Administration Statements
13.5.1. Account Management Statements

13.5.1.1. CREATE USER Syntax

CREATE USER user [IDENTIFIED BY [PASSWORD] 'password']
[, user [IDENTIFIED BY [PASSWORD] 'password']] ...

The CREATE USER statement creates new MySQL accounts. To use it, you must have the GRANT
OPTION privilege for the mysql database. For each account, CREATE USER creates a new record
in the mysql.user table that has no privileges. An error occurs if the account already exists. The
account can be given a password with the optional IDENTIFIED BY clause. The user value and
the password are given the same way as for the GRANT statement.

The CREATE USER statement was added in MySQL 5.0.2.

13.5.1.2. DROP USER Syntax

DROP USER user [, user] ...

SQL Statement Syntax

719

The DROP USER statement deletes one or more MySQL accounts. To use it, you must have the
GRANT OPTION privilege for the mysql database. Each account is named using the same format
as for GRANT or REVOKE; for example, 'jeffrey'@'localhost'. The user and host parts of
the account name correspond to the User and Host column values of the user table record for
the account.

DROP USER was added in MySQL 4.1.1 and originally removed only accounts that have no priv-
ileges. In MySQL 5.0.2, it was modified to also remove account privileges. This means that the pro-
cedure for removing an account depends on your version of MySQL.

As of MySQL 5.0.2, remove an account and its privileges as follows:

DROP USER user;

The statement removes privilege records for the account from all grant tables.

From MySQL 4.1.1 to 5.0.1, DROP USER deletes only MySQL accounts that don't have any priv-
ileges. It serves to remove each account record from the user table. To remove a MySQL account,
you should use the following procedure, performing the steps in the order shown:

1. Use SHOW GRANTS to determine what privileges the account has. See Section 13.5.4.10,
“SHOW GRANTS Syntax”.

2. Use REVOKE to revoke the privileges displayed by SHOW GRANTS. This removes records for
the account from all the grant tables except the user table, and revokes any global privileges
listed in the user table. See Section 13.5.1.3, “GRANT and REVOKE Syntax”.

3. Delete the account by using DROP USER to remove the user table record.

Before MySQL 4.1.1, DROP USER is not available. You should first revoke the account privileges
as just described. Then delete the user table record and flush the grant tables like this:

mysql> DELETE FROM mysql.user
-> WHERE User='user_name' and Host='host_name';

mysql> FLUSH PRIVILEGES;

13.5.1.3. GRANT and REVOKE Syntax

GRANT priv_type [(column_list)] [, priv_type [(column_list)]] ...
ON {tbl_name | * | *.* | db_name.*}
TO user [IDENTIFIED BY [PASSWORD] 'password']

[, user [IDENTIFIED BY [PASSWORD] 'password']] ...
[REQUIRE

NONE |
[{SSL| X509}]
[CIPHER 'cipher' [AND]]
[ISSUER 'issuer' [AND]]
[SUBJECT 'subject']]

[WITH [GRANT OPTION | MAX_QUERIES_PER_HOUR count |
MAX_UPDATES_PER_HOUR count |
MAX_CONNECTIONS_PER_HOUR count |
MAX_USER_CONNECTIONS count]]

REVOKE priv_type [(column_list)] [, priv_type [(column_list)]] ...
ON {tbl_name | * | *.* | db_name.*}
FROM user [, user] ...

REVOKE ALL PRIVILEGES, GRANT OPTION FROM user [, user] ...

The GRANT and REVOKE statements allow system administrators to create MySQL user accounts

SQL Statement Syntax

720

and to grant rights to and revoke them from accounts. GRANT and REVOKE are implemented in
MySQL 3.22.11 or later. For earlier MySQL versions, these statements do nothing.

MySQL account information is stored in the tables of the mysql database. This database and the
access control system are discussed extensively in Chapter 5, Database Administration, which you
should consult for additional details.

Privileges can be granted at several levels:

• Global level

Global privileges apply to all databases on a given server. These privileges are stored in the
mysql.user table. GRANT ALL ON *.* and REVOKE ALL ON *.* grant and revoke
only global privileges.

• Database level

Database privileges apply to all objects in a given database. These privileges are stored in the
mysql.db and mysql.host tables. GRANT ALL ON db_name.* and REVOKE ALL ON
db_name.* grant and revoke only database privileges.

• Table level

Table privileges apply to all columns in a given table. These privileges are stored in the
mysql.tables_priv table. GRANT ALL ON db_name.tbl_name and REVOKE ALL
ON db_name.tbl_name grant and revoke only table privileges.

• Column level

Column privileges apply to single columns in a given table. These privileges are stored in the
mysql.columns_priv table. When using REVOKE, you must specify the same columns that
were granted.

• Routine level

The CREATE ROUTINE, ALTER ROUTINE, EXECUTE, and GRANT privileges apply to stored
routines. They can be granted at the global and database levels. Also, except for CREATE
ROUTINE, these privileges can be granted at the routine level for individual routines and are
stored in the mysql.procs_priv table.

To make it easy to revoke all privileges, MySQL 4.1.2 has added the following syntax, which drops
all global, database-, table-, and column-level privileges for the named users:

REVOKE ALL PRIVILEGES, GRANT OPTION FROM user [, user] ...

Before MySQL 4.1.2, all privileges cannot be dropped at once. Two statements are necessary:

REVOKE ALL PRIVILEGES ON *.* FROM user [, user] ...
REVOKE GRANT OPTION ON *.* FROM user [, user] ...

For the GRANT and REVOKE statements, priv_type can be specified as any of the following:

Privilege Meaning

ALL [PRIVILEGES] Sets all simple privileges except GRANT OPTION

ALTER Allows use of ALTER TABLE

ALTER ROUTINE Alter or drop stored routines

CREATE Allows use of CREATE TABLE

CREATE ROUTINE Create stored routines

CREATE TEMPORARY Allows use of CREATE TEMPORARY TABLE

SQL Statement Syntax

721

TABLES

CREATE VIEW Allows use of CREATE VIEW

DELETE Allows use of DELETE

DROP Allows use of DROP TABLE

EXECUTE Allows the user to run stored routines

FILE Allows use of SELECT ... INTO OUTFILE and LOAD DATA
INFILE

INDEX Allows use of CREATE INDEX and DROP INDEX

INSERT Allows use of INSERT

LOCK TABLES Allows use of LOCK TABLES on tables for which you have the SE-
LECT privilege

PROCESS Allows use of SHOW FULL PROCESSLIST

REFERENCES Not implemented

RELOAD Allows use of FLUSH

REPLICATION CLIENT Allows the user to ask where slave or master servers are

REPLICATION SLAVE Needed for replication slaves (to read binary log events from the
master)

SELECT Allows use of SELECT

SHOW DATABASES SHOW DATABASES shows all databases

SHOW VIEW Allows use of SHOW CREATE VIEW

SHUTDOWN Allows use of mysqladmin shutdown

SUPER Allows use of CHANGE MASTER, KILL, PURGE MASTER LOGS,
and SET GLOBAL statements, the mysqladmin debug command;
allows you to connect (once) even if max_connections is
reached

UPDATE Allows use of UPDATE

USAGE Synonym for ``no privileges''

GRANT OPTION Allows privileges to be granted

The CREATE TEMPORARY TABLES, EXECUTE, LOCK TABLES, REPLICATION CLIENT,
REPLICATION SLAVE, SHOW DATABASES, and SUPER privileges were added in MySQL
4.0.2. (EXECUTE is not operational until MySQL 5.0.3.) CREATE VIEW and SHOW VIEW were
added in MySQL 5.0.1. CREATE ROUTINE and ALTER ROUTINE were added in MySQL 5.0.3.
To use these privileges when upgrading from an earlier version of MySQL that does not have them,
, you must upgrade your grant tables. See Section 2.10.7, “Upgrading the Grant Tables”.

The REFERENCES privilege currently is unused.

In older MySQL versions that do not have the SUPER privilege, specify the PROCESS privilege in-
stead.

USAGE can be specified when you want to create a user that has no privileges.

Use SHOW GRANTS to determine what privileges the account has. See Section 13.5.4.10, “SHOW
GRANTS Syntax”.

You can assign global privileges by using ON *.* syntax or database privileges by using ON
db_name.* syntax. If you specify ON * and you have selected a default database, the privileges
are granted in that database. (Warning: If you specify ON * and you have not selected a default
database, the privileges granted are global!)

The EXECUTION, FILE, PROCESS, RELOAD, REPLICATION CLIENT, REPLICATION
SLAVE, SHOW DATABASES, SHUTDOWN, and SUPER privileges are administrative privileges that

SQL Statement Syntax

722

can only be granted globally (using ON *.* syntax).

Other privileges can be granted globally or at more specific levels.

The only priv_type values you can specify for a table are SELECT, INSERT, UPDATE, DE-
LETE, CREATE, DROP, GRANT OPTION, INDEX, and ALTER.

The only priv_type values you can specify for a column (that is, when you use a
column_list clause) are SELECT, INSERT, and UPDATE.

The only priv_type values you can specify at the routine level are ALTER ROUTINE, EX-
ECUTE, and GRANT. CREATE ROUTINE is not a routine-level privilege because you must have
this privilege to be able to create a routine in the first place.

For the global, database, table, and routine levels, GRANT ALL assigns only the privileges that exist
at the level you are granting. For example, if you use GRANT ALL ON db_name.*, that is a
database-level statement, so none of the global-only privileges such as FILE are granted.

For column-level privileges (that is, when you specify column_list), you must explicitly name
the privileges to be granted. You cannot use ALL as a privilege specifier.

MySQL allows you to grant database-level privileges even if the database doesn't exist, to make it
easy to prepare for database use. However, MySQL currently does not allow you to grant table-level
or column-level privileges if the table doesn't exist. Similarly, you cannot grant routine-level priv-
ileges to a non-existent routine.

MySQL does not automatically revoke any privileges even if you drop a table or drop a database. If
you drop a routine, and routine-level privileges granted for the routine are revoked.

Note: the '_' and '%' wildcards are allowed when specifying database names in GRANT statements
that grant privileges at the global or database levels. This means, for example, that if you want to
use a '_' character as part of a database name, you should specify it as '_' in the GRANT statement,
to prevent the user from being able to access additional databases matching the wildcard pattern; for
example, GRANT ... ON `foo_bar`.* TO

In order to accommodate granting rights to users from arbitrary hosts, MySQL supports specifying
the user value in the form user_name@host_name. If a user_name or host_name value is
legal as an unquoted identifier, you need not quote it. However, quotes are necessary to specify a
user_name string containing special characters (such as '-'), or a host_name string containing
special characters or wildcard characters (such as '%'); for example, 'test-
user'@'test-hostname'. Quote the username and hostname separately.

You can specify wildcards in the hostname. For example, user_name@'%.loc.gov' applies to
user_name for any host in the loc.gov domain, and user_name@'144.155.166.%' ap-
plies to user_name for any host in the 144.155.166 class C subnet.

The simple form user_name is a synonym for user_name@'%'.

MySQL doesn't support wildcards in usernames. Anonymous users are defined by inserting entries
with User='' into the mysql.user table or creating a user with an empty name with the GRANT
statement:

mysql> GRANT ALL ON test.* TO ''@'localhost' ...

When specifying quoted values, quote database, table, column, and routine names as identifiers, us-
ing backticks ('`'). Quote hostnames, usernames, and passwords as strings, using apostrophes (''').

Warning: If you allow anonymous users to connect to the MySQL server, you should also grant
privileges to all local users as user_name@localhost. Otherwise, the anonymous-user account
for the local host in the mysql.user table is used when named users try to log in to the MySQL
server from the local machine. (This anonymous-user account is created during MySQL installa-
tion.)

You can determine whether this applies to you by executing the following query:

SQL Statement Syntax

723

mysql> SELECT Host, User FROM mysql.user WHERE User='';

If you want to delete the local anonymous-user account to avoid the problem just described, use
these statements:

mysql> DELETE FROM mysql.user WHERE Host='localhost' AND User='';
mysql> FLUSH PRIVILEGES;

GRANT supports hostnames up to 60 characters long. Database, table, column, and routine names
can be up to 64 characters. Usernames can be up to 16 characters.

The privileges for a table or column are formed additively from the logical OR of the privileges at
each of the four privilege levels. For example, if the mysql.user table specifies that a user has a
global SELECT privilege, the privilege cannot be denied by an entry at the database, table, or
column level.

The privileges for a column can be calculated as follows:

global privileges
OR (database privileges AND host privileges)
OR table privileges
OR column privileges

In most cases, you grant rights to a user at only one of the privilege levels, so life isn't normally this
complicated. The details of the privilege-checking procedure are presented in Section 5.5, “The
MySQL Access Privilege System”.

If you grant privileges for a username/hostname combination that does not exist in the
mysql.user table, an entry is added and remains there until deleted with a DELETE statement. In
other words, GRANT may create user table entries, but REVOKE does not remove them; you must
do that explicitly using DROP USER or DELETE.

In MySQL 3.22.12 or later, if a new user is created or if you have global grant privileges, the user's
password is set to the password specified by the IDENTIFIED BY clause, if one is given. If the
user had a password, it is replaced by the new one.

Warning: If you create a new user but do not specify an IDENTIFIED BY clause, the user has no
password. This is insecure. As of MySQL 5.0.2, you can enable the NO_AUTO_CREATE_USER
SQL mode to prevent GRANT from creating new users if it would otherwise do so, unless IDENTI-
FIED BY is given to provide a password.

Passwords can also be set with the SET PASSWORD statement. See Section 13.5.1.5, “SET
PASSWORD Syntax”.

In the IDENTIFIED BY clause, the password should be given as the literal password value. It is
unnecessary to use the PASSWORD() function as it is for the SET PASSWORD statement. For ex-
ample:

GRANT ... IDENTIFIED BY 'mypass';

If you don't want to send the password in clear text and you know the hashed value that PASS-
WORD() would return for the password, you can specify the hashed value preceded by the keyword
PASSWORD:

GRANT ... IDENTIFIED BY PASSWORD '*6C8989366EAF75BB670AD8EA7A7FC1176A95CEF4';

In a C program, you can get the hashed value by using the make_scrambled_password() C
API function.

If you grant privileges for a database, an entry in the mysql.db table is created if needed. If all

SQL Statement Syntax

724

privileges for the database are removed with REVOKE, this entry is deleted.

If a user has no privileges for a table, the table name is not displayed when the user requests a list of
tables (for example, with a SHOW TABLES statement).

The SHOW DATABASES privilege allows the account to see database names by issuing the SHOW
DATABASE statement. Accounts that do not have this privilege see only databases for which they
have some privileges, and cannot use the statement at all if the server was started with the -
-skip-show-database option.

The WITH GRANT OPTION clause gives the user the ability to give to other users any privileges
the user has at the specified privilege level. You should be careful to whom you give the GRANT
OPTION privilege, because two users with different privileges may be able to join privileges!

You cannot grant another user a privilege you don't have yourself; the GRANT OPTION privilege
allows you to give away only those privileges you possess.

Be aware that when you grant a user the GRANT OPTION privilege at a particular privilege level,
any privileges the user possesses (or is given in the future!) at that level are also grantable by that
user. Suppose that you grant a user the INSERT privilege on a database. If you then grant the SE-
LECT privilege on the database and specify WITH GRANT OPTION, the user can give away not
only the SELECT privilege, but also INSERT. If you then grant the UPDATE privilege to the user
on the database, the user can give away INSERT, SELECT, and UPDATE.

You should not grant ALTER privileges to a normal user. If you do that, the user can try to subvert
the privilege system by renaming tables!

The MAX_QUERIES_PER_HOUR count, MAX_UPDATES_PER_HOUR count, and
MAX_CONNECTIONS_PER_HOUR count options are new in MySQL 4.0.2. They limit the num-
ber of queries, updates, and logins a user can perform during one hour. If count is 0 (the default),
this means there is no limitation for that user.

The MAX_USER_CONNECTIONS count option is new in MySQL 5.0.3. It limits the maximum
number of simultaneous connections that the account can make. If count is 0 (the default), the
max_user_connections system variable determines the number of simultaneous connections
for the account.

Note: To specify any of these resource-limit options for an existing user without affecting existing
privileges, use GRANT USAGE ON *.* ... WITH MAX_....

See Section 5.6.4, “Limiting Account Resources”.

MySQL can check X509 certificate attributes in addition to the usual authentication that is based on
the username and password. To specify SSL-related options for a MySQL account, use the RE-
QUIRE clause of the GRANT statement. (For background on the use of SSL with MySQL, see Sec-
tion 5.6.7, “Using Secure Connections”.)

There are different possibilities for limiting connection types for an account:

• If an account has no SSL or X509 requirements, unencrypted connections are allowed if the
username and password are valid. However, encrypted connections also can be used at the cli-
ent's option, if the client has the proper certificate and key files.

• The REQUIRE SSL option tells the server to allow only SSL-encrypted connections for the ac-
count. Note that this option can be omitted if there are any access-control records that allow non-
SSL connections.

mysql> GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
-> IDENTIFIED BY 'goodsecret' REQUIRE SSL;

• REQUIRE X509 means that the client must have a valid certificate but that the exact certific-
ate, issuer, and subject do not matter. The only requirement is that it should be possible to verify
its signature with one of the CA certificates.

SQL Statement Syntax

725

mysql> GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
-> IDENTIFIED BY 'goodsecret' REQUIRE X509;

• REQUIRE ISSUER 'issuer' places the restriction on connection attempts that the client
must present a valid X509 certificate issued by CA 'issuer'. If the client presents a certific-
ate that is valid but has a different issuer, the server rejects the connection. Use of X509 certific-
ates always implies encryption, so the SSL option is unnecessary.

mysql> GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
-> IDENTIFIED BY 'goodsecret'
-> REQUIRE ISSUER '/C=FI/ST=Some-State/L=Helsinki/

O=MySQL Finland AB/CN=Tonu Samuel/Email=tonu@example.com';

Note that the ISSUER value should be entered as a single string.

• REQUIRE SUBJECT 'subject' places the restriction on connection attempts that the client
must present a valid X509 certificate with subject 'subject' in it. If the client presents a cer-
tificate that is valid but has a different subject, the server rejects the connection.

mysql> GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
-> IDENTIFIED BY 'goodsecret'
-> REQUIRE SUBJECT '/C=EE/ST=Some-State/L=Tallinn/

O=MySQL demo client certificate/
CN=Tonu Samuel/Email=tonu@example.com';

Note that the SUBJECT value should be entered as a single string.

• REQUIRE CIPHER 'cipher' is needed to ensure that strong enough ciphers and key
lengths are used. SSL itself can be weak if old algorithms with short encryption keys are used.
Using this option, you can ask for some exact cipher method to allow a connection.

mysql> GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
-> IDENTIFIED BY 'goodsecret'
-> REQUIRE CIPHER 'EDH-RSA-DES-CBC3-SHA';

The SUBJECT, ISSUER, and CIPHER options can be combined in the REQUIRE clause like this:

mysql> GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
-> IDENTIFIED BY 'goodsecret'
-> REQUIRE SUBJECT '/C=EE/ST=Some-State/L=Tallinn/

O=MySQL demo client certificate/
CN=Tonu Samuel/Email=tonu@example.com'

-> AND ISSUER '/C=FI/ST=Some-State/L=Helsinki/
O=MySQL Finland AB/CN=Tonu Samuel/Email=tonu@example.com'

-> AND CIPHER 'EDH-RSA-DES-CBC3-SHA';

Note that the SUBJECT and ISSUER values each should be entered as a single string.

Starting from MySQL 4.0.4, the AND keyword is optional between REQUIRE options.

The order of the options does not matter, but no option can be specified twice.

When mysqld starts, all privileges are read into memory. Database, table, and column privileges
take effect at once, and user-level privileges take effect the next time the user connects. Modifica-
tions to the grant tables that you perform using GRANT or REVOKE are noticed by the server imme-
diately. If you modify the grant tables manually (using INSERT, UPDATE, and so on), you should
execute a FLUSH PRIVILEGES statement or run mysqladmin flush-privileges to tell the server
to reload the grant tables. See Section 5.5.7, “When Privilege Changes Take Effect”.

SQL Statement Syntax

726

Note that if you are using table or column privileges for even one user, the server examines table
and column privileges for all users and this slows down MySQL a bit. Similarly, if you limit the
number of queries, updates, or connections for any users, the server must monitor these values.

The biggest differences between the standard SQL and MySQL versions of GRANT are:

• In MySQL, privileges are associated with a username/hostname combination and not with only a
username.

• Standard SQL doesn't have global or database-level privileges, nor does it support all the priv-
ilege types that MySQL supports.

• MySQL doesn't support the standard SQL TRIGGER or UNDER privileges.

• Standard SQL privileges are structured in a hierarchical manner. If you remove a user, all priv-
ileges the user has been granted are revoked. This is also true in MySQL 5.0.2 and up if you use
DROP USER. Before 5.0.2, the granted privileges are not automatically revoked; you must re-
voke them yourself. See Section 13.5.1.2, “DROP USER Syntax”.

• With standard SQL, when you drop a table, all privileges for the table are revoked. With stand-
ard SQL, when you revoke a privilege, all privileges that were granted based on the privilege are
also revoked. In MySQL, privileges can be dropped only with explicit REVOKE statements or by
manipulating the MySQL grant tables.

• In MySQL, if you have the INSERT privilege on only some of the columns in a table, you can
execute INSERT statements on the table; the columns for which you don't have the INSERT
privilege are set to their default values. Standard SQL requires you to have the INSERT priv-
ilege on all columns.

13.5.1.4. RENAME USER Syntax

RENAME USER old_user TO new_user
[, old_user TO new_user] ...

The RENAME USER statement renames existing MySQL accounts. To use it, you must have the
GRANT OPTION privilege for the mysql database. An error occurs if any old account does not ex-
ist or any new account exists. The old_user and new_user values are given the same way as for
the GRANT statement.

The RENAME USER statement was added in MySQL 5.0.2.

13.5.1.5. SET PASSWORD Syntax

SET PASSWORD = PASSWORD('some password')
SET PASSWORD FOR user = PASSWORD('some password')

The SET PASSWORD statement assigns a password to an existing MySQL user account.

The first syntax sets the password for the current user. Any client that has connected to the server
using a non-anonymous account can change the password for that account.

The second syntax sets the password for a specific account on the current server host. Only clients
with the UPDATE privilege for the mysql database can do this. The user value should be given in
user_name@host_name format, where user_name and host_name are exactly as they are
listed in the User and Host columns of the mysql.user table entry. For example, if you had an
entry with User and Host column values of 'bob' and '%.loc.gov', you would write the
statement like this:

mysql> SET PASSWORD FOR 'bob'@'%.loc.gov' = PASSWORD('newpass');

SQL Statement Syntax

727

That is equivalent to the following statements:

mysql> UPDATE mysql.user SET Password=PASSWORD('newpass')
-> WHERE User='bob' AND Host='%.loc.gov';

mysql> FLUSH PRIVILEGES;

Note: If you are connecting to a MySQL 4.1 or later server using a pre-4.1 client program, do not
use the preceding SET PASSWORD or UPDATE statement without reading Section 5.5.9, “Password
Hashing in MySQL 4.1” first. The password format changed in MySQL 4.1, and under certain cir-
cumstances it is possible that if you change your password, you might not be able to connect to the
server afterward.

Starting from MySQL 4.1, you can check what your current authentication user@host entry is by
executing SELECT CURRENT_USER().

13.5.2. Table Maintenance Statements

13.5.2.1. ANALYZE TABLE Syntax

ANALYZE [LOCAL | NO_WRITE_TO_BINLOG] TABLE tbl_name [, tbl_name] ...

This statement analyzes and stores the key distribution for a table. During the analysis, the table is
locked with a read lock. This works on MyISAM and BDB tables and (as of MySQL 4.0.13) In-
noDB tables. For MyISAM tables, this statement is equivalent to using myisamchk -a.

MySQL uses the stored key distribution to decide the order in which tables should be joined when
you perform a join on something other than a constant.

The statement returns a table with the following columns:

Column Value

Table The table name

Op Always analyze

Msg_type One of status, error, info, or warning

Msg_text The message

You can check the stored key distribution with the SHOW INDEX statement. See Section 13.5.4.11,
“SHOW INDEX Syntax”.

If the table hasn't changed since the last ANALYZE TABLE statement, the table is not analyzed
again.

Before MySQL 4.1.1, ANALYZE TABLE statements are not written to the binary log. As of
MySQL 4.1.1, they are written to the binary log unless the optional NO_WRITE_TO_BINLOG
keyword (or its alias LOCAL) is used.

13.5.2.2. BACKUP TABLE Syntax

BACKUP TABLE tbl_name [, tbl_name] ... TO '/path/to/backup/directory'

Note: This statement is deprecated. We are working on a better replacement for it that will provide
online backup capabilities. In the meantime, the mysqlhotcopy script can be used instead.

BACKUP TABLE copies to the backup directory the minimum number of table files needed to re-
store the table, after flushing any buffered changes to disk. The statement works only for MyISAM
tables. It copies the .frm definition and .MYD data files. The .MYI index file can be rebuilt from

SQL Statement Syntax

728

those two files. The directory should be specified as a full pathname.

Before using this statement, please see Section 5.7.1, “Database Backups”.

During the backup, a read lock is held for each table, one at time, as they are being backed up. If
you want to back up several tables as a snapshot (preventing any of them from being changed during
the backup operation), you must first issue a LOCK TABLES statement to obtain a read lock for
every table in the group.

The statement returns a table with the following columns:

Column Value

Table The table name

Op Always backup

Msg_type One of status, error, info, or warning

Msg_text The message

BACKUP TABLE is available in MySQL 3.23.25 and later.

13.5.2.3. CHECK TABLE Syntax

CHECK TABLE tbl_name [, tbl_name] ... [option] ...
option = {QUICK | FAST | MEDIUM | EXTENDED | CHANGED}

Checks a table or tables for errors. CHECK TABLE works for MyISAM and InnoDB tables. For
MyISAM tables, the key statistics are updated.

As of MySQL 5.0.2, CHECK TABLE also can check views for problems, such as tables that are ref-
erenced in the view definition that no longer exist.

The CHECK TABLE statement returns a table with the following columns:

Column Value

Table The table name

Op Always check

Msg_type One of status, error, info, or warning

Msg_text The message

Note that the statement might produce many rows of information for each checked table. The last
row has a Msg_type value of status and the Msg_text normally should be OK. If you don't
get OK, or Table is already up to date you should normally run a repair of the table.
See Section 5.7.3, “Table Maintenance and Crash Recovery”. Table is already up to
date means that the storage engine for the table indicated that there was no need to check the table.

The different check options that can be given are shown in the following table. These options apply
only to checking MyISAM tables and are ignored for InnoDB tables and views.

Type Meaning

QUICK Don't scan the rows to check for incorrect links.

FAST Only check tables that haven't been closed properly.

CHANGED Only check tables that have been changed since the last check or haven't been
closed properly.

MEDIUM Scan rows to verify that deleted links are okay. This also calculates a key checksum
for the rows and verifies this with a calculated checksum for the keys.

EXTENDED Do a full key lookup for all keys for each row. This ensures that the table is 100%

SQL Statement Syntax

729

consistent, but takes a long time!

If none of the options QUICK, MEDIUM, or EXTENDED are specified, the default check type for dy-
namic-format MyISAM tables is MEDIUM. This is the same thing as running myisamchk -
-medium-check tbl_name on the table. The default check type also is MEDIUM for static-format
MyISAM tables, unless CHANGED or FAST is specified. In that case, the default is QUICK. The row
scan is skipped for CHANGED and FAST because the rows are very seldom corrupted.

You can combine check options, as in the following example, which does a quick check on the table
to see whether it was closed properly:

CHECK TABLE test_table FAST QUICK;

Note: In some cases, CHECK TABLE changes the table. This happens if the table is marked as
``corrupted'' or ``not closed properly'' but CHECK TABLE doesn't find any problems in the table. In
this case, CHECK TABLE marks the table as okay.

If a table is corrupted, it's most likely that the problem is in the indexes and not in the data part. All
of the preceding check types check the indexes thoroughly and should thus find most errors.

If you just want to check a table that you assume is okay, you should use no check options or the
QUICK option. The latter should be used when you are in a hurry and can take the very small risk
that QUICK doesn't find an error in the data file. (In most cases, MySQL should find, under normal
usage, any error in the data file. If this happens, the table is marked as ``corrupted'' and cannot be
used until it's repaired.)

FAST and CHANGED are mostly intended to be used from a script (for example, to be executed from
cron) if you want to check your table from time to time. In most cases, FAST is to be preferred over
CHANGED. (The only case when it isn't preferred is when you suspect that you have found a bug in
the MyISAM code.)

EXTENDED is to be used only after you have run a normal check but still get strange errors from a
table when MySQL tries to update a row or find a row by key. (This is very unlikely if a normal
check has succeeded!)

Some problems reported by CHECK TABLE can't be corrected automatically:

• Found row where the auto_increment column has the value 0.

This means that you have a row in the table where the AUTO_INCREMENT index column con-
tains the value 0. (It's possible to create a row where the AUTO_INCREMENT column is 0 by ex-
plicitly setting the column to 0 with an UPDATE statement.)

This isn't an error in itself, but could cause trouble if you decide to dump the table and restore it
or do an ALTER TABLE on the table. In this case, the AUTO_INCREMENT column changes
value according to the rules of AUTO_INCREMENT columns, which could cause problems such
as a duplicate-key error.

To get rid of the warning, just execute an UPDATE statement to set the column to some other
value than 0.

13.5.2.4. CHECKSUM TABLE Syntax

CHECKSUM TABLE tbl_name [, tbl_name] ... [QUICK | EXTENDED]

Reports a table checksum.

If QUICK is specified, the live table checksum is reported if it is available, or NULL otherwise. This

SQL Statement Syntax

730

is very fast. A live checksum is enabled by specifying the CHECKSUM=1 table option, currently
supported only for MyISAM tables. See Section 13.2.6, “CREATE TABLE Syntax”.

In EXTENDED mode the whole table is read row by row and the checksum is calculated. This can be
very slow for large tables.

By default, if neither QUICK nor EXTENDED is specified, MySQL returns a live checksum if the ta-
ble storage engine supports it and scans the table otherwise.

This statement is implemented in MySQL 4.1.1.

13.5.2.5. OPTIMIZE TABLE Syntax

OPTIMIZE [LOCAL | NO_WRITE_TO_BINLOG] TABLE tbl_name [, tbl_name] ...

OPTIMIZE TABLE should be used if you have deleted a large part of a table or if you have made
many changes to a table with variable-length rows (tables that have VARCHAR, BLOB, or TEXT
columns). Deleted records are maintained in a linked list and subsequent INSERT operations reuse
old record positions. You can use OPTIMIZE TABLE to reclaim the unused space and to defrag-
ment the data file.

In most setups, you need not run OPTIMIZE TABLE at all. Even if you do a lot of updates to vari-
able-length rows, it's not likely that you need to do this more than once a week or month and only on
certain tables.

For the moment, OPTIMIZE TABLE works only on MyISAM, BDB and InnoDB tables. For BDB
tables, OPTIMIZE TABLE is currently mapped to ANALYZE TABLE. It was also the case for In-
noDB tables before MySQL 4.1.3; starting from this version it is mapped to ALTER TABLE. See
Section 13.5.2.1, “ANALYZE TABLE Syntax”.

You can get OPTIMIZE TABLE to work on other table types by starting mysqld with the -
-skip-new or --safe-mode option; in this case, OPTIMIZE TABLE is just mapped to ALTER
TABLE.

OPTIMIZE TABLE works as follows:

1. If the table has deleted or split rows, repair the table.

2. If the index pages are not sorted, sort them.

3. If the statistics are not up to date (and the repair couldn't be done by sorting the index), update
them.

Note that MySQL locks the table during the time OPTIMIZE TABLE is running.

Before MySQL 4.1.1, OPTIMIZE TABLE statements are not written to the binary log. As of
MySQL 4.1.1, they are written to the binary log unless the optional NO_WRITE_TO_BINLOG
keyword (or its alias LOCAL) is used.

13.5.2.6. REPAIR TABLE Syntax

REPAIR [LOCAL | NO_WRITE_TO_BINLOG] TABLE
tbl_name [, tbl_name] ... [QUICK] [EXTENDED] [USE_FRM]

REPAIR TABLE repairs a possibly corrupted table. By default, it has the same effect as myis-
amchk --recover tbl_name. REPAIR TABLE works only on MyISAM tables.

Normally you should never have to run this statement. However, if disaster strikes, REPAIR TA-
BLE is very likely to get back all your data from a MyISAM table. If your tables become corrupted
often, you should try to find the reason for it, to eliminate the need to use REPAIR TABLE. See

SQL Statement Syntax

731

Section A.4.2, “What to Do If MySQL Keeps Crashing”. See Section 14.1.4, “MyISAM Table Prob-
lems”.

The statement returns a table with the following columns:

Column Value

Table The table name

Op Always repair

Msg_type One of status, error, info, or warning

Msg_text The message

The REPAIR TABLE statement might produce many rows of information for each repaired table.
The last row has a Msg_type value of status and Msg_test normally should be OK. If you
don't get OK, you should try repairing the table with myisamchk --safe-recover, because REPAIR
TABLE does not yet implement all the options of myisamchk. We plan to make it more flexible in
the future.

If QUICK is given, REPAIR TABLE tries to repair only the index tree. This type of repair is like
that done by myisamchk --recover --quick.

If you use EXTENDED, MySQL creates the index row by row instead of creating one index at a time
with sorting. (Before MySQL 4.1, this might be better than sorting on fixed-length keys if you have
long CHAR keys that compress very well.) This type of repair is like that done by myisamchk -
-safe-recover.

As of MySQL 4.0.2, there is a USE_FRM mode for REPAIR TABLE. Use it if the .MYI index file
is missing or if its header is corrupted. In this mode, MySQL re-creates the .MYI file using inform-
ation from the .frm file. This kind of repair cannot be done with myisamchk. Note: Use this mode
only if you cannot use regular REPAIR modes. .MYI header contains important table metadata (in
particular, current AUTO_INCREMENT value and Delete link) that are lost in REPAIR ...
USE_FRM. Don't use USE_FRM if the table is compressed, as this information is also stored in
.MYI file.

Before MySQL 4.1.1, REPAIR TABLE statements are not written to the binary log. As of MySQL
4.1.1, they are written to the binary log unless the optional NO_WRITE_TO_BINLOG keyword (or
its alias LOCAL) is used.

Warning: If the server dies during a REPAIR TABLE operation, it's essential after restarting it that
you immediately execute another REPAIR TABLE statement for the table before performing any
other operations on it. (It's always good to start by making a backup.) In the worst case, you might
have a new clean index file without information about the data file, and then the next operation you
perform could overwrite the data file. This is an unlikely, but possible scenario.

13.5.2.7. RESTORE TABLE Syntax

RESTORE TABLE tbl_name [, tbl_name] ... FROM '/path/to/backup/directory'

Restores the table or tables from a backup that was made with BACKUP TABLE. Existing tables are
not overwritten; if you try to restore over an existing table, you get an error. Just as BACKUP TA-
BLE, RESTORE TABLE currently works only for MyISAM tables. The directory should be spe-
cified as a full pathname.

The backup for each table consists of its .frm format file and .MYD data file. The restore operation
restores those files, then uses them to rebuild the .MYI index file. Restoring takes longer than back-
ing up due to the need to rebuild the indexes. The more indexes the table has, the longer it takes.

The statement returns a table with the following columns:

Column Value

Table The table name

SQL Statement Syntax

732

Op Always restore

Msg_type One of status, error, info, or warning

Msg_text The message

13.5.3. SET Syntax
SET variable_assignment [, variable_assignment] ...
variable_assignment:

user_var_name = expr
| [GLOBAL | SESSION] system_var_name = expr
| @@[global. | session.]system_var_name = expr

SET sets different types of variables that affect the operation of the server or your client. It can be
used to assign values to user variables or system variables.

The SET PASSWORD statement for assigning account passwords is described in See Sec-
tion 13.5.1.5, “SET PASSWORD Syntax”.

In MySQL 4.0.3, we added the GLOBAL and SESSION options and allowed most important system
variables to be changed dynamically at runtime. The system variables that you can set at runtime are
described in Section 5.2.3.1, “Dynamic System Variables”.

In older versions of MySQL, SET OPTION is used instead of SET, but this is deprecated; just
leave out the word OPTION.

The following example show the different syntaxes you can use to set variables.

A user variable is written as @var_name and can be set as follows:

SET @var_name = expr;

Further information about user variables is given in Section 9.3, “User Variables”.

System variables can be referred to in SET statements as var_name. The name optionally can be
preceded by GLOBAL or @@global. to indicate explicitly that the variable is a global variable, or
by SESSION, @@session., or @@ to indicate that it is a session variable. LOCAL and @@local.
are synonyms for SESSION and @@session.. If no modifier is present, SET sets the session vari-
able.

The @@var_name syntax for system variables is supported to make MySQL syntax compatible
with some other database systems.

If you set several system variables in the same statement, the last used GLOBAL or SESSION option
is used for variables that have no mode specified.

SET sort_buffer_size=10000;
SET @@local.sort_buffer_size=10000;
SET GLOBAL sort_buffer_size=1000000, SESSION sort_buffer_size=1000000;
SET @@sort_buffer_size=1000000;
SET @@global.sort_buffer_size=1000000, @@local.sort_buffer_size=1000000;

If you set a system variable using SESSION (the default), the value remains in effect until the cur-
rent session ends or until you set the variable to a different value. If you set a system variable using
GLOBAL, which requires the SUPER privilege, the value is remembered and used for new connec-
tions until the server restarts. If you want to make a variable setting permanent, you should put it in
an option file. See Section 4.3.2, “Using Option Files”.

To prevent incorrect usage, MySQL produces an error if you use SET GLOBAL with a variable that
can only be used with SET SESSION or if you do not specify GLOBAL when setting a global vari-

SQL Statement Syntax

733

able.

If you want to set a SESSION variable to the GLOBAL value or a GLOBAL value to the compiled-in
MySQL default value, you can set it to DEFAULT. For example, the following two statements are
identical in setting the session value of max_join_size to the global value:

SET max_join_size=DEFAULT;
SET @@session.max_join_size=@@global.max_join_size;

You can get a list of most system variables with SHOW VARIABLES. See Section 13.5.4.19,
“SHOW VARIABLES Syntax”. To get a specific variable name or list of names that match a pattern,
use a LIKE clause:

SHOW VARIABLES LIKE 'max_join_size';
SHOW GLOBAL VARIABLES LIKE 'max_join_size';

You can also get the value for a specific value by using the @@[global.|local.]var_name
syntax with SELECT:

SELECT @@max_join_size, @@global.max_join_size;

When you retrieve a variable with SELECT @@var_name (that is, you do not specify global.,
session., or local.), MySQL returns the SESSION value if it exists and the GLOBAL value
otherwise.

The following list describes variables that have non-standard syntax or that are not described in the
list of system variables that is found in Section 5.2.3, “Server System Variables”. Although these
variables are not displayed by SHOW VARIABLES, you can obtain their values with SELECT (with
the exception of CHARACTER SET and SET NAMES). For example:

mysql> SELECT @@AUTOCOMMIT;
+--------------+
| @@autocommit |
+--------------+
| 1 |
+--------------+

• AUTOCOMMIT = {0 | 1}

Set the autocommit mode. If set to 1, all changes to a table take effect immediately. If set to 0,
you have to use COMMIT to accept a transaction or ROLLBACK to cancel it. If you change
AUTOCOMMIT mode from 0 to 1, MySQL performs an automatic COMMIT of any open transac-
tion. Another way to begin a transaction is to use a START TRANSACTION or BEGIN state-
ment. See Section 13.4.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”.

• BIG_TABLES = {0 | 1}

If set to 1, all temporary tables are stored on disk rather than in memory. This is a little slower,
but the error The table tbl_name is full does not occur for SELECT operations that
require a large temporary table. The default value for a new connection is 0 (use in-memory
temporary tables). As of MySQL 4.0, you should normally never need to set this variable, be-
cause MySQL automatically converts in-memory tables to disk-based tables as necessary. This
variable previously was named SQL_BIG_TABLES.

• CHARACTER SET {charset_name | DEFAULT}

This maps all strings from and to the client with the given mapping. Before MySQL 4.1, the
only allowable value for charset_name is cp1251_koi8, but you can add new mappings
by editing the sql/convert.cc file in the MySQL source distribution. As of MySQL 4.1.1,
SET CHARACTER SET sets three session system variables: character_set_client and

SQL Statement Syntax

734

character_set_results are set to the given character set, and charac-
ter_set_connection to the value of character_set_database.

The default mapping can be restored by using a value of DEFAULT.

Note that the syntax for SET CHARACTER SET differs from that for setting most other op-
tions.

• FOREIGN_KEY_CHECKS = {0 | 1}

If set to 1 (the default), foreign key constraints for InnoDB tables are checked. If set to 0, they
are ignored. Disabling foreign key checking can be useful for reloading InnoDB tables in an or-
der different than that required by their parent/child relationships. This variable was added in
MySQL 3.23.52. See Section 15.7.4, “FOREIGN KEY Constraints”.

• IDENTITY = value

The variable is a synonym for the LAST_INSERT_ID variable. It exists for compatibility with
other databases. As of MySQL 3.23.25, you can read its value with SELECT @@IDENTITY.
As of MySQL 4.0.3, you can also set its value with SET IDENTITY.

• INSERT_ID = value

Set the value to be used by the following INSERT or ALTER TABLE statement when inserting
an AUTO_INCREMENT value. This is mainly used with the binary log.

• LAST_INSERT_ID = value

Set the value to be returned from LAST_INSERT_ID(). This is stored in the binary log when
you use LAST_INSERT_ID() in a statement that updates a table. Setting this variable does not
update theh value returned by the mysql_insert_id() C API function.

• NAMES {'charset_name' | DEFAULT}

SET NAMES sets the three session system variables character_set_client, charac-
ter_set_connection, and character_set_results to the given character set. Set-
ting character_set_connection to charset_name also sets colla-
tion_connection to the default collation for charset_name.

The default mapping can be restored by using a value of DEFAULT.

Note that the syntax for SET NAMES differs from that for setting most other options. This state-
ment is available as of MySQL 4.1.0.

• SQL_AUTO_IS_NULL = {0 | 1}

If set to 1 (the default), you can find the last inserted row for a table that contains an
AUTO_INCREMENT column by using the following construct:

SQL Statement Syntax

735

WHERE auto_increment_column IS NULL

This behavior is used by some ODBC programs, such as Access. SQL_AUTO_IS_NULL was
added in MySQL 3.23.52.

• SQL_BIG_SELECTS = {0 | 1}

If set to 0, MySQL aborts SELECT statements that probably take a very long time (that is, state-
ments for which the optimizer estimates that the number of examined rows exceeds the value of
max_join_size). This is useful when an inadvisable WHERE statement has been issued. The
default value for a new connection is 1, which allows all SELECT statements.

If you set the max_join_size system variable to a value other than DEFAULT,
SQL_BIG_SELECTS is set to 0.

• SQL_BUFFER_RESULT = {0 | 1}

SQL_BUFFER_RESULT forces results from SELECT statements to be put into temporary
tables. This helps MySQL free the table locks early and can be beneficial in cases where it takes
a long time to send results to the client. This variable was added in MySQL 3.23.13.

• SQL_LOG_BIN = {0 | 1}

If set to 0, no logging is done to the binary log for the client. The client must have the SUPER
privilege to set this option. This variable was added in MySQL 3.23.16.

• SQL_LOG_OFF = {0 | 1}

If set to 1, no logging is done to the general query log for this client. The client must have the
SUPER privilege to set this option.

• SQL_LOG_UPDATE = {0 | 1}

If set to 0, no logging is done to the update log for the client. The client must have the SUPER
privilege to set this option. This variable was added in MySQL 3.22.5. Starting from MySQL
5.0.0, it is deprecated and is mapped to SQL_LOG_BIN (see Section D.1.4, “Changes in release
5.0.0 (22 Dec 2003: Alpha)”).

• SQL_QUOTE_SHOW_CREATE = {0 | 1}

If set to 1, SHOW CREATE TABLE quotes table and column names. If set to 0, quoting is dis-
abled. This option is enabled by default so that replication works for tables with table and
column names that require quoting. This variable was added in MySQL 3.23.26. Sec-
tion 13.5.4.5, “SHOW CREATE TABLE Syntax”.

• SQL_SAFE_UPDATES = {0 | 1}

If set to 1, MySQL aborts UPDATE or DELETE statements that do not use a key in the WHERE
clause or a LIMIT clause. This makes it possible to catch UPDATE or DELETE statements
where keys are not used properly and that would probably change or delete a large number of
rows. This variable was added in MySQL 3.22.32.

• SQL_SELECT_LIMIT = {value | DEFAULT}

The maximum number of records to return from SELECT statements. The default value for a
new connection is ``unlimited.'' If you have changed the limit, the default value can be restored
by using a SQL_SELECT_LIMIT value of DEFAULT.

If a SELECT has a LIMIT clause, the LIMIT takes precedence over the value of
SQL_SELECT_LIMIT.

SQL_SELECT_LIMIT does not apply to SELECT statements executed within stored routines.

SQL Statement Syntax

736

It also does not apply to SELECT statements that do not produce a result set to be returned to the
client. These include SELECT statements in subqueries, CREATE TABLE ... SELECT, and
INSERT INTO ... SELECT.

• SQL_WARNINGS = {0 | 1}

This variable controls whether single-row INSERT statements produce an information string if
warnings occur. The default is 0. Set the value to 1 to produce an information string. This vari-
able was added in MySQL 3.22.11.

• TIMESTAMP = {timestamp_value | DEFAULT}

Set the time for this client. This is used to get the original timestamp if you use the binary log to
restore rows. timestamp_value should be a Unix epoch timestamp, not a MySQL
timestamp.

• UNIQUE_CHECKS = {0 | 1}

If set to 1 (the default), uniqueness checks for secondary indexes in InnoDB tables are per-
formed. If set to 0, uniqueness checks are not done for index entries inserted into InnoDB's in-
sert buffer. If you know for certain that your data does not contain uniqueness violations, you
can set this to 0 to speed up large table imports to InnoDB. This variable was added in MySQL
3.23.52.

13.5.4. SHOW Syntax
SHOW has many forms that provide information about databases, tables, columns, or status informa-
tion about the server. This section describes those following:

SHOW [FULL] COLUMNS FROM tbl_name [FROM db_name] [LIKE 'pattern']
SHOW CREATE DATABASE db_name
SHOW CREATE TABLE tbl_name
SHOW DATABASES [LIKE 'pattern']
SHOW [STORAGE] ENGINES
SHOW ERRORS [LIMIT [offset,] row_count]
SHOW GRANTS FOR user
SHOW INDEX FROM tbl_name [FROM db_name]
SHOW INNODB STATUS
SHOW [BDB] LOGS
SHOW PRIVILEGES
SHOW [FULL] PROCESSLIST
SHOW STATUS [LIKE 'pattern']
SHOW TABLE STATUS [FROM db_name] [LIKE 'pattern']
SHOW [OPEN] TABLES [FROM db_name] [LIKE 'pattern']
SHOW [GLOBAL | SESSION] VARIABLES [LIKE 'pattern']
SHOW WARNINGS [LIMIT [offset,] row_count]

If the syntax for a given SHOW statement includes a LIKE 'pattern' part, 'pattern' is a
string that can contain the SQL '%' and '_' wildcard characters. The pattern is useful for restricting
statement output to matching values.

Note that there are other forms of these statements described elsewhere:

• The SHOW statement has forms that provide information about replication master and slave serv-
ers:

SQL Statement Syntax

737

SHOW BINLOG EVENTS
SHOW MASTER LOGS
SHOW MASTER STATUS
SHOW SLAVE HOSTS
SHOW SLAVE STATUS

These forms of SHOW are described in Section 13.6, “Replication Statements”.

13.5.4.1. SHOW CHARACTER SET Syntax

SHOW CHARACTER SET [LIKE 'pattern']

The SHOW CHARACTER SET statement shows all available character sets. It takes an optional
LIKE clause that indicates which character set names to match. For example:

mysql> SHOW CHARACTER SET LIKE 'latin%';
+---------+-----------------------------+-------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+-----------------------------+-------------------+--------+
latin1	ISO 8859-1 West European	latin1_swedish_ci	1
latin2	ISO 8859-2 Central European	latin2_general_ci	1
latin5	ISO 8859-9 Turkish	latin5_turkish_ci	1
latin7	ISO 8859-13 Baltic	latin7_general_ci	1
+---------+-----------------------------+-------------------+--------+

The Maxlen column shows the maximum number of bytes used to store one character.

SHOW CHARACTER SET is available as of MySQL 4.1.0.

13.5.4.2. SHOW COLLATION Syntax

SHOW COLLATION [LIKE 'pattern']

The output from SHOW COLLATION includes all available character sets. It takes an optional
LIKE clause that indicates which collation names to match. For example:

mysql> SHOW COLLATION LIKE 'latin1%';
+-------------------+---------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+-------------------+---------+----+---------+----------+---------+
latin1_german1_ci	latin1	5			0
latin1_swedish_ci	latin1	8	Yes	Yes	0
latin1_danish_ci	latin1	15			0
latin1_german2_ci	latin1	31		Yes	2
latin1_bin	latin1	47		Yes	0
latin1_general_ci	latin1	48			0
latin1_general_cs	latin1	49			0
latin1_spanish_ci	latin1	94			0
+-------------------+---------+----+---------+----------+---------+

The Default column indicates whether a collation is the default for its character set. Compiled
indicates whether the character set is compiled into the server. Sortlen is related to the amount of
memory required to sort strings expressed in the character set.

SHOW COLLATION is available as of MySQL 4.1.0.

13.5.4.3. SHOW COLUMNS Syntax

SHOW [FULL] COLUMNS FROM tbl_name [FROM db_name] [LIKE 'pattern']

SQL Statement Syntax

738

SHOW COLUMNS lists the columns in a given table. If the column types differ from what you expect
them to be based on your CREATE TABLE statement, note that MySQL sometimes changes
column types when you create or alter a table. The conditions for which this occurs are described in
Section 13.2.6.1, “Silent Column Specification Changes”.

The FULL keyword can be used from MySQL 3.23.32 on. It causes the output to include the priv-
ileges you have for each column. As of MySQL 4.1, FULL also causes any per-column comments to
be displayed.

You can use db_name.tbl_name as an alternative to the tbl_name FROM db_name syntax.
These two statements are equivalent:

mysql> SHOW COLUMNS FROM mytable FROM mydb;
mysql> SHOW COLUMNS FROM mydb.mytable;

SHOW FIELDS is a synonym for SHOW COLUMNS. You can also list a table's columns with the
mysqlshow db_name tbl_name command.

The DESCRIBE statement provides information similar to SHOW COLUMNS. See Section 13.3.1,
“DESCRIBE Syntax (Get Information About Columns)”.

13.5.4.4. SHOW CREATE DATABASE Syntax

SHOW CREATE {DATABASE | SCHEMA} db_name

Shows a CREATE DATABASE statement that creates the given database. It was added in MySQL
4.1. SHOW CREATE SCHEMA can be used as of MySQL 5.0.2.

mysql> SHOW CREATE DATABASE test\G
*************************** 1. row ***************************

Database: test
Create Database: CREATE DATABASE `test`

/*!40100 DEFAULT CHARACTER SET latin1 */

13.5.4.5. SHOW CREATE TABLE Syntax

SHOW CREATE TABLE tbl_name

Shows a CREATE TABLE statement that creates the given table. It was added in MySQL 3.23.20.

mysql> SHOW CREATE TABLE t\G
*************************** 1. row ***************************

Table: t
Create Table: CREATE TABLE t (
id INT(11) default NULL auto_increment,
s char(60) default NULL,
PRIMARY KEY (id)

) TYPE=MyISAM

SHOW CREATE TABLE quotes table and column names according to the value of the
SQL_QUOTE_SHOW_CREATE option. Section 13.5.3, “SET Syntax”.

13.5.4.6. SHOW CREATE VIEW Syntax

SHOW CREATE VIEW view_name

This statement shows a CREATE VIEW statement that creates the given view.

SQL Statement Syntax

739

mysql> SHOW CREATE VIEW v;
+-------+--+
| Table | Create Table |
+-------+--+
| v | CREATE VIEW `test`.`v` AS select 1 AS `a`,2 AS `b` |
+-------+--+

This statement was added in MySQL 5.0.1.

13.5.4.7. SHOW DATABASES Syntax

SHOW {DATABASES | SCHEMAS} [LIKE 'pattern']

SHOW DATABASES lists the databases on the MySQL server host. You can also get this list using
the mysqlshow command. As of MySQL 4.0.2, you see only those databases for which you have
some kind of privilege, if you don't have the global SHOW DATABASES privilege.

If the server was started with the --skip-show-database option, you cannot use this state-
ment at all unless you have the SHOW DATABASES privilege.

SHOW SCHEMAS can be used as of MySQL 5.0.2

13.5.4.8. SHOW ENGINES Syntax

SHOW [STORAGE] ENGINES

SHOW ENGINES shows you status information about the storage engines. This is particularly use-
ful for checking whether a storage engine is supported, or to see what the default engine is. This
statement is implemented in MySQL 4.1.2. SHOW TABLE TYPES is a deprecated synonym.

mysql> SHOW ENGINES\G
*************************** 1. row ***************************
Engine: MyISAM
Support: DEFAULT
Comment: Default engine as of MySQL 3.23 with great performance
*************************** 2. row ***************************
Engine: HEAP
Support: YES
Comment: Alias for MEMORY
*************************** 3. row ***************************
Engine: MEMORY
Support: YES
Comment: Hash based, stored in memory, useful for temporary tables
*************************** 4. row ***************************
Engine: MERGE
Support: YES
Comment: Collection of identical MyISAM tables
*************************** 5. row ***************************
Engine: MRG_MYISAM
Support: YES
Comment: Alias for MERGE
*************************** 6. row ***************************
Engine: ISAM
Support: NO
Comment: Obsolete storage engine, now replaced by MyISAM
*************************** 7. row ***************************
Engine: MRG_ISAM
Support: NO
Comment: Obsolete storage engine, now replaced by MERGE
*************************** 8. row ***************************
Engine: InnoDB
Support: YES
Comment: Supports transactions, row-level locking, and foreign keys

SQL Statement Syntax

740

*************************** 9. row ***************************
Engine: INNOBASE
Support: YES
Comment: Alias for INNODB
*************************** 10. row ***************************
Engine: BDB
Support: YES
Comment: Supports transactions and page-level locking
*************************** 11. row ***************************
Engine: BERKELEYDB
Support: YES
Comment: Alias for BDB
*************************** 12. row ***************************
Engine: NDBCLUSTER
Support: YES
Comment: Clustered, fault-tolerant, memory-based tables
*************************** 13. row ***************************
Engine: NDB
Support: YES
Comment: Alias for NDBCLUSTER
*************************** 14. row ***************************
Engine: EXAMPLE
Support: YES
Comment: Example storage engine
*************************** 15. row ***************************
Engine: ARCHIVE
Support: YES
Comment: Archive storage engine
*************************** 16. row ***************************
Engine: CSV
Support: YES
Comment: CSV storage engine
*************************** 17. row ***************************
Engine: FEDERATED
Support: YES
Comment: Federated MySQL storage engine

A Support value indicates whether the particular storage engine is supported, and which is the de-
fault engine. For example, if the server is started with the --default-table-type=InnoDB
option, then the Support value for the InnoDB row has the value DEFAULT.

13.5.4.9. SHOW ERRORS Syntax

SHOW ERRORS [LIMIT [offset,] row_count]
SHOW COUNT(*) ERRORS

This statement is similar to SHOW WARNINGS, except that instead of displaying errors, warnings,
and notes, it displays only errors. SHOW ERRORS is available as of MySQL 4.1.0.

The LIMIT clause has the same syntax as for the SELECT statement. See Section 13.1.7, “SELECT
Syntax”.

The SHOW COUNT(*) ERRORS statement displays the number of errors. You can also retrieve
this number from the error_count variable:

SHOW COUNT(*) ERRORS;
SELECT @@error_count;

For more information, see Section 13.5.4.20, “SHOW WARNINGS Syntax”.

13.5.4.10. SHOW GRANTS Syntax

SHOW GRANTS FOR user

SQL Statement Syntax

741

This statement lists the GRANT statements that must be issued to duplicate the privileges for a
MySQL user account.

mysql> SHOW GRANTS FOR 'root'@'localhost';
+---+
| Grants for root@localhost |
+---+
| GRANT ALL PRIVILEGES ON *.* TO 'root'@'localhost' WITH GRANT OPTION |
+---+

As of MySQL 4.1.2, to list privileges for the current session, you can use any of the following state-
ments:

SHOW GRANTS;
SHOW GRANTS FOR CURRENT_USER;
SHOW GRANTS FOR CURRENT_USER();

Before MySQL 4.1.2, you can find out what user the session was authenticated as by selecting the
value of the CURRENT_USER() function (new in MySQL 4.0.6). Then use that value in the SHOW
GRANTS statement. See Section 12.8.3, “Information Functions”.

SHOW GRANTS is available as of MySQL 3.23.4.

13.5.4.11. SHOW INDEX Syntax

SHOW INDEX FROM tbl_name [FROM db_name]

SHOW INDEX returns table index information in a format that resembles the SQLStatistics
call in ODBC.

SHOW INDEX returns the following fields:

• Table

The name of the table.

• Non_unique

0 if the index can't contain duplicates, 1 if it can.

• Key_name

The name of the index.

• Seq_in_index

The column sequence number in the index, starting with 1.

• Column_name

The column name.

• Collation

How the column is sorted in the index. In MySQL, this can have values 'A' (Ascending) or NULL
(Not sorted).

• Cardinality

SQL Statement Syntax

742

The number of unique values in the index. This is updated by running ANALYZE TABLE or
myisamchk -a. Cardinality is counted based on statistics stored as integers, so it's not ne-
cessarily accurate for small tables. The higher the cardinality, the greater the chance that
MySQL uses the index when doing joins.

• Sub_part

The number of indexed characters if the column is only partly indexed. NULL if the entire
column is indexed.

• Packed

Indicates how the key is packed. NULL if it is not.

• Null

Contains YES if the column may contain NULL. If not, the column contains NO as of MySQL
5.0.3, and '' before that.

• Index_type

The index method used (BTREE, FULLTEXT, HASH, RTREE).

• Comment

Various remarks. Before MySQL 4.0.2 when the Index_type column was added, Comment
indicates whether an index is FULLTEXT.

The Packed and Comment columns were added in MySQL 3.23.0. The Null and Index_type
columns were added in MySQL 4.0.2.

You can use db_name.tbl_name as an alternative to the tbl_name FROM db_name syntax.
These two statements are equivalent:

mysql> SHOW INDEX FROM mytable FROM mydb;
mysql> SHOW INDEX FROM mydb.mytable;

SHOW KEYS is a synonym for SHOW INDEX. You can also list a table's indexes with the
mysqlshow -k db_name tbl_name command.

13.5.4.12. SHOW INNODB STATUS Syntax

SHOW INNODB STATUS

This statement shows extensive information about the state of the InnoDB storage engine.

13.5.4.13. SHOW LOGS Syntax

SHOW [BDB] LOGS

SHOW LOGS displays status information about existing log files. It was implemented in MySQL
3.23.29. Currently, it displays only information about Berkeley DB log files, so an alias for it
(available as of MySQL 4.1.1) is SHOW BDB LOGS.

SHOW LOGS returns the following fields:

• File

SQL Statement Syntax

743

The full path to the log file.

• Type

The log file type (BDB for Berkeley DB log files).

• Status

The status of the log file (FREE if the file can be removed, or IN USE if the file is needed by
the transaction subsystem)

13.5.4.14. SHOW PRIVILEGES Syntax

SHOW PRIVILEGES

SHOW PRIVILEGES shows the list of system privileges that the underlying MySQL server sup-
ports. This statement is implemented as of MySQL 4.1.0.

mysql> SHOW PRIVILEGES\G
*************************** 1. row ***************************
Privilege: Select
Context: Tables
Comment: To retrieve rows from table

*************************** 2. row ***************************
Privilege: Insert
Context: Tables
Comment: To insert data into tables

*************************** 3. row ***************************
Privilege: Update
Context: Tables
Comment: To update existing rows

*************************** 4. row ***************************
Privilege: Delete
Context: Tables
Comment: To delete existing rows

*************************** 5. row ***************************
Privilege: Index
Context: Tables
Comment: To create or drop indexes

*************************** 6. row ***************************
Privilege: Alter
Context: Tables
Comment: To alter the table

*************************** 7. row ***************************
Privilege: Create
Context: Databases,Tables,Indexes
Comment: To create new databases and tables

*************************** 8. row ***************************
Privilege: Drop
Context: Databases,Tables
Comment: To drop databases and tables

*************************** 9. row ***************************
Privilege: Grant
Context: Databases,Tables
Comment: To give to other users those privileges you possess

*************************** 10. row ***************************
Privilege: References
Context: Databases,Tables
Comment: To have references on tables

*************************** 11. row ***************************
Privilege: Reload
Context: Server Admin
Comment: To reload or refresh tables, logs and privileges

*************************** 12. row ***************************

SQL Statement Syntax

744

Privilege: Shutdown
Context: Server Admin
Comment: To shutdown the server

*************************** 13. row ***************************
Privilege: Process
Context: Server Admin
Comment: To view the plain text of currently executing queries

*************************** 14. row ***************************
Privilege: File
Context: File access on server
Comment: To read and write files on the server

13.5.4.15. SHOW PROCESSLIST Syntax

SHOW [FULL] PROCESSLIST

SHOW PROCESSLIST shows you which threads are running. You can also get this information us-
ing the mysqladmin processlist statement. If you have the SUPER privilege, you can see all
threads. Otherwise, you can see only your own threads (that is, threads associated with the MySQL
account that you are using). See Section 13.5.5.3, “KILL Syntax”. If you don't use the FULL
keyword, only the first 100 characters of each query are shown.

Starting from MySQL 4.0.12, the statement reports the hostname for TCP/IP connections in
host_name:client_port format to make it easier to determine which client is doing what.

This statement is very useful if you get the "too many connections" error message and want to find
out what is going on. MySQL reserves one extra connection to be used by accounts that have the
SUPER privilege, to ensure that administrators should always be able to connect and check the sys-
tem (assuming that you are not giving this privilege to all your users).

Some states commonly seen in the output from SHOW PROCESSLIST:

• Checking table

The thread is performing (automatic) checking of the table.

• Closing tables

Means that the thread is flushing the changed table data to disk and closing the used tables. This
should be a fast operation. If not, then you should verify that you don't have a full disk and that
the disk is not in very heavy use.

• Connect Out

Slave connecting to master.

• Copying to tmp table on disk

The temporary result set was larger than tmp_table_size and the thread is changing the
temporary table from in-memory to disk-based format to save memory.

• Creating tmp table

The thread is creating a temporary table to hold a part of the result for the query.

• deleting from main table

The server is executing the first part of a multiple-table delete and deleting only from the first ta-
ble.

• deleting from reference tables

SQL Statement Syntax

745

The server is executing the second part of a multiple-table delete and deleting the matched rows
from the other tables.

• Flushing tables

The thread is executing FLUSH TABLES and is waiting for all threads to close their tables.

• Killed

Someone has sent a kill to the thread and it should abort next time it checks the kill flag. The
flag is checked in each major loop in MySQL, but in some cases it might still take a short time
for the thread to die. If the thread is locked by some other thread, the kill takes effect as soon as
the other thread releases its lock.

• Locked

The query is locked by another query.

• Sending data

The thread is processing rows for a SELECT statement and also is sending data to the client.

• Sorting for group

The thread is doing a sort to satisfy a GROUP BY.

• Sorting for order

The thread is doing a sort to satisfy a ORDER BY.

• Opening tables

The thread is trying to open a table. This is should be very fast procedure, unless something pre-
vents opening. For example, an ALTER TABLE or a LOCK TABLE statement can prevent
opening a table until the statement is finished.

• Removing duplicates

The query was using SELECT DISTINCT in such a way that MySQL couldn't optimize away
the distinct operation at an early stage. Because of this, MySQL requires an extra stage to re-
move all duplicated rows before sending the result to the client.

• Reopen table

The thread got a lock for the table, but noticed after getting the lock that the underlying table
structure changed. It has freed the lock, closed the table, and is trying to reopen it.

• Repair by sorting

The repair code is using sorting to create indexes.

• Repair with keycache

The repair code is using creating keys one by one through the key cache. This is much slower
than Repair by sorting.

• Searching rows for update

The thread is doing a first phase to find all matching rows before updating them. This has to be
done if the UPDATE is changing the index that is used to find the involved rows.

• Sleeping

SQL Statement Syntax

746

The thread is waiting for the client to send a new statement to it.

• System lock

The thread is waiting to get an external system lock for the table. If you are not using multiple
mysqld servers that are accessing the same tables, you can disable system locks with the -
-skip-external-locking option.

• Upgrading lock

The INSERT DELAYED handler is trying to get a lock for the table to insert rows.

• Updating

The thread is searching for rows to update and updating them.

• User Lock

The thread is waiting on a GET_LOCK().

• Waiting for tables

The thread got a notification that the underlying structure for a table has changed and it needs to
reopen the table to get the new structure. However, to be able to reopen the table, it must wait
until all other threads have closed the table in question.

This notification happens if another thread has used FLUSH TABLES or one of the following
statements on the table in question: FLUSH TABLES tbl_name, ALTER TABLE, RENAME
TABLE, REPAIR TABLE, ANALYZE TABLE, or OPTIMIZE TABLE.

• waiting for handler insert

The INSERT DELAYED handler has processed all pending inserts and is waiting for new ones.

Most states correspond to very quick operations. If a thread stays in any of these states for many
seconds, there might be a problem that needs to be investigated.

There are some other states that are not mentioned in the preceding list, but many of them are useful
only for finding bugs in the server.

13.5.4.16. SHOW STATUS Syntax

SHOW STATUS [LIKE 'pattern']

SHOW STATUS provides server status information. This information also can be obtained using the
mysqladmin extended-status command.

Partial output is shown here. The list of variables and their values may be different for your server.
The meaning of each variable is given in See Section 5.2.4, “Server Status Variables”.

mysql> SHOW STATUS;
+--------------------------+------------+
| Variable_name | Value |
+--------------------------+------------+
Aborted_clients	0
Aborted_connects	0
Bytes_received	155372598
Bytes_sent	1176560426
Connections	30023
Created_tmp_disk_tables	0
Created_tmp_tables	8340
Created_tmp_files	60

SQL Statement Syntax

747

...
Open_tables	1
Open_files	2
Open_streams	0
Opened_tables	44600
Questions	2026873
...	
Table_locks_immediate	1920382
Table_locks_waited	0
Threads_cached	0
Threads_created	30022
Threads_connected	1
Threads_running	1
Uptime	80380
+--------------------------+------------+

With a LIKE clause, the statement displays only those variables that match the pattern:

mysql> SHOW STATUS LIKE 'Key%';
+--------------------+----------+
| Variable_name | Value |
+--------------------+----------+
Key_blocks_used	14955
Key_read_requests	96854827
Key_reads	162040
Key_write_requests	7589728
Key_writes	3813196
+--------------------+----------+

13.5.4.17. SHOW TABLE STATUS Syntax

SHOW TABLE STATUS [FROM db_name] [LIKE 'pattern']

SHOW TABLE STATUS works likes SHOW TABLE, but provides a lot of information about each
table. You can also get this list using the mysqlshow --status db_name command. This statement
was added in MySQL 3.23. As of MySQL 5.0.1, it also displays information about views.

SHOW TABLE STATUS returns the following fields:

• Name

The name of the table.

• Engine

The storage engine for the table. Before MySQL 4.1.2, this value is labeled as Type. See
Chapter 14, MySQL Storage Engines and Table Types.

• Version

The version number of the table's .frm file.

• Row_format

The row storage format (Fixed, Dynamic, Compressed, Redundant, Compact). Starting
with MySQL/InnoDB 5.0.3, the format of InnoDB tables is reported as Redundant or Com-
pact. Before 5.0.3, InnoDB tables are always in the Redundant format.

• Rows

The number of rows. Some storage engines, such as MyISAM and ISAM, store the exact count.

SQL Statement Syntax

748

For other storage engines, such as InnoDB, this value is an approximation, and may vary from
the actual value by as much as 40 to 50%. In such cases, use SELECT COUNT(*) to obtain an
accurate count.

• Avg_row_length

The average row length.

• Data_length

The length of the data file.

• Max_data_length

The maximum length of the data file. For fixed-row formats, this is the maximum number of
rows in the table. For dynamic-row formats, this is the total number of data bytes that can be
stored in the table, given the data pointer size used.

• Index_length

The length of the index file.

• Data_free

The number of allocated but unused bytes.

• Auto_increment

The next AUTO_INCREMENT value.

• Create_time

When the table was created.

• Update_time

When the data file was last updated.

• Check_time

When the table was last checked.

• Collation

The table's character set and collation. (New in 4.1.1)

• Checksum

The live checksum value (if any). (New in 4.1.1)

• Create_options

Extra options used with CREATE TABLE.

• Comment

The comment used when creating the table (or some information why MySQL couldn't access
the table information).

In the table comment, InnoDB tables report the free space of the tablespace to which the table be-
longs. For a table located in the shared tablespace, this is the free space of the shared tablespace. If
you are using multiple tablespaces and the table has its own tablespace, the freespace is for just that

SQL Statement Syntax

749

table.

For MEMORY (HEAP) tables, the Data_length, Max_data_length, and Index_length
values approximate the actual amount of allocated memory. The allocation algorithm reserves
memory in large amounts to reduce the number of allocation operations.

For views, all the fields displayed by SHOW TABLE STATUS are NULL except that Name indic-
ates the view name and Comment says view.

13.5.4.18. SHOW TABLES Syntax

SHOW [FULL|OPEN] TABLES [FROM db_name] [LIKE 'pattern']

SHOW TABLES lists the non-TEMPORARY tables in a given database. You can also get this list us-
ing the mysqlshow db_name command.

Before MySQL 5.0.1, the output from SHOW TABLES contains a single column of table names. Be-
ginning with MySQL 5.0.1, also lists the views in the database. As of MySQL 5.0.2, the FULL mod-
ifier is supported such that SHOW FULL TABLES displays a second output column. Values in the
second column are BASE TABLE for a table and VIEW for a view.

Note: If you have no privileges for a table, the table does not show up in the output from SHOW
TABLES or mysqlshow db_name.

SHOW OPEN TABLES lists the tables that are currently open in the table cache. See Section 7.4.8,
“How MySQL Opens and Closes Tables”. The Comment field in the output tells how many times
the table is cached and in_use. OPEN can be used from MySQL 3.23.33 on.

13.5.4.19. SHOW VARIABLES Syntax

SHOW [GLOBAL | SESSION] VARIABLES [LIKE 'pattern']

SHOW VARIABLES shows the values of some MySQL system variables. This information also can
be obtained using the mysqladmin variables command.

The GLOBAL and SESSION options are new in MySQL 4.0.3. With GLOBAL, you get the values
that are used for new connections to MySQL. With SESSION, you get the values that are in effect
for the current connection. If you use neither option, the default is SESSION. LOCAL is a synonym
for SESSION.

If the default values are unsuitable, you can set most of these variables using command-line options
when mysqld starts or at runtime with the SET statement. See Section 5.2.1, “mysqld Command-
Line Options” and Section 13.5.3, “SET Syntax”.

Partial output is shown here. The list of variables and their values may be different for your server.
The meaning of each variable is given in See Section 5.2.3, “Server System Variables”. Information
about tuning them is provided in Section 7.5.2, “Tuning Server Parameters”.

mysql> SHOW VARIABLES;
+---------------------------------+------------------------------+
| Variable_name | Value |
+---------------------------------+------------------------------|
back_log	50
basedir	/usr/local/mysql
bdb_cache_size	8388572
bdb_log_buffer_size	32768
bdb_home	/usr/local/mysql
...	
max_connections	100
max_connect_errors	10
max_delayed_threads	20
max_error_count	64
max_heap_table_size	16777216

SQL Statement Syntax

750

max_join_size	4294967295
max_relay_log_size	0
max_sort_length	1024
...	
timezone	EEST
tmp_table_size	33554432
tmpdir	/tmp/:/mnt/hd2/tmp/
version	4.0.4-beta
wait_timeout	28800
+---------------------------------+------------------------------+

With a LIKE clause, the statement displays only those variables that match the pattern:

mysql> SHOW VARIABLES LIKE 'have%';
+--------------------+----------+
| Variable_name | Value |
+--------------------+----------+
have_bdb	YES
have_innodb	YES
have_isam	YES
have_raid	NO
have_symlink	DISABLED
have_openssl	YES
have_query_cache	YES
+--------------------+----------+

13.5.4.20. SHOW WARNINGS Syntax

SHOW WARNINGS [LIMIT [offset,] row_count]
SHOW COUNT(*) WARNINGS

SHOW WARNINGS shows the error, warning, and note messages that resulted from the last state-
ment that generated messages, or nothing if the last statement that used a table generated no mes-
sages. This statement is implemented as of MySQL 4.1.0. A related statement, SHOW ERRORS,
shows only the errors. See Section 13.5.4.9, “SHOW ERRORS Syntax”.

The list of messages is reset for each new statement that uses a table.

The SHOW COUNT(*) WARNINGS statement displays the total number of errors, warnings, and
notes. You can also retrieve this number from the warning_count variable:

SHOW COUNT(*) WARNINGS;
SELECT @@warning_count;

The value of warning_count might be greater than the number of messages displayed by SHOW
WARNINGS if the max_error_count system variable is set low enough that not all messages are
stored. An example shown later in this section demonstrates how this can happen.

The LIMIT clause has the same syntax as for the SELECT statement. See Section 13.1.7, “SELECT
Syntax”.

The MySQL server sends back the total number of errors, warnings, and notes resulting from the
last statement. If you are using the C API, this value can be obtained by calling
mysql_warning_count(). See Section 22.2.3.61, “mysql_warning_count()”.

Note that the framework for warnings was added in MySQL 4.1.0, at which point many statements
did not generate warnings. In 4.1.1, the situation is much improved, with warnings generated for
statements such as LOAD DATA INFILE and DML statements such as INSERT, UPDATE, CRE-
ATE TABLE, and ALTER TABLE.

The following DROP TABLE statement results in a note:

SQL Statement Syntax

751

mysql> DROP TABLE IF EXISTS no_such_table;
mysql> SHOW WARNINGS;
+-------+------+-------------------------------+
| Level | Code | Message |
+-------+------+-------------------------------+
| Note | 1051 | Unknown table 'no_such_table' |
+-------+------+-------------------------------+

Here is a simple example that shows a syntax warning for CREATE TABLE and conversion warn-
ings for INSERT:

mysql> CREATE TABLE t1 (a TINYINT NOT NULL, b CHAR(4)) TYPE=MyISAM;
Query OK, 0 rows affected, 1 warning (0.00 sec)
mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
Level: Warning
Code: 1287

Message: 'TYPE=storage_engine' is deprecated, use
'ENGINE=storage_engine' instead

1 row in set (0.00 sec)
mysql> INSERT INTO t1 VALUES(10,'mysql'),(NULL,'test'),

-> (300,'Open Source');
Query OK, 3 rows affected, 4 warnings (0.01 sec)
Records: 3 Duplicates: 0 Warnings: 4
mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
Level: Warning
Code: 1265

Message: Data truncated for column 'b' at row 1
*************************** 2. row ***************************
Level: Warning
Code: 1263

Message: Data truncated, NULL supplied to NOT NULL column 'a' at row 2
*************************** 3. row ***************************
Level: Warning
Code: 1264

Message: Data truncated, out of range for column 'a' at row 3
*************************** 4. row ***************************
Level: Warning
Code: 1265

Message: Data truncated for column 'b' at row 3
4 rows in set (0.00 sec)

The maximum number of error, warning, and note messages to store is controlled by the
max_error_count system variable. By default, its value is 64. To change the number of mes-
sages you want stored, change the value of max_error_count. In the following example, the
ALTER TABLE statement produces three warning messages, but only one is stored because
max_error_count has been set to 1:

mysql> SHOW VARIABLES LIKE 'max_error_count';
+-----------------+-------+
| Variable_name | Value |
+-----------------+-------+
| max_error_count | 64 |
+-----------------+-------+
1 row in set (0.00 sec)
mysql> SET max_error_count=1;
Query OK, 0 rows affected (0.00 sec)
mysql> ALTER TABLE t1 MODIFY b CHAR;
Query OK, 3 rows affected, 3 warnings (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 3
mysql> SELECT @@warning_count;
+-----------------+
| @@warning_count |
+-----------------+
| 3 |

SQL Statement Syntax

752

+-----------------+
1 row in set (0.01 sec)
mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1263 | Data truncated for column 'b' at row 1 |
+---------+------+--+
1 row in set (0.00 sec)

To disable warnings, set max_error_count to 0. In this case, warning_count still indicates
how many warnings have occurred, but none of the messages are stored.

13.5.5. Other Administrative Statements

13.5.5.1. CACHE INDEX Syntax

CACHE INDEX
tbl_index_list [, tbl_index_list] ...
IN key_cache_name

tbl_index_list:
tbl_name [[INDEX|KEY] (index_name[, index_name] ...)]

The CACHE INDEX statement assigns table indexes to a specific key cache. It is used only for My-
ISAM tables.

The following statement assigns indexes from the tables t1, t2, and t3 to the key cache named
hot_cache:

mysql> CACHE INDEX t1, t2, t3 IN hot_cache;
+---------+--------------------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------+--------------------+----------+----------+
test.t1	assign_to_keycache	status	OK
test.t2	assign_to_keycache	status	OK
test.t3	assign_to_keycache	status	OK
+---------+--------------------+----------+----------+

The syntax of CACHE INDEX allows you to specify that only particular indexes from a table should
be assigned to the cache. However, the current implementation assigns all the table's indexes to the
cache, so there is no reason to specify anything other than the table name.

The key cache referred to in a CACHE INDEX statement can be created by setting its size with a
parameter setting statement or in the server parameter settings. For example:

mysql> SET GLOBAL keycache1.key_buffer_size=128*1024;

Key cache parameters can be accessed as members of a structured system variable. See Sec-
tion 9.4.1, “Structured System Variables”.

A key cache must exist before you can assign indexes to it:

mysql> CACHE INDEX t1 IN non_existent_cache;
ERROR 1284 (HY000): Unknown key cache 'non_existent_cache'

By default, table indexes are assigned to the main (default) key cache created at the server startup.
When a key cache is destroyed, all indexes assigned to it become assigned to the default key cache
again.

Index assignment affects the server globally: If one client assigns an index to a given cache, this

SQL Statement Syntax

753

cache is used for all queries involving the index, no matter what client issues the queries.

CACHE INDEX was added in MySQL 4.1.1.

13.5.5.2. FLUSH Syntax

FLUSH [LOCAL | NO_WRITE_TO_BINLOG] flush_option [, flush_option] ...

You should use the FLUSH statement if you want to clear some of the internal caches MySQL uses.
To execute FLUSH, you must have the RELOAD privilege.

flush_option can be any of the following:

• HOSTS

Empties the host cache tables. You should flush the host tables if some of your hosts change IP
number or if you get the error message Host ... is blocked. When more than
max_connect_errors errors occur successively for a given host while connecting to the
MySQL server, MySQL assumes that something is wrong and blocks the host from further con-
nection requests. Flushing the host tables allows the host to attempt to connect again. See Sec-
tion A.2.5, “Host 'host_name' is blocked”. You can start mysqld with -
-max_connect_errors=999999999 to avoid this error message.

• DES_KEY_FILE

Reloads the DES keys from the file that was specified with the --des-key-file option at
server startup time.

• LOGS

Closes and reopens all log files. If you have specified an update log file or a binary log file
without an extension, the extension number of the log file is incremented by one relative to the
previous file. If you have used an extension in the file name, MySQL closes and reopens the up-
date log or binary log file. See Section 5.9.3, “The Update Log”. On Unix, this is the same thing
as sending a SIGHUP signal to the mysqld server (except on some Mac OS X 10.3 versions
where mysqld ignores SIGHUP and SIGQUIT).

• PRIVILEGES

Reloads the privileges from the grant tables in the mysql database.

• QUERY CACHE

Defragment the query cache to better utilize its memory. This statement does not remove any
queries from the cache, unlike RESET QUERY CACHE.

• STATUS

Resets most status variables to zero. This is something you should use only when debugging a
query. See Section 1.4.1.3, “How to Report Bugs or Problems”.

• {TABLE | TABLES} [tbl_name [, tbl_name] ...]

When no tables are named, closes all open tables and forces all tables in use to be closed. This
also flushes the query cache. With one or more table names, flushes only the given tables.
FLUSH TABLES also removes all query results from the query cache, like the RESET QUERY
CACHE statement.

• TABLES WITH READ LOCK

Closes all open tables and locks all tables for all databases with a read lock until you execute

SQL Statement Syntax

754

UNLOCK TABLES. This is very convenient way to get backups if you have a filesystem such as
Veritas that can take snapshots in time.

• USER_RESOURCES

Resets all per-hour user resources to zero. This enables clients that have reached their hourly
connection, query, or update limits to resume activity. FLUSH USER_RESOURCES does not
apply to the limit on maximum simultaneous connections. See Section 13.5.1.3, “GRANT and
REVOKE Syntax”.

Before MySQL 4.1.1, FLUSH statements are not written to the binary log. As of MySQL 4.1.1, they
are written to the binary log unless the optional NO_WRITE_TO_BINLOG keyword (or its alias
LOCAL) is used. Exceptions are that FLUSH LOGS, FLUSH MASTER, FLUSH SLAVE, and
FLUSH TABLES WITH READ LOCK are not logged in any case because they would cause prob-
lems if replicated to a slave.

You can also access some of these statements with the mysqladmin utility, using the flush-
hosts, flush-logs, flush-privileges, flush-status, or flush-tables com-
mands.

Take also a look at the RESET statement used with replication. See Section 13.5.5.5, “RESET Syn-
tax”.

13.5.5.3. KILL Syntax

KILL [CONNECTION | QUERY] thread_id

Each connection to mysqld runs in a separate thread. You can see which threads are running with
the SHOW PROCESSLIST statement and kill a thread with the KILL thread_id statement.

As of MySQL 5.0.0, KILL allows the optional CONNECTION or QUERY modifiers:

• KILL CONNECTION is the same as KILL with no modifier: It terminates the connection asso-
ciated with the given thread_id.

• KILL QUERY terminates the statement that the connection currently is executing, but leaves the
connection intact.

If you have the PROCESS privilege, you can see all threads. If you have the SUPER privilege, you
can kill all threads and statements. Otherwise, you can see and kill only your own threads and state-
ments.

You can also use the mysqladmin processlist and mysqladmin kill commands to examine and kill
threads.

Note: You currently cannot use KILL with the Embedded MySQL Server library, because the em-
bedded server merely runs inside the threads of the host application, it does not create connection
threads of its own.

When you do a KILL, a thread-specific kill flag is set for the thread. In most cases, it might take
some time for the thread to die, because the kill flag is checked only at specific intervals:

• In SELECT, ORDER BY and GROUP BY loops, the flag is checked after reading a block of
rows. If the kill flag is set, the statement is aborted.

• During ALTER TABLE, the kill flag is checked before each block of rows are read from the ori-
ginal table. If the kill flag was set, the statement is aborted and the temporary table is deleted.

• During UPDATE or DELETE, the kill flag is checked after each block read and after each up-

SQL Statement Syntax

755

dated or deleted row. If the kill flag is set, the statement is aborted. Note that if you are not using
transactions, the changes are not rolled back.

• GET_LOCK() aborts and returns NULL.

• An INSERT DELAYED thread quickly flushes (inserts) all rows it has in memory and termin-
ates.

• If the thread is in the table lock handler (state: Locked), the table lock is quickly aborted.

• If the thread is waiting for free disk space in a write call, the write is aborted with a "disk full"
error message.

• Some threads might refuse to be killed. For example, REPAIR TABLE, CHECK TABLE, and
OPTIMIZE TABLE cannot be killed before MySQL 4.1 and run to completion. This is
changed: REPAIR TABLE and OPTIMIZE TABLE can be killed as of MySQL 4.1.0, as can
CHECK TABLE as of MySQL 4.1.3. However, killing a REPAIR TABLE or OPTIMIZE TA-
BLE operation on a MyISAM table results in a table that IS corrupted and is unusable (reads and
writes to it fail) until you optimize or repair it again.

13.5.5.4. LOAD INDEX INTO CACHE Syntax

LOAD INDEX INTO CACHE
tbl_index_list [, tbl_index_list] ...

tbl_index_list:
tbl_name
[[INDEX|KEY] (index_name[, index_name] ...)]
[IGNORE LEAVES]

The LOAD INDEX INTO CACHE statement preloads a table index into the key cache to which it
has been assigned by an explicit CACHE INDEX statement, or into the default key cache otherwise.
LOAD INDEX INTO CACHE is used only for MyISAM tables.

The IGNORE LEAVES modifier causes only blocks for the non-leaf nodes of the index to be pre-
loaded.

The following statement preloads nodes (index blocks) of indexes of the tables t1 and t2:

mysql> LOAD INDEX INTO CACHE t1, t2 IGNORE LEAVES;
+---------+--------------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------+--------------+----------+----------+
| test.t1 | preload_keys | status | OK |
| test.t2 | preload_keys | status | OK |
+---------+--------------+----------+----------+

This statement preloads all index blocks from t1. It preloads only blocks for the non-leaf nodes
from t2.

The syntax of LOAD INDEX INTO CACHE allows you to specify that only particular indexes
from a table should be preloaded. However, the current implementation preloads all the table's in-
dexes into the cache, so there is no reason to specify anything other than the table name.

LOAD INDEX INTO CACHE was added in MySQL 4.1.1.

13.5.5.5. RESET Syntax

RESET reset_option [, reset_option] ...

The RESET statement is used to clear the state of various server operations. It also acts as a stronger

SQL Statement Syntax

756

version of the FLUSH statement. See Section 13.5.5.2, “FLUSH Syntax”.

To execute RESET, you must have the RELOAD privilege.

reset_option can be any of the following:

• MASTER

Deletes all binary logs listed in the index file, resets the binary log index file to be empty, and
creates a new binary log file. Previously named FLUSH MASTER. See Section 13.6.1, “SQL
Statements for Controlling Master Servers”.

• QUERY CACHE

Removes all query results from the query cache.

• SLAVE

Makes the slave forget its replication position in the master binary logs. Also resets the relay log
by deleting any existing relay log files and beginning a new one. Previously named FLUSH
SLAVE. See Section 13.6.2, “SQL Statements for Controlling Slave Servers”.

13.6. Replication Statements
This section describes replication-related SQL statements. One group of statements is used for con-
trolling master servers. The other is used for controlling slave servers.

13.6.1. SQL Statements for Controlling Master Servers
Replication can be controlled through the SQL interface. This section discusses statements for man-
aging master replication servers. Section 13.6.2, “SQL Statements for Controlling Slave Servers”
discusses statements for managing slave servers.

13.6.1.1. PURGE MASTER LOGS Syntax

PURGE {MASTER | BINARY} LOGS TO 'log_name'
PURGE {MASTER | BINARY} LOGS BEFORE 'date'

Deletes all the binary logs listed in the log index that are strictly prior to the specified log or date.
The logs also are removed from the list recorded in the log index file, so that the given log becomes
the first.

Example:

PURGE MASTER LOGS TO 'mysql-bin.010';
PURGE MASTER LOGS BEFORE '2003-04-02 22:46:26';

The BEFORE variant is available as of MySQL 4.1. Its date argument can be in 'YYYY-MM-DD
hh:mm:ss' format. MASTER and BINARY are synonyms, but BINARY can be used only as of
MySQL 4.1.1.

If you have an active slave that currently is reading one of the logs you are trying to delete, this
statement does nothing and fails with an error. However, if a slave is dormant and you happen to
purge one of the logs it wants to read, the slave is unable to replicate once it comes up. The state-
ment is safe to run while slaves are replicating. You do not need to stop them.

To purge logs, follow this procedure:

SQL Statement Syntax

757

1. On each slave server, use SHOW SLAVE STATUS to check which log it is reading.

2. Obtain a listing of the logs on the master server with SHOW MASTER LOGS.

3. Determine the earliest log among all the slaves. This is the target log. If all the slaves are up to
date, this is the last log on the list.

4. Make a backup of all the logs you are about to delete. (The step is optional, but a good idea.)

5. Purge all logs up to but not including the target log.

13.6.1.2. RESET MASTER Syntax

RESET MASTER

Deletes all binary logs listed in the index file, resets the binary log index file to be empty, and cre-
ates a new binary log file.

This statement was named FLUSH MASTER before MySQL 3.23.26.

13.6.1.3. SET SQL_LOG_BIN Syntax

SET SQL_LOG_BIN = {0|1}

Disables or enables binary logging for the current connection (SQL_LOG_BIN is a session variable)
if the client connects using an account that has the SUPER privilege. The statement is refused with
an error if the client does not have that privilege. (Before MySQL 4.1.2, the statement was simply
ignored in that case.)

13.6.1.4. SHOW BINLOG EVENTS Syntax

SHOW BINLOG EVENTS
[IN 'log_name'] [FROM pos] [LIMIT [offset,] row_count]

Shows the events in the binary log. If you do not specify 'log_name', the first binary log is dis-
played.

The LIMIT clause has the same syntax as for the SELECT statement. See Section 13.1.7, “SELECT
Syntax”.

This statement is available as of MySQL 4.0.

13.6.1.5. SHOW MASTER LOGS Syntax

SHOW MASTER LOGS
SHOW BINARY LOGS

Lists the binary log files on the server. This statement is used as part of the procedure described in
Section 13.6.1.1, “PURGE MASTER LOGS Syntax” for determining which logs can be purged.

SHOW MASTER LOGS was added in MySQL 3.23.38. As of MySQL 4.1.1, you can also use SHOW
BINARY LOGS, which is equivalent.

13.6.1.6. SHOW MASTER STATUS Syntax

SHOW MASTER STATUS

SQL Statement Syntax

758

Provides status information on the binary log files of the master.

13.6.1.7. SHOW SLAVE HOSTS Syntax

SHOW SLAVE HOSTS

Displays a list of slaves currently registered with the master. Any slave not started with the -
-report-host=slave_name option is not visible in that list.

13.6.2. SQL Statements for Controlling Slave Servers
Replication can be controlled through the SQL interface. This section discusses statements for man-
aging slave replication servers. Section 13.6.1, “SQL Statements for Controlling Master Servers”
discusses statements for managing master servers.

13.6.2.1. CHANGE MASTER TO Syntax

CHANGE MASTER TO master_def [, master_def] ...
master_def:

MASTER_HOST = 'host_name'
| MASTER_USER = 'user_name'
| MASTER_PASSWORD = 'password'
| MASTER_PORT = port_num
| MASTER_CONNECT_RETRY = count
| MASTER_LOG_FILE = 'master_log_name'
| MASTER_LOG_POS = master_log_pos
| RELAY_LOG_FILE = 'relay_log_name'
| RELAY_LOG_POS = relay_log_pos
| MASTER_SSL = {0|1}
| MASTER_SSL_CA = 'ca_file_name'
| MASTER_SSL_CAPATH = 'ca_directory_name'
| MASTER_SSL_CERT = 'cert_file_name'
| MASTER_SSL_KEY = 'key_file_name'
| MASTER_SSL_CIPHER = 'cipher_list'

Changes the parameters that the slave server uses for connecting to and communicating with the
master server.

MASTER_USER, MASTER_PASSWORD, MASTER_SSL, MASTER_SSL_CA, MAS-
TER_SSL_CAPATH, MASTER_SSL_CERT, MASTER_SSL_KEY, and MASTER_SSL_CIPHER
provide information for the slave about how to connect to its master.

The relay log options (RELAY_LOG_FILE and RELAY_LOG_POS) are available beginning with
MySQL 4.0.

The SSL options (MASTER_SSL, MASTER_SSL_CA, MASTER_SSL_CAPATH, MAS-
TER_SSL_CERT, MASTER_SSL_KEY, and MASTER_SSL_CIPHER) are available beginning
with MySQL 4.1.1. You can change these options even on slaves that are compiled without SSL
support. They are saved to the master.info file, but are ignored until you use a server that has
SSL support enabled.

If you don't specify a given parameter, it keeps its old value, except as indicated in the following
discussion. For example, if the password to connect to your MySQL master has changed, you just
need to issue these statements to tell the slave about the new password:

mysql> STOP SLAVE; -- if replication was running
mysql> CHANGE MASTER TO MASTER_PASSWORD='new3cret';
mysql> START SLAVE; -- if you want to restart replication

There is no need to specify the parameters that do not change (host, port, user, and so forth).

SQL Statement Syntax

759

MASTER_HOST and MASTER_PORT are the hostname (or IP address) of the master host and its
TCP/IP port. Note that if MASTER_HOST is equal to localhost, then, like in other parts of
MySQL, the port may be ignored (if Unix socket files can be used, for example).

If you specify MASTER_HOST or MASTER_PORT, the slave assumes that the master server is dif-
ferent than before (even if you specify a host or port value that is the same as the current value.) In
this case, the old values for the master binary log name and position are considered no longer applic-
able, so if you do not specify MASTER_LOG_FILE and MASTER_LOG_POS in the statement,
MASTER_LOG_FILE='' and MASTER_LOG_POS=4 are silently appended to it.

MASTER_LOG_FILE and MASTER_LOG_POS are the coordinates at which the slave I/O thread
should begin reading from the master the next time the thread starts. If you specify either of them,
you can't specify RELAY_LOG_FILE or RELAY_LOG_POS. If neither of MASTER_LOG_FILE or
MASTER_LOG_POS are specified, the slave uses the last coordinates of the slave SQL thread before
CHANGE MASTER was issued. This ensures that replication has no discontinuity, even if the slave
SQL thread was late compared to the slave I/O thread, when you just want to change, say, the pass-
word to use. This safe behavior was introduced starting from MySQL 4.0.17 and 4.1.1. (Before
these versions, the coordinates used were the last coordinates of the slave I/O thread before CHANGE
MASTER was issued. This caused the SQL thread to possibly lose some events from the master, thus
breaking replication.)

CHANGE MASTER deletes all relay log files and starts a new one, unless you specify RE-
LAY_LOG_FILE or RELAY_LOG_POS. In that case, relay logs are kept; as of MySQL 4.1.1 the
relay_log_purge global variable is set silently to 0.

CHANGE MASTER TO updates the contents of the master.info and relay-log.info files.

CHANGE MASTER is useful for setting up a slave when you have the snapshot of the master and
have recorded the log and the offset corresponding to it. After loading the snapshot into the slave,
you can run CHANGE MASTER TO MASTER_LOG_FILE='log_name_on_master',
MASTER_LOG_POS=log_offset_on_master on the slave.

Examples:

mysql> CHANGE MASTER TO
-> MASTER_HOST='master2.mycompany.com',
-> MASTER_USER='replication',
-> MASTER_PASSWORD='bigs3cret',
-> MASTER_PORT=3306,
-> MASTER_LOG_FILE='master2-bin.001',
-> MASTER_LOG_POS=4,
-> MASTER_CONNECT_RETRY=10;

mysql> CHANGE MASTER TO
-> RELAY_LOG_FILE='slave-relay-bin.006',
-> RELAY_LOG_POS=4025;

The first example changes the master and master's binary log coordinates. This is used when you
want to set up the slave to replicate the master.

The second example shows an operation that is less frequently used. It is done when the slave has
relay logs that you want it to execute again for some reason. To do this, the master need not be
reachable. You just have to use CHANGE MASTER TO and start the SQL thread (START SLAVE
SQL_THREAD).

You can even use the second operation in a non-replication setup with a standalone, non-slave serv-
er, to recover after a crash. Suppose that your server has crashed and you have restored a backup.
You want to replay the server's own binary logs (not relay logs, but regular binary logs), supposedly
named myhost-bin.*. First, make a backup copy of these binary logs in some safe place, in case
you don't exactly follow the procedure below and accidentally have the server purge the binary logs.
If using MySQL 4.1.1 or newer, use SET GLOBAL relay_log_purge=0 for additional safety.
Then start the server without the --log-bin option. Before MySQL 4.0.19, start it with a new
(different from before) server id; in newer versions there is no need, just use the -
-replicate-same-server-id option. Start it with --relay-log=myhost-bin (to make

SQL Statement Syntax

760

the server believe that these regular binary logs are relay logs) and with --skip-slave-start.
After the server starts, issue these statements:

mysql> CHANGE MASTER TO
-> RELAY_LOG_FILE='myhost-bin.153',
-> RELAY_LOG_POS=410,
-> MASTER_HOST='some_dummy_string';

mysql> START SLAVE SQL_THREAD;

The server reads and executes its own binary logs, thus achieving crash recovery. Once the recovery
is finished, run STOP SLAVE, shut down the server, delete master.info and relay-
log.info, and restart the server with its original options.

For the moment, specifying MASTER_HOST (even with a dummy value) is required to make the
server think it is a slave. In the future, we plan to add options to get rid of these small constraints.

13.6.2.2. LOAD DATA FROM MASTER Syntax

LOAD DATA FROM MASTER

Takes a snapshot of the master and copies it to the slave. It updates the values of MAS-
TER_LOG_FILE and MASTER_LOG_POS so that the slave starts replicating from the correct posi-
tion. Any table and database exclusion rules specified with the --replicate-*-do-* and -
-replicate-*-ignore-* options are honored. --replicate-rewrite-db is not taken
into account (because one user could, with this option, set up a non-unique mapping such as -
-replicate-rewrite-db=db1->db3 and --replicate-rewrite-db=db2->db3,
which would confuse the slave when it loads the master's tables).

Use of this statement is subject to the following conditions:

• It works only with MyISAM tables.

• It acquires a global read lock on the master while taking the snapshot, which prevents updates on
the master during the load operation.

In the future, it is planned to make this statement work with InnoDB tables and to remove the need
for a global read lock by using non-blocking online backup.

If you are loading big tables, you might have to increase the values of net_read_timeout and
net_write_timeout on both your master and slave servers. See Section 5.2.3, “Server System
Variables”.

Note that LOAD DATA FROM MASTER does not copy any tables from the mysql database. This
makes it easy to have different users and privileges on the master and the slave.

The LOAD DATA FROM MASTER statement requires the replication account that is used to con-
nect to the master to have the RELOAD and SUPER privileges on the master and the SELECT priv-
ilege for all master tables you want to load. All master tables for which the user does not have the
SELECT privilege are ignored by LOAD DATA FROM MASTER. This is because the master hides
them from the user: LOAD DATA FROM MASTER calls SHOW DATABASES to know the master
databases to load, but SHOW DATABASES returns only databases for which the user has some priv-
ilege. See Section 13.5.4.7, “SHOW DATABASES Syntax”. On the slave's side, the user that issues
LOAD DATA FROM MASTER should have grants to drop and create the databases and tables that
are copied.

13.6.2.3. LOAD TABLE tbl_name FROM MASTER Syntax

LOAD TABLE tbl_name FROM MASTER

Transfers a copy of the table from master to the slave. This statement is implemented mainly for de-

SQL Statement Syntax

761

bugging of LOAD DATA FROM MASTER. It requires that the account used for connecting to the
master server has the RELOAD and SUPER privileges on the master and the SELECT privilege on
the master table to load. On the slave side, the user that issues LOAD TABLE FROM MASTER
should have privileges to drop and create the table.

The conditions for LOAD DATA FROM MASTER apply here, too. For example, LOAD TABLE
FROM MASTER works only for MyISAM tables. The timeout notes for LOAD DATA FROM MAS-
TER apply as well.

13.6.2.4. MASTER_POS_WAIT() Syntax

SELECT MASTER_POS_WAIT('master_log_file', master_log_pos)

This is a function, not a statement. It is used to ensure that the slave has read and executed events up
to a given position in the master's binary log. See Section 12.8.4, “Miscellaneous Functions” for a
full description.

13.6.2.5. RESET SLAVE Syntax

RESET SLAVE

Makes the slave forget its replication position in the master's binary logs. This statement is meant to
be used for a clean start: It deletes the master.info and relay-log.info files, all the relay
logs, and starts a new relay log.

Note: All relay logs are deleted, even if they have not been totally executed by the slave SQL
thread. (This is a condition likely to exist on a replication slave if you have issued a STOP SLAVE
statement or if the slave is highly loaded.)

Connection information stored in the master.info file is immediately reset using any values
specified in the corresponding startup options. This information includes values such as master host,
master port, master user, and master password. If the slave SQL thread was in the middle of replicat-
ing temporary tables when it was stopped, and RESET SLAVE is issued, these replicated temporary
tables are deleted on the slave.

This statement was named FLUSH SLAVE before MySQL 3.23.26.

13.6.2.6. SET GLOBAL SQL_SLAVE_SKIP_COUNTER Syntax

SET GLOBAL SQL_SLAVE_SKIP_COUNTER = n

Skip the next n events from the master. This is useful for recovering from replication stops caused
by a statement.

This statement is valid only when the slave thread is not running. Otherwise, it produces an error.

Before MySQL 4.0, omit the GLOBAL keyword from the statement.

13.6.2.7. SHOW SLAVE STATUS Syntax

SHOW SLAVE STATUS

Provides status information on essential parameters of the slave threads. If you issue this statement
using the mysql client, you can use a \G statement terminator rather than semicolon to get a more
readable vertical layout:

mysql> SHOW SLAVE STATUS\G
*************************** 1. row ***************************

Slave_IO_State: Waiting for master to send event

SQL Statement Syntax

762

Master_Host: localhost
Master_User: root
Master_Port: 3306

Connect_Retry: 3
Master_Log_File: gbichot-bin.005

Read_Master_Log_Pos: 79
Relay_Log_File: gbichot-relay-bin.005
Relay_Log_Pos: 548

Relay_Master_Log_File: gbichot-bin.005
Slave_IO_Running: Yes
Slave_SQL_Running: Yes
Replicate_Do_DB:

Replicate_Ignore_DB:
Last_Errno: 0
Last_Error:

Skip_Counter: 0
Exec_Master_Log_Pos: 79

Relay_Log_Space: 552
Until_Condition: None
Until_Log_File:
Until_Log_Pos: 0

Master_SSL_Allowed: No
Master_SSL_CA_File:
Master_SSL_CA_Path:

Master_SSL_Cert:
Master_SSL_Cipher:

Master_SSL_Key:
Seconds_Behind_Master: 8

Depending on your version of MySQL, you may not see all the fields just shown. In particular, sev-
eral fields are present only as of MySQL 4.1.1.

SHOW SLAVE STATUS returns the following fields:

• Slave_IO_State

A copy of the State field of the output of SHOW PROCESSLIST for the slave I/O thread.
This tells you if the thread is trying to connect to the master, waiting for events from the master,
reconnecting to the master, and so on. Possible states are listed in Section 6.3, “Replication Im-
plementation Details”. Looking at this field is necessary because, for example, the thread can be
running but unsuccessfully trying to connect to the master; only this field makes you aware of
the connection problem. The state of the SQL thread is not copied because it is simpler. If it is
running, there is no problem; if it is not, you can find the error in the Last_Error field
(described below).

This field is present beginning with MySQL 4.1.1.

• Master_Host

The current master host.

• Master_User

The current user used to connect to the master.

• Master_Port

The current master port.

• Connect_Retry

The current value of the --master-connect-retry option.

• Master_Log_File

SQL Statement Syntax

763

The name of the master binary log file from which the I/O thread is currently reading.

• Read_Master_Log_Pos

The position up to which the I/O thread has read in the current master binary log.

• Relay_Log_File

The name of the relay log file from which the SQL thread is currently reading and executing.

• Relay_Log_Pos

The position up to which the SQL thread has read and executed in the current relay log.

• Relay_Master_Log_File

The name of the master binary log file that contains the last event executed by the SQL thread.

• Slave_IO_Running

Whether or not the I/O thread is started.

• Slave_SQL_Running

Whether or not the SQL thread is started.

• Replicate_Do_DB, Replicate_Ignore_DB

The lists of databases that were specified with the --replicate-do-db and -
-replicate-ignore-db options, if any.

These fields are present beginning with MySQL 4.1.1.

• Replicate_Do_Table, Replicate_Ignore_Table, Replic-
ate_Wild_Do_Table, Replicate_Wild_Ignore_Table

The lists of tables that were specified with the --replicate-do-table, -
-replicate-ignore-table, --replicate-wild-do-table, and -
-replicate-wild-ignore_table options, if any.

These fields are present beginning with MySQL 4.1.1.

• Last_Errno, Last_Error

The error number and error message returned by the most recently executed query. An error
number of 0 and message of the empty string mean ``no error.'' If the Last_Error value is not
empty, it also appears as a message in the slave's error log.

For example:

Last_Errno: 1051
Last_Error: error 'Unknown table 'z'' on query 'drop table z'

The message indicates that the table z existed on the master and was dropped there, but it did
not exist on the slave, so DROP TABLE failed on the slave. (This might occur, for example, if
you forget to copy the table to the slave when setting up replication.)

• Skip_Counter

The last used value for SQL_SLAVE_SKIP_COUNTER.

• Exec_Master_Log_Pos

SQL Statement Syntax

764

The position of the last event executed by the SQL thread from the master's binary log (Re-
lay_Master_Log_File). (Relay_Master_Log_File, Exec_Master_Log_Pos) in
the master's binary log corresponds to (Relay_Log_File, Relay_Log_Pos) in the relay
log.

• Relay_Log_Space

The total combined size of all existing relay logs.

• Until_Condition, Until_Log_File, Until_Log_Pos

The values specified in the UNTIL clause of the START SLAVE statement.

Until_Condition has these values:

• None if no UNTIL clause was specified

• Master if the slave is reading until a given position in the master's binary logs

• Relay if the slave is reading until a given position in its relay logs

Until_Log_File and Until_Log_Pos indicate the log filename and position values that
define the point at which the SQL thread stops executing.

These fields are present beginning with MySQL 4.1.1.

• Master_SSL_Allowed, Master_SSL_CA_File, Master_SSL_CA_Path, Mas-
ter_SSL_Cert, Master_SSL_Cipher, Master_SSL_Key

These fields show the SSL parameters used by the slave to connect to the master, if any.

Master_SSL_Allowed has these values:

• Yes if an SSL connection to the master is allowed

• No if an SSL connection to the master is not allowed

• Ignored if an SSL connection is allowed but the slave server does not have SSL support
enabled

The values of the other SSL-related fields correspond to the values of the --master-ca, -
-master-capath, --master-cert, --master-cipher, and --master-key op-
tions.

These fields are present beginning with MySQL 4.1.1.

• Seconds_Behind_Master

This field is present beginning with MySQL 4.1.1. It's been experimental and has been changed
in MySQL 4.1.9. The following applies to slaves running MySQL 4.1.9 or newer. This field is
an indication of how ``late'' the slave is. When the slave SQL thread is actively running
(processing updates), this field is the number of seconds that have elapsed since the timestamp
of the last master's event executed by that thread. When that thread has caught up on the slave I/
O thread and goes idle waiting from more events from the I/O thread this field is zero. To sum
up, this field measures in seconds the time difference between the slave SQL thread and the
slave I/O thread.

If the network connection between master and slave is fast, the slave I/O thread is very close to
the master, so this field is a good approximation of how late the slave SQL thread is compared to
the master. If the network is slow, this is not a good approximation; the slave SQL thread may
quite often be caught up with the slow-reading slave I/O thread, so

SQL Statement Syntax

765

Seconds_Behind_Master often shows a value of 0, even if the I/O thread is late compared
to the master. In other words, this column is useful only for fast networks.

This time difference computation works even though your master and slave don't have identical
clocks (the clock difference is computed when the slave I/O thread starts, and assumed to remain
constant from then on). Seconds_Behind_Master is NULL (which means ``unknown'') if
the slave SQL thread is not running, or if the slave I/O thread is not running or not connected to
master. For example if the slave I/O thread is sleeping for master-connect-retry seconds
before reconnecting, NULL is shown, as the slave cannot know what the master is doing, and
thus cannot reliably say how late it is.

This field has one limitation. Indeed the timestamp is preserved through replication, which
means that if your master M1 is itself a slave of M0, any event from M1's binlog which has its
origin in replication of an event of M0's binlog, has the timestamp of that last event. This en-
ables MySQL to replicate TIMESTAMP successfully. But the drawback for
Seconds_Behind_Master is that if M1 also receives direct updates from clients, then the
value randomly goes up and down, because sometimes the last M1's event is from M0 and some-
times it is from a direct update, and so is the last timestamp.

13.6.2.8. START SLAVE Syntax

START SLAVE [thread_type [, thread_type] ...]
START SLAVE [SQL_THREAD] UNTIL

MASTER_LOG_FILE = 'log_name', MASTER_LOG_POS = log_pos
START SLAVE [SQL_THREAD] UNTIL

RELAY_LOG_FILE = 'log_name', RELAY_LOG_POS = log_pos
thread_type: IO_THREAD | SQL_THREAD

START SLAVE with no options starts both of the slave threads. The I/O thread reads queries from
the master server and stores them in the relay log. The SQL thread reads the relay log and executes
the queries. START SLAVE requires the SUPER privilege.

If START SLAVE succeeds in starting the slave threads, it returns without any error. However,
even in that case, it might be that the slave threads start and then later stop (for example, because
they don't manage to connect to the master or read its binary logs, or some other problem). START
SLAVE does not warn you about this. You must check your slave's error log for error messages gen-
erated by the slave threads, or check that they are running fine with SHOW SLAVE STATUS.

As of MySQL 4.0.2, you can add IO_THREAD and SQL_THREAD options to the statement to name
which of the threads to start.

As of MySQL 4.1.1, an UNTIL clause may be added to specify that the slave should start and run
until the SQL thread reaches a given point in the master binary logs or in the slave relay logs. When
the SQL thread reaches that point, it stops. If the SQL_THREAD option is specified in the statement,
it starts only the SQL thread. Otherwise, it starts both slave threads. If the SQL thread is running,
the UNTIL clause is ignored and a warning is issued.

With an UNTIL clause, you must specify both a log filename and position. Do not mix master and
relay log options.

Any UNTIL condition is reset by a subsequent STOP SLAVE statement, a START SLAVE state-
ment that includes no UNTIL clause, or a server restart.

The UNTIL clause can be useful for debugging replication, or to cause replication to proceed until
just before the point where you want to avoid having the slave replicate a statement. For example, if
an unwise DROP TABLE statement was executed on the master, you can use UNTIL to tell the
slave to execute up to that point but no farther. To find what the event is, use mysqlbinlog with the
master logs or slave relay logs, or by using a SHOW BINLOG EVENTS statement.

If you are using UNTIL to have the slave process replicated queries in sections, it is recommended
that you start the slave with the --skip-slave-start option to prevent the SQL thread from

SQL Statement Syntax

766

running when the slave server starts. It is probably best to use this option in an option file rather
than on the command line, so that an unexpected server restart does not cause it to be forgotten.

The SHOW SLAVE STATUS statement includes output fields that display the current values of the
UNTIL condition.

This statement is called SLAVE START before MySQL 4.0.5. For the moment, SLAVE START is
still accepted for backward compatibility, but is deprecated.

13.6.2.9. STOP SLAVE Syntax

STOP SLAVE [thread_type [, thread_type] ...]
thread_type: IO_THREAD | SQL_THREAD

Stops the slave threads. STOP SLAVE requires the SUPER privilege.

Like START SLAVE, as of MySQL 4.0.2, this statement may be used with the IO_THREAD and
SQL_THREAD options to name the thread or threads to stop.

This statement is called SLAVE STOP before MySQL 4.0.5. For the moment, SLAVE STOP is still
accepted for backward compatibility, but is deprecated.

13.7. SQL Syntax for Prepared Statements
Support for server-side prepared statements was added in MySQL 4.1. This support takes advantage
of the efficient client/server binary protocol, provided that you use an appropriate client program-
ming interface. Candidate interfaces include the MySQL C API client library (for C programs) or
MySQL Connector/J (for Java programs). For example, the C API provides a set of function calls
that make up its prepared statement API. See Section 22.2.4, “C API Prepared Statements”. Other
language interfaces can provide support for prepared statements that use the binary protocol by link-
ing in the C client library. (The mysqli extension in PHP 5.0 does this, for example.)

Beginning with MySQL 4.1.3, an alternative interface to prepared statements is available: SQL syn-
tax for prepared statements. This interface is not as efficient as using the binary protocol through a
prepared statement API, but requires no programming because it is available directly at the SQL
level:

• You can use it when no programming interface is available to you.

• You can use it from any program that allows you to send SQL statements to the server to be ex-
ecuted, such as the mysql client program.

• You can use it even if the client is using an old version of the client library. The only require-
ment is that you be able to connect to a server that is recent enough to support SQL syntax for
prepared statements.

SQL syntax for prepared statements is intended to be used for situations such as these:

• You may want to test how prepared statements work in your application before doing the applic-
ation coding. Or perhaps an application has a problem executing prepared statements and you
want to determine what the problem is interactively.

• You want to create a test case that describes a problem you are having with prepared statements,
so that you can file a bug report.

• You need to use prepared statements but do not have access to a programming API that supports
them.

SQL syntax for prepared statements is based on three SQL statements:

SQL Statement Syntax

767

PREPARE stmt_name FROM preparable_stmt;
EXECUTE stmt_name [USING @var_name [, @var_name] ...];
{DEALLOCATE | DROP} PREPARE stmt_name;

The PREPARE statement prepares a statement and assigns it a name, stmt_name, by which to
refer to the statement later. Statement names are not case sensitive. preparable_stmt is either a
string literal or a user variable that contains the text of the statement. The text must represent a
single SQL statement, not multiple statements. Within the statement, '?' characters can be used as
parameter markers to indicate where data values are to be bound to the query later when you execute
it. The '?' characters should not be enclosed within quotes, even if you intend to bind them to string
values.

If a prepared statement exists with the same name, it is deallocated implicitly before the new state-
ment is prepared. This means that if the new statement contains an error and cannot be prepared, an
error is returned and no statement with the given name exists.

The scope of a prepared statement is the client session within which it is created. Other clients can-
not see it.

After preparing a statement, you execute it with an EXECUTE statement that refers to the prepared
statement name. If the prepared statement contains any parameter markers, you must supply a US-
ING clause that lists user variables containing the values to be bound to the parameters. Parameter
values can be supplied only by user variables, and the USING clause must name exactly as many
variables as the number of parameter markers in the statement.

You can execute a given prepared statement multiple times, passing it different variables or setting
the variables to different values before each execution.

To deallocate a prepared statement, use the DEALLOCATE PREPARE statement. Attempting to ex-
ecute a prepared statement after deallocating it results in an error.

If you terminate a client session without deallocating a previously prepared statement, the server
deallocates it automatically.

The following statements can be used as prepared statements: CREATE TABLE, DELETE, DO, IN-
SERT, REPLACE, SELECT, SET, UPDATE, and most SHOW, statements. Other statements are not
yet supported.

The following examples show two equivalent ways of preparing a statement that computes the hy-
potenuse of a triangle given the lengths of the two sides.

The first example shows how to create a prepared statement by using a string literal to supply the
text of the statement:

mysql> PREPARE stmt1 FROM 'SELECT SQRT(POW(?,2) + POW(?,2)) AS hypotenuse';
mysql> SET @a = 3;
mysql> SET @b = 4;
mysql> EXECUTE stmt1 USING @a, @b;
+------------+
| hypotenuse |
+------------+
| 5 |
+------------+
mysql> DEALLOCATE PREPARE stmt1;

The second example is similar, but supplies the text of the statement with a user variable:

mysql> SET @s = 'SELECT SQRT(POW(?,2) + POW(?,2)) AS hypotenuse';
mysql> PREPARE stmt2 FROM @s;
mysql> SET @a = 6;
mysql> SET @b = 8;
mysql> EXECUTE stmt2 USING @a, @b;
+------------+

SQL Statement Syntax

768

| hypotenuse |
+------------+
| 10 |
+------------+
mysql> DEALLOCATE PREPARE stmt2;

SQL syntax for prepared statements cannot be used in nested fashion. That is, a statement passed to
PREPARE cannot itself be a PREPARE, EXECUTE, or DEALLOCATE PREPARE statement.

Also, SQL syntax for prepared statements is distinct from using prepared statement API calls. For
example, you cannot use the mysql_stmt_prepare() C API function to prepare a PREPARE,
EXECUTE, or DEALLOCATE PREPARE statement.

SQL Statement Syntax

769

Chapter 14. MySQL Storage Engines
and Table Types

MySQL supports several storage engines that act as handlers for different table types. MySQL stor-
age engines include both those that handle transaction-safe tables and those that handle non-
transaction-safe tables:

• The original storage engine was ISAM, which managed non-transactional tables. This engine has
been replaced by MyISAM and should no longer be used. It is deprecated in MySQL 4.1, and is
removed in MySQL 5.0.

• In MySQL 3.23.0, the MyISAM and HEAP storage engines were introduced. MyISAM is an im-
proved replacement for ISAM. The HEAP storage engine provides in-memory tables. The
MERGE storage engine was added in MySQL 3.23.25. It allows a collection of identical MyISAM
tables to be handled as a single table. All three of these storage engines handle non-transactional
tables, and all are included in MySQL by default. Note that the HEAP storage engine has been
renamed the MEMORY engine.

• The InnoDB and BDB storage engines that handle transaction-safe tables were introduced in
later versions of MySQL 3.23. Both are available in source distributions as of MySQL 3.23.34a.
BDB is included in MySQL-Max binary distributions on those operating systems that support it.
InnoDB also is included in MySQL-Max binary distributions for MySQL 3.23. Beginning with
MySQL 4.0, InnoDB is included by default in all MySQL binary distributions. In source distri-
butions, you can enable or disable either engine by configuring MySQL as you like.

• The EXAMPLE storage engine was added in MySQL 4.1.3. It is a ``stub'' engine that does noth-
ing. You can create tables with this engine, but no data can be stored into them or retrieved from
them. The purpose of this engine is to serve as an example in the MySQL source code that illus-
trates how to begin writing new storage engines. As such, it is primarily of interest to de-
velopers.

• NDB Cluster is the storage engine used by MySQL Cluster to implement tables that are parti-
tioned over many computers. It is available in source code distributions as of MySQL 4.1.2 and
binary distributions as of MySQL-Max 4.1.3.

• The ARCHIVE storage engine was added in MySQL 4.1.3. It is used for storing large amounts
of data without indexes in a very small footprint.

• The CSV storage engine was added in MySQL 4.1.4. This engine stores data in text files using
comma-separated-values format.

• The FEDERATED storage engine was added in MySQL 5.0.3. This engine stores data in a re-
mote database. In this release, it works with MySQL only, using the MySQL C Client API. Fu-
ture releases will be able to connect to other data sources using other driver or client connection
methods.

This chapter describes each of the MySQL storage engines except for InnoDB and NDB
Cluster, which are covered in Chapter 15, The InnoDB Storage Engine and Chapter 16, MySQL
Cluster.

When you create a new table, you can tell MySQL what type of table to create by adding an EN-
GINE or TYPE table option to the CREATE TABLE statement:

CREATE TABLE t (i INT) ENGINE = INNODB;
CREATE TABLE t (i INT) TYPE = MEMORY;

ENGINE is the preferred term, but cannot be used before MySQL 4.0.18. TYPE is available begin-
ning with MySQL 3.23.0, the first version of MySQL for which multiple storage engines were

770

available.

If you omit the ENGINE or TYPE option, the default storage engine is used. By default this is My-
ISAM. You can change it by using the --default-storage-engine or -
-default-table-type server startup option, or by setting the storage_engine or ta-
ble_type system variable.

When MySQL is installed on Windows using the MySQL Configuration Wizard, the InnoDB stor-
age engine is the default instead of MyISAM. See Section 2.3.5.1, “Introduction”.

To convert a table from one type to another, use an ALTER TABLE statement that indicates the new
type:

ALTER TABLE t ENGINE = MYISAM;
ALTER TABLE t TYPE = BDB;

See Section 13.2.6, “CREATE TABLE Syntax” and Section 13.2.2, “ALTER TABLE Syntax”.

If you try to use a storage engine that is not compiled in or that is compiled in but deactivated,
MySQL instead creates a table of type MyISAM. This behavior is convenient when you want to
copy tables between MySQL servers that support different storage engines. (For example, in a rep-
lication setup, perhaps your master server supports transactional storage engines for increased
safety, but the slave servers use only non-transactional storage engines for greater speed.)

This automatic substitution of the MyISAM table type when an unavailable type is specified can be
confusing for new MySQL users. In MySQL 4.1 and up, a warning is generated when a table type is
automatically changed.

MySQL always creates an .frm file to hold the table and column definitions. The table's index and
data may be stored in one or more other files, depending on the table type. The server creates the
.frm file above the storage engine level. Individual storage engines create any additional files re-
quired for the tables that they manage.

A database may contain tables of different types.

Transaction-safe tables (TSTs) have several advantages over non-transaction-safe tables (NTSTs):

• Safer. Even if MySQL crashes or you get hardware problems, you can get your data back, either
by automatic recovery or from a backup plus the transaction log.

• You can combine many statements and accept them all at the same time with the COMMIT state-
ment (if autocommit is disabled).

• You can execute ROLLBACK to ignore your changes (if autocommit is disabled).

• If an update fails, all of your changes are reverted. (With non-transaction-safe tables, all changes
that have taken place are permanent.)

• Transaction-safe storage engines can provide better concurrency for tables that get many updates
concurrently with reads.

Note that to use the InnoDB storage engine in MySQL 3.23, you must configure at least the in-
nodb_data_file_path startup option. In 4.0 and up, InnoDB uses default configuration val-
ues if you specify none. See Section 15.4, “InnoDB Configuration”.

Non-transaction-safe tables have several advantages of their own, all of which occur because there
is no transaction overhead:

• Much faster

• Lower disk space requirements

MySQL Storage Engines and Table Types

771

• Less memory required to perform updates

You can combine transaction-safe and non-transaction-safe tables in the same statements to get the
best of both worlds. However, within a transaction with autocommit disabled, changes to non-
transaction-safe tables still are committed immediately and cannot be rolled back.

14.1. The MyISAM Storage Engine
MyISAM is the default storage engine as of MySQL 3.23. It is based on the ISAM code but has
many useful extensions.

Each MyISAM table is stored on disk in three files. The files have names that begin with the table
name and have an extension to indicate the file type. An .frm file stores the table definition. The
data file has an .MYD (MYData) extension. The index file has an .MYI (MYIndex) extension,

To specify explicitly that you want a MyISAM table, indicate that with an ENGINE or TYPE table
option:

CREATE TABLE t (i INT) ENGINE = MYISAM;
CREATE TABLE t (i INT) TYPE = MYISAM;

Normally, the ENGINE or TYPE option is unnecessary; MyISAM is the default storage engine un-
less the default has been changed.

You can check or repair MyISAM tables with the myisamchk utility. See Section 5.7.3.7, “Using
myisamchk for Crash Recovery”. You can compress MyISAM tables with myisampack to take up
much less space. See Section 8.2, “myisampack, the MySQL Compressed Read-only Table Gener-
ator”.

The following characteristics of the MyISAM storage engine are improvements over the older ISAM
engine:

• All data values are stored with the low byte first. This makes the data machine and operating
system independent. The only requirement for binary portability is that the machine uses
two's-complement signed integers (as every machine for the last 20 years has) and IEEE float-
ing-point format (also totally dominant among mainstream machines). The only area of ma-
chines that may not support binary compatibility are embedded systems, which sometimes have
peculiar processors.

There is no big speed penalty for storing data low byte first; the bytes in a table row normally
are unaligned and it doesn't take that much more power to read an unaligned byte in order than
in reverse order. Also, the code in the server that fetches column values is not time critical com-
pared to other code.

• Large files (up to 63-bit file length) are supported on filesystems and operating systems that sup-
port large files.

• Dynamic-sized rows are much less fragmented when mixing deletes with updates and inserts.
This is done by automatically combining adjacent deleted blocks and by extending blocks if the
next block is deleted.

• The maximum number of indexes per table is 64 (32 before MySQL 4.1.2). This can be changed
by recompiling. The maximum number of columns per index is 16.

• The maximum key length is 1000 bytes (500 before MySQL 4.1.2). This can be changed by re-
compiling. For the case of a key longer than 250 bytes, a larger key block size than the default of
1024 bytes is used.

• BLOB and TEXT columns can be indexed.

MySQL Storage Engines and Table Types

772

• NULL values are allowed in indexed columns. This takes 0-1 bytes per key.

• All numeric key values are stored with the high byte first to allow better index compression.

• Index files are usually much smaller with MyISAM than with ISAM. This means that MyISAM
normally uses less system resources than ISAM, but needs more CPU time when inserting data
into a compressed index.

• When records are inserted in sorted order (as when you are using an AUTO_INCREMENT
column), the index tree is split so that the high node only contains one key. This improves space
utilization in the index tree.

• Internal handling of one AUTO_INCREMENT column per table. MyISAM automatically updates
this column for INSERT/UPDATE. This makes AUTO_INCREMENT columns faster (at least
10%). Values at the top of the sequence are not reused after being deleted as they are with
ISAM. (When an AUTO_INCREMENT column is defined as the last column of a multiple-
column index, reuse of deleted values does occur.) The AUTO_INCREMENT value can be reset
with ALTER TABLE or myisamchk.

• If a table doesn't have free blocks in the middle of the data file, you can INSERT new rows into
it at the same time that other threads are reading from the table. (These are known as concurrent
inserts.) A free block can occur as a result of deleting rows or an update of a dynamic length row
with more data than its current contents. When all free blocks are used up (filled in), future in-
serts become concurrent again.

• You can put the data file and index file on different directories to get more speed with the DATA
DIRECTORY and INDEX DIRECTORY table options to CREATE TABLE. See Section 13.2.6,
“CREATE TABLE Syntax”.

• As of MySQL 4.1, each character column can have a different character set.

• There is a flag in the MyISAM index file that indicates whether the table was closed correctly. If
mysqld is started with the --myisam-recover option, MyISAM tables are automatically
checked when opened and repaired if the table wasn't closed properly.

• myisamchk marks tables as checked if you run it with the --update-state option. myis-
amchk --fast checks only those tables that don't have this mark.

• myisamchk --analyze stores statistics for key parts, not only for whole keys as in ISAM.

• myisampack can pack BLOB and VARCHAR columns; pack_isam cannot.

MyISAM also supports the following features, which MySQL will be able to use in the near future:

• Support for a true VARCHAR type; a VARCHAR column starts with a length stored in two bytes.

• Tables with VARCHAR may have fixed or dynamic record length.

• VARCHAR and CHAR columns may be up to 64KB.

• A hashed computed index can be used for UNIQUE. This allows you to have UNIQUE on any
combination of columns in a table. (You can't search on a UNIQUE computed index, however.)

14.1.1. MyISAM Startup Options
The following options to mysqld can be used to change the behavior of MyISAM tables:

• --myisam-recover=mode

MySQL Storage Engines and Table Types

773

Set the mode for automatic recovery of crashed MyISAM tables.

• --delay-key-write=ALL

Don't flush key buffers between writes for any MyISAM table.

Note: If you do this, you should not use MyISAM tables from another program (such as from an-
other MySQL server or with myisamchk) when the table is in use. Doing so leads to index cor-
ruption.

Using --external-locking does not help for tables that use --delay-key-write.

See Section 5.2.1, “mysqld Command-Line Options”.

The following system variables affect the behavior of MyISAM tables:

• bulk_insert_buffer_size

The size of the tree cache used in bulk insert optimization. Note: This is a limit per thread!

• myisam_max_extra_sort_file_size

Used to help MySQL to decide when to use the slow but safe key cache index creation method.
Note: This parameter is given in megabytes before MySQL 4.0.3, and in bytes as of 4.0.3.

• myisam_max_sort_file_size

Don't use the fast sort index method to create an index if the temporary file would become larger
than this. Note: This parameter is given in megabytes before MySQL 4.0.3, and in bytes as of
4.0.3.

• myisam_sort_buffer_size

Set the size of the buffer used when recovering tables.

See Section 5.2.3, “Server System Variables”.

Automatic recovery is activated if you start mysqld with the --myisam-recover option. In this
case, when the server opens a MyISAM table, it checks whether the table is marked as crashed or
whether the open count variable for the table is not 0 and you are running the server with -
-skip-external-locking. If either of these conditions is true, the following happens:

• The table is checked for errors.

• If the server finds an error, it tries to do a fast table repair (with sorting and without re-creating
the data file).

• If the repair fails because of an error in the data file (for example, a duplicate-key error), the
server tries again, this time re-creating the data file.

• If the repair still fails, the server tries once more with the old repair option method (write row by
row without sorting). This method should be able to repair any type of error and has low disk
space requirements.

If the recovery wouldn't be able to recover all rows from a previous completed statement and you
didn't specify FORCE in the value of the --myisam-recover option, automatic repair aborts
with an error message in the error log:

MySQL Storage Engines and Table Types

774

Error: Couldn't repair table: test.g00pages

If you specify FORCE, a warning like this is written instead:

Warning: Found 344 of 354 rows when repairing ./test/g00pages

Note that if the automatic recovery value includes BACKUP, the recovery process creates files with
names of the form tbl_name-datetime.BAK. You should have a cron script that automatically
moves these files from the database directories to backup media.

14.1.2. Space Needed for Keys
MyISAM tables use B-tree indexes. You can roughly calculate the size for the index file as
(key_length+4)/0.67, summed over all keys. This is for the worst case when all keys are in-
serted in sorted order and the table doesn't have any compressed keys.

String indexes are space compressed. If the first index part is a string, it is also prefix compressed.
Space compression makes the index file smaller than the worst-case figure if the string column has a
lot of trailing space or is a VARCHAR column that is not always used to the full length. Prefix com-
pression is used on keys that start with a string. Prefix compression helps if there are many strings
with an identical prefix.

In MyISAM tables, you can also prefix compress numbers by specifying PACK_KEYS=1 when you
create the table. This helps when you have many integer keys that have an identical prefix when the
numbers are stored high-byte first.

14.1.3. MyISAM Table Storage Formats
MyISAM supports three different storage formats. Two of them (fixed and dynamic format) are
chosen automatically depending on the type of columns you are using. The third, compressed
format, can be created only with the myisampack utility.

When you CREATE or ALTER a table that has no BLOB or TEXT columns, you can force the table
format to FIXED or DYNAMIC with the ROW_FORMAT table option. This causes CHAR and
VARCHAR columns to become CHAR for FIXED format or VARCHAR for DYNAMIC format.

In the future, you will be able to compress or decompress tables by specifying
ROW_FORMAT={COMPRESSED | DEFAULT} to ALTER TABLE. See Section 13.2.6, “CREATE
TABLE Syntax”.

14.1.3.1. Static (Fixed-Length) Table Characteristics

Static format is the default for MyISAM tables. It is used when the table contains no variable-length
columns (VARCHAR, BLOB, or TEXT). Each row is stored using a fixed number of bytes.

Of the three MyISAM storage formats, static format is the simplest and most secure (least subject to
corruption). It is also the fastest of the on-disk formats. The speed comes from the easy way that
rows in the data file can be found on disk: When looking up a row based on a row number in the in-
dex, multiply the row number by the row length. Also, when scanning a table, it is very easy to read
a constant number of records with each disk read operation.

The security is evidenced if your computer crashes while the MySQL server is writing to a fixed-
format MyISAM file. In this case, myisamchk can easily determine where each row starts and ends,
so it can usually reclaim all records except the partially written one. Note that MyISAM table in-
dexes can always be reconstructed based on the data rows.

General characteristics of static format tables:

• All CHAR, NUMERIC, and DECIMAL columns are space-padded to the column width.

MySQL Storage Engines and Table Types

775

• Very quick.

• Easy to cache.

• Easy to reconstruct after a crash, because records are located in fixed positions.

• Reorganization is unnecessary unless you delete a huge number of records and want to return
free disk space to the operating system. To do this, use OPTIMIZE TABLE or myisamchk -r.

• Usually require more disk space than for dynamic-format tables.

14.1.3.2. Dynamic Table Characteristics

Dynamic storage format is used if a MyISAM table contains any variable-length columns
(VARCHAR, BLOB, or TEXT), or if the table was created with the ROW_FORMAT=DYNAMIC option.

This format is a little more complex because each row has a header that indicates how long it is. One
record can also end up at more than one location when it is made longer as a result of an update.

You can use OPTIMIZE TABLE or myisamchk to defragment a table. If you have fixed-length
columns that you access or change frequently in a table that also contains some variable-length
columns, it might be a good idea to move the variable-length columns to other tables just to avoid
fragmentation.

General characteristics of dynamic-format tables:

• All string columns are dynamic except those with a length less than four.

• Each record is preceded by a bitmap that indicates which columns contain the empty string (for
string columns) or zero (for numeric columns). Note that this does not include columns that con-
tain NULL values. If a string column has a length of zero after trailing space removal, or a nu-
meric column has a value of zero, it is marked in the bitmap and not saved to disk. Non-empty
strings are saved as a length byte plus the string contents.

• Much less disk space usually is required than for fixed-length tables.

• Each record uses only as much space as is required. However, if a record becomes larger, it is
split into as many pieces as are required, resulting in record fragmentation. For example, if you
update a row with information that extends the row length, the row becomes fragmented. In this
case, you may have to run OPTIMIZE TABLE or myisamchk -r from time to time to get better
performance. Use myisamchk -ei to obtain table statistics.

• More difficult than static-format tables to reconstruct after a crash, because a record may be
fragmented into many pieces and a link (fragment) may be missing.

• The expected row length for dynamic-sized records is calculated using the following expression:

3
+ (number of columns + 7) / 8
+ (number of char columns)
+ (packed size of numeric columns)
+ (length of strings)
+ (number of NULL columns + 7) / 8

There is a penalty of 6 bytes for each link. A dynamic record is linked whenever an update
causes an enlargement of the record. Each new link is at least 20 bytes, so the next enlargement
probably goes in the same link. If not, there is another link. You may check how many links
there are with myisamchk -ed. All links may be removed with myisamchk -r.

14.1.3.3. Compressed Table Characteristics

MySQL Storage Engines and Table Types

776

Compressed storage format is a read-only format that is generated with the myisampack tool.

All MySQL distributions as of version 3.23.19 include myisampack by default. (This version is
when MySQL was placed under the GPL.) For earlier versions, myisampack was included only
with licenses or support agreements, but the server still can read tables that were compressed with
myisampack. Compressed tables can be uncompressed with myisamchk. (For the ISAM storage
engine, compressed tables can be created with pack_isam and uncompressed with isamchk.)

Compressed tables have the following characteristics:

• Compressed tables take very little disk space. This minimizes disk usage, which is very nice
when using slow disks (such as CD-ROMs).

• Each record is compressed separately, so there is very little access overhead. The header for a re-
cord is fixed (1-3 bytes) depending on the biggest record in the table. Each column is com-
pressed differently. There is usually a different Huffman tree for each column. Some of the com-
pression types are:

• Suffix space compression.

• Prefix space compression.

• Numbers with a value of zero are stored using one bit.

• If values in an integer column have a small range, the column is stored using the smallest
possible type. For example, a BIGINT column (eight bytes) can be stored as a TINYINT
column (one byte) if all its values are in the range from -128 to 127.

• If a column has only a small set of possible values, the column type is converted to ENUM.

• A column may use a combination of the preceding compressions.

• Can handle fixed-length or dynamic-length records.

14.1.4. MyISAM Table Problems
The file format that MySQL uses to store data has been extensively tested, but there are always cir-
cumstances that may cause database tables to become corrupted.

14.1.4.1. Corrupted MyISAM Tables

Even though the MyISAM table format is very reliable (all changes to a table made by an SQL state-
ment are written before the statement returns), you can still get corrupted tables if some of the fol-
lowing things happen:

• The mysqld process is killed in the middle of a write.

• Unexpected computer shutdown occurs (for example, the computer is turned off).

• Hardware errors.

• You are using an external program (such as myisamchk) on a table that is being modified by the
server at the same time.

• A software bug in the MySQL or MyISAM code.

Typical symptoms for a corrupt table are:

MySQL Storage Engines and Table Types

777

• You get the following error while selecting data from the table:

Incorrect key file for table: '...'. Try to repair it

• Queries don't find rows in the table or return incomplete data.

You can check whether a MyISAM table is okay with the CHECK TABLE statement. You can repair
a corrupted MyISAM table with REPAIR TABLE. When mysqld is not running, you can also check
or repair a table with the myisamchk command. See Section 13.5.2.3, “CHECK TABLE Syntax”,
Section 13.5.2.6, “REPAIR TABLE Syntax”, and Section 5.7.3.1, “myisamchk Invocation
Syntax”.

If your tables become corrupted frequently, you should try to determine why this is happening. The
most important thing to know is whether the table became corrupted as a result of a server crash.
You can verify this easily by looking for a recent restarted mysqld message in the error log.
If there is such a message, it is likely that table corruption is a result of the server dying. Otherwise,
corruption may have occurred during normal operation, which is a bug. You should try to create a
reproducible test case that demonstrates the problem. See Section A.4.2, “What to Do If MySQL
Keeps Crashing” and Section E.1.6, “Making a Test Case If You Experience Table Corruption”.

14.1.4.2. Problems from Tables Not Being Closed Properly

Each MyISAM index (.MYI) file has a counter in the header that can be used to check whether a ta-
ble has been closed properly. If you get the following warning from CHECK TABLE or
myisamchk, it means that this counter has gone out of sync:

clients are using or haven't closed the table properly

This warning doesn't necessarily mean that the table is corrupted, but you should at least check the
table to verify that it's okay.

The counter works as follows:

• The first time a table is updated in MySQL, a counter in the header of the index files is incre-
mented.

• The counter is not changed during further updates.

• When the last instance of a table is closed (because of a FLUSH TABLES operation or because
there isn't room in the table cache), the counter is decremented if the table has been updated at
any point.

• When you repair the table or check the table and it is found to be okay, the counter is reset to
zero.

• To avoid problems with interaction with other processes that might check the table, the counter
is not decremented on close if it was zero.

In other words, the counter can go out of sync only under these conditions:

• The MyISAM tables are copied without a preceding LOCK TABLES and FLUSH TABLES.

• MySQL has crashed between an update and the final close. (Note that the table may still be
okay, because MySQL always issues writes for everything between each statement.)

• A table was modified by myisamchk --recover or myisamchk --update-state at the same time
that it was in use by mysqld.

MySQL Storage Engines and Table Types

778

• Many mysqld servers are using the table and one server performed a REPAIR TABLE or
CHECK TABLE on the table while it was in use by another server. In this setup, it is safe to use
CHECK TABLE, although you might get the warning from other servers. However, REPAIR
TABLE should be avoided because when one server replaces the data file with a new one, this is
not signaled to the other servers.

In general, it is a bad idea to share a data directory among multiple servers. See Section 5.10,
“Running Multiple MySQL Servers on the Same Machine” for additional discussion.

14.2. The MERGE Storage Engine
The MERGE storage engine was introduced in MySQL 3.23.25. It is also known as the
MRG_MyISAM engine.

A MERGE table is a collection of identical MyISAM tables that can be used as one. ``Identical''
means that all tables have identical column and index information. You can't merge tables in which
the columns are listed in a different order, don't have exactly the same columns, or have the indexes
in different order. However, any or all of the tables can be compressed with myisampack. See Sec-
tion 8.2, “myisampack, the MySQL Compressed Read-only Table Generator”. Differences in table
options such as AVG_ROW_LENGTH, MAX_ROWS, or PACK_KEYS do not matter.

When you create a MERGE table, MySQL creates two files on disk. The files have names that begin
with the table name and have an extension to indicate the file type. An .frm file stores the table
definition, and an .MRG file contains the names of the tables that should be used as one. (Originally,
all used tables had to be in the same database as the MERGE table itself. This restriction has been lif-
ted as of MySQL 4.1.1.)

You can use SELECT, DELETE, UPDATE, and (as of MySQL 4.0) INSERT on the collection of
tables. For the moment, you must have SELECT, UPDATE, and DELETE privileges on the tables
that you map to a MERGE table.

If you DROP the MERGE table, you are dropping only the MERGE specification. The underlying
tables are not affected.

When you create a MERGE table, you must specify a UNION=(list-of-tables) clause that in-
dicates which tables you want to use as one. You can optionally specify an INSERT_METHOD op-
tion if you want inserts for the MERGE table to happen in the first or last table of the UNION list. If
you don't specify any INSERT_METHOD option or specify it with a value of NO, attempts to insert
records into the MERGE table result in an error.

The following example shows how to create a MERGE table:

mysql> CREATE TABLE t1 (
-> a INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
-> message CHAR(20));

mysql> CREATE TABLE t2 (
-> a INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
-> message CHAR(20));

mysql> INSERT INTO t1 (message) VALUES ('Testing'),('table'),('t1');
mysql> INSERT INTO t2 (message) VALUES ('Testing'),('table'),('t2');
mysql> CREATE TABLE total (

-> a INT NOT NULL AUTO_INCREMENT,
-> message CHAR(20), INDEX(a))
-> TYPE=MERGE UNION=(t1,t2) INSERT_METHOD=LAST;

Note that the a column is indexed in the MERGE table, but is not declared as a PRIMARY KEY as it
is in the underlying MyISAM tables. This is necessary because a MERGE table cannot enforce
uniqueness over the set of underlying tables.

After creating the MERGE table, you can do things like this:

MySQL Storage Engines and Table Types

779

mysql> SELECT * FROM total;
+---+---------+
| a | message |
+---+---------+
1	Testing
2	table
3	t1
1	Testing
2	table
3	t2
+---+---------+

Note that you can also manipulate the .MRG file directly from outside of the MySQL server:

shell> cd /mysql-data-directory/current-database
shell> ls -1 t1 t2 > total.MRG
shell> mysqladmin flush-tables

To remap a MERGE table to a different collection of MyISAM tables, you can do one of the follow-
ing:

• DROP the table and re-create it.

• Use ALTER TABLE tbl_name UNION=(...) to change the list of underlying tables.

• Change the .MRG file and issue a FLUSH TABLE statement for the MERGE table and all under-
lying tables to force the storage engine to read the new definition file.

MERGE tables can help you solve the following problems:

• Easily manage a set of log tables. For example, you can put data from different months into sep-
arate tables, compress some of them with myisampack, and then create a MERGE table to use
them as one.

• Obtain more speed. You can split a big read-only table based on some criteria, and then put indi-
vidual tables on different disks. A MERGE table on this could be much faster than using the big
table. (You can also use a RAID table to get the same kind of benefits.)

• Do more efficient searches. If you know exactly what you are looking for, you can search in just
one of the split tables for some queries and use a MERGE table for others. You can even have
many different MERGE tables that use overlapping sets of tables.

• Do more efficient repairs. It's easier to repair the individual tables that are mapped to a MERGE
table than to repair a single really big table.

• Instantly map many tables as one. A MERGE table need not maintain an index of its own because
it uses the indexes of the individual tables. As a result, MERGE table collections are very fast to
create or remap. (Note that you must still specify the index definitions when you create a MERGE
table, even though no indexes are created.)

• If you have a set of tables that you join as a big table on demand or batch, you should instead
create a MERGE table on them on demand. This is much faster and saves a lot of disk space.

• Exceed the file size limit for the operating system. Each MyISAM table is bound by this limit,
but a collection of MyISAM tables is not.

• You can create an alias or synonym for a MyISAM table by defining a MERGE table that maps to
that single table. There should be no really notable performance impact of doing this (only a
couple of indirect calls and memcpy() calls for each read).

MySQL Storage Engines and Table Types

780

The disadvantages of MERGE tables are:

• You can use only identical MyISAM tables for a MERGE table.

• MERGE tables use more file descriptors. If 10 clients are using a MERGE table that maps to 10
tables, the server uses (10*10) + 10 file descriptors. (10 data file descriptors for each of the 10
clients, and 10 index file descriptors shared among the clients.)

• Key reads are slower. When you read a key, the MERGE storage engine needs to issue a read on
all underlying tables to check which one most closely matches the given key. If you then do a
``read-next,'' the MERGE storage engine needs to search the read buffers to find the next key.
Only when one key buffer is used up, the storage engine needs to read the next key block. This
makes MERGE keys much slower on eq_ref searches, but not much slower on ref searches.
See Section 7.2.1, “EXPLAIN Syntax (Get Information About a SELECT)” for more informa-
tion about eq_ref and ref.

14.2.1. MERGE Table Problems
The following are the known problems with MERGE tables:

• If you use ALTER TABLE to change a MERGE table to another table type, the mapping to the
underlying tables is lost. Instead, the rows from the underlying MyISAM tables are copied into
the altered table, which then is assigned the new type.

• Before MySQL 4.1.1, all underlying tables and the MERGE table itself had to be in the same
database.

• REPLACE doesn't work.

• You can't use DROP TABLE, ALTER TABLE, DELETE FROM without a WHERE clause, RE-
PAIR TABLE, TRUNCATE TABLE, OPTIMIZE TABLE, or ANALYZE TABLE on any of the
tables that are mapped into a MERGE table that is ``open.'' If you do this, the MERGE table may
still refer to the original table and you get unexpected results. The easiest way to work around
this deficiency is to issue a FLUSH TABLES statement to ensure that no MERGE tables remain
``open.''

• A MERGE table cannot maintain UNIQUE constraints over the whole table. When you perform
an INSERT, the data goes into the first or last MyISAM table (depending on the value of the
INSERT_METHOD option). MySQL ensures that unique key values remain unique within that
MyISAM table, but not across all the tables in the collection.

• Before MySQL 3.23.49, DELETE FROM merge_table used without a WHERE clause only
clears the mapping for the table. That is, it incorrectly empties the .MRG file rather than deleting
records from the mapped tables.

• Using RENAME TABLE on an active MERGE table may corrupt the table. This is fixed in
MySQL 4.1.x.

• When you create a MERGE table, there is no check whether the underlying tables exist and have
identical structure. When the MERGE table is used, MySQL does a quick check that the record
length for all mapped tables is equal, but this is not foolproof. If you create a MERGE table from
dissimilar MyISAM tables, you are very likely to run into strange problems.

• Index order in the MERGE table and its underlying tables should be the same. If you use ALTER
TABLE to add a UNIQUE index to a table used in a MERGE table, and then use ALTER TABLE
to add a non-unique index on the MERGE table, the index order is different for the tables if there
was an old non-unique index in the underlying table. (This is because ALTER TABLE puts
UNIQUE indexes before non-unique indexes to be able to detect duplicate keys as early as pos-
sible.) Consequently, queries may return unexpected results.

MySQL Storage Engines and Table Types

781

• DROP TABLE on a table that is in use by a MERGE table does not work on Windows because
the MERGE storage engine does the table mapping hidden from the upper layer of MySQL. Be-
cause Windows doesn't allow you to delete files that are open, you first must flush all MERGE
tables (with FLUSH TABLES) or drop the MERGE table before dropping the table.

14.3. The MEMORY (HEAP) Storage Engine
The MEMORY storage engine creates tables with contents that are stored in memory. Before MySQL
4.1, MEMORY tables are called HEAP tables. As of 4.1, HEAP is a synonym for MEMORY, and
MEMORY is the preferred term.

Each MEMORY table is associated with one disk file. The filename begins with the table name and
has an extension of .frm to indicate that it stores the table definition.

To specify explicitly that you want a MEMORY table, indicate that with an ENGINE or TYPE table
option:

CREATE TABLE t (i INT) ENGINE = MEMORY;
CREATE TABLE t (i INT) TYPE = HEAP;

MEMORY tables are stored in memory and use hash indexes by default. This makes them very fast,
and very useful for creating temporary tables. However, when the server shuts down, all data stored
in MEMORY tables is lost. The tables continue to exist because their definitions are stored in the
.frm files on disk, but their contents are empty when the server restarts.

Here is an example that shows how you might create, use, and remove a MEMORY table:

mysql> CREATE TABLE test TYPE=MEMORY
-> SELECT ip,SUM(downloads) AS down
-> FROM log_table GROUP BY ip;

mysql> SELECT COUNT(ip),AVG(down) FROM test;
mysql> DROP TABLE test;

MEMORY tables have the following characteristics:

• Space for MEMORY tables is allocated in small blocks. The tables use 100% dynamic hashing (on
inserting). No overflow areas and no extra key space are needed. There is no extra space needed
for free lists. Deleted rows are put in a linked list and are reused when you insert new data into
the table. MEMORY tables also don't have problems with deletes plus inserts, which is common
with hashed tables.

• MEMORY tables allow up to 32 indexes per table, 16 columns per index, and a maximum key
length of 500 bytes.

• Before MySQL 4.1, the MEMORY storage engine implements only hash indexes. From MySQL
4.1 on, hash indexes are still the default, but you can specify explicitly that a MEMORY table in-
dex should be HASH or BTREE by adding a USING clause:

CREATE TABLE lookup
(id INT, INDEX USING HASH (id))
ENGINE = MEMORY;

CREATE TABLE lookup
(id INT, INDEX USING BTREE (id))
ENGINE = MEMORY;

General characteristics of B-tree and hash indexes are described in Section 7.4.5, “How MySQL
Uses Indexes”.

• You can have non-unique keys in a MEMORY table. (This is an uncommon feature for imple-

MySQL Storage Engines and Table Types

782

mentations of hash indexes.)

• If you have a hash index on a MEMORY table that has a high degree of key duplication (many in-
dex entries containing the same value), updates to the table that affect key values and all deletes
are significantly slower. The degree of slowdown is proportional to the degree of duplication (or,
inversely proportional to the index cardinality). You can use a BTREE index to avoid this prob-
lem.

• MEMORY tables use a fixed record length format.

• MEMORY doesn't support BLOB or TEXT columns.

• MEMORY doesn't support AUTO_INCREMENT columns before MySQL 4.1.0.

• Prior to MySQL 4.0.2, MEMORY doesn't support indexes on columns that can contain NULL val-
ues.

• MEMORY tables are shared between all clients (just like any other non-TEMPORARY table).

• MEMORY table contents are stored in memory, which is a property that MEMORY tables share
with internal tables that the server creates on the fly while processing queries. However, the two
types of tables differ in that MEMORY tables are not subject to storage conversion, whereas in-
ternal tables are:

• If an internal table becomes too large, the server automatically converts it to an on-disk ta-
ble. The size limit is determined by the value of the tmp_table_size system variable.

• MEMORY tables are never converted to disk tables. To ensure that you don't accidentally do
anything foolish, you can set the max_heap_table_size system variable to impose a
maximum size on MEMORY tables. For individual tables, you can also specify a MAX_ROWS
table option in the CREATE TABLE statement.

• The server needs enough extra memory to maintain all MEMORY tables that are in use at the
same time.

• To free memory used by a MEMORY table if you no longer require its contents, you should ex-
ecute DELETE or TRUNCATE TABLE, or else remove the table with DROP TABLE.

• If you want to populate a MEMORY table when the MySQL server starts, you can use the -
-init-file option. For example, you can put statements such as INSERT INTO ... SE-
LECT or LOAD DATA INFILE into the file to load the table from some persistent data source.
See Section 5.2.1, “mysqld Command-Line Options”.

• If you are using replication, the master server's MEMORY tables become empty when it is shut
down and restarted. However, a slave is not aware that these tables have become empty, so it re-
turns out-of-date content if you select data from them. Beginning with MySQL 4.0.18, when a
MEMORY table is used on the master for the first time since the master's startup, a DELETE
FROM statement is written to the master's binary log automatically, thus synchronizing the slave
to the master again. Note that even with this strategy, the slave still has out-of-date data in the
table during the interval between the master's restart and its first use of the table. But if you use
the --init-file option to populate the MEMORY table on the master at startup, it ensures that
the failing time interval is zero.

• The memory needed for one row in a MEMORY table is calculated using the following expres-
sion:

SUM_OVER_ALL_BTREE_KEYS(max_length_of_key + sizeof(char*) * 4)
+ SUM_OVER_ALL_HASH_KEYS(sizeof(char*) * 2)
+ ALIGN(length_of_row+1, sizeof(char*))

ALIGN() represents a round-up factor to cause the row length to be an exact multiple of the
char pointer size. sizeof(char*) is 4 on 32-bit machines and 8 on 64-bit machines.

MySQL Storage Engines and Table Types

783

14.4. The BDB (BerkeleyDB) Storage Engine
Sleepycat Software has provided MySQL with the Berkeley DB transactional storage engine. This
storage engine typically is called BDB for short. Support for the BDB storage engine is included in
MySQL source distributions starting from version 3.23.34a and is activated in MySQL-Max binary
distributions.

BDB tables may have a greater chance of surviving crashes and are also capable of COMMIT and
ROLLBACK operations on transactions. The MySQL source distribution comes with a BDB distribu-
tion that has a couple of small patches to make it work more smoothly with MySQL. You can't use a
non-patched BDB version with MySQL.

We at MySQL AB are working in close cooperation with Sleepycat to keep the quality of the
MySQL/BDB interface high. (Even though Berkeley DB is in itself very tested and reliable, the
MySQL interface is still considered gamma quality. We are improving and optimizing it.)

When it comes to support for any problems involving BDB tables, we are committed to helping our
users locate the problem and create a reproducible test case. Any such test case is forwarded to
Sleepycat, which in turn helps us find and fix the problem. As this is a two-stage operation, any
problems with BDB tables may take a little longer for us to fix than for other storage engines.
However, we anticipate no significant difficulties with this procedure because the Berkeley DB code
itself is used in many applications other than MySQL.

For general information about Berkeley DB, please visit the Sleepycat Web site, ht-
tp://www.sleepycat.com/.

14.4.1. Operating Systems Supported by BDB

Currently, we know that the BDB storage engine works with the following operating systems:

• Linux 2.x Intel

• Sun Solaris (SPARC and x86)

• FreeBSD 4.x/5.x (x86, sparc64)

• IBM AIX 4.3.x

• SCO OpenServer

• SCO UnixWare 7.1.x

BDB does not work with the following operating systems:

• Linux 2.x Alpha

• Linux 2.x AMD64

• Linux 2.x IA-64

• Linux 2.x s390

• Mac OS X

Note: The preceding lists are not complete. We update them as we receive more information.

If you build MySQL from source with support for BDB tables, but the following error occurs when
you start mysqld, it means BDB is not supported for your architecture:

MySQL Storage Engines and Table Types

784

http://www.sleepycat.com/
http://www.sleepycat.com/

bdb: architecture lacks fast mutexes: applications cannot be threaded
Can't init databases

In this case, you must rebuild MySQL without BDB table support or start the server with the -
-skip-bdb option.

14.4.2. Installing BDB

If you have downloaded a binary version of MySQL that includes support for Berkeley DB, simply
follow the usual binary distribution installation instructions. (MySQL-Max distributions include
BDB support.)

If you build MySQL from source, you can enable BDB support by running configure with the -
-with-berkeley-db option in addition to any other options that you normally use. Download a
distribution for MySQL 3.23.34 or newer, change location into its top-level directory, and run this
command:

shell> ./configure --with-berkeley-db [other-options]

For more information, see Section 2.7, “Installing MySQL on Other Unix-Like Systems”, Sec-
tion 5.1.2, “The mysqld-max Extended MySQL Server”, and See Section 2.8, “MySQL Installation
Using a Source Distribution”.

14.4.3. BDB Startup Options
The following options to mysqld can be used to change the behavior of the BDB storage engine:

• --bdb-home=path

The base directory for BDB tables. This should be the same directory you use for --datadir.

• --bdb-lock-detect=method

The BDB lock detection method. The option value should be DEFAULT, OLDEST, RANDOM, or
YOUNGEST.

• --bdb-logdir=path

The BDB log file directory.

• --bdb-no-recover

Don't start Berkeley DB in recover mode.

• --bdb-no-sync

Don't synchronously flush the BDB logs.

• --bdb-shared-data

Start Berkeley DB in multi-process mode. (Don't use DB_PRIVATE when initializing Berkeley
DB.)

• --bdb-tmpdir=path

The BDB temporary file directory.

• --skip-bdb

Disable the BDB storage engine.

MySQL Storage Engines and Table Types

785

See Section 5.2.1, “mysqld Command-Line Options”.

The following system variable affects the behavior of BDB tables:

• bdb_max_lock

The maximum number of locks you can have active on a BDB table.

See Section 5.2.3, “Server System Variables”.

If you use the --skip-bdb option, MySQL does not initialize the Berkeley DB library and this
saves a lot of memory. However, if you use this option, you cannot use BDB tables. If you try to cre-
ate a BDB table, MySQL creates a MyISAM table instead.

Normally, you should start mysqld without the --bdb-no-recover option if you intend to use
BDB tables. However, this may give you problems when you try to start mysqld if the BDB log files
are corrupted. See Section 2.9.2.3, “Starting and Troubleshooting the MySQL Server”.

With the bdb_max_lock variable, you can specify the maximum number of locks that can be act-
ive on a BDB table. The default is 10,000. You should increase this if errors such as the following
occur when you perform long transactions or when mysqld has to examine many rows to execute a
query:

bdb: Lock table is out of available locks
Got error 12 from ...

You may also want to change the binlog_cache_size and max_binlog_cache_size
variables if you are using large multiple-statement transactions. See Section 5.9.4, “The Binary
Log”.

14.4.4. Characteristics of BDB Tables
Each BDB table is stored on disk in two files. The files have names that begin with the table name
and have an extension to indicate the file type. An .frm file stores the table definition, and a .db
file contains the table data and indexes.

To specify explicitly that you want a BDB table, indicate that with an ENGINE or TYPE table op-
tion:

CREATE TABLE t (i INT) ENGINE = BDB;
CREATE TABLE t (i INT) TYPE = BDB;

BerkeleyDB is a synonym for BDB in the ENGINE or TYPE option.

The BDB storage engine provides transactional tables. The way you use these tables depends on the
autocommit mode:

• If you are running with autocommit enabled (which is the default), changes to BDB tables are
committed immediately and cannot be rolled back.

• If you are running with autocommit disabled, changes do not become permanent until you ex-
ecute a COMMIT statement. Instead of committing, you can execute ROLLBACK to forget the
changes.

You can start a transaction with the BEGIN WORK statement to suspend autocommit, or with
SET AUTOCOMMIT=0 to disable autocommit explicitly.

See Section 13.4.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”.

MySQL Storage Engines and Table Types

786

The BDB storage engine has the following characteristics:

• BDB tables can have up to 31 indexes per table, 16 columns per index, and a maximum key size
of 1024 bytes (500 bytes before MySQL 4.0).

• MySQL requires a PRIMARY KEY in each BDB table so that each row can be uniquely identi-
fied. If you don't create one explicitly, MySQL creates and maintains a hidden PRIMARY KEY
for you. The hidden key has a length of five bytes and is incremented for each insert attempt.

• The PRIMARY KEY is faster than any other index, because the PRIMARY KEY is stored to-
gether with the row data. The other indexes are stored as the key data + the PRIMARY KEY, so
it's important to keep the PRIMARY KEY as short as possible to save disk space and get better
speed.

This behavior is similar to that of InnoDB, where shorter primary keys save space not only in
the primary index but in secondary indexes as well.

• If all columns you access in a BDB table are part of the same index or part of the primary key,
MySQL can execute the query without having to access the actual row. In a MyISAM table, this
can be done only if the columns are part of the same index.

• Sequential scanning is slower than for MyISAM tables because the data in BDB tables is stored in
B-trees and not in a separate data file.

• Key values are not prefix- or suffix-compressed like key values in MyISAM tables. In other
words, key information takes a little more space in BDB tables compared to MyISAM tables.

• There are often holes in the BDB table to allow you to insert new rows in the middle of the index
tree. This makes BDB tables somewhat larger than MyISAM tables.

• SELECT COUNT(*) FROM tbl_name is slow for BDB tables, because no row count is
maintained in the table.

• The optimizer needs to know the approximate number of rows in the table. MySQL solves this
by counting inserts and maintaining this in a separate segment in each BDB table. If you don't is-
sue a lot of DELETE or ROLLBACK statements, this number should be accurate enough for the
MySQL optimizer. However, MySQL stores the number only on close, so it may be incorrect if
the server terminates unexpectedly. It should not be fatal even if this number is not 100% cor-
rect. You can update the row count by using ANALYZE TABLE or OPTIMIZE TABLE. See
Section 13.5.2.1, “ANALYZE TABLE Syntax” and Section 13.5.2.5, “OPTIMIZE TABLE Syn-
tax”.

• Internal locking in BDB tables is done at the page level.

• LOCK TABLES works on BDB tables as with other tables. If you don't use LOCK TABLE,
MySQL issues an internal multiple-write lock on the table (a lock that doesn't block other
writers) to ensure that the table is properly locked if another thread issues a table lock.

• To be able to roll back transactions, the BDB storage engine maintains log files. For maximum
performance, you can use the --bdb-logdir option to place the BDB logs on a different disk
than the one where your databases are located.

• MySQL performs a checkpoint each time a new BDB log file is started, and removes any BDB
log files that are not needed for current transactions. You can also use FLUSH LOGS at any
time to checkpoint the Berkeley DB tables.

For disaster recovery, you should use table backups plus MySQL's binary log. See Section 5.7.1,
“Database Backups”.

Warning: If you delete old log files that are still in use, BDB is not able to do recovery at all and
you may lose data if something goes wrong.

• Applications must always be prepared to handle cases where any change of a BDB table may

MySQL Storage Engines and Table Types

787

cause an automatic rollback and any read may fail with a deadlock error.

• If you get full disk with a BDB table, you get an error (probably error 28) and the transaction
should roll back. This contrasts with MyISAM and ISAM tables, for which mysqld waits for
enough free disk before continuing.

14.4.5. Things We Need to Fix for BDB

• It's very slow to open many BDB tables at the same time. If you are going to use BDB tables, you
should not have a very large table cache (for example, with a size larger than 256) and you
should use the --no-auto-rehash option when you use the mysql client. We plan to partly
fix this in 4.0.

• SHOW TABLE STATUS doesn't yet provide very much information for BDB tables.

• Optimize performance.

• Change to not use page locks at all for table scanning operations.

14.4.6. Restrictions on BDB Tables
The following list indicates restrictions that you must observe when using BDB tables:

• Each BDB table stores in the .db file the path to the file as it was created. This was done to be
able to detect locks in a multi-user environment that supports symlinks. However, the con-
sequence is that BDB table files cannot be moved from one database directory to another.

• When making backups of BDB tables, you must either use mysqldump or else make a backup
that includes the files for each BDB table (the .frm and .db files) as well as the BDB log files.
The BDB storage engine stores unfinished transactions in its log files and requires them to be
present when mysqld starts. The BDB logs are the files in the data directory with names of the
form log.XXXXXXXXXX (ten digits).

• If a column that allows NULL values has a unique index, only a single NULL value is allowed.
This differs from other storage engines.

14.4.7. Errors That May Occur When Using BDB Tables

• If the following error occurs when you start mysqld, it means that the new BDB version doesn't
support the old log file format:

bdb: Ignoring log file: .../log.XXXXXXXXXX:
unsupported log version #

In this case, you must delete all BDB logs from your data directory (the files with names that
have the format log.XXXXXXXXXX) and restart mysqld. We also recommend that you then
use mysqldump --opt to dump your BDB tables, drop the tables, and restore them from the
dump file.

• If autocommit mode is disabled and you drop a BDB table that is referenced in another transac-
tion, you may get error messages of the following form in your MySQL error log:

001119 23:43:56 bdb: Missing log fileid entry
001119 23:43:56 bdb: txn_abort: Log undo failed for LSN:

1 3644744: Invalid

MySQL Storage Engines and Table Types

788

This is not fatal, but until the problem is fixed, we recommend that you not drop BDB tables ex-
cept while autocommit mode is enabled. (The fix is not trivial.)

14.5. The EXAMPLE Storage Engine
The EXAMPLE storage engine was added in MySQL 4.1.3. It is a ``stub'' engine that does nothing.
Its purpose is to serve as an example in the MySQL source code that illustrates how to begin writing
new storage engines. As such, it is primarily of interest to developers.

To examine the source for the EXAMPLE engine, look in the sql/examples directory of a source
distribution for MySQL 4.1.3 or newer.

To enable this storage engine, use the --with-example-storage-engine option to config-
ure when you build MySQL.

When you create an EXAMPLE table, the server creates a table definition file in the database direct-
ory. The file begins with the table name and has an .frm extension. No other files are created. No
data can be stored into the table or retrieved from it.

mysql> CREATE TABLE test (i INT) ENGINE = EXAMPLE;
Query OK, 0 rows affected (0.78 sec)
mysql> INSERT INTO test VALUES(1),(2),(3);
ERROR 1031 (HY000): Table storage engine for 'test' doesn't have this option
mysql> SELECT * FROM test;
Empty set (0.31 sec)

The EXAMPLE storage engine does not support indexing.

14.6. The FEDERATED Storage Engine
The FEDERATED storage engine was added in MySQL 5.0.3. It is a storage engine that accesses
data in tables of remote databases rather than in local tables.

To examine the source for the FEDERATED engine, look in the sql directory of a source distribu-
tion for MySQL 5.0.3 or newer.

14.6.1. Installing the FEDERATED Storage Engine
To enable this storage engine, use the --with-federated-storage-engine option to con-
figure when you build MySQL.

14.6.2. Description of the FEDERATED Storage Engine
When you create a FEDERATED table, the server creates a table definition file in the database dir-
ectory. The file begins with the table name and has an .frm extension. No other files are created,
because the actual data is in a remote database. This differs from the way that storage engines for
local tables work.

For local database tables, data files are local. For example, if you create a MyISAM table named
users, the MyISAM handler creates a data file named users.MYD. A handler for local tables
reads, inserts, deletes, and updates data in local data files, and records are stored in a format particu-
lar to the handler. To read records, the handler must parse data into columns. To write records,
column values must be converted to the row format used by the handler and written to the local data
file.

With the MySQL FEDERATED storage engine, there are no local data files for a table (for example,

MySQL Storage Engines and Table Types

789

there is no .MYD file). Instead, a remote database stores the data that normally would be in the table.
This necessitates the use of the MySQL client API to read, delete, update, and insert data. Data re-
trieval is initiated via a SELECT * FROM tbl_name SQL statement. To read the result, rows are
fetched one at a time by using the mysql_fetch_row() C API function, and then converted
from the columns in the SELECT result set to the format that the FEDERATED handler expects.

The basic flow is as follows:

1. SQL calls issues locally

2. MySQL handler API (data in handler format)

3. MySQL client API (data converted to SQL calls)

4. Remote database -> MySQL client API

5. Convert result sets (if any) to handler format

6. Handler API -> Result rows or rows-affected count to local

14.6.3. How to use FEDERATED Tables
The procedure for using FEDERATED tables is very simple. Normally, you have two servers run-
ning, either both on the same host or on different hosts. (It is also possible for a FEDERATED table
to use another table that is managed by the same server, though there is little point in doing so.)

First, you must have a table on the remote server that you want to access with the FEDERATED ta-
ble. Suppose that the remote table is in the federated database and is defined like this:

CREATE TABLE test_table (
id int(20) NOT NULL auto_increment,
name varchar(32) NOT NULL default '',
other int(20) NOT NULL default '0',
PRIMARY KEY (id),
KEY name (name),
KEY other_key (other)

)
ENGINE=MyISAM
DEFAULT CHARSET=latin1 ;

The ENGINE table option could name any storage engine; the table need not be a MyISAM table.

Next, create a FEDERATED table for accessing the remote table. The server where you create the
FEDERATED table is the ``client server.'' On this server, create the table as follows:

CREATE TABLE federated_table (
id int(20) NOT NULL auto_increment,
name varchar(32) NOT NULL default '',
other int(20) NOT NULL default '0',
PRIMARY KEY (id),
KEY name (name),
KEY other_key (other)

)
ENGINE=FEDERATED
DEFAULT CHARSET=latin1
COMMENT='mysql://root@remote_host:9306/federated/test_table';

The structure of this table must be exactly the same as the remote table, except that the ENGINE ta-
ble option should be FEDERATED and the COMMENT table option is a connection string that indic-
ates to the FEDERATED engine how to connect to the remote server.

The FEDERATED engine creates only the test_table.frm file in the federated database.

MySQL Storage Engines and Table Types

790

The remote host information indicates the remote server to which your ``client'' server connects, and
the database and table information indicates which remote table to use as the ``data file.'' In the ex-
ample, the remote server is indicated to be running as remote_host on port 9306, so you want to
start that server so that it is indeed listening to port 9306.

The general form of the connection string in the COMMENT option is as follows:

scheme://user_name[:password]@host_name[:port_num]:/db_name/tbl_name

Only mysql is supported as the scheme at this point, and the password and port number are op-
tional.

Here are some example connection strings:

COMMENT='mysql://username:password@hostname:port/database/tablename'
COMMENT='mysql://username@hostname/database/tablename'
COMMENT='mysql://username:password@hostname/database/tablename'

The use of COMMENT for specifying the connection string is non-optimal and will likely change in
MySQL 5.1. Keep this in mind when you use FEDERATED tables, because it means you'll need to
make some modifications when that happens.

Also, because a password is stored in the connection string as plain text, it can be seen by any user
who can use SHOW CREATE TABLE or SHOW TABLE STATUS for the FEDERATED table.

14.6.4. Limitations of the FEDERATED Storage Engine
What the FEDERATED storage engine does and doesn't support:

• In the first version, the remote server must be a MySQL server. Support by FEDERATED for
other database engines may be be added in the future.

• The remote table that a FEDERATED table points to must exist before you try to access the table
through the FEDERATED table.

• It is possible for one FEDERATED table to point to another, but you must be careful not to create
a loop. You know and have heard the screeching of audio feedback? You know what you see
visually when you place two mirrors in front of each other, how the reflection continues for
eternity? Well, need we say more?!

• There is no support for transactions.

• There is no way for the FEDERATED engine to know if the remote table has changed. The reas-
on for this is that this table has to work like a data file that would never be written to by anything
other than the database. The integrity of the data in the local table could be breached if there was
any change to the remote database.

• The FEDERATED storage engine supports SELECT, INSERT, UPDATE, DELETE, and indexes.
It does not support ALTER TABLE, DROP TABLE, or any other Data Definition Language
statements. The first implementation does not use Prepared statements. It remains to be seen
whether the limited subset of the client API for the server supports this capability.

• The implementation uses SELECT, INSERT, UPDATE, DELETE and not HANDLER.

• FEDERATED tables do not work with the query cache.

Some of these limitations may be lifted in future versions of the FEDERATED handler.

14.7. The ARCHIVE Storage Engine

MySQL Storage Engines and Table Types

791

The ARCHIVE storage engine was added in MySQL 4.1.3. It is used for storing large amounts of
data without indexes in a very small footprint.

To enable this storage engine, use the --with-archive-storage-engine option to config-
ure when you build MySQL.

When you create an ARCHIVE table, the server creates a table definition file in the database direct-
ory. The file begins with the table name and has an .frm extension. The storage engine creates oth-
er files, all having names beginning with the table name. The data and metadata files have exten-
sions of .ARZ and .ARM. An .ARN file may appear during optimization operations.

The ARCHIVE engine supports only INSERT and SELECT. (No deletes, replaces, or updates.) A
SELECT performs a complete table scan. Records are compressed as they are inserted. Use of OP-
TIMIZE TABLE can analyze the table and pack it into a smaller format.

The ARCHIVE engine uses row-level locking.

14.8. The CSV Storage Engine
The CSV storage engine was added in MySQL 4.1.4. This engine stores data in text files using
comma-separated-values format.

To enable this storage engine, use the --with-csv-storage-engine option to configure
when you build MySQL.

When you create a CSV table, the server creates a table definition file in the database directory. The
file begins with the table name and has an .frm extension. The storage engine also creates a data
file. Its name begins with the table name and has a .CSV extension. The data file is a plain text file.
When you store data into the table, the storage engine saves it into the data file in CSV format.

mysql> CREATE TABLE test(i INT, c CHAR(10)) ENGINE = CSV;
Query OK, 0 rows affected (0.12 sec)
mysql> INSERT INTO test VALUES(1,'record one'),(2,'record two');
Query OK, 2 rows affected (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 0
mysql> SELECT * FROM test;
+------+------------+
| i | c |
+------+------------+
| 1 | record one |
| 2 | record two |
+------+------------+
2 rows in set (0.00 sec)

If you examine the test.CSV file in the database directory after executing the preceding state-
ments, its contents look like this:

"1","record one"
"2","record two"

The CSV storage engine does not support indexing.

14.9. The ISAM Storage Engine
The original storage engine in MySQL was the ISAM engine. It was the only storage engine avail-
able until MySQL 3.23, when the improved MyISAM engine was introduced as the default. ISAM is
deprecated. As of MySQL 4.1, it's included in the source but not enabled in binary distributions. It is
not available in MySQL 5.0. Embedded MySQL server versions do not support ISAM tables by de-
fault.

Due to the deprecated status of ISAM, and because MyISAM is an improvement over ISAM, you are

MySQL Storage Engines and Table Types

792

advised to convert any remaining ISAM tables to MyISAM as soon as possible. To convert an ISAM
table to a MyISAM table, use an ALTER TABLE statement:

mysql> ALTER TABLE tbl_name TYPE = MYISAM;

For more information about MyISAM, see Section 14.1, “The MyISAM Storage Engine”.

Each ISAM table is stored on disk in three files. The files have names that begin with the table name
and have an extension to indicate the file type. An .frm file stores the table definition. The data file
has an .ISD extension. The index file has an .ISM extension.

ISAM uses B-tree indexes.

You can check or repair ISAM tables with the isamchk utility. See Section 5.7.3.7, “Using myis-
amchk for Crash Recovery”.

ISAM has the following properties:

• Compressed and fixed-length keys

• Fixed and dynamic record length

• 16 indexes per table, with 16 key parts per key

• Maximum key length 256 bytes (default)

• Data values are stored in machine format; this is fast, but machine/OS dependent

Many of the properties of MyISAM tables are also true for ISAM tables. However, there are also
many differences. The following list describes some of the ways that ISAM is distinct from MyIS-
AM:

• Not binary portable across OS/platforms.

• Can't handle tables larger than 4GB.

• Only supports prefix compression on strings.

• Smaller (more restrictive) key limits.

• Dynamic tables become more fragmented.

• Doesn't support MERGE tables.

• Tables are checked and repaired with isamchk rather than with myisamchk.

• Tables are compressed with pack_isam rather than with myisampack.

• Cannot be used with the BACKUP TABLE or RESTORE TABLE backup-related statements.

• Cannot be used with the CHECK TABLE, REPAIR TABLE, OPTIMIZE TABLE, or ANA-
LYZE TABLE table-maintenance statements.

• No support for full-text searching or spatial data types.

• No support for multiple character sets per table.

• Indexes cannot be assigned to specific key caches.

MySQL Storage Engines and Table Types

793

Chapter 15. The InnoDB Storage
Engine
15.1. InnoDB Overview

InnoDB provides MySQL with a transaction-safe (ACID compliant) storage engine with commit,
rollback, and crash recovery capabilities. InnoDB does locking on the row level and also provides
an Oracle-style consistent non-locking read in SELECT statements. These features increase multi-
user concurrency and performance. There is no need for lock escalation in InnoDB because row-
level locks in InnoDB fit in very little space. InnoDB also supports FOREIGN KEY constraints. In
SQL queries you can freely mix InnoDB type tables with other table types of MySQL, even within
the same query.

InnoDB has been designed for maximum performance when processing large data volumes. Its
CPU efficiency is probably not matched by any other disk-based relational database engine.

Fully integrated with MySQL Server, the InnoDB storage engine maintains its own buffer pool for
caching data and indexes in main memory. InnoDB stores its tables and indexes in a tablespace,
which may consist of several files (or raw disk partitions). This is different from, for example, My-
ISAM tables where each table is stored using separate files. InnoDB tables can be of any size even
on operating systems where file size is limited to 2GB.

InnoDB is included in binary distributions by default as of MySQL 4.0. For information about In-
noDB support in MySQL 3.23, see Section 15.3, “InnoDB in MySQL 3.23”. Starting from MySQL
4.1.5, the new Windows installer makes InnoDB the MySQL default table type on Windows.

InnoDB is used in production at numerous large database sites requiring high performance. The
famous Internet news site Slashdot.org runs on InnoDB. Mytrix, Inc. stores over 1TB of data in
InnoDB, and another site handles an average load of 800 inserts/updates per second in InnoDB.

InnoDB is published under the same GNU GPL License Version 2 (of June 1991) as MySQL. For
more information on MySQL licensing, see http://www.mysql.com/company/legal/licensing/.

15.2. InnoDB Contact Information
Contact information for Innobase Oy, producer of the InnoDB engine:

Web site: http://www.innodb.com/
Email: <sales@innodb.com>
Phone: +358-9-6969 3250 (office)

+358-40-5617367 (mobile)
Innobase Oy Inc.
World Trade Center Helsinki
Aleksanterinkatu 17
P.O.Box 800
00101 Helsinki
Finland

15.3. InnoDB in MySQL 3.23
Beginning with MySQL 4.0, InnoDB is enabled by default, so the following information applies
only to MySQL 3.23.

InnoDB tables are included in the MySQL source distribution starting from 3.23.34a and are activ-
ated in the MySQL-Max binaries of the 3.23 series. For Windows, the MySQL-Max binaries are in-
cluded in the standard distribution.

794

http://www.mysql.com/company/legal/licensing/
http://www.innodb.com/

If you have downloaded a binary version of MySQL that includes support for InnoDB, simply fol-
low the instructions of the MySQL manual for installing a binary version of MySQL. If you have
MySQL 3.23 installed, the simplest way to install MySQL-Max is to replace the executable mysqld
server with the corresponding executable from the MySQL-Max distribution. MySQL and MySQL-
Max differ only in the server executable. See Section 2.7, “Installing MySQL on Other Unix-Like
Systems” and Section 5.1.2, “The mysqld-max Extended MySQL Server”.

To compile the MySQL source code with InnoDB support, download MySQL 3.23.34a or newer
from http://www.mysql.com/ and configure MySQL with the --with-innodb option. See Sec-
tion 2.8, “MySQL Installation Using a Source Distribution”.

To use InnoDB tables with MySQL 3.23, you must specify configuration parameters in the
[mysqld] section of the my.cnf option file. On Windows, you can use my.ini instead. If you
do not configure InnoDB in the option file, InnoDB does not start. (From MySQL 4.0 on, In-
noDB uses default parameters if you do not specify any. However, to get best performance, it is still
recommended that you use parameters appropriate for your system, as discussed in Section 15.4,
“InnoDB Configuration”.)

In MySQL 3.23, you must specify at the minimum an innodb_data_file_path value to con-
figure the InnoDB data files. For example, to configure InnoDB to use a single 500MB data file,
place the following setting in the [mysqld] section of your option file:

[mysqld]
innodb_data_file_path=ibdata1:500M

InnoDB creates the ibdata1 file in the MySQL data directory by default. To specify the location
explicitly, specify an innodb_data_home_dir setting. See Section 15.4, “InnoDB Configura-
tion”.

15.4. InnoDB Configuration
To enable InnoDB tables in MySQL 3.23, see Section 15.3, “InnoDB in MySQL 3.23”.

From MySQL 4.0 on, the InnoDB storage engine is enabled by default. If you don't want to use
InnoDB tables, you can add the skip-innodb option to your MySQL option file.

Two important disk-based resources managed by the InnoDB storage engine are its tablespace data
files and its log files.

If you specify no InnoDB configuration options, MySQL 4.0 and above creates an auto-extending
10MB data file named ibdata1 and two 5MB log files named ib_logfile0 and
ib_logfile1 in the MySQL data directory. (In MySQL 4.0.0 and 4.0.1, the data file is 64MB
and not auto-extending.) In MySQL 3.23, InnoDB does not start if you provide no configuration
options.

Note: To get good performance, you should explicitly provide InnoDB parameters as discussed in
the following examples. Naturally, you should edit the settings to suit your hardware and require-
ments.

To set up the InnoDB tablespace files, use the innodb_data_file_path option in the
[mysqld] section of the my.cnf option file. On Windows, you can use my.ini instead. The
value of innodb_data_file_path should be a list of one or more data file specifications. If
you name more than one data file, separate them by semicolon (';') characters:

innodb_data_file_path=datafile_spec1[;datafile_spec2]...

For example, a setting that explicitly creates a tablespace having the same characteristics as the
MySQL 4.0 default is as follows:

[mysqld]
innodb_data_file_path=ibdata1:10M:autoextend

The InnoDB Storage Engine

795

http://www.mysql.com/

This setting configures a single 10MB data file named ibdata1 that is auto-extending. No location
for the file is given, so the default is the MySQL data directory.

Sizes are specified using M or G suffix letters to indicate units of MB or GB.

A tablespace containing a fixed-size 50MB data file named ibdata1 and a 50MB auto-extending
file named ibdata2 in the data directory can be configured like this:

[mysqld]
innodb_data_file_path=ibdata1:50M;ibdata2:50M:autoextend

The full syntax for a data file specification includes the filename, its size, and several optional attrib-
utes:

file_name:file_size[:autoextend[:max:max_file_size]]

The autoextend attribute and those following can be used only for the last data file in the in-
nodb_data_file_path line. autoextend is available starting from MySQL 3.23.50 and
4.0.2.

If you specify the autoextend option for the last data file, InnoDB extends the data file if it runs
out of free space in the tablespace. The increment is 8MB at a time.

If the disk becomes full, you might want to add another data file on another disk. Instructions for re-
configuring an existing tablespace are given in Section 15.8, “Adding and Removing InnoDB Data
and Log Files”.

InnoDB is not aware of the maximum file size, so be cautious on filesystems where the maximum
file size is 2GB. To specify a maximum size for an auto-extending data file, use the max attribute.
The following configuration allows ibdata1 to grow up to a limit of 500MB:

[mysqld]
innodb_data_file_path=ibdata1:10M:autoextend:max:500M

InnoDB creates tablespace files in the MySQL data directory by default. To specify a location ex-
plicitly, use the innodb_data_home_dir option. For example, to use two files named ib-
data1 and ibdata2 but create them in the /ibdata directory, configure InnoDB like this:

[mysqld]
innodb_data_home_dir = /ibdata
innodb_data_file_path=ibdata1:50M;ibdata2:50M:autoextend

Note: InnoDB does not create directories, so make sure that the /ibdata directory exists before
you start the server. This is also true of any log file directories that you configure. Use the Unix or
DOS mkdir command to create any necessary directories.

InnoDB forms the directory path for each data file by textually concatenating the value of in-
nodb_data_home_dir to the data file name, adding a slash or backslash between if needed. If
the innodb_data_home_dir option is not mentioned in my.cnf at all, the default value is the
``dot'' directory ./, which means the MySQL data directory.

If you specify innodb_data_home_dir as an empty string, you can specify absolute paths for
the data files listed in the innodb_data_file_path value. The following example is equival-
ent to the preceding one:

[mysqld]
innodb_data_home_dir =
innodb_data_file_path=/ibdata/ibdata1:50M;/ibdata/ibdata2:50M:autoextend

The InnoDB Storage Engine

796

A simple my.cnf example. Suppose that you have a computer with 128MB RAM and one hard
disk. The following example shows possible configuration parameters in my.cnf or my.ini for
InnoDB. The example assumes the use of MySQL-Max 3.23.50 or later or MySQL 4.0.2 or later
because it uses the autoextend attribute.

This example suits most users, both on Unix and Windows, who do not want to distribute InnoDB
data files and log files on several disks. It creates an auto-extending data file ibdata1 and two
InnoDB log files ib_logfile0 and ib_logfile1 in the MySQL data directory. Also, the
small archived InnoDB log file ib_arch_log_0000000000 that InnoDB creates automatic-
ally ends up in the data directory.

[mysqld]
You can write your other MySQL server options here
...
Data files must be able to hold your data and indexes.
Make sure that you have enough free disk space.
innodb_data_file_path = ibdata1:10M:autoextend
#
Set buffer pool size to 50-80% of your computer's memory
set-variable = innodb_buffer_pool_size=70M
set-variable = innodb_additional_mem_pool_size=10M
#
Set the log file size to about 25% of the buffer pool size
set-variable = innodb_log_file_size=20M
set-variable = innodb_log_buffer_size=8M
#
innodb_flush_log_at_trx_commit=1

Make sure that the MySQL server has the proper access rights to create files in the data directory.
More generally, the server must have access rights in any directory where it needs to create data
files or log files.

Note that data files must be less than 2GB in some filesystems. The combined size of the log files
must be less than 4GB. The combined size of data files must be at least 10MB.

When you create an InnoDB tablespace for the first time, it is best that you start the MySQL server
from the command prompt. InnoDB then prints the information about the database creation to the
screen, so you can see what is happening. For example, on Windows, if mysqld-max is located in
C:\mysql\bin, you can start it like this:

C:\> C:\mysql\bin\mysqld-max --console

If you do not send server output to the screen, check the server's error log to see what InnoDB
prints during the startup process.

See Section 15.6, “Creating the InnoDB Tablespace” for an example of what the information dis-
played by InnoDB should look like.

Where to specify options on Windows? The rules for option files on Windows are as follows:

• Only one of my.cnf or my.ini should be created.

• The my.cnf file should be placed in the root directory of the C: drive.

• The my.ini file should be placed in the WINDIR directory; for example, C:\WINDOWS or
C:\WINNT. You can use the SET command at the command prompt in a console window to
print the value of WINDIR:

C:\> SET WINDIR
windir=C:\WINNT

• If your PC uses a boot loader where the C: drive is not the boot drive, your only option is to use

The InnoDB Storage Engine

797

the my.ini file.

Where to specify options on Unix? On Unix, mysqld reads options from the following files, if
they exist, in the following order:

• /etc/my.cnf

Global options.

• DATADIR/my.cnf

Server-specific options.

• defaults-extra-file

The file specified with the --defaults-extra-file option.

• ~/.my.cnf

User-specific options.

DATADIR represents the MySQL data directory that was specified as a configure option when
mysqld was compiled (typically /usr/local/mysql/data for a binary installation or /
usr/local/var for a source installation).

If you want to make sure that mysqld reads options only from a specific file, you can use the -
-defaults-option as the first option on the command line when starting the server:

mysqld --defaults-file=your_path_to_my_cnf

An advanced my.cnf example. Suppose that you have a Linux computer with 2GB RAM and
three 60GB hard disks (at directory paths /, /dr2 and /dr3). The following example shows pos-
sible configuration parameters in my.cnf for InnoDB.

[mysqld]
You can write your other MySQL server options here
...
innodb_data_home_dir =
#
Data files must be able to hold your data and indexes
innodb_data_file_path = /ibdata/ibdata1:2000M;/dr2/ibdata/ibdata2:2000M:autoextend
#
Set buffer pool size to 50-80% of your computer's memory,
but make sure on Linux x86 total memory usage is < 2GB
set-variable = innodb_buffer_pool_size=1G
set-variable = innodb_additional_mem_pool_size=20M
innodb_log_group_home_dir = /dr3/iblogs
#
innodb_log_arch_dir must be the same as innodb_log_group_home_dir
(starting from 4.0.6, you can omit it)
innodb_log_arch_dir = /dr3/iblogs
set-variable = innodb_log_files_in_group=2
#
Set the log file size to about 25% of the buffer pool size
set-variable = innodb_log_file_size=250M
set-variable = innodb_log_buffer_size=8M
#
innodb_flush_log_at_trx_commit=1
set-variable = innodb_lock_wait_timeout=50
#
Uncomment the next lines if you want to use them
#innodb_flush_method=fdatasync
#set-variable = innodb_thread_concurrency=5

The InnoDB Storage Engine

798

Note that the example places the two data files on different disks. InnoDB fills the tablespace be-
ginning with the first data file. In some cases, it improves the performance of the database if all data
is not placed on the same physical disk. Putting log files on a different disk from data is very often
beneficial for performance. You can also use raw disk partitions (raw devices) as InnoDB data
files, which may speed up I/O. See Section 15.15.2, “Using Raw Devices for the Tablespace”.

Warning: On 32-bit GNU/Linux x86, you must be careful not to set memory usage too high.
glibc may allow the process heap to grow over thread stacks, which crashes your server. It is a
risk if the value of the following expression is close to or exceeds 2GB:

innodb_buffer_pool_size
+ key_buffer_size
+ max_connections*(sort_buffer_size+read_buffer_size+binlog_cache_size)
+ max_connections*2MB

Each thread uses a stack (often 2MB, but only 256KB in MySQL AB binaries) and in the worst case
also uses sort_buffer_size + read_buffer_size additional memory.

Starting from MySQL 4.1, by compiling MySQL yourself, you can use up to 64GB of physical
memory in 32-bit Windows. See the description for innodb_buffer_pool_awe_mem_mb in
Section 15.5, “InnoDB Startup Options”.

How to tune other mysqld server parameters? The following values are typical and suit most
users:

[mysqld]
skip-external-locking
set-variable = max_connections=200
set-variable = read_buffer_size=1M
set-variable = sort_buffer_size=1M
#
Set key_buffer to 5 - 50% of your RAM depending on how much
you use MyISAM tables, but keep key_buffer_size + InnoDB
buffer pool size < 80% of your RAM
set-variable = key_buffer_size=...

15.5. InnoDB Startup Options
This section describes the InnoDB-related server options. In MySQL 4.0 and up, all of them can be
specified in --opt_name=value form on the command line or in option files. Before MySQL
4.0, numeric options should be specified using --set-variable=opt_name=value or -O
opt_name=value syntax.

• innodb_additional_mem_pool_size

The size of a memory pool InnoDB uses to store data dictionary information and other internal
data structures. The more tables you have in your application, the more memory you need to al-
locate here. If InnoDB runs out of memory in this pool, it starts to allocate memory from the
operating system, and writes warning messages to the MySQL error log. The default value is
1MB.

• innodb_autoextend_increment

The increment size (in megabytes) for extending the size of an autoextending tablespace when it
becomes full. The default value is 8. This option is available starting from MySQL 4.0.24 and
4.1.5. As of MySQL 4.0.24 and 4.1.6, it can be changed at runtime as a global system variable.

• innodb_buffer_pool_awe_mem_mb

The InnoDB Storage Engine

799

The size of the buffer pool (in MB), if it is placed in the AWE memory of 32-bit Windows.
Available from MySQL 4.1.0 and relevant only in 32-bit Windows. If your 32-bit Windows op-
erating system supports more than 4GB memory, so-called ``Address Windowing Extensions,''
you can allocate the InnoDB buffer pool into the AWE physical memory using this parameter.
The maximum possible value for this is 64000. If this parameter is specified, in-
nodb_buffer_pool_size is the window in the 32-bit address space of mysqld where In-
noDB maps that AWE memory. A good value for innodb_buffer_pool_size is 500MB.

• innodb_buffer_pool_size

The size of the memory buffer InnoDB uses to cache data and indexes of its tables. The larger
you set this value, the less disk I/O is needed to access data in tables. On a dedicated database
server, you may set this to up to 80% of the machine physical memory size. However, do not set
it too large because competition for the physical memory might cause paging in the operating
system.

• innodb_checksums

InnoDB uses checksum validation on all pages read from the disk to ensure extra fault tolerance
against broken hardware or data files. However, under some rare circumstances (such as when
running benchmarks) this ``extra safety'' feature is unneeded. In such cases, this option (which is
enabled by default) can be turned off with --skip-innodb-checksums. This option was
added in MySQL 5.0.3.

• innodb_data_file_path

The paths to individual data files and their sizes. The full directory path to each data file is ac-
quired by concatenating innodb_data_home_dir to each path specified here. The file sizes
are specified in megabytes or gigabytes (1024MB) by appending M or G to the size value. The
sum of the sizes of the files must be at least 10MB. On some operating systems, files must be
less than 2GB. If you do not specify innodb_data_file_path, the default behavior start-
ing from 4.0 is to create a single 10MB auto-extending data file named ibdata1. Starting from
3.23.44, you can set the file size bigger than 4GB on those operating systems that support big
files. You can also use raw disk partitions as data files. See Section 15.15.2, “Using Raw
Devices for the Tablespace”.

• innodb_data_home_dir

The common part of the directory path for all InnoDB data files. If you do not set this value, the
default is the MySQL data directory. You can specify this also as an empty string, in which case
you can use absolute file paths in innodb_data_file_path.

• innodb_doublewrite

By default, InnoDB stores all data twice, first to the doublewrite buffer, and then to the actual
data files. This option can be used to disable this functionality. Like innodb_checksums,
this option is enabled by default; it can be turned off with --skip-innodb-doublewrite
for benchmarks or cases when top performance is needed rather than concern for data integrity
or possible failures. This option was added in MySQL 5.0.3.

• innodb_fast_shutdown

By default, InnoDB does a full purge and an insert buffer merge before a shutdown. These op-
erations can take minutes, or even hours in extreme cases. If you set this parameter to 1, In-
noDB skips these operations at shutdown. This option is available starting from MySQL 3.23.44
and 4.0.1. Its default value is 1 starting from 3.23.50.

• innodb_file_io_threads

The number of file I/O threads in InnoDB. Normally this should be left at the default value of 4,
but disk I/O on Windows may benefit from a larger number. On Unix, increasing the number has

The InnoDB Storage Engine

800

no effect; InnoDB always uses the default value. This option is available as of MySQL 3.23.37.

• innodb_file_per_table

NOTE: CRITICAL BUG in 4.1 if you specify innodb_file_per_table in my.cnf! If
you shut down mysqld, then records may disappear from the secondary indexes of a table. See
(Bug #7496) for more information and workarounds. This is fixed in 4.1.9, but another bug (Bug
#8021) bit the Windows version in 4.1.9, and in the Windows version of 4.1.9 you must put the
line innodb_flush_method=unbuffered to your my.cnf or my.ini to get mysqld to
work.

This option causes InnoDB to create each new table using its own .ibd file for storing data
and indexes, rather than in the shared tablespace. See Section 15.7.6, “Using Per-Table Ta-
blespaces”. This option is available as of MySQL 4.1.1.

• innodb_flush_log_at_trx_commit

When innodb_flush_log_at_trx_commit is set to 0, once per second the log buffer is
written out to the log file, and the flush to disk operation is performed on the log file, but noth-
ing is done at a transaction commit. When this value is 1 (the default), at each transaction com-
mit the log buffer is written out to the log file, and the flush to disk operation is performed on
the log file. When set to 2, at each commit the log buffer is written out to the file, but the flush to
disk operation is not performed on it. However, the flushing on the log file takes place once per
second also in the case of 2. We must note that the once-per-second flushing is not 100% guar-
anteed to happen every second, due to process scheduling issues. You can achieve better per-
formance by setting the value different from 1, but then you can lose at most one second worth
of transactions in a crash. If you set the value to 0, then any mysqld process crash can erase the
last second of transactions. If you set the value to 2, then only an operating system crash or a
power outage can erase the last second of transactions. Note that many operating systems and
some disk hardware fool in the flush-to-disk operation. They may tell to mysqld that the flush
has taken place, though it has not. Then the durability of transactions is not guaranteed even
with the setting 1, and in the worst case a power outage can even corrupt the InnoDB database.
Using a battery-backed disk cache in the SCSI disk controller or in the disk itself speeds up file
flushes, and makes the operation safer. You can also try using the Unix command hdparm to
disable the caching of disk writes in hardware caches, or use some other command specific to
the hardware vendor. The default value of this option is 1 (prior to MySQL 4.0.13, the default is
0).

• innodb_flush_method

This option is relevant only on Unix systems. If set to fdatasync, InnoDB uses fsync() to
flush both the data and log files. If set to O_DSYNC, InnoDB uses O_SYNC to open and flush
the log files, but uses fsync() to flush the data files. If O_DIRECT is specified (available on
some GNU/Linux versions starting from MySQL 4.0.14), InnoDB uses O_DIRECT to open the
data files, and uses fsync() to flush both the data and log files. Note that InnoDB does not
use fdatasync or O_DSYNC by default because there have been problems with them on many
Unix flavors. This option is available as of MySQL 3.23.40.

• innodb_force_recovery

Warning: This option should be defined only in an emergency situation when you want to dump
your tables from a corrupt database! Possible values are from 1 to 6. The meanings of these val-
ues are described in Section 15.9.1, “Forcing Recovery”. As a safety measure, InnoDB prevents
a user from modifying data when this option is greater than 0. This option is available starting
from MySQL 3.23.44.

• innodb_lock_wait_timeout

The timeout in seconds an InnoDB transaction may wait for a lock before being rolled back.
InnoDB automatically detects transaction deadlocks in its own lock table and rolls back the
transaction. Beginning with MySQL 4.0.20 and 4.1.2, InnoDB notices locks set using the LOCK
TABLES statement. Before that, if you use the LOCK TABLES statement, or other transaction-
safe storage engines than InnoDB in the same transaction, a deadlock may arise that InnoDB

The InnoDB Storage Engine

801

cannot notice. In cases like this, the timeout is useful to resolve the situation. The default is 50
seconds.

• innodb_locks_unsafe_for_binlog

This option turns off next-key locking in InnoDB searches and index scans. Default value for
this option is false.

Normally InnoDB uses an algorithm called ``next-key locking.'' InnoDB does the row-level
locking in such a way that when it searches or scans an index of a table, it sets shared or exclus-
ive locks on the index records it encounters. Thus the row-level locks are actually index record
locks. The locks InnoDB sets on index records also affect the ``gap'' before that index record. If
a user has a shared or exclusive lock on record R in an index, another user cannot insert a new
index record immediately before R in the index order. This option causes InnoDB not to use
next-key locking in searches or index scans. Next-key locking is still used to ensure foreign key
constraints and duplicate key checking. Note that using this option may cause phantom prob-
lems: Suppose that you want to read and lock all children from the child table with an identifi-
er value larger than 100, with the intent of updating some column in the selected rows later:

SELECT * FROM child WHERE id > 100 FOR UPDATE;

Suppose that there is an index on the id column. The query scans that index starting from the
first record where id is bigger than 100. If the locks set on the index records do not lock out in-
serts made in the gaps, a new row is meanwhile inserted to the table. If you execute the same
SELECT within the same transaction, you see a new row in the result set returned by the query.
This also means, that if new items are added to the database, InnoDB does not guarantee serial-
izability instead conflict serializability is still guaranteed. Therefore, if this option is used In-
noDB guarantees at most isolation level READ COMMITTED. This option is available as of
MySQL 4.1.4.

Starting from MySQL 5.0.2 this option is even more unsafe. InnoDB in an UPDATE or a DE-
LETE only locks rows that it updates or deletes. This greatly reduces the probability of dead-
locks but they can happen. Note that this option still does not allow e.g. UPDATE to overtake
other UPDATE even the case when both updates different rows. Consider following example:

CREATE TABLE A(A INT NOT NULL, B INT);
INSERT INTO A VALUES (1,2),(2,3),(3,2),(4,3),(5,2);
COMMIT;

If one connection executes a query:

SET AUTOCOMMIT = 0;
UPDATE A SET B = 5 WHERE B = 3;

and the other connection executes after the first one a query:

SET AUTOCOMMIT = 0;
UPDATE A SET B = 4 WHERE B = 2;

Then query two has to wait for a commit or rollback of query one, because query one has an ex-
clusive lock to a row (2,3), and query two while scanning rows also tries to take an exclusive
lock to the row (2,3) which it cannot have. This is because query two first takes an exclusive
lock to a row and then checks does this row belong to the result set and if not then releases the
unnecessary lock when option innodb_locks_unsafe_for_binlog is used.

Therefore, query one is executed as follows:

The InnoDB Storage Engine

802

x-lock(1,2)
unlock(1,2)
x-lock(2,3)
update(2,3) to (2,5)
x-lock(3,2)
unlock(3,2)
x-lock(4,3)
update(4,3) to (4,5)
x-lock(5,2)
unlock(5,2)

and then query two is executed as follows:

x-lock(1,2)
update(1,2) to (1,4)
x-lock(2,3) - wait for query one to commit or rollback

• innodb_log_arch_dir

The directory where fully written log files would be archived if we used log archiving. The
value of this parameter should currently be set the same as
innodb_log_group_home_dir. Starting from MySQL 4.0.6, you may omit this option.

• innodb_log_archive

This value should currently be set to 0. Because recovery from a backup is done by MySQL us-
ing its own log files, there is currently no need to archive InnoDB log files. The default for this
option is 0.

• innodb_log_buffer_size

The size of the buffer that InnoDB uses to write to the log files on disk. Sensible values range
from 1MB to 8MB. The default is 1MB. A large log buffer allows large transactions to run
without a need to write the log to disk before the transactions commit. Thus, if you have big
transactions, making the log buffer larger saves disk I/O.

• innodb_log_file_size

The size of each log file in a log group. The combined size of log files must be less than 4GB on
32-bit computers. The default is 5MB. Sensible values range from 1MB to 1/N-th of the size of
the buffer pool, below, where N is the number of log files in the group. The larger the value, the
less checkpoint flush activity is needed in the buffer pool, saving disk I/O. But larger log files
also mean that recovery is slower in case of a crash.

• innodb_log_files_in_group

The number of log files in the log group. InnoDB writes to the files in a circular fashion. The
default is 2 (recommended).

• innodb_log_group_home_dir

The directory path to the InnoDB log files. It must have the same value as in-
nodb_log_arch_dir. If you do not specify any InnoDB log parameters, the default is to
create two 5MB files names ib_logfile0 and ib_logfile1 in the MySQL data directory.

• innodb_max_dirty_pages_pct

This is an integer in the range from 0 to 100. The default is 90. The main thread in InnoDB tries
to flush pages from the buffer pool so that at most this many percent of pages may not yet
flushed been flushed at any particular time. Available starting from 4.0.13 and 4.1.1. If you have

The InnoDB Storage Engine

803

the SUPER privilege, this percentage can be changed while the server is running:

SET GLOBAL innodb_max_dirty_pages_pct = value;

• innodb_max_purge_lag

This option controls how to delay INSERT, UPDATE and DELETE operations when the purge
operations are lagging. The default value of this parameter is zero, meaning that there are no
delays. When the value is greater than zero, InnoDB may delay new row operations, as de-
scribed in Section 15.13, “Implementation of Multi-Versioning”. This option can be changed at
runtime as a global system variable. innodb_max_purge_lag is available as of MySQL
4.0.22 and 4.1.6.

• innodb_mirrored_log_groups

The number of identical copies of log groups we keep for the database. Currently this should be
set to 1.

• innodb_open_files

This option is relevant only if you use multiple tablespaces in InnoDB. It specifies the maxim-
um number of .ibd files that InnoDB can keep open at one time. The minimum value is 10.
The default is 300. This option is available as of MySQL 4.1.1.

The file descriptors used for .ibd files are for InnoDB only. They are independent of those
specified by the --open-files-limit server option, and do not affect the operation of the
table cache.

• innodb_table_locks

Starting from MySQL 4.0.20, and 4.1.2, InnoDB honors LOCK TABLES; MySQL does not re-
turn from LOCK TABLE .. WRITE until all other threads have released all their locks to the
table. In MySQL 4.0.19 and before, InnoDB ignored table locks, which allowed one to more
easily simulate transactions with a combination of MyISAM and InnoDB tables. The default
value is 1, which means that LOCK TABLES causes also InnoDB internally to take a table lock.
In applications using AUTOCOMMIT=1, InnoDB's internal table locks can cause deadlocks. You
can set innodb_table_locks=0 in my.cnf to remove that problem.

• innodb_thread_concurrency

InnoDB tries to keep the number of operating system threads concurrently inside InnoDB less
than or equal to the limit given by this parameter. The default value is 8. If you have low per-
formance and SHOW INNODB STATUS reveals many threads waiting for semaphores, you may
have thread thrashing and should try setting this parameter lower or higher. If you have a com-
puter with many processors and disks, you can try setting the value higher to better utilize the re-
sources of you computer. A recommended value is the sum of the number of processors and
disks your system has. A value of 500 or greater disables the concurrency checking. This option
is available starting from MySQL 3.23.44 and 4.0.1.

• innodb_status_file

This option causes InnoDB to create a file <datadir>/innodb_status.<pid> for peri-
odical SHOW INNODB STATUS output. This option is available as of MySQL 4.0.21.

15.6. Creating the InnoDB Tablespace
Suppose that you have installed MySQL and have edited your option file so that it contains the ne-
cessary InnoDB configuration parameters. Before starting MySQL, you should verify that the dir-

The InnoDB Storage Engine

804

ectories you have specified for InnoDB data files and log files exist and that the MySQL server has
access rights to those directories. InnoDB cannot create directories, only files. Check also that you
have enough disk space for the data and log files.

It is best to run the MySQL server mysqld from the command prompt when you create an InnoDB
database, not from the mysqld_safe wrapper or as a Windows service. When you run from a com-
mand prompt you see what mysqld prints and what is happening. On Unix, just invoke mysqld. On
Windows, use the --console option.

When you start the MySQL server after initially configuring InnoDB in your option file, InnoDB
creates your data files and log files. InnoDB prints something like the following:

InnoDB: The first specified datafile /home/heikki/data/ibdata1
did not exist:
InnoDB: a new database to be created!
InnoDB: Setting file /home/heikki/data/ibdata1 size to 134217728
InnoDB: Database physically writes the file full: wait...
InnoDB: datafile /home/heikki/data/ibdata2 did not exist:
new to be created
InnoDB: Setting file /home/heikki/data/ibdata2 size to 262144000
InnoDB: Database physically writes the file full: wait...
InnoDB: Log file /home/heikki/data/logs/ib_logfile0 did not exist:
new to be created
InnoDB: Setting log file /home/heikki/data/logs/ib_logfile0 size
to 5242880
InnoDB: Log file /home/heikki/data/logs/ib_logfile1 did not exist:
new to be created
InnoDB: Setting log file /home/heikki/data/logs/ib_logfile1 size
to 5242880
InnoDB: Doublewrite buffer not found: creating new
InnoDB: Doublewrite buffer created
InnoDB: Creating foreign key constraint system tables
InnoDB: Foreign key constraint system tables created
InnoDB: Started
mysqld: ready for connections

A new InnoDB database has been created. You can connect to the MySQL server with the usual
MySQL client programs like mysql. When you shut down the MySQL server with mysqladmin
shutdown, the output is like the following:

010321 18:33:34 mysqld: Normal shutdown
010321 18:33:34 mysqld: Shutdown Complete
InnoDB: Starting shutdown...
InnoDB: Shutdown completed

You can look at the data file and log directories and you see the files created. The log directory also
contains a small file named ib_arch_log_0000000000. That file resulted from the database
creation, after which InnoDB switched off log archiving. When MySQL is started again, the data
files and log files have been created, so the output is much briefer:

InnoDB: Started
mysqld: ready for connections

Starting from MySQL 4.1.1, you can add the option innodb_file_per_table to my.cnf,
and make InnoDB to store each table into its own .ibd file in a database directory of MySQL. See
Section 15.7.6, “Using Per-Table Tablespaces”.

15.6.1. Dealing with InnoDB Initialization Problems
If InnoDB prints an operating system error in a file operation, usually the problem is one of the fol-
lowing:

The InnoDB Storage Engine

805

• You did not create the InnoDB data file directory or the InnoDB log directory.

• mysqld does not have access rights to create files in those directories.

• mysqld does not read the proper my.cnf or my.ini option file, and consequently does not see
the options you specified.

• The disk is full or a disk quota is exceeded.

• You have created a subdirectory whose name is equal to a data file you specified.

• There is a syntax error in innodb_data_home_dir or innodb_data_file_path.

If something goes wrong when InnoDB attempts to initialize its tablespace or its log files, you
should delete all files created by InnoDB. This means all ibdata files and all ib_logfiles. In
case you created some InnoDB tables, delete the corresponding .frm files for these tables (and
any .ibd files if you are using multiple tablespaces) from the MySQL database directories as well.
Then you can try the InnoDB database creation again. It is best to start the MySQL server from a
command prompt so that you see what is happening.

15.7. Creating InnoDB Tables
Suppose that you have started the MySQL client with the command mysql test. To create an
InnoDB table, you must specify and ENGINE = InnoDB or TYPE = InnoDB option in the ta-
ble creation SQL statement:

CREATE TABLE customers (a INT, b CHAR (20), INDEX (a)) ENGINE=InnoDB;
CREATE TABLE customers (a INT, b CHAR (20), INDEX (a)) TYPE=InnoDB;

The SQL statement creates a table and an index on column a in the InnoDB tablespace that con-
sists of the data files you specified in my.cnf. In addition, MySQL creates a file custom-
ers.frm in the test directory under the MySQL database directory. Internally, InnoDB adds to
its own data dictionary an entry for table 'test/customers'. This means you can create a table
of the same name customers in some other database, and the table names do not collide inside
InnoDB.

You can query the amount of free space in the InnoDB tablespace by issuing a SHOW TABLE
STATUS statement for any InnoDB table. The amount of free space in the tablespace appears in the
Comment section in the output of SHOW TABLE STATUS. An example:

SHOW TABLE STATUS FROM test LIKE 'customers'

Note that the statistics SHOW gives about InnoDB tables are only approximate. They are used in
SQL optimization. Table and index reserved sizes in bytes are accurate, though.

15.7.1. How to Use Transactions in InnoDB with Differ-
ent APIs

By default, each client that connects to the MySQL server begins with autocommit mode enabled,
which automatically commits every SQL statement you run. To use multiple-statement transactions,
you can switch autocommit off with the SQL statement SET AUTOCOMMIT = 0 and use COM-
MIT and ROLLBACK to commit or roll back your transaction. If you want to leave autocommit on,
you can enclose your transactions between START TRANSACTION and COMMIT or ROLLBACK.
Before MySQL 4.0.11, you have to use the keyword BEGIN instead of START TRANSACTION.
The following example shows two transactions. The first is committed and the second is rolled back.

shell> mysql test
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 5 to server version: 3.23.50-log

The InnoDB Storage Engine

806

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.
mysql> CREATE TABLE CUSTOMER (A INT, B CHAR (20), INDEX (A))

-> TYPE=InnoDB;
Query OK, 0 rows affected (0.00 sec)
mysql> BEGIN;
Query OK, 0 rows affected (0.00 sec)
mysql> INSERT INTO CUSTOMER VALUES (10, 'Heikki');
Query OK, 1 row affected (0.00 sec)
mysql> COMMIT;
Query OK, 0 rows affected (0.00 sec)
mysql> SET AUTOCOMMIT=0;
Query OK, 0 rows affected (0.00 sec)
mysql> INSERT INTO CUSTOMER VALUES (15, 'John');
Query OK, 1 row affected (0.00 sec)
mysql> ROLLBACK;
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT * FROM CUSTOMER;
+------+--------+
| A | B |
+------+--------+
| 10 | Heikki |
+------+--------+
1 row in set (0.00 sec)
mysql>

In APIs like PHP, Perl DBI/DBD, JDBC, ODBC, or the standard C call interface of MySQL, you
can send transaction control statements such as COMMIT to the MySQL server as strings just like
any other SQL statements such as SELECT or INSERT. Some APIs also offer separate special
transaction commit and rollback functions or methods.

15.7.2. Converting MyISAM Tables to InnoDB

Important: You should not convert MySQL system tables in the mysql database (such as user or
host) to the InnoDB type. The system tables must always be of the MyISAM type.

If you want all your (non-system) tables to be created as InnoDB tables, you can, starting from the
MySQL 3.23.43, add the line default-table-type=innodb to the [mysqld] section of
your my.cnf or my.ini file.

InnoDB does not have a special optimization for separate index creation the way the MyISAM stor-
age engine does. Therefore, it does not pay to export and import the table and create indexes after-
ward. The fastest way to alter a table to InnoDB is to do the inserts directly to an InnoDB table.
That is, use ALTER TABLE ... TYPE=INNODB, or create an empty InnoDB table with identic-
al definitions and insert the rows with INSERT INTO ... SELECT * FROM

If you have UNIQUE constraints on secondary keys, starting from MySQL 3.23.52, you can speed
up a table import by turning off the uniqueness checks temporarily during the import session: SET
UNIQUE_CHECKS=0; For big tables, this saves a lot of disk I/O because InnoDB can then use its
insert buffer to write secondary index records in a batch.

To get better control over the insertion process, it might be good to insert big tables in pieces:

INSERT INTO newtable SELECT * FROM oldtable
WHERE yourkey > something AND yourkey <= somethingelse;

After all records have been inserted, you can rename the tables.

During the conversion of big tables, you should increase the size of the InnoDB buffer pool to re-
duce disk I/O. Do not use more than 80% of the physical memory, though. You can also increase the
sizes of the InnoDB log files and the log files.

Make sure that you do not fill up the tablespace: InnoDB tables require a lot more disk space than
MyISAM tables. If an ALTER TABLE runs out of space, it starts a rollback, and that can take hours

The InnoDB Storage Engine

807

if it is disk-bound. For inserts, InnoDB uses the insert buffer to merge secondary index records to
indexes in batches. That saves a lot of disk I/O. In rollback, no such mechanism is used, and the roll-
back can take 30 times longer than the insertion.

In the case of a runaway rollback, if you do not have valuable data in your database, it may be advis-
able to kill the database process rather than wait for millions of disk I/O operations to complete. For
the complete procedure, see Section 15.9.1, “Forcing Recovery”.

15.7.3. How an AUTO_INCREMENT Column Works in
InnoDB

If you specify an AUTO_INCREMENT column for a table, the InnoDB table handle in the data dic-
tionary contains a special counter called the auto-increment counter that is used in assigning new
values for the column. The auto-increment counter is stored only in main memory, not on disk.

InnoDB uses the following algorithm to initialize the auto-increment counter for a table T that con-
tains an AUTO_INCREMENT column named ai_col: After a server startup, when a user first does
an insert to a table T, InnoDB executes the equivalent of this statement:

SELECT MAX(ai_col) FROM T FOR UPDATE;

The value retrieved by the statement is incremented by one and assigned to the column and the auto-
increment counter of the table. If the table is empty, the value 1 is assigned. If the auto-increment
counter is not initialized and the user invokes a SHOW TABLE STATUS statement that displays
output for the table T, the counter is initialized (but not incremented) and stored for use by later in-
serts. Note that in this initialization we do a normal exclusive-locking read on the table and the lock
lasts to the end of the transaction.

InnoDB follows the same procedure for initializing the auto-increment counter for a freshly created
table.

Note that if the user specifies NULL or 0 for the AUTO_INCREMENT column in an INSERT, In-
noDB treats the row as if the value had not been specified and generates a new value for it.

After the auto-increment counter has been initialized, if a user inserts a row that explicitly specifies
the column value, and the value is bigger than the current counter value, the counter is set to the spe-
cified column value. If the user does not explicitly specify a value, InnoDB increments the counter
by one and assigns the new value to the column.

When accessing the auto-increment counter, InnoDB uses a special table level AUTO-INC lock
that it keeps to the end of the current SQL statement, not to the end of the transaction. The special
lock release strategy was introduced to improve concurrency for inserts into a table containing an
AUTO_INCREMENT column. Two transactions cannot have the AUTO-INC lock on the same table
simultaneously.

Note that you may see gaps in the sequence of values assigned to the AUTO_INCREMENT column if
you roll back transactions that have gotten numbers from the counter.

The behavior of the auto-increment mechanism is not defined if a user assigns a negative value to
the column or if the value becomes bigger than the maximum integer that can be stored in the spe-
cified integer type.

15.7.4. FOREIGN KEY Constraints
Starting from MySQL 3.23.44, InnoDB features foreign key constraints.

The syntax of a foreign key constraint definition in InnoDB looks like this:

[CONSTRAINT symbol] FOREIGN KEY [id] (index_col_name, ...)
REFERENCES tbl_name (index_col_name, ...)
[ON DELETE {RESTRICT | CASCADE | SET NULL | NO ACTION | SET DEFAULT}]
[ON UPDATE {RESTRICT | CASCADE | SET NULL | NO ACTION | SET DEFAULT}]

The InnoDB Storage Engine

808

Both tables must be InnoDB type. In the referencing table, there must be an index where the for-
eign key columns are listed as the first columns in the same order. In the referenced table, there must
be an index where the referenced columns are listed as the first columns in the same order. Index
prefixes on foreign key columns are not supported.

InnoDB needs indexes on foreign keys and referenced keys so that foreign key checks can be fast
and not require a table scan. Starting with MySQL 4.1.2, these indexes are created automatically. In
older versions, the indexes must be created explicitly or the creation of foreign key constraints fails.

Corresponding columns in the foreign key and the referenced key must have similar internal data
types inside InnoDB so that they can be compared without a type conversion. The size and the
signedness of integer types has to be the same. The length of string types need not be the same. If
you specify a SET NULL action, make sure that you have not declared the columns in the child
table as NOT NULL.

If MySQL reports an error number 1005 from a CREATE TABLE statement, and the error message
string refers to errno 150, this means that the table creation failed because a foreign key constraint
was not correctly formed. Similarly, if an ALTER TABLE fails and it refers to errno 150, that
means a foreign key definition would be incorrectly formed for the altered table. Starting from
MySQL 4.0.13, you can use SHOW INNODB STATUS to display a detailed explanation of the
latest InnoDB foreign key error in the server.

Starting from MySQL 3.23.50, InnoDB does not check foreign key constraints on those foreign key
or referenced key values that contain a NULL column.

A deviation from SQL standards: If in the parent table there are several rows that have the same
referenced key value, then InnoDB acts in foreign key checks as if the other parent rows with the
same key value do not exist. For example, if you have defined a RESTRICT type constraint, and
there is a child row with several parent rows, InnoDB does not allow the deletion of any of those
parent rows.

Starting from MySQL 3.23.50, you can also associate the ON DELETE CASCADE or ON DELETE
SET NULL clause with the foreign key constraint. Corresponding ON UPDATE options are avail-
able starting from 4.0.8. If ON DELETE CASCADE is specified, and a row in the parent table is de-
leted, InnoDB automatically deletes also all those rows in the child table whose foreign key values
are equal to the referenced key value in the parent row. If ON DELETE SET NULL is specified,
the child rows are automatically updated so that the columns in the foreign key are set to the SQL
NULL value. SET DEFAULT is parsed but ignored by MySQL. InnoDB rejects table definitions
containing ON DELETE SET DEFAULT clauses.

InnoDB performs cascading operations through a depth-first algorithm, based on records in the in-
dexes corresponding to the foreign key constraints.

A deviation from SQL standards: If ON UPDATE CASCADE or ON UPDATE SET NULL re-
curses to update the same table it has previously updated during the cascade, it acts like
RESTRICT. This means that you cannot use self-referential ON UPDATE CASCADE or ON UP-
DATE SET NULL operations. This is to prevent infinite loops resulting from cascaded updates. A
self-referential ON DELETE SET NULL, on the other hand, is possible from 4.0.13. A self-
referential ON DELETE CASCADE has been possible since ON DELETE was implemented. Since
4.0.21, cascading operations may not be nested more than 15 levels.

A deviation from SQL standards: Like MySQL in general, in an SQL statement that inserts, de-
letes, or updates many rows, InnoDB checks UNIQUE and FOREIGN KEY constraints row-by-row.
According to the SQL standard, the default behavior should be that constraints are only checked
after the WHOLE SQL statement has been processed.

A simple example that relates parent and child tables through a single-column foreign key:

CREATE TABLE parent(id INT NOT NULL,
PRIMARY KEY (id)

) TYPE=INNODB;
CREATE TABLE child(id INT, parent_id INT,

The InnoDB Storage Engine

809

INDEX par_ind (parent_id),
FOREIGN KEY (parent_id) REFERENCES parent(id)
ON DELETE CASCADE

) TYPE=INNODB;

A more complex example in which a product_order table has foreign keys for two other tables.
One foreign key references a two-column index in the product table. The other references a
single-column index in the customer table:

CREATE TABLE product (category INT NOT NULL, id INT NOT NULL,
price DECIMAL,
PRIMARY KEY(category, id)) TYPE=INNODB;

CREATE TABLE customer (id INT NOT NULL,
PRIMARY KEY (id)) TYPE=INNODB;

CREATE TABLE product_order (no INT NOT NULL AUTO_INCREMENT,
product_category INT NOT NULL,
product_id INT NOT NULL,
customer_id INT NOT NULL,
PRIMARY KEY(no),
INDEX (product_category, product_id),
FOREIGN KEY (product_category, product_id)
REFERENCES product(category, id)
ON UPDATE CASCADE ON DELETE RESTRICT,

INDEX (customer_id),
FOREIGN KEY (customer_id)
REFERENCES customer(id)) TYPE=INNODB;

Starting from MySQL 3.23.50, InnoDB allows you to add a new foreign key constraint to a table
by using ALTER TABLE:

ALTER TABLE yourtablename
ADD [CONSTRAINT symbol] FOREIGN KEY [id] (index_col_name, ...)
REFERENCES tbl_name (index_col_name, ...)
[ON DELETE {RESTRICT | CASCADE | SET NULL | NO ACTION | SET DEFAULT}]
[ON UPDATE {RESTRICT | CASCADE | SET NULL | NO ACTION | SET DEFAULT}]

Remember to create the required indexes first. You can also add a self-referential foreign key
constraint to a table using ALTER TABLE.

Starting from MySQL 4.0.13, InnoDB supports the use of ALTER TABLE to drop foreign keys:

ALTER TABLE yourtablename DROP FOREIGN KEY fk_symbol;

If the FOREIGN KEY clause included a CONSTRAINT name when you created the foreign key,
you can refer to that name to drop the foreign key. (A constraint name can be given as of MySQL
4.0.18.) Otherwise, the fk_symbol value is internally generated by InnoDB when the foreign key
is created. To find out the symbol when you want to drop a foreign key, use the SHOW CREATE
TABLE statement. An example:

mysql> SHOW CREATE TABLE ibtest11c\G
*************************** 1. row ***************************

Table: ibtest11c
Create Table: CREATE TABLE `ibtest11c` (
`A` int(11) NOT NULL auto_increment,
`D` int(11) NOT NULL default '0',
`B` varchar(200) NOT NULL default '',
`C` varchar(175) default NULL,
PRIMARY KEY (`A`,`D`,`B`),
KEY `B` (`B`,`C`),
KEY `C` (`C`),
CONSTRAINT `0_38775` FOREIGN KEY (`A`, `D`)

REFERENCES `ibtest11a` (`A`, `D`)
ON DELETE CASCADE ON UPDATE CASCADE,

The InnoDB Storage Engine

810

CONSTRAINT `0_38776` FOREIGN KEY (`B`, `C`)
REFERENCES `ibtest11a` (`B`, `C`)
ON DELETE CASCADE ON UPDATE CASCADE
) TYPE=InnoDB CHARSET=latin1
1 row in set (0.01 sec)
mysql> ALTER TABLE ibtest11c DROP FOREIGN KEY 0_38775;

Starting from MySQL 3.23.50, the InnoDB parser allows you to use backticks around table and
column names in a FOREIGN KEY ... REFERENCES ... clause. Starting from MySQL
4.0.5, the InnoDB parser also takes into account the lower_case_table_names system vari-
able setting.

Before MySQL 3.23.50, ALTER TABLE or CREATE INDEX should not be used in connection
with tables that have foreign key constraints or that are referenced in foreign key constraints: Any
ALTER TABLE removes all foreign key constraints defined for the table. You should not use AL-
TER TABLE with the referenced table, either. Instead, use DROP TABLE and CREATE TABLE to
modify the schema. When MySQL does an ALTER TABLE it may internally use RENAME TABLE,
and that confuses the foreign key constraints that refer to the table. In MySQL, a CREATE INDEX
statement is processed as an ALTER TABLE, so the same considerations apply.

Starting from MySQL 3.23.50, InnoDB returns the foreign key definitions of a table as part of the
output of the SHOW CREATE TABLE statement:

SHOW CREATE TABLE tbl_name;

From this version, mysqldump also produces correct definitions of tables to the dump file, and does
not forget about the foreign keys.

You can display the foreign key constraints for a table like this:

SHOW TABLE STATUS FROM db_name LIKE 'tbl_name'

The foreign key constraints are listed in the Comment column of the output.

When performing foreign key checks, InnoDB sets shared row level locks on child or parent re-
cords it has to look at. InnoDB checks foreign key constraints immediately; the check is not de-
ferred to transaction commit.

To make it easier to reload dump files for tables that have foreign key relationships, mysqldump
automatically includes a statement in the dump output to set FOREIGN_KEY_CHECKS to 0 as of
MySQL 4.1.1. This avoids problems with tables having to be reloaded in a particular order when the
dump is reloaded. For earlier versions, you can disable the variable manually within mysql when
loading the dump file like this:

mysql> SET FOREIGN_KEY_CHECKS = 0;
mysql> SOURCE dump_file_name
mysql> SET FOREIGN_KEY_CHECKS = 1;

This allows you to import the tables in any order if the dump file contains tables that are not cor-
rectly ordered for foreign keys. It also speeds up the import operation. FOREIGN_KEY_CHECKS is
available starting from MySQL 3.23.52 and 4.0.3.

Setting FOREIGN_KEY_CHECKS to 0 can also be useful for ignoring foreign key constraints dur-
ing LOAD DATA operations.

InnoDB does not allow you to drop a table that is referenced by a FOREIGN KEY constraint, un-
less you do SET FOREIGN_KEY_CHECKS=0. When you drop a table, the constraints that were
defined in its create statement are also dropped.

If you re-create a table that was dropped, it must have a definition that conforms to the foreign key
constraints referencing it. It must have the right column names and types, and it must have indexes

The InnoDB Storage Engine

811

on the referenced keys, as stated earlier. If these are not satisfied, MySQL returns error number
1005 and refers to errno 150 in the error message string.

15.7.5. InnoDB and MySQL Replication
MySQL replication works for InnoDB tables as it does for MyISAM tables. It is also possible to use
replication in a way where the table type on the slave is not the same as the original table type on the
master. For example, you can replicate modifications to an InnoDB table on the master to a MyIS-
AM table on the slave.

To set up a new slave for a master, you have to make a copy of the InnoDB tablespace and the log
files, as well as the .frm files of the InnoDB tables, and move the copies to the slave. For the
proper procedure to do this, see Section 15.10, “Moving an InnoDB Database to Another
Machine”.

If you can shut down the master or an existing slave, you can take a cold backup of the InnoDB ta-
blespace and log files and use that to set up a slave. To make a new slave without taking down any
server you can also use the non-free (commercial) InnoDB Hot Backup tool
[http://www.innodb.com/order.html].

There are minor limitations in InnoDB replication:

• LOAD TABLE FROM MASTER does not work for InnoDB type tables. There are work-
arounds: 1) dump the table on the master and import the dump file into the slave, or 2) use AL-
TER TABLE tbl_name TYPE=MyISAM on the master before setting up replication with
LOAD TABLE tbl_name FROM MASTER, and then use ALTER TABLE to alter the master
table back to the InnoDB type afterward.

• Before MySQL 4.0.6, SLAVE STOP did not respect the boundary of a multiple-statement trans-
action. An incomplete transaction would be rolled back, and the next SLAVE START would
only execute the remaining part of the half transaction. That would cause replication to fail.

• Before MySQL 4.0.6, a slave crash in the middle of a multiple-statement transaction would
cause the same problem as SLAVE STOP.

• Before MySQL 4.0.11, replication of the SET FOREIGN_KEY_CHECKS=0 statement does not
work properly.

Most of these limitations can be eliminated by using more recent server versions for which the limit-
ations do not apply.

Transactions that fail on the master do not affect replication at all. MySQL replication is based on
the binary log where MySQL writes SQL statements that modify data. A slave reads the binary log
of the master and executes the same SQL statements. However, statements that occur within a trans-
action are not written to the binary log until the transaction commits, at which point all statements in
the transaction are written at once. If a statement fails, for example, because of a foreign key viola-
tion, or if a transaction is rolled back, no SQL statements are written to the binary log, and the trans-
action is not executed on the slave at all.

15.7.6. Using Per-Table Tablespaces
NOTE: CRITICAL BUG in 4.1 if you specify innodb_file_per_table in my.cnf! If you
shut down mysqld, then records may disappear from the secondary indexes of a table. See (Bug
#7496) for more information and workarounds. This is fixed in 4.1.9, but another bug (Bug #8021)
bit the Windows version in 4.1.9, and in the Windows version of 4.1.9 you must put the line in-
nodb_flush_method=unbuffered to your my.cnf or my.ini to get mysqld to work.

Starting from MySQL 4.1.1, you can store each InnoDB table and its indexes into its own file. This
feature is called ``multiple tablespaces'' because in effect each table has its own tablespace.

The InnoDB Storage Engine

812

http://www.innodb.com/order.html

Using multiple tablespaces can be beneficial to users who want to move specific tables to separate
physical disks or who wish to restore backups of single tables quickly without interrupting the use
of the remaining InnoDB tables.

If you need to downgrade to 4.0, you have to take table dumps and re-create the whole InnoDB ta-
blespace. If you have not created new InnoDB tables under MySQL 4.1.1 or later, and need to
downgrade quickly, you can also do a direct downgrade to the MySQL 4.0.18 or later in the 4.0
series. Before doing the direct downgrade to 4.0.x, you have to end all client connections to the
mysqld server that is to be downgraded, and let it run the purge and insert buffer merge operations
to completion, so that SHOW INNODB STATUS shows the main thread in the state waiting
for server activity. Then you can shut down mysqld and start 4.0.18 or later in the 4.0
series.

You can enable multiple tablespaces by adding a line to the [mysqld] section of my.cnf:

[mysqld]
innodb_file_per_table

After restarting the server, InnoDB stores each newly created table into its own file
tbl_name.ibd in the database directory where the table belongs. This is similar to what the My-
ISAM storage engine does, but MyISAM divides the table into a data file tbl_name.MYD and the
index file tbl_name.MYI. For InnoDB, the data and the indexes are stored together in the .ibd
file. The tbl_name.frm file is still created as usual.

If you remove the innodb_file_per_table line from my.cnf and restart the server, In-
noDB creates tables inside the shared tablespace files again.

innodb_file_per_table affects only table creation. If you start the server with this option,
new tables are created using .ibd files, but you can still access tables that exist in the shared ta-
blespace. If you remove the option, new tables are created in the shared tablespace, but you can still
access any tables that were created using multiple tablespaces.

InnoDB always needs the shared tablespace. The .ibd files are not sufficient for InnoDB to oper-
ate. The shared tablespace consists of the familiar ibdata files where InnoDB puts its internal
data dictionary and undo logs.

You cannot freely move .ibd files around between database directories the way you can with
MyISAM table files. This is because the table definition is stored in the InnoDB shared tablespace,
and also because InnoDB must preserve the consistency of transaction IDs and log sequence num-
bers.

Within a given MySQL installation, you can move an .ibd file and the associated table from one
database to another with the familiar RENAME TABLE statement:

RENAME TABLE old_db_name.tbl_name TO new_db_name.tbl_name;

If you have a ``clean'' backup of an .ibd file, you can restore it to the MySQL installation from
which it originated as follows:

1. Issue this ALTER TABLE statement:

ALTER TABLE tbl_name DISCARD TABLESPACE;

Caution: This deletes the current .ibd file.

2. Put the backup .ibd file back in the proper database directory.

3. Issue this ALTER TABLE statement:

ALTER TABLE tbl_name IMPORT TABLESPACE;

The InnoDB Storage Engine

813

In this context, a ``clean'' .ibd file backup means:

• There are no uncommitted modifications by transactions in the .ibd file.

• There are no unmerged insert buffer entries in the .ibd file.

• Purge has removed all delete-marked index records from the .ibd file.

• mysqld has flushed all modified pages of the .ibd file from the buffer pool to the file.

You can make such a clean backup .ibd file with the following method:

1. Stop all activity from the mysqld server and commit all transactions.

2. Wait until SHOW INNODB STATUS shows that there are no active transactions in the data-
base, and the main thread status of InnoDB is Waiting for server activity. Then
you can make a copy of the .ibd file.

Another method for making a clean copy of an .ibd file is to use the commercial InnoDB Hot
Backup tool:

1. Use InnoDB Hot Backup to back up the InnoDB installation.

2. Start a second mysqld server on the backup and let it clean up the .ibd files in the backup.

It is in the TODO to also allow moving clean .ibd files to another MySQL installation. This re-
quires resetting of transaction IDs and log sequence numbers in the .ibd file.

15.8. Adding and Removing InnoDB Data and
Log Files

This section describes what you can do when your InnoDB tablespace runs out of room or when
you want to change the size of the log files.

From MySQL 3.23.50 and 4.0.2, the easiest way to increase the size of the InnoDB tablespace is to
configure it from the beginning to be auto-extending. Specify the autoextend attribute for the
last data file in the tablespace definition. Then InnoDB increases the size of that file automatically
in 8MB increments when it runs out of space. Starting with MySQL 4.0.24 and 4.1.5, the increment
size can be configured with the option innodb_autoextend_increment, in megabytes. The
default value is 8.

Alternatively, you can increase the size of your tablespace by adding another data file. To do this,
you have to shut down the MySQL server, edit the my.cnf file to add a new data file to the end of
innodb_data_file_path, and start the server again.

If your last data file was defined with the keyword autoextend, the procedure to edit my.cnf
must take into account the size to which the last data file has grown. You have to look at the size of
the data file, round the size downward to the closest multiple of 1024 * 1024 bytes (= 1MB), and
specify the rounded size explicitly in innodb_data_file_path. Then you can add another
data file. Remember that only the last data file in the innodb_data_file_path can be spe-
cified as auto-extending.

As an example, assume that the tablespace has just one auto-extending data file ibdata1:

The InnoDB Storage Engine

814

innodb_data_home_dir =
innodb_data_file_path = /ibdata/ibdata1:10M:autoextend

Suppose that this data file, over time, has grown to 988MB. Below is the configuration line after
adding another auto-extending data file.

innodb_data_home_dir =
innodb_data_file_path = /ibdata/ibdata1:988M;/disk2/ibdata2:50M:autoextend

When you add a new file to the tablespace, make sure that it does not exist. InnoDB creates and ini-
tializes the file when you restart the server.

Currently, you cannot remove a data file from the tablespace. To decrease the size of your ta-
blespace, use this procedure:

1. Use mysqldump to dump all your InnoDB tables.

2. Stop the server.

3. Remove all the existing tablespace files.

4. Configure a new tablespace.

5. Restart the server.

6. Import the dump files.

If you want to change the number or the size of your InnoDB log files, you have to stop the
MySQL server and make sure that it shuts down without errors. Then copy the old log files into a
safe place just in case something went wrong in the shutdown and you need them to recover the ta-
blespace. Delete the old log files from the log file directory, edit my.cnf to change the log file con-
figuration, and start the MySQL server again. mysqld sees that no log files exist at startup and tells
you that it is creating new ones.

15.9. Backing Up and Recovering an InnoDB
Database

The key to safe database management is taking regular backups.

InnoDB Hot Backup is an online backup tool you can use to backup your InnoDB database
while it is running. InnoDB Hot Backup does not require you to shut down your database and it
does not set any locks or disturb your normal database processing. InnoDB Hot Backup is a
non-free (commercial) additional tool whose annual license fee is 390 euros per computer where the
MySQL server is run. See the InnoDB Hot Backup home page
[http://www.innodb.com/order.html] for detailed information and screenshots.

If you are able to shut down your MySQL server, you can make a ``binary'' backup that consists of
all files used by InnoDB to manage its tables. Use the following procedure:

1. Shut down your MySQL server and make sure that it shuts down without errors.

2. Copy all your data files (ibdata files, .ibd files) into a safe place.

3. Copy all your ib_logfiles to a safe place.

4. Copy your my.cnf configuration file or files to a safe place.

The InnoDB Storage Engine

815

http://www.innodb.com/order.html

5. Copy all the .frm files for your InnoDB tables to a safe place.

Replication works with InnoDB type tables, so you can use MySQL replication capabilities to keep
a copy of your database at database sites requiring high availability.

In addition to taking binary backups as just described, you should also regularly take dumps of your
tables with mysqldump. The reason for this is that a binary file might be corrupted without you no-
ticing it. Dumped tables are stored into text files that are human-readable, so spotting table corrup-
tion becomes easier. Also, since the format is simpler, the chance for serious data corruption is
smaller. mysqldump also has a --single-transaction option that you can use to take a con-
sistent snapshot without locking out other clients.

To be able to recover your InnoDB database to the present from the binary backup described
above, you have to run your MySQL server with binary logging turned on. Then you can apply the
binary log to the backup database to achieve point-in-time recovery:

mysqlbinlog yourhostname-bin.123 | mysql

To recover from a crash of your MySQL server process, the only thing you have to do is to restart it.
InnoDB automatically checks the logs and performs a roll-forward of the database to the present.
InnoDB automatically rolls back uncommitted transactions that were present at the time of the
crash. During recovery, mysqld displays output something like this:

InnoDB: Database was not shut down normally.
InnoDB: Starting recovery from log files...
InnoDB: Starting log scan based on checkpoint at
InnoDB: log sequence number 0 13674004
InnoDB: Doing recovery: scanned up to log sequence number 0 13739520
InnoDB: Doing recovery: scanned up to log sequence number 0 13805056
InnoDB: Doing recovery: scanned up to log sequence number 0 13870592
InnoDB: Doing recovery: scanned up to log sequence number 0 13936128
...
InnoDB: Doing recovery: scanned up to log sequence number 0 20555264
InnoDB: Doing recovery: scanned up to log sequence number 0 20620800
InnoDB: Doing recovery: scanned up to log sequence number 0 20664692
InnoDB: 1 uncommitted transaction(s) which must be rolled back
InnoDB: Starting rollback of uncommitted transactions
InnoDB: Rolling back trx no 16745
InnoDB: Rolling back of trx no 16745 completed
InnoDB: Rollback of uncommitted transactions completed
InnoDB: Starting an apply batch of log records to the database...
InnoDB: Apply batch completed
InnoDB: Started
mysqld: ready for connections

If your database gets corrupted or your disk fails, you have to do the recovery from a backup. In the
case of corruption, you should first find a backup that is not corrupted. After restoring the base
backup, do the recovery from the binary log files.

In some cases of database corruption it is enough just to dump, drop, and re-create one or a few cor-
rupt tables. You can use the CHECK TABLE SQL statement to check whether a table is corrupt, al-
though CHECK TABLE naturally cannot detect every possible kind of corruption. You can use in-
nodb_tablespace_monitor to check the integrity of the file space management inside the ta-
blespace files.

In some cases, apparent database page corruption is actually due to the operating system corrupting
its own file cache, and the data on disk may be okay. It is best first to try restarting your computer. It
may eliminate errors that appeared to be database page corruption.

15.9.1. Forcing Recovery
If there is database page corruption, you may want to dump your tables from the database with SE-

The InnoDB Storage Engine

816

LECT INTO OUTFILE, and usually most of the data is intact and correct. But the corruption may
cause SELECT * FROM tbl_name or InnoDB background operations to crash or assert, or
even the InnoDB roll-forward recovery to crash. Starting from MySQL 3.23.44, there is an In-
noDB variable that you can use to force the InnoDB storage engine to start up, and you can also
prevent background operations from running, so that you are able to dump your tables. For example,
you can add the following line to the [mysqld] section of your option file before restarting the
server:

[mysqld]
innodb_force_recovery = 4

Before MySQL 4.0, use this syntax instead:

[mysqld]
set-variable = innodb_force_recovery=4

The allowable non-zero values for innodb_force_recovery follow. A larger number includes
all precautions of lower numbers. If you are able to dump your tables with an option value of at
most 4, then you are relatively safe that only some data on corrupt individual pages is lost. A value
of 6 is more dramatic, because database pages are left in an obsolete state, which in turn may intro-
duce more corruption into B-trees and other database structures.

• 1 (SRV_FORCE_IGNORE_CORRUPT)

Let the server run even if it detects a corrupt page; try to make SELECT * FROM tbl_name
jump over corrupt index records and pages, which helps in dumping tables.

• 2 (SRV_FORCE_NO_BACKGROUND)

Prevent the main thread from running. If a crash would occur in the purge operation, this pre-
vents it.

• 3 (SRV_FORCE_NO_TRX_UNDO)

Do not run transaction rollbacks after recovery.

• 4 (SRV_FORCE_NO_IBUF_MERGE)

Prevent also insert buffer merge operations. If they would cause a crash, better not do them; do
not calculate table statistics.

• 5 (SRV_FORCE_NO_UNDO_LOG_SCAN)

Do not look at undo logs when starting the database: InnoDB treats even incomplete transac-
tions as committed.

• 6 (SRV_FORCE_NO_LOG_REDO)

Do not do the log roll-forward in connection with recovery.

The database must not otherwise be used with any of these options enabled! As a safety measure,
InnoDB prevents users from doing INSERT, UPDATE, or DELETE when in-
nodb_force_recovery is set to a value greater than 0.

Starting from MySQL 3.23.53 and 4.0.4, you are allowed to DROP or CREATE a table even if forced
recovery is used. If you know that a certain table is causing a crash in rollback, you can drop it. You
can use this also to stop a runaway rollback caused by a failing mass import or ALTER TABLE.
You can kill the mysqld process and set innodb_force_recovery to 3 to bring your database
up without the rollback. Then DROP the table that is causing the runaway rollback.

15.9.2. Checkpoints

The InnoDB Storage Engine

817

InnoDB implements a checkpoint mechanism called a ``fuzzy checkpoint.'' InnoDB flushes modi-
fied database pages from the buffer pool in small batches. There is no need to flush the buffer pool
in one single batch, which would in practice stop processing of user SQL statements for a while.

In crash recovery, InnoDB looks for a checkpoint label written to the log files. It knows that all
modifications to the database before the label are present in the disk image of the database. Then
InnoDB scans the log files forward from the place of the checkpoint, applying the logged modifica-
tions to the database.

InnoDB writes to the log files in a circular fashion. All committed modifications that make the
database pages in the buffer pool different from the images on disk must be available in the log files
in case InnoDB has to do a recovery. This means that when InnoDB starts to reuse a log file in the
circular fashion, it has to make sure that the database page images on disk contain the modifications
logged in the log file InnoDB is going to reuse. In other words, InnoDB has to make a checkpoint
and often this involves flushing of modified database pages to disk.

The preceding description explains why making your log files very big may save disk I/O in check-
pointing. It can make sense to set the total size of the log files as big as the buffer pool or even big-
ger. The drawback of big log files is that crash recovery can take longer because there is more
logged information to apply to the database.

15.10. Moving an InnoDB Database to Anoth-
er Machine

On Windows, InnoDB internally always stores database and table names in lowercase. To move
databases in a binary format from Unix to Windows or from Windows to Unix, you should have all
table and database names in lowercase. A convenient way to accomplish this on Unix is to add the
following line to the [mysqld] section of your my.cnf before you start creating your databases
and tables:

[mysqld]
set-variable = lower_case_table_names=1

On Windows, lower_case_table_names is set to 1 by default.

Like MyISAM data files, InnoDB data and log files are binary-compatible on all platforms if the
floating-point number format on the machines is the same. You can move an InnoDB database
simply by copying all the relevant files, which were listed in Section 15.9, “Backing Up and Recov-
ering an InnoDB Database”. If the floating-point formats on the machines are different but you
have not used FLOAT or DOUBLE data types in your tables, then the procedure is the same: Just
copy the relevant files. If the formats are different and your tables contain floating-point data, you
have to use mysqldump to dump your tables on one machine and then import the dump files on the
other machine.

A performance tip is to switch off autocommit mode when you import data into your database, as-
suming that your tablespace has enough space for the big rollback segment the the big import trans-
actions generate. Do the commit only after importing a whole table or a segment of a table.

15.11. InnoDB Transaction Model and Lock-
ing

In the InnoDB transaction model, the goal has been to combine the best properties of a multi-
versioning database with traditional two-phase locking. InnoDB does locking on the row level and
runs queries as non-locking consistent reads by default, in the style of Oracle. The lock table in In-
noDB is stored so space-efficiently that lock escalation is not needed: Typically several users are al-
lowed to lock every row in the database, or any random subset of the rows, without InnoDB run-
ning out of memory.

The InnoDB Storage Engine

818

15.11.1. InnoDB and AUTOCOMMIT

In InnoDB, all user activity occurs inside a transaction. If the autocommit mode is enabled, each
SQL statement forms a single transaction on its own. MySQL always starts a new connection with
autocommit enabled.

If the autocommit mode is switched off with SET AUTOCOMMIT = 0, then we can consider that a
user always has a transaction open. A SQL COMMIT or ROLLBACK statement ends the current
transaction and a new one starts. Both statements release all InnoDB locks that were set during the
current transaction. A COMMIT means that the changes made in the current transaction are made
permanent and become visible to other users. A ROLLBACK statement, on the other hand, cancels
all modifications made by the current transaction.

If the connection has autocommit enabled, the user can still perform a multiple-statement transaction
by starting it with an explicit START TRANSACTION or BEGIN statement and ending it with
COMMIT or ROLLBACK.

15.11.2. InnoDB and TRANSACTION ISOLATION LEVEL

In terms of the SQL:1992 transaction isolation levels, the InnoDB default is REPEATABLE READ.
Starting from MySQL 4.0.5, InnoDB offers all four different transaction isolation levels described
by the SQL standard. You can set the default isolation level for all connections by using the -
-transaction-isolation option on the command line or in option files. For example, you
can set the option in the [mysqld] section of my.cnf like this:

[mysqld]
transaction-isolation = {READ-UNCOMMITTED | READ-COMMITTED

| REPEATABLE-READ | SERIALIZABLE}

A user can change the isolation level of a single session or all new incoming connections with the
SET TRANSACTION statement. Its syntax is as follows:

SET [SESSION | GLOBAL] TRANSACTION ISOLATION LEVEL
{READ UNCOMMITTED | READ COMMITTED
| REPEATABLE READ | SERIALIZABLE}

Note that there are hyphens in the level names for the --transaction-isolation option, but
not for the SET TRANSACTION statement.

The default behavior is to set the isolation level for the next (not started) transaction. If you use the
GLOBAL keyword, the statement sets the default transaction level globally for all new connections
created from that point on (but not existing connections). You need the SUPER privilege to do this.
Using the SESSION keyword sets the default transaction level for all future transactions performed
on the current connection.

Any client is free to change the session isolation level (even in the middle of a transaction), or the
isolation level for the next transaction.

Before MySQL 3.23.50, SET TRANSACTION had no effect on InnoDB tables. Before 4.0.5, only
REPEATABLE READ and SERIALIZABLE were available.

You can query the global and session transaction isolation levels with these statements:

SELECT @@global.tx_isolation;
SELECT @@tx_isolation;

In row-level locking, InnoDB uses so-called ``next-key locking.'' That means that besides index re-
cords, InnoDB can also lock the ``gap'' before an index record to block insertions by other users
immediately before the index record. A next-key lock refers to a lock that locks an index record and
the gap before it. A gap lock refers to a lock that only locks a gap before some index record.

The InnoDB Storage Engine

819

A detailed description of each isolation level in InnoDB:

• READ UNCOMMITTED

SELECT statements are performed in a non-locking fashion, but a possible earlier version of a
record might be used. Thus, using this isolation level, such reads are not ``consistent.'' This is
also called ``dirty read.'' Other than that, this isolation level works like READ COMMITTED.

• READ COMMITTED

A somewhat Oracle-like isolation level. All SELECT ... FOR UPDATE and SELECT ...
LOCK IN SHARE MODE statements lock only the index records, not the gaps before them, and
thus allow free inserting of new records next to locked records. UPDATE and DELETE state-
ments that use a unique index with a unique search condition lock only the index record found,
not the gap before it. In range-type UPDATE and DELETE statements, InnoDB must set next-
key or gap locks and block insertions by other users to the gaps covered by the range. This is ne-
cessary because ``phantom rows'' must be blocked for MySQL replication and recovery to work.

Consistent reads behave as in Oracle: Each consistent read, even within the same transaction,
sets and reads its own fresh snapshot. See Section 15.11.3, “Consistent Non-Locking Read”.

• REPEATABLE READ

This is the default isolation level of InnoDB. SELECT ... FOR UPDATE, SELECT ...
LOCK IN SHARE MODE, UPDATE, and DELETE statements that use a unique index with a
unique search condition lock only the index record found, not the gap before it. With other
search conditions, these operations employ next-key locking, locking the index range scanned
with next-key or gap locks, and block new insertions by other users.

In consistent reads, there is an important difference from the previous isolation level: In this
level, all consistent reads within the same transaction read the same snapshot established by the
first read. This convention means that if you issue several plain SELECT statements within the
same transaction, these SELECT statements are consistent also with respect to each other. See
Section 15.11.3, “Consistent Non-Locking Read”.

• SERIALIZABLE

This level is like REPEATABLE READ, but all plain SELECT statements are implicitly conver-
ted to SELECT ... LOCK IN SHARE MODE.

15.11.3. Consistent Non-Locking Read
A consistent read means that InnoDB uses its multi-versioning to present to a query a snapshot of
the database at a point in time. The query see the changes made by exactly those transactions that
committed before that point of time, and no changes made by later or uncommitted transactions. The
exception to this rule is that the query sees the changes made by the transaction itself that issues the
query.

If you are running with the default REPEATABLE READ isolation level, then all consistent reads
within the same transaction read the snapshot established by the first such read in that transaction.
You can get a fresher snapshot for your queries by committing the current transaction and after that
issuing new queries.

Consistent read is the default mode in which InnoDB processes SELECT statements in READ
COMMITTED and REPEATABLE READ isolation levels. A consistent read does not set any locks
on the tables it accesses, and therefore other users are free to modify those tables at the same time a
consistent read is being performed on the table.

15.11.4. Locking Reads SELECT ... FOR UPDATE and

The InnoDB Storage Engine

820

SELECT ... LOCK IN SHARE MODE

In some circumstances, a consistent read is not convenient. For example, you might want to add a
new row into your table child, and make sure that the child has a parent in table parent. The
following example shows how to implement referential integrity in your application code.

Suppose that you use a consistent read to read the table parent and indeed see the parent of the
child in the table. Can you safely add the child row to table child? No, because it may happen that
meanwhile some other user deletes the parent row from the table parent, without you being aware
of it.

The solution is to perform the SELECT in a locking mode using LOCK IN SHARE MODE:

SELECT * FROM parent WHERE NAME = 'Jones' LOCK IN SHARE MODE;

Performing a read in share mode means that we read the latest available data, and set a shared mode
lock on the rows we read. A shared mode lock prevents others from updating or deleting the row we
have read. Also, if the latest data belongs to a yet uncommitted transaction of another client connec-
tion, we wait until that transaction commits. After we see that the preceding query returns the parent
'Jones', we can safely add the child record to the child table and commit our transaction.

Let us look at another example: We have an integer counter field in a table child_codes that we
use to assign a unique identifier to each child added to table child. Obviously, using a consistent
read or a shared mode read to read the present value of the counter is not a good idea, since two
users of the database may then see the same value for the counter, and a duplicate-key error occurs
if two users attempt to add children with the same identifier to the table.

Here, LOCK IN SHARE MODE is not a good solution because if two users read the counter at the
same time, at least one of them ends up in deadlock when attempting to update the counter.

In this case, there are two good ways to implement the reading and incrementing of the counter: (1)
update the counter first by incrementing it by 1 and only after that read it, or (2) read the counter
first with a lock mode FOR UPDATE, and increment after that. The latter approach can be imple-
mented as follows:

SELECT counter_field FROM child_codes FOR UPDATE;
UPDATE child_codes SET counter_field = counter_field + 1;

A SELECT ... FOR UPDATE reads the latest available data, setting exclusive locks on each row
it reads. Thus it sets the same locks a searched SQL UPDATE would set on the rows.

Please note that the above is merely an example of how SELECT ... FOR UPDATE works. In
MySQL, the specific task of generating a unique identifier actually can be accomplished using only
a single access to the table:

UPDATE child_codes SET counter_field = LAST_INSERT_ID(counter_field + 1);
SELECT LAST_INSERT_ID();

The SELECT statement merely retrieves the identifier information (specific to the current connec-
tion). It does not access any table.

15.11.5. Next-Key Locking: Avoiding the Phantom
Problem

In row-level locking, InnoDB uses an algorithm called ``next-key locking.'' InnoDB does the row-
level locking in such a way that when it searches or scans an index of a table, it sets shared or ex-
clusive locks on the index records it encounters. Thus the row-level locks are actually index record
locks.

The locks InnoDB sets on index records also affect the ``gap'' before that index record. If a user has

The InnoDB Storage Engine

821

a shared or exclusive lock on record R in an index, another user cannot insert a new index record im-
mediately before R in the index order. This locking of gaps is done to prevent the so-called
``phantom problem.'' Suppose that you want to read and lock all children from the child table with
an identifier value larger than 100, with the intent of updating some column in the selected rows
later:

SELECT * FROM child WHERE id > 100 FOR UPDATE;

Suppose that there is an index on the id column. The query scans that index starting from the first
record where id is bigger than 100. If the locks set on the index records would not lock out inserts
made in the gaps, a new row might meanwhile be inserted to the table. If you execute the same SE-
LECT within the same transaction, you would see a new row in the result set returned by the query.
This is contrary the isolation principle of transactions: A transaction should be able to run so that the
data it has read does not change during the transaction. If we regard a set of rows as a data item, the
new ``phantom'' child would violate this isolation principle.

When InnoDB scans an index, it can also lock the gap after the last record in the index. Just that
happens in the previous example: The locks set by InnoDB prevent any insert to the table where id
would be bigger than 100.

You can use next-key locking to implement a uniqueness check in your application: If you read your
data in share mode and do not see a duplicate for a row you are going to insert, then you can safely
insert your row and know that the next-key lock set on the successor of your row during the read
prevents anyone meanwhile inserting a duplicate for your row. Thus the next-key locking allows
you to ``lock'' the non-existence of something in your table.

15.11.6. An Example of How the Consistent Read
Works in InnoDB

Suppose that you are running in the default REPEATABLE READ isolation level. When you issue a
consistent read, that is, an ordinary SELECT statement, InnoDB gives your transaction a timepoint
according to which your query sees the database. If another transaction deletes a row and commits
after your timepoint was assigned, you do not see the row as having been deleted. Inserts and up-
dates are treated similarly.

You can advance your timepoint by committing your transaction and then doing another SELECT.

This is called ``multi-versioned concurrency control.''

User A User B
SET AUTOCOMMIT=0; SET AUTOCOMMIT=0;

time
| SELECT * FROM t;
| empty set
| INSERT INTO t VALUES (1, 2);
|
v SELECT * FROM t;

empty set
COMMIT;

SELECT * FROM t;
empty set
COMMIT;
SELECT * FROM t;

| 1 | 2 |

1 row in set

In this example, user A sees the row inserted by B only when B has committed the insert and A has
committed as well, so that the timepoint is advanced past the commit of B.

If you want to see the ``freshest'' state of the database, you should use either the READ COMMIT-

The InnoDB Storage Engine

822

TED isolation level or a locking read:

SELECT * FROM t LOCK IN SHARE MODE;

15.11.7. Locks Set by Different SQL Statements in In-
noDB

A locking read, an UPDATE, or a DELETE generally set record locks on every index record that is
scanned in the processing of the SQL query. It does not matter if there are WHERE conditions in the
query that would exclude the row from the result set of the query. InnoDB does not remember the
exact WHERE condition, but only knows which index ranges were scanned. The record locks are
normally next-key locks that also block inserts to the ``gap'' immediately before the record.

If the locks to be set are exclusive, then InnoDB always retrieves also the clustered index record
and sets a lock on it.

If you do not have indexes suitable for your query and MySQL has to scan the whole table to pro-
cess the query, every row of the table becomes locked, which in turn blocks all inserts by other users
to the table. It is important to create good indexes so that your queries do not unnecessarily need to
scan many rows.

• SELECT ... FROM is a consistent read, reading a snapshot of the database and setting no
locks unless the transaction isolation level is set to SERIALIZABLE. For SERIALIZABLE
level, this sets shared next-key locks on the index records it encounters.

• SELECT ... FROM ... LOCK IN SHARE MODE sets shared next-key locks on all index
records the read encounters.

• SELECT ... FROM ... FOR UPDATE sets exclusive next-key locks on all index records
the read encounters.

• INSERT INTO ... VALUES (...) sets an exclusive lock on the inserted row. Note that
this lock is not a next-key lock and does not prevent other users from inserting to the gap before
the inserted row. If a duplicate-key error occurs, a shared lock on the duplicate index record is
set.

• While initializing a previously specified AUTO_INCREMENT column on a table, InnoDB sets
an exclusive lock on the end of the index associated with the AUTO_INCREMENT column. In
accessing the auto-increment counter, InnoDB uses a specific table lock mode AUTO-INC
where the lock lasts only to the end of the current SQL statement, instead of to the end of the
whole transaction. See Section 15.11.1, “InnoDB and AUTOCOMMIT”.

Before MySQL 3.23.50, SHOW TABLE STATUS applied to a table with an
AUTO_INCREMENT column sets an exclusive row-level lock to the high end of the
AUTO_INCREMENT index. This means also that SHOW TABLE STATUS could cause a dead-
lock of transactions, something that may surprise users. Starting from MySQL 3.23.50, InnoDB
fetches the value of a previously initialized AUTO_INCREMENT column without setting any
locks.

• INSERT INTO T SELECT ... FROM S WHERE ... sets an exclusive (non-next-key)
lock on each row inserted into T. It does the search on S as a consistent read, but sets shared
next-key locks on S if MySQL binary logging is turned on. InnoDB has to set locks in the latter
case: In roll-forward recovery from a backup, every SQL statement has to be executed in exactly
the same way it was done originally.

• CREATE TABLE ... SELECT ... performs the SELECT as a consistent read or with
shared locks, as in the previous item.

• REPLACE is done like an insert if there is no collision on a unique key. Otherwise, an exclusive
next-key lock is placed on the row that has to be updated.

The InnoDB Storage Engine

823

• UPDATE ... WHERE ... sets an exclusive next-key lock on every record the search en-
counters.

• DELETE FROM ... WHERE ... sets an exclusive next-key lock on every record the search
encounters.

• If a FOREIGN KEY constraint is defined on a table, any insert, update, or delete that requires
checking of the constraint condition sets shared record-level locks on the records it looks at to
check the constraint. InnoDB also sets these locks in the case where the constraint fails.

• LOCK TABLES sets table locks, but it is the higher MySQL layer above the InnoDB layer that
sets these locks. Beginning with MySQL 4.0.20 and 4.1.2, InnoDB is aware of table locks if
innodb_table_locks=1 and AUTOCOMMIT=0, and the MySQL layer above InnoDB
knows about row-level locks. Before that, the automatic deadlock detection of InnoDB cannot
detect deadlocks where such table locks are involved. Also, since the higher MySQL layer does
not know about row-level locks, it is possible to get a table lock on a table where another user
currently has row-level locks. But that does not put transaction integrity in danger. See Sec-
tion 15.11.9, “Deadlock Detection and Rollback”. See Section 15.17, “Restrictions on InnoDB
Tables”.

15.11.8. When Does MySQL Implicitly Commit or Roll
Back a Transaction?

MySQL begins each client connection with autocommit mode enabled by default. When autocom-
mit is enabled, MySQL does a commit after each SQL statement if that statement did not return an
error.

If you have the autocommit mode off and close a connection without calling an explicit commit of
your transaction, then MySQL rolls back your transaction.

If an SQL statement returns an error, the commit/rollback behavior depends on the error. See Sec-
tion 15.16, “Error Handling”.

The following SQL statements (and any synonyms for them) cause an implicit commit of the current
transaction in MySQL:

• ALTER TABLE, BEGIN, CREATE INDEX, DROP DATABASE, DROP INDEX, DROP TA-
BLE, LOAD MASTER DATA, LOCK TABLES, RENAME TABLE, SET AUTOCOMMIT=1,
START TRANSACTION, TRUNCATE, UNLOCK TABLES.

• CREATE TABLE (this commits only if before MySQL 4.0.13 and MySQL binary logging is
used).

• The CREATE TABLE statement in InnoDB is processed as a single transaction. This means
that a ROLLBACK from the user does not undo CREATE TABLE statements the user made dur-
ing that transaction.

15.11.9. Deadlock Detection and Rollback
InnoDB automatically detects a deadlock of transactions and rolls back a transaction or transactions
to prevent the deadlock. Starting from MySQL 4.0.5, InnoDB tries to pick small transactions to roll
back. The size of a transaction is determined by the number of rows it has inserted, updated, or de-
leted. Prior to 4.0.5, InnoDB always rolled back the transaction whose lock request was the last one
to build a deadlock, that is, a cycle in the ``waits-for'' graph of transactions.

Beginning with MySQL 4.0.20 and 4.1.2, InnoDB is aware of table locks if in-
nodb_table_locks=1 (1 is the default), and the MySQL layer above InnoDB knows about
row-level locks. Before that, InnoDB cannot detect deadlocks where a table lock set by a MySQL

The InnoDB Storage Engine

824

LOCK TABLES statement is involved, or if a lock set by another storage engine than InnoDB is in-
volved. You have to resolve these situations by setting the value of the in-
nodb_lock_wait_timeout system variable.

When InnoDB performs a complete rollback of a transaction, all the locks of the transaction are re-
leased. However, if just a single SQL statement is rolled back as a result of an error, some of the
locks set by the SQL statement may be preserved. This is because InnoDB stores row locks in a
format such it cannot know afterward which lock was set by which SQL statement.

15.11.10. How to Cope with Deadlocks
Deadlocks are a classic problem in transactional databases, but they are not dangerous unless they
are so frequent that you cannot run certain transactions at all. Normally, you must write your applic-
ations so that they are always prepared to re-issue a transaction if it gets rolled back because of a
deadlock.

InnoDB uses automatic row-level locking. You can get deadlocks even in the case of transactions
that just insert or delete a single row. That is because these operations are not really ``atomic''; they
automatically set locks on the (possibly several) index records of the row inserted or deleted.

You can cope with deadlocks and reduce the likelihood of their occurrence with the following tech-
niques:

• Use SHOW INNODB STATUS to determine the cause of the latest deadlock. That can help you
to tune your application to avoid deadlocks. This strategy can be used as of MySQL 3.23.52 and
4.0.3, depending on your MySQL series.

• Always be prepared to re-issue a transaction if it fails due to deadlock. Deadlocks are not dan-
gerous. Just try again.

• Commit your transactions often. Small transactions are less prone to collide.

• If you are using locking reads (SELECT ... FOR UPDATE or ... LOCK IN SHARE
MODE), try using a lower isolation level such as READ COMMITTED.

• Access your tables and rows in a fixed order. Then transactions form nice queues and do not
deadlock.

• Add well-chosen indexes to your tables. Then your queries need to scan fewer index records and
consequently set fewer locks. Use EXPLAIN SELECT to determine which indexes the MySQL
server regards as the most appropriate for your queries.

• Use less locking. If you can afford to allow a SELECT to return data from an old snapshot, do
not add the clause FOR UPDATE or LOCK IN SHARE MODE to it. Using READ COMMIT-
TED isolation level is good here, because each consistent read within the same transaction reads
from its own fresh snapshot.

• If nothing helps, serialize your transactions with table-level locks. The correct way to use LOCK
TABLES with transactional tables, like InnoDB, is to set AUTOCOMMIT = 0 and not to call
UNLOCK TABLES until you commit the transaction explicitly. For example, if you need to
write table t1 and read table t2, you can do this:

SET AUTOCOMMIT=0;
LOCK TABLES t1 WRITE, t2 READ, ...;
[do something with tables t1 and t2 here];
COMMIT;
UNLOCK TABLES;

Table-level locks make your transactions queue nicely, and deadlocks are avoided.

• Another way to serialize transactions is to create an auxiliary ``semaphore'' table that contains
just a single row. Have each transaction update that row before accessing other tables. In that

The InnoDB Storage Engine

825

way, all transactions happen in a serial fashion. Note that the InnoDB instant deadlock detec-
tion algorithm also works in this case, because the serializing lock is a row-level lock. With
MySQL table-level locks, the timeout method must be used to resolve deadlocks.

• In applications using AUTOCOMMIT=1 and MySQL's LOCK TABLES command, InnoDB's in-
ternal table locks that were present from 4.0.20 to 4.0.23 can cause deadlocks. Starting from
4.0.22, you can set innodb_table_locks=0 in my.cnf to fall back to the old behavior
and remove the problem. 4.0.24 does not set InnoDB table locks if AUTOCOMMIT=1.

15.12. InnoDB Performance Tuning Tips

• If the Unix top tool or the Windows Task Manager shows that the CPU usage percentage with
your workload is less than 70%, your workload is probably disk-bound. Maybe you are making
too many transaction commits, or the buffer pool is too small. Making the buffer pool bigger can
help, but do not set it bigger than 80% of physical memory.

• Wrap several modifications into one transaction. InnoDB must flush the log to disk at each
transaction commit if that transaction made modifications to the database. Since the rotation
speed of a disk is typically at most 167 revolutions/second, that constrains the number of com-
mits to the same 167th/second if the disk does not fool the operating system.

• If you can afford the loss of some of the latest committed transactions, you can set the my.cnf
parameter innodb_flush_log_at_trx_commit to 0. InnoDB tries to flush the log once
per second anyway, although the flush is not guaranteed.

• Make your log files big, even as big as the buffer pool. When InnoDB has written the log files
full, it has to write the modified contents of the buffer pool to disk in a checkpoint. Small log
files cause many unnecessary disk writes. The drawback of big log files is that the recovery time
is longer.

• Make the log buffer quite big as well (say, 8MB).

• Use the VARCHAR column type instead of CHAR if you are storing variable-length strings or if
the column may contain many NULL values. A CHAR(N) column always takes N bytes to store
data, even if the string is shorter or its value is NULL. Smaller tables fit better in the buffer pool
and reduce disk I/O.

• (Relevant from 3.23.39 up.) In some versions of GNU/Linux and Unix, flushing files to disk
with the Unix fsync() and other similar methods is surprisingly slow. The default method
InnoDB uses is the fsync() function. If you are not satisfied with the database write perform-
ance, you might try setting innodb_flush_method in my.cnf to O_DSYNC, although
O_DSYNC seems to be slower on most systems.

• When importing data into InnoDB, make sure that MySQL does not have autocommit mode en-
abled because that would require a log flush to disk for every insert. To disable autocommit dur-
ing your import operation, surround it with SET AUTOCOMMIT and COMMIT statements:

SET AUTOCOMMIT=0;
/* SQL import statements ... */
COMMIT;

If you use the mysqldump option --opt, you get dump files that are fast to import into an In-
noDB table, even without wrapping them with the SET AUTOCOMMIT and COMMIT state-
ments.

• Beware of big rollbacks of mass inserts: InnoDB uses the insert buffer to save disk I/O in in-
serts, but no such mechanism is used in a corresponding rollback. A disk-bound rollback can
take 30 times the time of the corresponding insert. Killing the database process does not help be-
cause the rollback starts again at the server startup. The only way to get rid of a runaway roll-
back is to increase the buffer pool so that the rollback becomes CPU-bound and runs fast, or to

The InnoDB Storage Engine

826

use a special procedure. See Section 15.9.1, “Forcing Recovery”.

• Beware also of other big disk-bound operations. Use DROP TABLE + CREATE TABLE to
empty a table, not DELETE FROM tbl_name.

• Use the multiple-row INSERT syntax to reduce communication overhead between the client and
the server if you need to insert many rows:

INSERT INTO yourtable VALUES (1,2), (5,5), ...;

This tip is valid for inserts into any table type, not just InnoDB.

• If you have UNIQUE constraints on secondary keys, starting from MySQL 3.23.52 and 4.0.3,
you can speed up table imports by temporarily turning off the uniqueness checks during the im-
port session:

SET UNIQUE_CHECKS=0;

For big tables, this saves a lot of disk I/O because InnoDB can use its insert buffer to write sec-
ondary index records in a batch.

• If you have FOREIGN KEY constraints in your tables, starting from MySQL 3.23.52 and 4.0.3,
you can speed up table imports by turning the foreign key checks off for a while in the import
session:

SET FOREIGN_KEY_CHECKS=0;

For big tables, this can save a lot of disk I/O.

• If you often have recurring queries to tables that are not updated frequently, use the query cache
available as of MySQL 4.0:

[mysqld]
query_cache_type = ON
query_cache_size = 10M

In MySQL 4.0, the query cache works only with autocommit enabled. This restriction is re-
moved in MySQL 4.1.1 and up.

15.12.1. SHOW INNODB STATUS and the InnoDB Monit-
ors

Starting from MySQL 3.23.42, InnoDB includes InnoDB Monitors that print information about
the InnoDB internal state. Starting from MySQL 3.23.52 and 4.0.3, you can use the SQL statement
SHOW INNODB STATUS to fetch the output of the standard InnoDB Monitor to your SQL client.
The information is useful in performance tuning. If you are using the mysql interactive SQL client,
the output is more readable if you replace the usual semicolon statement terminator by \G:

mysql> SHOW INNODB STATUS\G

Another way to use InnoDB Monitors is to let them continuously write data to the standard output
of the server mysqld. In this case, no output is sent to clients. When switched on, InnoDB Monitors
print data about every 15 seconds. Server output usually is directed to the .err log in the MySQL
data directory. This data is useful in performance tuning. On Windows, you must start the server
from a command prompt in a console window with the --console option if you want to direct the
output to the window rather than to the error log.

The InnoDB Storage Engine

827

Monitor output includes information of the following types:

• Table and record locks held by each active transaction

• Lock waits of a transactions

• Semaphore waits of threads

• Pending file I/O requests

• Buffer pool statistics

• Purge and insert buffer merge activity of the main InnoDB thread

To cause the standard InnoDB Monitor to write to the standard output of mysqld, use the following
SQL statement:

CREATE TABLE innodb_monitor(a INT) TYPE=InnoDB;

The monitor can be stopped by issuing the following statement:

DROP TABLE innodb_monitor;

The CREATE TABLE syntax is just a way to pass a command to the InnoDB engine through the
MySQL SQL parser: The only things that matter are the table name innodb_monitor and that it
be an InnoDB table. The structure of the table is not relevant at all for the InnoDB Monitor. If you
shut down the server when the monitor is running, and you want to start the monitor again, you have
to drop the table before you can issue a new CREATE TABLE statement to start the monitor. This
syntax may change in a future release.

In a similar way, you can start innodb_lock_monitor, which is otherwise the same as in-
nodb_monitor but also prints a lot of lock information. A separate in-
nodb_tablespace_monitor prints a list of created file segments existing in the tablespace and
also validates the tablespace allocation data structures. Starting from 3.23.44, there is in-
nodb_table_monitor with which you can print the contents of the InnoDB internal data dic-
tionary.

A sample of InnoDB Monitor output:

mysql> SHOW INNODB STATUS\G
*************************** 1. row ***************************
Status:
=====================================
030709 13:00:59 INNODB MONITOR OUTPUT
=====================================
Per second averages calculated from the last 18 seconds

SEMAPHORES

OS WAIT ARRAY INFO: reservation count 413452, signal count 378357
--Thread 32782 has waited at btr0sea.c line 1477 for 0.00 seconds the semaphore:
X-lock on RW-latch at 41a28668 created in file btr0sea.c line 135
a writer (thread id 32782) has reserved it in mode wait exclusive
number of readers 1, waiters flag 1
Last time read locked in file btr0sea.c line 731
Last time write locked in file btr0sea.c line 1347
Mutex spin waits 0, rounds 0, OS waits 0
RW-shared spins 108462, OS waits 37964; RW-excl spins 681824, OS waits 375485

LATEST FOREIGN KEY ERROR

030709 13:00:59 Transaction:

The InnoDB Storage Engine

828

TRANSACTION 0 290328284, ACTIVE 0 sec, process no 3195, OS thread id 34831 inser
ting
15 lock struct(s), heap size 2496, undo log entries 9
MySQL thread id 25, query id 4668733 localhost heikki update
insert into ibtest11a (D, B, C) values (5, 'khDk' ,'khDk')
Foreign key constraint fails for table test/ibtest11a:
,
CONSTRAINT `0_219242` FOREIGN KEY (`A`, `D`) REFERENCES `ibtest11b` (`A`, `D`)
ON DELETE CASCADE ON UPDATE CASCADE
Trying to add in child table, in index PRIMARY tuple:
0: len 4; hex 80000101; asc;; 1: len 4; hex 80000005; asc;; 2: len 4;
hex 6b68446b; asc khDk;; 3: len 6; hex 0000114e0edc; asc ...N..;; 4: len 7; hex
00000000c3e0a7; asc;; 5: len 4; hex 6b68446b; asc khDk;;
But in parent table test/ibtest11b, in index PRIMARY,
the closest match we can find is record:
RECORD: info bits 0 0: len 4; hex 8000015b; asc ...[;; 1: len 4; hex 80000005; a
sc;; 2: len 3; hex 6b6864; asc khd;; 3: len 6; hex 0000111ef3eb; asc
;; 4: len 7; hex 800001001e0084; asc;; 5: len 3; hex 6b6864; asc khd;;

LATEST DETECTED DEADLOCK

030709 12:59:58
*** (1) TRANSACTION:
TRANSACTION 0 290252780, ACTIVE 1 sec, process no 3185, OS thread id 30733 inser
ting
LOCK WAIT 3 lock struct(s), heap size 320, undo log entries 146
MySQL thread id 21, query id 4553379 localhost heikki update
INSERT INTO alex1 VALUES(86, 86, 794,'aA35818','bb','c79166','d4766t','e187358f'
,'g84586','h794',date_format('2001-04-03 12:54:22','%Y-%m-%d %H:%i'),7
*** (1) WAITING FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS space id 0 page no 48310 n bits 568 table test/alex1 index symbole
trx id 0 290252780 lock mode S waiting
Record lock, heap no 324 RECORD: info bits 0 0: len 7; hex 61613335383138; asc a
a35818;; 1:
*** (2) TRANSACTION:
TRANSACTION 0 290251546, ACTIVE 2 sec, process no 3190, OS thread id 32782 inser
ting
130 lock struct(s), heap size 11584, undo log entries 437
MySQL thread id 23, query id 4554396 localhost heikki update
REPLACE INTO alex1 VALUES(NULL, 32, NULL,'aa3572','','c3572','d6012t','', NULL,'
h396', NULL, NULL, 7.31,7.31,7.31,200)
*** (2) HOLDS THE LOCK(S):
RECORD LOCKS space id 0 page no 48310 n bits 568 table test/alex1 index symbole
trx id 0 290251546 lock_mode X locks rec but not gap
Record lock, heap no 324 RECORD: info bits 0 0: len 7; hex 61613335383138; asc a
a35818;; 1:
*** (2) WAITING FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS space id 0 page no 48310 n bits 568 table test/alex1 index symbole
trx id 0 290251546 lock_mode X locks gap before rec insert intention waiting
Record lock, heap no 82 RECORD: info bits 0 0: len 7; hex 61613335373230; asc aa
35720;; 1:
*** WE ROLL BACK TRANSACTION (1)

TRANSACTIONS

Trx id counter 0 290328385
Purge done for trx's n:o < 0 290315608 undo n:o < 0 17
Total number of lock structs in row lock hash table 70
LIST OF TRANSACTIONS FOR EACH SESSION:
---TRANSACTION 0 0, not started, process no 3491, OS thread id 42002
MySQL thread id 32, query id 4668737 localhost heikki
show innodb status
---TRANSACTION 0 290328384, ACTIVE 0 sec, process no 3205, OS thread id 38929 in
serting
1 lock struct(s), heap size 320
MySQL thread id 29, query id 4668736 localhost heikki update
insert into speedc values (1519229,1, 'hgjhjgghggjgjgjgjgjggjgjgjgjgjgggjgjgjlhh
gghggggghhjhghgggggghjhghghghghghhhhghghghjhhjghjghjkghjghjghjghjfhjfh
---TRANSACTION 0 290328383, ACTIVE 0 sec, process no 3180, OS thread id 28684 co

The InnoDB Storage Engine

829

mmitting
1 lock struct(s), heap size 320, undo log entries 1
MySQL thread id 19, query id 4668734 localhost heikki update
insert into speedcm values (1603393,1, 'hgjhjgghggjgjgjgjgjggjgjgjgjgjgggjgjgjlh
hgghggggghhjhghgggggghjhghghghghghhhhghghghjhhjghjghjkghjghjghjghjfhjf
---TRANSACTION 0 290328327, ACTIVE 0 sec, process no 3200, OS thread id 36880 st
arting index read
LOCK WAIT 2 lock struct(s), heap size 320
MySQL thread id 27, query id 4668644 localhost heikki Searching rows for update
update ibtest11a set B = 'kHdkkkk' where A = 89572
------- TRX HAS BEEN WAITING 0 SEC FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS space id 0 page no 65556 n bits 232 table test/ibtest11a index PRIM
ARY trx id 0 290328327 lock_mode X waiting
Record lock, heap no 1 RECORD: info bits 0 0: len 9; hex 73757072656d756d00; asc
supremum.;;

---TRANSACTION 0 290328284, ACTIVE 0 sec, process no 3195, OS thread id 34831 ro
llback of SQL statement
ROLLING BACK 14 lock struct(s), heap size 2496, undo log entries 9
MySQL thread id 25, query id 4668733 localhost heikki update
insert into ibtest11a (D, B, C) values (5, 'khDk' ,'khDk')
---TRANSACTION 0 290327208, ACTIVE 1 sec, process no 3190, OS thread id 32782
58 lock struct(s), heap size 5504, undo log entries 159
MySQL thread id 23, query id 4668732 localhost heikki update
REPLACE INTO alex1 VALUES(86, 46, 538,'aa95666','bb','c95666','d9486t','e200498f
','g86814','h538',date_format('2001-04-03 12:54:22','%Y-%m-%d %H:%i'),
---TRANSACTION 0 290323325, ACTIVE 3 sec, process no 3185, OS thread id 30733 in
serting
4 lock struct(s), heap size 1024, undo log entries 165
MySQL thread id 21, query id 4668735 localhost heikki update
INSERT INTO alex1 VALUES(NULL, 49, NULL,'aa42837','','c56319','d1719t','', NULL,
'h321', NULL, NULL, 7.31,7.31,7.31,200)

FILE I/O

I/O thread 0 state: waiting for i/o request (insert buffer thread)
I/O thread 1 state: waiting for i/o request (log thread)
I/O thread 2 state: waiting for i/o request (read thread)
I/O thread 3 state: waiting for i/o request (write thread)
Pending normal aio reads: 0, aio writes: 0,
ibuf aio reads: 0, log i/o's: 0, sync i/o's: 0
Pending flushes (fsync) log: 0; buffer pool: 0
151671 OS file reads, 94747 OS file writes, 8750 OS fsyncs
25.44 reads/s, 18494 avg bytes/read, 17.55 writes/s, 2.33 fsyncs/s

INSERT BUFFER AND ADAPTIVE HASH INDEX

Ibuf for space 0: size 1, free list len 19, seg size 21,
85004 inserts, 85004 merged recs, 26669 merges
Hash table size 207619, used cells 14461, node heap has 16 buffer(s)
1877.67 hash searches/s, 5121.10 non-hash searches/s

LOG

Log sequence number 18 1212842764
Log flushed up to 18 1212665295
Last checkpoint at 18 1135877290
0 pending log writes, 0 pending chkp writes
4341 log i/o's done, 1.22 log i/o's/second

BUFFER POOL AND MEMORY

Total memory allocated 84966343; in additional pool allocated 1402624
Buffer pool size 3200
Free buffers 110
Database pages 3074
Modified db pages 2674
Pending reads 0
Pending writes: LRU 0, flush list 0, single page 0

The InnoDB Storage Engine

830

Pages read 171380, created 51968, written 194688
28.72 reads/s, 20.72 creates/s, 47.55 writes/s
Buffer pool hit rate 999 / 1000

ROW OPERATIONS

0 queries inside InnoDB, 0 queries in queue
Main thread process no. 3004, id 7176, state: purging
Number of rows inserted 3738558, updated 127415, deleted 33707, read 755779
1586.13 inserts/s, 50.89 updates/s, 28.44 deletes/s, 107.88 reads/s

END OF INNODB MONITOR OUTPUT
============================
1 row in set (0.05 sec)

Some notes on the output:

• If the TRANSACTIONS section reports lock waits, your application may have lock contention.
The output can also help to trace the reasons for transaction deadlocks.

• The SEMAPHORES section reports threads waiting for a semaphore and statistics on how many
times threads have needed a spin or a wait on a mutex or a rw-lock semaphore. A large number
of threads waiting for semaphores may be a result of disk I/O, or contention problems inside
InnoDB. Contention can be due to heavy parallelism of queries, or problems in operating sys-
tem thread scheduling. Setting innodb_thread_concurrency smaller than the default
value of 8 can help in such situations.

• The BUFFER POOL AND MEMORY section gives you statistics on pages read and written. You
can calculate from these numbers how many data file I/O operations your queries currently are
doing.

• The ROW OPERATIONS section shows what the main thread is doing.

Beginning with MySQL 4.0.19, InnoDB sends diagnostic output to stderr or files instead of stdout
or fixed-size memory buffers, to avoid potential buffer overflow errors. As a side effect, the output
of SHOW INNODB STATUS is written to a status file every fifteen seconds. The name of the file is
innodb_status.pid, where pid is the server process ID. This file is created in the MySQL
data directory. InnoDB removes the file for a normal shutdown. If abnormal shutdowns have oc-
curred, instances of these status files may be present and must be removed manually. Before remov-
ing them, you might want to examine them to see if they contain useful information to the cause of
abnormal shutdowns. Beginning with MySQL 4.0.21, the innodb_status.pid file is only cre-
ated if the configuration option innodb_status_file=1 is set.

15.13. Implementation of Multi-Versioning
Because InnoDB is a multi-versioned database, it must keep information about old versions of rows
in the tablespace. This information is stored in a data structure called a rollback segment after an
analogous data structure in Oracle.

Internally, InnoDB adds two fields to each row stored in the database. A 6-byte field indicates the
transaction identifier for the last transaction that inserted or updated the row. Also, a deletion is
treated internally as an update where a special bit in the row is set to mark it as deleted. Each row
also contains a 7-byte field called the roll pointer. The roll pointer points to an undo log record writ-
ten to the rollback segment. If the row was updated, the undo log record contains the information
necessary to rebuild the content of the row before it was updated.

InnoDB uses the information in the rollback segment to perform the undo operations needed in a
transaction rollback. It also uses the information to build earlier versions of a row for a consistent
read.

Undo logs in the rollback segment are divided into insert and update undo logs. Insert undo logs are

The InnoDB Storage Engine

831

needed only in transaction rollback and can be discarded as soon as the transaction commits. Update
undo logs are used also in consistent reads, and they can be discarded only after there is no transac-
tion present for which InnoDB has assigned a snapshot that in a consistent read could need the in-
formation in the update undo log to build an earlier version of a database row.

You must remember to commit your transactions regularly, including those transactions that only is-
sue consistent reads. Otherwise, InnoDB cannot discard data from the update undo logs, and the
rollback segment may grow too big, filling up your tablespace.

The physical size of an undo log record in the rollback segment is typically smaller than the corres-
ponding inserted or updated row. You can use this information to calculate the space need for your
rollback segment.

In the InnoDB multi-versioning scheme, a row is not physically removed from the database imme-
diately when you delete it with an SQL statement. Only when InnoDB can discard the update undo
log record written for the deletion can it also physically remove the corresponding row and its index
records from the database. This removal operation is called a purge, and it is quite fast, usually tak-
ing the same order of time as the SQL statement that did the deletion.

In a scenario where the user inserts and deletes rows in smallish batches at about the same rate in the
table, it is possible that the purge thread starts to lag behind, and the table grows bigger and bigger,
making everything disk-bound and very slow. Even if the table would carry just 10 MB of useful
data, it may grow to occupy 10 GB with all the dead rows. In such a case, it would be good to
throttle new row operations, and allocate more resources for the purge thread.

The InnoDB transaction system maintains a list of transactions that have delete-marked index re-
cords by UPDATE or DELETE operations. Let the length of this list be purge_lag.

Starting with MySQL/InnoDB-4.1.6 and 4.0.22, there is a startup option and settable global variable
innodb_max_purge_lag, which is zero by default. When this parameter is non-zero, InnoDB
may delay new row operations. When the purge_lag exceeds innodb_max_purge_lag, each
INSERT, UPDATE and DELETE operation is delayed by purge_lag/in-
nodb_max_purge_lag*10-5 milliseconds. The delay is computed in the beginning of a purge
batch, every ten seconds. The operations are not delayed if purge cannot run because of an old con-
sistent read view that could see the rows to be purged. A typical setting for a problematic workload
might be 1 million, assuming that our transactions are small, only 100 bytes in size, and we can al-
low 100 MB of unpurged rows in our tables.

15.14. Table and Index Structures
MySQL stores its data dictionary information for tables in .frm files in database directories. This is
true for all MySQL storage engines. But every InnoDB table also has its own entry in InnoDB in-
ternal data dictionaries inside the tablespace. When MySQL drops a table or a database, it has to de-
lete both an .frm file or files, and the corresponding entries inside the InnoDB data dictionary.
This is the reason why you cannot move InnoDB tables between databases simply by moving the
.frm files. It is also the reason why DROP DATABASE did not work for InnoDB type tables be-
fore MySQL 3.23.44.

Every InnoDB table has a special index called the clustered index where the data of the rows is
stored. If you define a PRIMARY KEY on your table, the index of the primary key is the clustered
index.

If you do not define a PRIMARY KEY for your table, MySQL picks the first UNIQUE index that has
only NOT NULL columns as the primary key and InnoDB uses it as the clustered index. If there is
no such index in the table, InnoDB internally generates a clustered index where the rows are
ordered by the row ID that InnoDB assigns to the rows in such a table. The row ID is a 6-byte field
that increases monotonically as new rows are inserted. Thus the rows ordered by the row ID are
physically in the insertion order.

Accessing a row through the clustered index is fast because the row data is on the same page where
the index search leads. If a table is large, the clustered index architecture often saves a disk I/O
when compared to the traditional solution. (In many databases, the data is traditionally stored on a

The InnoDB Storage Engine

832

different page from the index record.)

In InnoDB, the records in non-clustered indexes (also called secondary indexes) contain the
primary key value for the row. InnoDB uses this primary key value to search for the row from the
clustered index. Note that if the primary key is long, the secondary indexes use more space.

InnoDB compares CHAR and VARCHAR strings of different lengths such that the remaining length
in the shorter string is treated as if padded with spaces.

15.14.1. Physical Structure of an Index
All indexes in InnoDB are B-trees where the index records are stored in the leaf pages of the tree.
The default size of an index page is 16KB. When new records are inserted, InnoDB tries to leave
1/16 of the page free for future insertions and updates of the index records.

If index records are inserted in a sequential order (ascending or descending), the resulting index
pages is about 15/16 full. If records are inserted in a random order, the pages are from 1/2 to 15/16
full. If the fillfactor of an index page drops below 1/2, InnoDB tries to contract the index tree to
free the page.

15.14.2. Insert Buffering
It is a common situation in a database application that the primary key is a unique identifier and new
rows are inserted in the ascending order of the primary key. Thus the insertions to the clustered in-
dex do not require random reads from a disk.

On the other hand, secondary indexes are usually non-unique, and insertions into secondary indexes
happen in a relatively random order. This would cause a lot of random disk I/O operations without a
special mechanism used in InnoDB.

If an index record should be inserted to a non-unique secondary index, InnoDB checks whether the
secondary index page is in the buffer pool. If that is the case, InnoDB does the insertion directly to
the index page. If the index page is not found in the buffer pool, InnoDB inserts the record to a spe-
cial insert buffer structure. The insert buffer is kept so small that it fits entirely in the buffer pool,
and insertions can be done very fast.

Periodically, the insert buffer is merged into the secondary index trees in the database. Often it is
possible to merge several insertions to the same page of the index tree, saving disk I/O operations. It
has been measured that the insert buffer can speed up insertions into a table up to 15 times.

15.14.3. Adaptive Hash Indexes
If a table fits almost entirely in main memory, the fastest way to perform queries on it is to use hash
indexes. InnoDB has an automatic mechanism that monitors index searches made to the indexes
defined for a table. If InnoDB notices that queries could benefit from building a hash index, it does
so automatically.

Note that the hash index is always built based on an existing B-tree index on the table. InnoDB can
build a hash index on a prefix of any length of the key defined for the B-tree, depending on the pat-
tern of searches that InnoDB observes for the B-tree index. A hash index can be partial: It is not re-
quired that the whole B-tree index is cached in the buffer pool. InnoDB builds hash indexes on de-
mand for those pages of the index that are often accessed.

In a sense, InnoDB tailors itself through the adaptive hash index mechanism to ample main
memory, coming closer to the architecture of main memory databases.

15.14.4. Physical Record Structure
Records in InnoDB tables have the following characteristics:

The InnoDB Storage Engine

833

• Each index record in InnoDB contains a header of six bytes. The header is used to link consec-
utive records together, and also in row-level locking.

• Records in the clustered index contain fields for all user-defined columns. In addition, there is a
six-byte field for the transaction ID and a seven-byte field for the roll pointer.

• If no primary key was defined for a table, each clustered index record also contains a six-byte
row ID field.

• Each secondary index record contains also all the fields defined for the clustered index key.

• A record contains also a pointer to each field of the record. If the total length of the fields in a re-
cord is less than 128 bytes, the pointer is one byte; otherwise, two bytes. The array of these
pointers is called the record directory. The area where these pointers point is called the data part
of the record.

• Internally, InnoDB stores fixed-length character columns such as CHAR(10) in a fixed-length
format. InnoDB truncates trailing spaces from VARCHAR columns. Note that MySQL may in-
ternally convert CHAR columns to VARCHAR. See Section 13.2.6.1, “Silent Column Specifica-
tion Changes”.

• An SQL NULL value reserves 1 or 2 bytes in the record directory. Besides that, an SQL NULL
value reserves zero bytes in the data part of the record if stored in a variable length column. In a
fixed-length column, it reserves the fixed length of the column in the data part of the record. The
motivation behind reserving the fixed space for NULL values is that then an update of the
column from NULL to a non-NULL value can be done in place and does not cause fragmentation
of the index page.

15.15. File Space Management and Disk I/O
15.15.1. Disk I/O

InnoDB uses simulated asynchronous disk I/O: InnoDB creates a number of threads to take care of
I/O operations, such as read-ahead.

There are two read-ahead heuristics in InnoDB:

• In sequential read-ahead, if InnoDB notices that the access pattern to a segment in the ta-
blespace is sequential, it posts in advance a batch of reads of database pages to the I/O system.

• In random read-ahead, if InnoDB notices that some area in a tablespace seems to be in the pro-
cess of being fully read into the buffer pool, it posts the remaining reads to the I/O system.

Starting from MySQL 3.23.40b, InnoDB uses a novel file flush technique called doublewrite. It
adds safety to crash recovery after an operating system crash or a power outage, and improves per-
formance on most Unix flavors by reducing the need for fsync() operations.

Doublewrite means that before writing pages to a data file, InnoDB first writes them to a contigu-
ous tablespace area called the doublewrite buffer. Only after the write and the flush to the double-
write buffer has completed does InnoDB write the pages to their proper positions in the data file. If
the operating system crashes in the middle of a page write, InnoDB can later find a good copy of
the page from the doublewrite buffer during recovery.

15.15.2. Using Raw Devices for the Tablespace
Starting from MySQL 3.23.41, you can use raw disk partitions as tablespace data files. By using a
raw disk, you can perform non-buffered I/O on Windows and on some Unix systems without
filesystem overhead, which might improve performance.

The InnoDB Storage Engine

834

When you create a new data file, you must put the keyword newraw immediately after the data file
size in innodb_data_file_path. The partition must be at least as large as the size that you
specify. Note that 1MB in InnoDB is 1024 * 1024 bytes, whereas 1MB usually means 1,000,000
bytes in disk specifications.

[mysqld]
innodb_data_home_dir=
innodb_data_file_path=/dev/hdd1:3Gnewraw;/dev/hdd2:2Gnewraw

The next time you start the server, InnoDB notices the newraw keyword and initializes the new
partition. However, do not create or change any InnoDB tables yet. Otherwise, when you next re-
start the server, InnoDB reinitializes the partition and your changes are lost. (Starting from 3.23.44,
as a safety measure InnoDB prevents users from modifying data when any partition with newraw
is specified.)

After InnoDB has initialized the new partition, stop the server, change newraw in the data file spe-
cification to raw:

[mysqld]
innodb_data_home_dir=
innodb_data_file_path=/dev/hdd1:5Graw;/dev/hdd2:2Graw

Then restart the server and InnoDB allows changes to be made.

On Windows, starting from 4.1.1, you can allocate a disk partition as a data file like this:

[mysqld]
innodb_data_home_dir=
innodb_data_file_path=//./D::10Gnewraw

The //./ corresponds to the Windows syntax of \\.\ for accessing physical drives.

When you use raw disk partitions, be sure that they have permissions that allow read and write ac-
cess by the account used for running the MySQL server.

15.15.3. File Space Management
The data files you define in the configuration file form the tablespace of InnoDB. The files are
simply concatenated to form the tablespace. There is no striping in use. Currently you cannot define
where in the tablespace your tables are allocated. However, in a newly created tablespace, InnoDB
allocates space starting from the first data file.

The tablespace consists of database pages with a default size of 16KB. The pages are grouped into
extents of 64 consecutive pages. The ``files'' inside a tablespace are called segments in InnoDB.
The name of the ``rollback segment'' is somewhat confusing because it actually contains many seg-
ments in the tablespace.

Two segments are allocated for each index in InnoDB. One is for non-leaf nodes of the B-tree, the
other is for the leaf nodes. The idea here is to achieve better sequentiality for the leaf nodes, which
contain the data.

When a segment grows inside the tablespace, InnoDB allocates the first 32 pages to it individually.
After that InnoDB starts to allocate whole extents to the segment. InnoDB can add to a large seg-
ment up to 4 extents at a time to ensure good sequentiality of data.

Some pages in the tablespace contain bitmaps of other pages, and therefore a few extents in an In-
noDB tablespace cannot be allocated to segments as a whole, but only as individual pages.

When you ask for available free space in the tablespace by issuing a SHOW TABLE STATUS, In-
noDB reports the extents that are definitely free in the tablespace. InnoDB always reserves some
extents for clean-up and other internal purposes; these reserved extents are not included in the free

The InnoDB Storage Engine

835

space.

When you delete data from a table, InnoDB contracts the corresponding B-tree indexes. It depends
on the pattern of deletes whether that frees individual pages or extents to the tablespace, so that the
freed space becomes available for other users. Dropping a table or deleting all rows from it is guar-
anteed to release the space to other users, but remember that deleted rows are physically removed
only in an (automatic) purge operation after they are no longer needed for transaction rollbacks or
consistent reads.

15.15.4. Defragmenting a Table
If there are random insertions into or deletions from the indexes of a table, the indexes may become
fragmented. Fragmentation means that the physical ordering of the index pages on the disk is not
close to the index ordering of the records on the pages, or that there are many unused pages in the
64-page blocks that were allocated to the index.

A symptom of fragmentation is that a table takes more space than it 'should take'. How much exactly
is that, is difficult to determine. All InnoDB data and indexes are stored in B-trees, and their fill-
factor may vary 50 % - 100 %. Another symptom of fragmentation is that a table scan:

SELECT COUNT(*) FROM t WHERE a_non_indexed_column <> 12345;

takes more time than 'it should take'. (Above we are fooling the SQL optimizer to scan the clustered
index, not a secondary index.) Most disks can read 10 - 50 MB/s. That can be used to estimate how
fast a table scan should run.

It can speed up index scans if you periodically perform a ``null'' ALTER TABLE operation:

ALTER TABLE tbl_name TYPE=InnoDB

That causes MySQL to rebuild the table. Another way to perform a defragmention operation is to
use mysqldump to dump the table to a text file, drop the table, and reload it from the dump file.

If the insertions to an index are always ascending and records are deleted only from the end, the
InnoDB file space management algorithm guarantees that fragmentation in the index does not oc-
cur.

15.16. Error Handling
Error handling in InnoDB is not always the same as specified in the SQL standard. According to
the standard, any error during an SQL statement should cause the rollback of that statement. In-
noDB sometimes rolls back only part of the statement, or the whole transaction. The following items
describe how InnoDB performs error handling:

• If you run out of file space in the tablespace, you get the MySQL Table is full error and
InnoDB rolls back the SQL statement.

• A transaction deadlock or a timeout in a lock wait causes InnoDB to roll back the whole trans-
action.

• A duplicate-key error rolls back only the insert of that particular row, even in a statement like
INSERT INTO ... SELECT. This will probably change so that the SQL statement is rolled
back if you have not specified the IGNORE option in your statement.

• A ``row too long'' error rolls back the SQL statement.

• Other errors are mostly detected by the MySQL layer of code (above the InnoDB storage en-
gine level), and they roll back the corresponding SQL statement.

During such implicit rollbacks, as well as during the explicit ROLLBACK SQL command, SHOW

The InnoDB Storage Engine

836

PROCESSLIST displays "Rolling back" in the State column for the connection (starting from
MySQL 4.1.8).

15.16.1. InnoDB Error Codes
The following is a non-exhaustive list of common InnoDB-specific errors that you may encounter,
with information about why they occur and how to resolve the problem.

• 1005 (ER_CANT_CREATE_TABLE)

Cannot create table. If the error message string refers to errno 150, table creation failed be-
cause a foreign key constraint was not correctly formed.

• 1016 (ER_CANT_OPEN_FILE)

Cannot find the InnoDB table from the InnoDB data files though the .frm file for the table
exists. See Section 15.18.1, “Troubleshooting InnoDB Data Dictionary Operations”.

• 1114 (ER_RECORD_FILE_FULL)

InnoDB has run out of free space in the tablespace. You should reconfigure the tablespace to
add a new data file.

• 1205 (ER_LOCK_WAIT_TIMEOUT)

Lock wait timeout expired. Transaction was rolled back.

• 1213 (ER_LOCK_DEADLOCK)

Transaction deadlock. You should rerun the transaction.

• 1216 (ER_NO_REFERENCED_ROW)

You are trying to add a row but there is no parent row, and a foreign key constraint fails. You
should add the parent row first.

• 1217 (ER_ROW_IS_REFERENCED)

You are trying to delete a parent row that has children, and a foreign key constraint fails. You
should delete the children first.

15.16.2. Operating System Error Codes
To print the meaning of an operating system error number, use the perror program that comes with
the MySQL distribution.

The following table provides a list of some common Linux system error codes. For a more complete
list, see Linux source code [http://www.iglu.org.il/lxr/source/include/asm-i386/errno.h].

• 1 (EPERM)

Operation not permitted

• 2 (ENOENT)

No such file or directory

• 3 (ESRCH)

No such process

The InnoDB Storage Engine

837

http://www.iglu.org.il/lxr/source/include/asm-i386/errno.h

• 4 (EINTR)

Interrupted system call

• 5 (EIO)

I/O error

• 6 (ENXIO)

No such device or address

• 7 (E2BIG)

Arg list too long

• 8 (ENOEXEC)

Exec format error

• 9 (EBADF)

Bad file number

• 10 (ECHILD)

No child processes

• 11 (EAGAIN)

Try again

• 12 (ENOMEM)

Out of memory

• 13 (EACCES)

Permission denied

• 14 (EFAULT)

Bad address

• 15 (ENOTBLK)

Block device required

• 16 (EBUSY)

Device or resource busy

• 17 (EEXIST)

File exists

• 18 (EXDEV)

Cross-device link

• 19 (ENODEV)

No such device

• 20 (ENOTDIR)

The InnoDB Storage Engine

838

Not a directory

• 21 (EISDIR)

Is a directory

• 22 (EINVAL)

Invalid argument

• 23 (ENFILE)

File table overflow

• 24 (EMFILE)

Too many open files

• 25 (ENOTTY)

Inappropriate ioctl for device

• 26 (ETXTBSY)

Text file busy

• 27 (EFBIG)

File too large

• 28 (ENOSPC)

No space left on device

• 29 (ESPIPE)

Illegal seek

• 30 (EROFS)

Read-only file system

• 31 (EMLINK)

Too many links

The following table provides a list of some common Windows system error codes. For a complete
list see the Microsoft website
[http://msdn.microsoft.com/library/default.asp?url=/library/en-us/debug/base/system_error_codes.as
p].

• 1 (ERROR_INVALID_FUNCTION)

Incorrect function.

• 2 (ERROR_FILE_NOT_FOUND)

The system cannot find the file specified.

• 3 (ERROR_PATH_NOT_FOUND)

The system cannot find the path specified.

The InnoDB Storage Engine

839

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/debug/base/system_error_codes.asp

• 4 (ERROR_TOO_MANY_OPEN_FILES)

The system cannot open the file.

• 5 (ERROR_ACCESS_DENIED)

Access is denied.

• 6 (ERROR_INVALID_HANDLE)

The handle is invalid.

• 7 (ERROR_ARENA_TRASHED)

The storage control blocks were destroyed.

• 8 (ERROR_NOT_ENOUGH_MEMORY)

Not enough storage is available to process this command.

• 9 (ERROR_INVALID_BLOCK)

The storage control block address is invalid.

• 10 (ERROR_BAD_ENVIRONMENT)

The environment is incorrect.

• 11 (ERROR_BAD_FORMAT)

An attempt was made to load a program with an incorrect format.

• 12 (ERROR_INVALID_ACCESS)

The access code is invalid.

• 13 (ERROR_INVALID_DATA)

The data is invalid.

• 14 (ERROR_OUTOFMEMORY)

Not enough storage is available to complete this operation.

• 15 (ERROR_INVALID_DRIVE)

The system cannot find the drive specified.

• 16 (ERROR_CURRENT_DIRECTORY)

The directory cannot be removed.

• 17 (ERROR_NOT_SAME_DEVICE)

The system cannot move the file to a different disk drive.

• 18 (ERROR_NO_MORE_FILES)

There are no more files.

• 19 (ERROR_WRITE_PROTECT)

The media is write protected.

• 20 (ERROR_BAD_UNIT)

The InnoDB Storage Engine

840

The system cannot find the device specified.

• 21 (ERROR_NOT_READY)

The device is not ready.

• 22 (ERROR_BAD_COMMAND)

The device does not recognize the command.

• 23 (ERROR_CRC)

Data error (cyclic redundancy check).

• 24 (ERROR_BAD_LENGTH)

The program issued a command but the command length is incorrect.

• 25 (ERROR_SEEK)

The drive cannot locate a specific area or track on the disk.

• 26 (ERROR_NOT_DOS_DISK)

The specified disk or diskette cannot be accessed.

• 27 (ERROR_SECTOR_NOT_FOUND)

The drive cannot find the sector requested.

• 28 (ERROR_OUT_OF_PAPER)

The printer is out of paper.

• 29 (ERROR_WRITE_FAULT)

The system cannot write to the specified device.

• 30 (ERROR_READ_FAULT)

The system cannot read from the specified device.

• 31 (ERROR_GEN_FAILURE)

A device attached to the system is not functioning.

• 32 (ERROR_SHARING_VIOLATION)

The process cannot access the file because it is being used by another process.

• 33 (ERROR_LOCK_VIOLATION)

The process cannot access the file because another process has locked a portion of the file.

• 34 (ERROR_WRONG_DISK)

The wrong diskette is in the drive. Insert %2 (Volume Serial Number: %3) into drive %1.

• 36 (ERROR_SHARING_BUFFER_EXCEEDED)

Too many files opened for sharing.

• 38 (ERROR_HANDLE_EOF)

The InnoDB Storage Engine

841

Reached the end of the file.

• 39 (ERROR_HANDLE_DISK_FULL)

The disk is full.

• 87 (ERROR_INVALID_PARAMETER)

The parameter is incorrect. (If you get this error in MySQL-4.1.9 on Windows, and you have set
innodb_file_per_table in my.cnf or my.ini, then this is Bug #8021, and a work-
around is to put the line innodb_flush_method=unbuffered to your my.cnf or
my.ini.)

• 112 (ERROR_DISK_FULL)

The disk is full.

• 123 (ERROR_INVALID_NAME)

The filename, directory name, or volume label syntax is incorrect.

• 1450 (ERROR_NO_SYSTEM_RESOURCES)

Insufficient system resources exist to complete the requested service.

15.17. Restrictions on InnoDB Tables

• A table cannot contain more than 1000 columns.

• The internal maximum key length is 3500 bytes, but MySQL itself restricts this to 1024 bytes.

• The maximum row length, except for BLOB and TEXT columns, is slightly less than half of a
database page. That is, the maximum row length is about 8000 bytes. LONGBLOB and LONG-
TEXT columns must be less than 4GB, and the total row length, including also BLOB and TEXT
columns, must be less than 4GB. InnoDB stores the first 512 bytes of a BLOB or TEXT column
in the row, and the rest into separate pages.

• On some old operating systems, data files must be less than 2GB.

• The combined size of the InnoDB log files must be less than 4GB.

• The minimum tablespace size is 10MB. The maximum tablespace size is four billion database
pages (64TB). This is also the maximum size for a table.

• InnoDB tables do not support FULLTEXT indexes.

• InnoDB tables do not support spatial column types.

• ANALYZE TABLE counts cardinality by doing 10 random dives to each of the index trees
and updating index cardinality estimates accordingly. Note that because these are only estimates,
repeated runs of ANALYZE TABLE may produce different numbers. This makes ANALYZE
TABLE fast on InnoDB tables but not 100% accurate as it doesn't take all rows into account.

MySQL uses index cardinality estimates only in join optimization. If some join is not optimized
in the right way, you may try using ANALYZE TABLE. In the few cases that ANALYZE TABLE
doesn't produce values good enough for your particular tables, you can use FORCE INDEX with
your queries to force the usage of a particular index, or set max_seeks_for_key to ensure
that MySQL prefers index lookups over table scans. See Section 5.2.3, “Server System Vari-
ables”. See Section A.6, “Optimizer-Related Issues”.

The InnoDB Storage Engine

842

• On Windows, InnoDB always stores database and table names internally in lowercase. To
move databases in binary format from Unix to Windows or from Windows to Unix, you should
have all database and table names in lowercase.

• Warning: Do not convert MySQL system tables in the mysql database from MyISAM to In-
noDB tables! This is an unsupported operation. If you do this, MySQL does not restart until you
restore the old system tables from a backup or re-generate them with the mysql_install_db
script.

• InnoDB does not keep an internal count of rows in a table. (This would actually be somewhat
complicated because of multi-versioning.) To process a SELECT COUNT(*) FROM T state-
ment, InnoDB must scan an index of the table, which takes some time if the index is not en-
tirely in the buffer pool. To get a fast count, you have to use a counter table you create yourself
and let your application update it according to the inserts and deletes it does. If your table does
not change often, using the MySQL query cache is a good solution. SHOW TABLE STATUS
also can be used if an approximate row count is sufficient. See Section 15.12, “InnoDB Per-
formance Tuning Tips”.

• For an AUTO_INCREMENT column, you must always define an index for the table, and that in-
dex must contain just the AUTO_INCREMENT column. In MyISAM tables, the
AUTO_INCREMENT column may be part of a multi-column index.

• InnoDB does not support the AUTO_INCREMENT table option for setting the initial sequence
value in a CREATE TABLE or ALTER TABLE statement. To set the value with InnoDB, insert
a dummy row with a value one less and delete that dummy row, or insert the first row with an
explicit value specified.

• When you restart the MySQL server, InnoDB may reuse an old value for an
AUTO_INCREMENT column (that is, a value that was assigned to an old transaction that was
rolled back).

• When an AUTO_INCREMENT column runs out of values, InnoDB wraps a BIGINT to -
9223372036854775808 and BIGINT UNSIGNED to 1. However, BIGINT values have 64
bits, so do note that if you were to insert one million rows per second, it would still take nearly
three hundred thousand years before BIGINT reached its upper bound. With all other integer
type columns, a duplicate-key error results. This is similar to how MyISAM works, because it is
mostly general MySQL behavior and not about any storage engine in particular.

• DELETE FROM tbl_name does not regenerate the table but instead deletes all rows, one by
one.

• TRUNCATE tbl_name is mapped to DELETE FROM tbl_name for InnoDB and doesn't
reset the AUTO_INCREMENT counter.

• SHOW TABLE STATUS does not give accurate statistics on InnoDB tables, except for the
physical size reserved by the table. The row count is only a rough estimate used in SQL optimiz-
ation.

• If you try to create a unique index on a prefix of a column you get an error:

CREATE TABLE T (A CHAR(20), B INT, UNIQUE (A(5))) TYPE = InnoDB;

If you create a non-unique index on a prefix of a column, InnoDB creates an index over the
whole column.

• Before MySQL 4.0.20 or 4.1.2, the MySQL LOCK TABLES operation does not know about
InnoDB row-level locks set by completed SQL statements. This means that you can get a table
lock on a table even if there still exist transactions by other users who have row level locks on
the same table. Thus your operations on the table may have to wait if they collide with these
locks of other users. Also a deadlock is possible. However, this does not endanger transaction in-
tegrity, because the row level locks set by InnoDB always take care of the integrity. Also, a ta-
ble lock prevents other transactions from acquiring more row level locks (in a conflicting lock

The InnoDB Storage Engine

843

mode) on the table.

• Beginning with MySQL 4.0.20 and 4.1.2, the MySQL LOCK TABLES operation acquires two
locks on each table if innodb_table_locks=1. (1 is the default.) In addition to a table lock
on the MySQL layer, it also acquires an InnoDB table lock. Older versions of MySQL do not
acquire InnoDB table locks. Beginning with MySQL 4.0.22 and 4.1.7, the old behavior can be
selected by setting innodb_table_locks=0. If no InnoDB table lock is acquired, LOCK
TABLES completes even if some records of the tables are being locked by other transactions.

• All InnoDB locks held by a transaction are released when the transaction is committed or abor-
ted. Thus, it does not make much sense to invoke LOCK TABLES on InnoDB tables in AUTO-
COMMIT=1 mode, because the acquired InnoDB table locks would be released immediately.

• Sometimes it would be useful to lock further tables in the course of a transaction. Unfortunately,
LOCK TABLES in MySQL performs an implicit COMMIT and UNLOCK TABLES. An InnoDB
variant of LOCK TABLES has been planned that can be executed in the middle of a transaction.

• Before MySQL 3.23.52, replication always ran with autocommit enabled. Therefore consistent
reads in the slave would also see partially processed transactions, and thus the read would not be
really consistent in the slave. This restriction was removed in MySQL 3.23.52.

• The LOAD TABLE FROM MASTER statement for setting up replication slave servers does not
yet work for InnoDB tables. A workaround is to alter the table to MyISAM on the master, do
then the load, and after that alter the master table back to InnoDB.

• The default database page size in InnoDB is 16KB. By recompiling the code, you can set it to
values ranging from 8KB to 64KB. You have to update the values of UNIV_PAGE_SIZE and
UNIV_PAGE_SIZE_SHIFT in the univ.i source file.

15.18. InnoDB Troubleshooting

• A general rule is that when an operation fails or you suspect a bug, you should look at the
MySQL server error log, which typically has a name something like hostname.err, or pos-
sibly mysql.err on Windows.

• When doing troubleshooting, it is usually best to run the MySQL server from the command
prompt, not through the mysqld_safe wrapper or as a Windows service. You then see what
mysqld prints to the command prompt window, and you have a better grasp of what is going on.
On Windows, you must start the server with the --console option to direct the output to the
console window.

• Use the InnoDB Monitors to obtain information about a problem. If the problem is perform-
ance-related, or your server appears to be hung, you should use innodb_monitor to print in-
formation about the internal state of InnoDB. If the problem is with locks, use in-
nodb_lock_monitor. If the problem is in creation of tables or other data dictionary opera-
tions, use innodb_table_monitor to print the contents of the InnoDB internal data dic-
tionary.

• If you suspect a table is corrupt, run CHECK TABLE on that table.

15.18.1. Troubleshooting InnoDB Data Dictionary Op-
erations

A specific issue with tables is that the MySQL server keeps data dictionary information in .frm
files it stores in the database directories, while InnoDB also stores the information into its own data
dictionary inside the tablespace files. If you move .frm files around, or use DROP DATABASE in
MySQL versions before 3.23.44, or the server crashes in the middle of a data dictionary operation,
the .frm files may end up out of sync with the InnoDB internal data dictionary.

The InnoDB Storage Engine

844

A symptom of an out-of-sync data dictionary is that a CREATE TABLE statement fails. If this oc-
curs, you should look in the server's error log. If the log says that the table already exists inside the
InnoDB internal data dictionary, you have an orphaned table inside the InnoDB tablespace files
that has no corresponding .frm file. The error message looks like this:

InnoDB: Error: table test/parent already exists in InnoDB internal
InnoDB: data dictionary. Have you deleted the .frm file
InnoDB: and not used DROP TABLE? Have you used DROP DATABASE
InnoDB: for InnoDB tables in MySQL version <= 3.23.43?
InnoDB: See the Restrictions section of the InnoDB manual.
InnoDB: You can drop the orphaned table inside InnoDB by
InnoDB: creating an InnoDB table with the same name in another
InnoDB: database and moving the .frm file to the current database.
InnoDB: Then MySQL thinks the table exists, and DROP TABLE will
InnoDB: succeed.

You can drop the orphaned table by following the instructions given in the error message.

Another symptom of an out-of-sync data dictionary is that MySQL prints an error that it cannot
open a .InnoDB file:

ERROR 1016: Can't open file: 'child2.InnoDB'. (errno: 1)

In the error log you can find a message like this:

InnoDB: Cannot find table test/child2 from the internal data dictionary
InnoDB: of InnoDB though the .frm file for the table exists. Maybe you
InnoDB: have deleted and recreated InnoDB data files but have forgotten
InnoDB: to delete the corresponding .frm files of InnoDB tables?

This means that there is an orphaned .frm file without a corresponding table inside InnoDB. You
can drop the orphaned .frm file by deleting it manually.

If MySQL crashes in the middle of an ALTER TABLE operation, you may end up with an orphaned
temporary table inside the InnoDB tablespace. With innodb_table_monitor you see a table
whose name is #sql-.... Starting from MySQL 4.0.6, you can perform SQL statements also on
tables whose name contains the character '#' if you enclose the name in backticks. Thus, you can
drop such an orphaned table like any other orphaned table with the method described above. Note
that to copy or rename a file in the Unix shell, you need to put the file name in double quotes if the
file name contains '#'.

Older MySQL versions did not allow accessing any table with a name containing '#'. The solution in
older MySQL versions is to use a special InnoDB mechanism available starting from MySQL
3.23.48. When you have an orphaned table #sql-id inside the tablespace, you can cause InnoDB
to rename it to rsql-id_recover_innodb_tmp_table with the following statement:

CREATE TABLE `rsql-id_recover_innodb_tmp_table`(...) TYPE=InnoDB;

The InnoDB Storage Engine

845

Chapter 16. MySQL Cluster
MySQL Cluster uses the new NDB Cluster storage engine to enable running several MySQL
servers in a cluster. The NDB Cluster storage engine is available in BitKeeper from MySQL re-
lease 4.1.2, and in binary releases from MySQL-Max 4.1.3.

Currently supported operating systems are Linux, Mac OS X, and Solaris. We are working to make
NDB Cluster run on all operating systems supported by MySQL, including Windows.

This chapter represents work in progress. Other documents describing MySQL Cluster can be found
at http://www.mysql.com/cluster/.

You may also wish to subscribe to the MySQL Cluster mailing list. See http://lists.mysql.com/. You
may also find the MySQL forums at http://forums.mysql.com/to be useful.

16.1. MySQL Cluster Overview
MySQL Cluster is a new technology to enable clustering of in-memory databases in a share-
nothing system. The share-nothing architecture allows the system to work with very inexpensive
hardware, and without any specific requirements on hardware or software. It also does not have any
single point of failure because each component has its own memory and disk.

MySQL Cluster integrates the standard MySQL server with an in-memory clustered storage engine
called NDB. In our documentation, the term NDB refers to the part of the setup that is specific to the
storage engine, whereas MySQL Cluster refers to the combination of MySQL and the new stor-
age engine.

A MySQL Cluster consists of a set of computers, each running a number of processes including
MySQL servers, storage nodes for NDB Cluster, management servers and (possibly) specialized
data access programs. All these programs work together to form MySQL Cluster. When data is
stored in the NDB Cluster storage engine, the tables are stored in the storage nodes for NDB
Cluster. Such tables are directly accessible from all other MySQL servers in the cluster. Thus, in a
payroll application storing data in a cluster, if one application updates the salary of an employee, all
other MySQL servers that query this data can see the change immediately.

The data stored in the storage nodes for MySQL Cluster can be mirrored; the cluster can handle fail-
ures of individual storage nodes with no other impact than that a number of transactions are aborted
due to losing the transaction state. Since transactional applications are expected to handle transac-
tion failure, this should not be a source of problems.

By bringing MySQL Cluster to the Open Source world, MySQL makes clustered data management
with high availability, high performance, and scalability available to all who need it.

16.2. Basic MySQL Cluster Concepts
NDB is an in-memory storage engine offering high-availability and data-persistence features.

The NDB storage engine can be configured with a range of failover and load-balancing options, but
it is easiest to start with the storage engine at the cluster level. MySQL Cluster's NDB storage engine
contains a complete set of data, dependent only on other data within the cluster itself.

This section describes how to set up a MySQL Cluster consisting of an NDB storage engine and
some MySQL servers.

The cluster portion of MySQL Cluster is currently configured independently of the MySQL servers.
In a MySQL Cluster, each part of the cluster is considered to be a node.

Note: A node is in many contexts a computer, but for MySQL Cluster it is a process. There can be
any number of nodes on a single computer.

846

http://www.mysql.com/cluster/
http://lists.mysql.com/
http://forums.mysql.com/

Each node has a type, and there can be multiple nodes of each type in a MySQL Cluster. In a min-
imal MySQL Cluster configuration, there are at least three nodes:

• The management (MGM) node: The role of this type of node is to manage the other nodes within
the MySQL Cluster, such as providing configuration data, starting and stopping nodes, running
backup, and so forth. Because this node type manages the configuration of the other nodes, a
node of this type should be started first, before any other node. With a running cluster, the MGM
node does not necessarily have to be running all the time. A MGM node is started with the com-
mand ndb_mgmd; for this reason NDB_MGMD is provided as an alias for MGM when config-
uring the cluster.

• The storage or database (DB) node: This is the type of node that manages and stores the database
itself. There are as many DB nodes as you have replicas times the number of fragments. For ex-
ample, with two replicas, each having two fragments, you need four DB nodes. It is not neces-
sary to have more than one replica, so a minimal MySQL Cluster may contain just one DB node.
A DB node is started with the command ndbd, and so NDBD is provided as an alias for DB
when configuring the cluster.

• The client (API) node: This is the client node that accesses the cluster. In the case of MySQL
Cluster, a client node is a traditional MySQL server that uses the NDB Cluster storage en-
gine, enabling access to clustered tables. Basically, the MySQL server acts as a client of the
NDB cluster. Applications using the NDB API directly are also considered API nodes. Since a
MySQL server is typically started with the command mysqld or mysqld_safe, MYSQLD is
provided as an alias for API when configuring the cluster.

Cluster processes are also referred to as cluster nodes. Configuration of the cluster involves config-
uring each individual node in the cluster and setting up individual communication links between
nodes. MySQL Cluster is currently designed with the intention that storage nodes are homogeneous
in terms of processor power, memory space, and communication bandwidth. In addition, in order to
provide a single point of configuration, all configuration data for the cluster as a whole is located in
one configuration file.

The management server manages the cluster configuration file and the cluster log. Each node in the
cluster retrieves the configuration data from the management server, and so requires a way to de-
termine where the management server resides. When interesting events occur in the storage nodes,
the nodes transfer information about these events to the management server, which then writes the
information to the cluster log.

In addition, there can be any number of clients to the cluster. These are of two types.

• Standard MySQL clients: These are no different for MySQL Cluster than they are for standard
(non-Cluster) MySQL. In other words, MySQL Cluster can be accessed from existing MySQL
applications written in PHP, Perl, C, C++, Java, Python, Ruby, and so on.

• Management clients: These clients connect to the management server and provide commands
for starting and stopping nodes gracefully, starting and stopping message tracing (debug ver-
sions only), showing node versions and status, starting and stopping backups, and so on.

16.3. MySQL Cluster Configuration
A MySQL server that is part of a MySQL Cluster differs in only one respect from a normal
(non-clustered) MySQL server, employing the NDBCLUSTER) storage engine. This engine is also
referred to simply as NDB, and the two forms of the name are synonymous.

In order to avoid unnecessary resources allocation, the server is configured by default with the NDB
storage engine disabled. To enable NDB, you need to modify the server's my.cnf configuration file.

Since the MySQL server is a part of the cluster, it also needs to know how to access an MGM node

MySQL Cluster

847

in order to obtain the cluster configuration data. The default behavior is to look for the MGM node
on localhost. However, should you need to specify its location elsewhere, this is can be done in
my.cnf or on the MySQL server command line. Before the NDB storage engine can be used, at
least one MGM node must be operational, as well as any desired DB nodes.

16.3.1. Building from Source Code
NDB, the Cluster storage engine, is available in binary distributions beginning with MySQL-Max
4.1.3 for Linux, Mac OS X, and Solaris. It is not yet supported on Windows, but we intend to make
it available for win32 platforms in the near future.

If you choose to build from a source tarball or the MySQL 4.1 BitKeeper tree, be sure to use the -
-with-ndbcluster option when running configure. You can instead use the BUILD/com-
pile-pentium-max build script. Note that this script includes OpenSSL, so you must have or
obtain OpenSSL to build successfully; otherwise you need to modify compile-pentium-max to
exclude this requirement. Of course, you can also just follow the standard instructions for compiling
your own binaries, then perform the usual tests and installation procedure. See Section 2.8.3,
“Installing from the Development Source Tree”.

16.3.2. Installing the Software
In the next few sections, we assume that you are familiar with installing MySQL, and here we cover
only the differences between configuring MySQL Cluster and configuring MySQL without cluster-
ing. (See Chapter 2, Installing MySQL if you require more information about the latter.)

You may find Cluster configuration easiest if you have have all MGM and DB nodes running first;
this is likely to be the most time-consuming part of the configuration. Editing the my.cnf file is
fairly straightforward, and this section only covers any differences from configuring MySQL
without clustering.

16.3.3. Quick Test Setup of MySQL Cluster
In order to familiarize you with the basics, we are describing the simplest possible configuration for
a functional MySQL Cluster. After this, you should be able to design your desired setup from the in-
formation provided in the other relevant sections of this chapter.

First, you need to create a configuration directory, for example /var/lib/mysql-cluster, by
executing the following command as root:

shell> mkdir /var/lib/mysql-cluster

In this directory, create a file named config.ini with the following information, substituting ap-
propriate values for HostName and DataDir as necessary for your system.

file "config.ini" - showing minimal setup consisting of 1 DB node,
1 management server, and 3 MySQL servers.
The empty default sections are not required, and are shown only for
the sake of completeness.
Storage nodes are required to provide a hostname but MySQL Servers
are not.
If you don't know the hostname for your machine, use localhost.
The DataDir parameter also has a default value, but it is recommended to
set it explicitly.
NDBD, MYSQLD, and NDB_MGMD are aliases for DB, API, and MGM respectively
#
[NDBD DEFAULT]
NoOfReplicas= 1
[MYSQLD DEFAULT]
[NDB_MGMD DEFAULT]
[TCP DEFAULT]
[NDB_MGMD]
HostName= myhost.example.com

MySQL Cluster

848

[NDBD]
HostName= myhost.example.com
DataDir= /var/lib/mysql-cluster
[MYSQLD]
[MYSQLD]
[MYSQLD]

You can start the management server as follows:

shell> cd /var/lib/mysql-cluster
shell> ndb_mgmd

Then start a single DB node by running ndbd. When starting ndbd for a given DB node for the very
first time, you should use the --initial option:

shell> ndbd --initial

For subsequent ndbd starts, you generally do not want to use --initial:

shell> ndbd

This is because the --initial option deletes all existing data and log files (as well as all table
metadata) for this storage node and create new ones.

By default, ndbd looks for the management server at localhost at port 1186. (Prior to MySQL
4.1.8, the default port was 2200.)

Note: If you have installed MySQL from a binary tarball, you need to specify the path of the
ndb_mgmd and ndbd servers explicitly. (Normally, these are found in /
usr/local/mysql/bin.)

Finally, go to the MySQL data directory (usually /var/lib/mysql or /
usr/local/mysql/data), and make sure that the my.cnf file contains the option necessary to
enable the NDB storage engine:

[mysqld]
ndbcluster

You can start the MySQL server as usual:

shell> mysqld_safe --user=mysql &

Wait a moment to make sure the MySQL server is running properly. If you see the notice mysql
ended, check the server's .err file to find out what went wrong.

If all has gone well so far, you can start using the cluster:

shell> mysql
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1 to server version: 4.1.7
Type 'help;' or '\h' for help. Type '\c' to clear the buffer.
mysql> SHOW ENGINES;
+------------+---------+--+
| Engine | Support | Comment |
+------------+---------+--+
...
| NDBCLUSTER | DEFAULT | Clustered, fault-tolerant, memory-based tables |
| NDB | YES | Alias for NDBCLUSTER |
...
mysql> USE test;
Database changed

MySQL Cluster

849

mysql> CREATE TABLE ctest (i INT) ENGINE=NDBCLUSTER;
Query OK, 0 rows affected (0.09 sec)
mysql> SHOW CREATE TABLE ctest \G
*************************** 1. row ***************************

Table: ctest
Create Table: CREATE TABLE `ctest` (
`i` int(11) default NULL

) ENGINE=ndbcluster DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

To check that your nodes were set up properly, start the management client as shown:

shell> ndb_mgm

You can then use the SHOW command from within the management client in order to obtain a report
on the cluster's status:

NDB> SHOW
Cluster Configuration

[ndbd(NDB)] 1 node(s)
id=2 @127.0.0.1 (Version: 3.5.3, Nodegroup: 0, Master)
[ndb_mgmd(MGM)] 1 node(s)
id=1 @127.0.0.1 (Version: 3.5.3)
[mysqld(API)] 3 node(s)
id=3 @127.0.0.1 (Version: 3.5.3)
id=4 (not connected, accepting connect from any host)
id=5 (not connected, accepting connect from any host)

At this point, you have successfully set up a working MySQL Cluster. You can store data in the
cluster by using any table created with ENGINE=NDBCLUSTER or its alias ENGINE=NDB.

16.3.4. Configuration File
Configuring MySQL Cluster requires working with two files:

• my.cnf: Specifies options for all MySQL Cluster executables. This file, with which you should
be familiar with from previous work with MySQL, must be accessible by each executable run-
ning in the cluster.

• config.ini: This file is read only by the MySQL Cluster management server, which then
distributes the information contained in this file to all processes participating in the cluster.
config.ini contains a description of each node involved in the cluster. This includes config-
uration parameters for storage nodes and configuration parameters for connections between all
nodes in the cluster.

We are continuously making improvements in Cluster configuration and attempting to simplify this
process. While we strive to maintain backward compatibility, there may be times when introduce an
incompatible change. In such cases we try to let Cluster users know in advance if a change is not
backward compatible. If you find such a change which we have not documented, please use our
Bugs Database [http://bugs.mysql.com] to report it.

16.3.4.1. Example Configuration for a MySQL Cluster

In order to support MySQL Cluster, you need to update my.cnf as shown in the example below.

From version 4.1.8 some simplifications in my.cnf were made, including new sections for the nd-
bcluster executables. However, these should not be confused with those occurring in con-
fig.ini files. As always, you may specify these parameters when invoking those executables
from the command line.

MySQL Cluster

850

http://bugs.mysql.com

my.cnf
example additions to my.cnf for MySQL Cluster
(valid from 4.1.8)
enable ndbcluster storage engine, and provide connectstring for
management server host (default port is 1186)
[mysqld]
ndbcluster
ndb-connectstring=ndb_mgmd.mysql.com
provide connectstring for management server host (default port: 1186)
[ndbd]
connect-string=ndb_mgmd.mysql.com
provide connectstring for management server host (default port: 1186)
[ndb_mgm]
connect-string=ndb_mgmd.mysql.com
provide location of cluster configuration file
[ndb_mgmd]
config-file=/etc/config.ini

(For more information on connectstrings, see Section 16.3.4.2, “The MySQL Cluster connect-
string”.)

my.cnf
example additions to my.cnf for MySQL Cluster
(works on all versions)
enable ndbcluster storage engine, and provide connectstring for management
server host to the default port 2200
[mysqld]
ndbcluster
ndb-connectstring=ndb_mgmd.mysql.com:2200

Also starting with MySQL 4.1.8, the my.cnf file supports a separate [mysql_cluster] section
for settings to be read by and affecting all executables in the cluster:

cluster-specific settings
[mysql_cluster]
ndb-connectstring=ndb_mgmd.mysql.com:2200

Currently the configuration file is in INI format, and is named config.ini by default. It is read
by ndb_mgmd at startup and it can be placed anywhere. Its location and name are specified by us-
ing --config-file=[<path>]<filename> on the command line with ndb_mgmd. If the
configuration file is not specified, ndb_mgmd by default tries to read a config.ini located in
the current working directory.

Default values are defined for most parameters, and can also be specified in config.ini. To cre-
ate a default value section, simply add the word DEFAULT to the section name. For example, DB
nodes are configured using [DB] sections. If all DB nodes use the same data memory size, and this
is not the same as the default size, create a [DB DEFAULT] section containing a DataMemory
line to specify the default data memory size for all DB nodes.

The INI format consists of sections preceded by section headings (surrounded by square brackets),
followed by the appropriate parameter names and values. One deviation from the standard format is
that the parameter name and value can be separated by a colon (':') as well as the equals sign ('=');
another is that sections are not uniquely identified by name. Instead, unique entries (such as two dif-
ferent nodes of the same type) are identified by a unique ID.

At a minimum, the configuration file must define the computers and nodes involved in the cluster
and on which computers these nodes are located. An example of a simple configuration file for a
cluster consisting of one management server, two storage nodes and two MySQL servers is shown
below:

file "config.ini" - 2 DB nodes and 2 mysqld
This file is placed in the startup directory of ndb_mgmd,
i.e., the management server.

MySQL Cluster

851

The first MySQL Server can be started from any host and the second
can only be started at the host mysqld_5.mysql.com
NDBD, MYSQLD, and NDB_MGMD are aliases for DB, API, and MGM respectively
#
[NDBD DEFAULT]
NoOfReplicas= 2
DataDir= /var/lib/mysql-cluster
[NDB_MGMD]
Hostname= ndb_mgmd.mysql.com
DataDir= /var/lib/mysql-cluster
[NDBD]
HostName= ndbd_2.mysql.com
[NDBD]
HostName= ndbd_3.mysql.com
[MYSQLD]
[MYSQLD]
HostName= mysqld_5.mysql.com

There are six different sections in this configuration file:

• [COMPUTER]: Defines the computers in the cluster.

• [DB|NDBD]: Defines the cluster's storage nodes.

• [API|MYSQLD]: Defines the cluster's MySQL server nodes.

• [MGM|NDB_MGMD]: Defines the management server node in the cluster.

• [TCP]: Defines TCP/IP connections between nodes in the cluster, with TCP/IP being the de-
fault connection protocol.

• [SHM]: Defines shared-memory connections between nodes. This type of connection is avail-
able only in binaries that have been built with --with-ndb-shm.

Note that each node has its own section in the config.ini. For instance, since this cluster has
two storage nodes, the configuration file contains two sections defining these nodes. (In the example
above, these sections are labeled with [NDBD], but either or both of them could have been labeled
with [DB] instead.)

One can define DEFAULT values for each section. As of MySQL 4.1.5, all parameter names are
case insensitive.

16.3.4.2. The MySQL Cluster connectstring

With the exception of the MySQL Cluster management server (ndb_mgmd), each node making up
a MySQL Cluster requires a connectstring which points to the management server's location.
This is used in establishing a connection to the management server as well as in performing other
tasks depending on the node's role in the cluster. The syntax for a connectstring is as follows:

<connectstring> := [<nodeid-specification>,]<host-specification>[,<host-specification>]
<nodeid-specification> := nodeid=<id>
<host-specification> := <host>[:<port>]
<id> is an integer larger than 1 identifying a node in config.ini
<port> is an integer referring to a regular unix port
<host> is a string which is a valid Internet host address

example 1 (long): "nodeid=2,myhost1:1100,myhost2:1100,192.168.0.3:1200"
example 2 (short): "myhost1"

All nodes use localhost:1186 as the default connectstring value if none is provided. If
<port> is omitted from the connectstring, the default port is 1186. (Note: Prior to MySQL

MySQL Cluster

852

4.1.8, the default port was 2200.) This port should always be available on the network, since it has
been assigned by IANA for this purpose (see http://www.iana.org/assignments/port-numbers for de-
tails).

By listing multiple <host-specification> values, it is possible to designate several redund-
ant management servers. A cluster node attempts to contact succesdive management servers on each
host in the order specified, until a successful connection has been established.

There are a number of different ways to specify the connectstring:

• Each executable has its own command line option which enables specifying the management
server at startup. (See the documentation for the respective executable.)

• Beginning with MySQL 4.1.8, it is also possible to set the connectstring to be used by all
nodes in the cluster by placing it in a [mysql_cluster] section in the management server's
my.cnf file.

• For backward compatibility, two other options are available, using the same syntax:

1. Set the NDB_CONNECTSTRING environment variable to contain the connectstring.

2. Write the connectstring for each executable into a text file named Ndb.cfg and
place this file in the executable's startup directory.

The recommended method for specifying the connectstring is to set it on the command line or
my.cnf file for each executable.

16.3.4.3. Defining the Computers Making up a MySQL Cluster

The [COMPUTER] section has no real significance other than serving as a way to avoid the need of
defining host names for each node in the system. All parameters mentioned here are required.

• [COMPUTER]Id

This is an internal identity in the configuration file. Later on in the file one refers to this com-
puter by the ID. It is an integer.

• [COMPUTER]HostName

This is the host name of the computer. It is also possible to use an IP address rather than the host
name.

16.3.4.4. Defining the MySQL Cluster Management Server

The [MGM] section (or its alias [NDB_MGMD]) is used to configure the behavior of the manage-
ment server. Either the ExecuteOnComputer or HostName parameter must be present. All oth-
er parameters can be omitted and if so assume their default values.

• [MGM]Id

Each node in the cluster has a unique identity represented by an integer value between 1 and 63
inclusive. This ID is used for addressing the node by all internal cluster messages.

• [MGM]ExecuteOnComputer

This refers to one of the computers defined in the [COMPUTER] section.

• [MGM]PortNumber

MySQL Cluster

853

http://www.iana.org/assignments/port-numbers

This is the port number on which the management server listens for configuration requests and
management commands.

• [MGM]LogDestination

This parameter specifies where to send cluster logging information. There are three options in
this regard: CONSOLE, SYSLOG, and FILE.

• CONSOLE outputs the log to stdout:

CONSOLE

• SYSLOG sends the log to a syslog facility, possible values being one of auth, auth-
priv, cron, daemon, ftp, kern, lpr, mail, news, syslog, user, uucp, local0,
local1, local2, local3, local4, local5, local6, or local7. (Note: Not every
facility is necessarily supported by every operating system.)

SYSLOG:facility=syslog

• FILE pipes the cluster log ouput to a regular file on the same machine. The following values
can be specified:

• filename: The name of the logfile.

• maxsize: The maximum size to which the file can grow before logging rolls over to a
new file. When this occurs, the old logfile is renamed by appending .x to the filename,
where x is the next number not yet used with this name.

• maxfiles: The maximum number of logfiles.

FILE:filename=cluster.log,maxsize=1000000,maxfiles=6

It is possible to specify multiple log destinations as shown here, using a semicolon-delimited
string:

CONSOLE;SYSLOG:facility=local0;FILE:filename=/var/log/mgmd

The default value for the FILE parameter is
FILE:filename=ndb_<id>_cluster.log,maxsize=1000000,maxfiles=6,
where <id> is the ID of the node.

• [MGM]ArbitrationRank

This parameter is used to define which nodes can act as arbitrators. Only MGM nodes and API
nodes can be arbitrators and can take one of the following values:

• 0: The node is never used as an arbitrator.

• 1: The node has high priority; that is, it is preferred as an arbitrator over low-priority nodes.

• 2: Indicates a low-priority node which be used as an arbitrator only if a node with a higher
priority is not available for that purpose.

Normally, the management server should be configured as arbitrator by setting its Arbitra-
tionRank to 1 (the default) and that of all API or server nodes to 0.

• [MGM]ArbitrationDelay

MySQL Cluster

854

An integer value which causes the management server's responses to arbitration requests to be
delayed by that number of milliseconds. By default, this value is 0; it is normally not necessary
to change it.

• [MGM]DataDir

This sets the directory where output files from the management server are placed. These files in-
clude cluster log files, process output files, and the daemon's pid file. (For log files, this can be
overridden by setting the FILE parameter for [MGM]LogDestination as discussed previ-
ously in this section.)

16.3.4.5. Defining MySQL Cluster Storage Nodes

The [DB] section (or its alias [NDBD]) is used to configure the behavior of the storage nodes.
There are many parameters specified that controls the buffer sizes, pool sizes, timeout parameters
and so forth. The only mandatory parameter is either ExecuteOnComputer or HostName and
the parameter NoOfReplicas which need to be defined in the [DB DEFAULT] section. Most
parameters should be set in the [DB DEFAULT] section. Only parameters explicitly stated as pos-
sible to have local values are allowed to be changed in the [DB] section. HostName, Id and Ex-
ecuteOnComputer needs to be defined in the local [DB] section.

The Id value (that is, the identification of the storage node) can be allocated when the node is star-
ted. It is possible to assign a node ID in the configuration file.

For each parameter it is possible to use k, M, or G as a suffix to indicate units of 1024, 1024*1024,
or 1024*1024*1024. For example, 100k means 102400. Parameters and values are case sensitive.

• [DB]Id

This identity is the node ID used as the address of the node in all cluster internal messages. This
is an integer between 1 and 63. Each node in the cluster has a unique identity.

• [DB]ExecuteOnComputer

This is referring to one of the computers defined in the computer section.

• [DB]HostName

This parameter is similar to specifying a computer to execute on. It defines the host name of the
computer the storage node is to reside on. Either this parameter or ExecuteOnComputer is
required.

• [DB]ServerPort

Each node in the cluster uses one port as the port other nodes use to connect their transporters to
each other. This port is used also for non-TCP transporters in the connection setup phase. The
default port is calculated to ensure that no nodes on the same computer receive the same port
number.

• [DB]NoOfReplicas

This parameter can be set only in the [DB DEFAULT] section because it is a global parameter.
It defines the number of replicas for each table stored in the cluster. This parameter also spe-
cifies the size of node groups. A node group is a set of nodes that all store the same information.

Node groups are formed implicitly. The first node group is formed by the storage nodes with the
lowest node identities. And the next by the next lowest node identities. As an example presume
we have 4 storage nodes and NoOfReplicas is set to 2. The four storage nodes have node IDs
2, 3, 4 and 5. Then the first node group is formed by node 2 and node 3. The second node group
is formed by node 4 and node 5. It is important to configure the cluster in such a manner such

MySQL Cluster

855

that nodes in the same node groups are not placed on the same computer. This would cause a
single HW failure to cause a cluster crash.

If no node identities are provided then the order of the storage nodes is the determining factor
for the node group. The actual node group assigned is printed by the SHOW command in the
management client.

There is no default value and the maximum number is 4.

• [DB]DataDir

This parameter specifies the directory where trace files, log files, pid files and error logs are
placed.

• [DB]FileSystemPath

This parameter specifies the directory where all files created for metadata, REDO logs, UNDO
logs and data files are placed. The default value is to use the same directory as the DataDir.
The directory must be created before starting the ndbd process.

If you want to use the recommended directory hierarchy, use /var/lib/mysql-cluster.
Under this directory a directory ndb_2_fs is created (if node ID was 2) which is the file sys-
tem for that node.

• [DB]BackupDataDir

It is possible also to specify the directory where backups are placed. By default, the directory
FileSystemPath/BACKUP is chosen.

DataMemory and IndexMemory are the parameters that specify the size of memory segments
used to store the actual records and their indexes. It is important to understand how DataMemory
and IndexMemory are used to understand how to set these parameters. For most uses, they need to
be updated to reflect the usage of the cluster.

• [DB]DataMemory

This parameter is one of the most important parameters because it defines the space available to
store the actual records in the database. The entire DataMemory is allocated in memory so it is
important that the machine contains enough memory to handle the DataMemory size.

The DataMemory is used to store two things. It stores the actual records. Each record is cur-
rently of fixed size. So VARCHAR columns are stored as fixed size columns. There is an over-
head on each record of 16 bytes normally. Additionally each record is stored in a 32KB page
with 128 byte page overhead. There also is a small amount of waste for each page because re-
cords are only stored in one page. The maximum record size for the columns currently is 8052
bytes.

The DataMemory is also used to store ordered indexes. Ordered indexes uses about 10 bytes
per record. Each record in the table is always represented in the ordered index.

The DataMemory consists of 32KB pages. These pages are allocated to partitions of the tables.
Each table is normally partitioned with the same number of partitions as there are storage nodes
in the cluster. Thus for each node there are the same number of partitions (=fragments) as the
NoOfReplicas is set to. Once a page has been allocated to a partition it is currently not pos-
sible to bring it back to the pool of free pages. The method to restore pages to the pool is by de-
leting the table. Performing a node recovery also compresses the partition because all records are
inserted into an empty partition from another live node.

Another important aspect is that the DataMemory also contains UNDO information for re-
cords. For each update of a record a copy record is allocated in the DataMemory. Also each
copy record also has an instance in the ordered indexes of the table. Unique hash indexes are up-
dated only when the unique index columns are updated and in that case a new entry in the index

MySQL Cluster

856

table is inserted and at commit the old entry is deleted. Thus it is necessary also to allocate
memory to be able to handle the largest transactions which are performed in the cluster.

Performing large transactions has no advantage in MySQL Cluster other than the consistency of
using transactions which is the whole idea of transactions. It is not faster and consumes large
amounts of memory.

The default DataMemory size is 80MB. The minimum size is 1MB. There is no maximum
size, but in reality the maximum size has to be adapted so that the process doesn't start swapping
when using the maximum size of the memory.

• [DB]IndexMemory

The IndexMemory is the parameter that controls the amount of storage used for hash indexes
in MySQL Cluster. Hash indexes are always used for primary key indexes, unique indexes, and
unique constraints. Actually when defining a primary key and a unique index there are two in-
dexes created in MySQL Cluster. One index is a hash index which is used for all tuple accesses
and also for lock handling. It is also used to ensure unique constraints.

The size of the hash index is 25 bytes plus the size of the primary key. For primary keys larger
than 32 bytes another 8 bytes is added for some internal references.

Thus for a table defined as

CREATE TABLE example
(

a INT NOT NULL,
b INT NOT NULL,
c INT NOT NULL,
PRIMARY KEY(a),
UNIQUE(b)

) ENGINE=NDBCLUSTER;

We have 12 bytes overhead (having no nullable columns saves 4 bytes of overhead) plus 12
bytes of data per record. In addition we have two ordered indexes on a and b consuming about
10 bytes each per record. We also have a primary key hash index in the base table with roughly
29 bytes per record. The unique constraint is implemented by a separate table with b as primary
key and a as a column. This table consumes another 29 bytes of index memory per record in the
table and also 12 bytes of overhead plus 8 bytes of data in the record part.

Thus for one million records, we need 58MB of index memory to handle the hash indexes for
the primary key and the unique constraint. For the DataMemory part we need 64MB of
memory to handle the records of the base table and the unique index table plus the two ordered
index tables.

The conclusion is that hash indexes takes up a fair amount of memory space but in return they
provide very fast access to the data. They are also used in MySQL Cluster to handle uniqueness
constraints.

Currently the only partitioning algorithm is hashing and the ordered indexes are local to each
node and can thus not be used to handle uniqueness constraints in the general case.

An important point for both IndexMemory and DataMemory is that the total database size is
the sum of all DataMemory and IndexMemory in each node group. Each node group is used
to store replicated information, so if there are four nodes with 2 replicas there are two node
groups and thus the total DataMemory available is 2*DataMemory in each of the nodes.

Another important point is about changes of DataMemory and IndexMemory. First of all, it
is highly recommended to have the same amount of DataMemory and IndexMemory in all
nodes. Since data is distributed evenly over all nodes in the cluster the size available is no better
than the smallest sized node in the cluster times the number of node groups.

MySQL Cluster

857

DataMemory and IndexMemory can be changed, but it is dangerous to decrease them be-
cause that can easily lead to a node that is not able to restart or even a cluster not being able to
restart since there is not enough memory space for the tables needed to restore into the starting
node. Increasing them should be quite okay, but it is recommended that such upgrades are per-
formed in the same manner as a software upgrade where first the configuration file is updated,
then the management server is restarted and then one storage node at a time is restarted by com-
mand.

More IndexMemory is not used due to updates but inserts are inserted immediately and deletes
are not deleted until the transaction is committed.

The default IndexMemory size is 18MB. The minimum size is 1MB.

The next three parameters are important because they affect the number of parallel transactions and
the sizes of transactions that can be handled by the system. MaxNoOfConcurrentTransac-
tions sets the number of parallel transactions possible in a node and MaxNoOfConcurrent-
Operations sets the number of records that can be in update phase or locked simultaneously.

Both of these parameters and particularly MaxNoOfConcurrentOperations are likely targets
for users setting specific values and not using the default value. The default value is set for systems
using small transactions and to ensure not using too much memory in the default case.

• [DB]MaxNoOfConcurrentTransactions

For each active transaction in the cluster there needs to be also a transaction record in one of the
nodes in the cluster. The role of transaction coordination is spread among the nodes and thus the
total number of transactions records in the cluster is the amount in one times the number of
nodes in the cluster.

Actually transaction records are allocated to MySQL servers, normally there is at least one trans-
action record allocated in the cluster per connection that uses or have used a table in the cluster.
Thus one should ensure that there is more transaction records in the cluster than there are con-
current connections to all MySQL servers in the cluster.

This parameter has to be the same in all nodes in the cluster.

Changing this parameter is never safe and can cause a cluster crash. When a node crashes one of
the nodes (actually the oldest surviving node) builds up the transaction state of all transactions
ongoing in the crashed node at the time of the crash. It is thus important that this node has as
many transaction records as the failed node.

The default value for this parameter is 4096.

• [DB]MaxNoOfConcurrentOperations

This parameter is likely to be subject for change by users. Users performing only short, small
transactions don't need to set this parameter very high. Applications desiring to be able to per-
form rather large transactions involving many records need to set this parameter higher.

For each transaction that updates data in the cluster it is required to have operation records.
There are operation records both in the transaction coordinator and in the nodes where the actual
updates are performed.

The operation records contain state information needed to be able to find UNDO records for
rollback, lock queues, and much other state information.

To dimension the cluster to handle transactions where one million records are updated simultan-
eously one should set this parameter to one million divided by the number of nodes. Thus for a
cluster with four storage nodes one should set this parameter to 250000.

Also read queries which set locks use up operation records. Some extra space is allocated in the

MySQL Cluster

858

local nodes to cater for cases where the distribution is not perfect over the nodes.

When queries translate into using the unique hash index there can actually be two operation re-
cords used per record in the transaction. The first one represents the read in the index table and
the second handles the operation on the base table.

The default value for this parameter is 32768.

This parameter actually handles two parts that can be configured separately. The first part spe-
cifies how many operation records are to be placed in the transaction coordinator part. The
second part specifies how many operation records that are to be used in the local database part.

If a very big transaction is performed on an 8-node cluster then this needs as many operation re-
cords in the transaction coordinator as there are reads, updates, deletes involved in the transac-
tion. The transaction however spreads the operation records of the actual reads, updates, and in-
serts over all eight nodes. Thus if it is necessary to configure the system for one very big trans-
action then it is a good idea to configure those separately. MaxNoOfConcurrentOpera-
tions is always used to calculate the number of operation records in the transaction coordinat-
or part of the node.

It is also important to have an idea of the memory requirements for those operation records. In
MySQL 4.1.5, operation records consume about 1KB per record. This figure will shrink in fu-
ture 5.x versions.

• [DB]MaxNoOfLocalOperations

By default this parameter is calculated as 1.1 * MaxNoOfConcurrentOperations which
fits systems with many simultaneous, not very large transactions. If the configuration needs to
handle one very large transaction at a time and there are many nodes then it is a good idea to
configure this separately.

The next set of parameters are used for temporary storage in the midst of executing a part of a query
in the cluster. All of these records are been released when the query part is completed and is waiting
for the commit or rollback.

Most of the defaults for these parameters are okay for most users. Some high-end users might want
to increase those to enable more parallelism in the system and some low-end users might want to de-
crease them to save memory.

• [DB]MaxNoOfConcurrentIndexOperations

For queries using a unique hash index another set of operation records are temporarily used in
the execution phase of the query. This parameter sets the size of this pool. Thus this record is
only allocated while executing a part of a query, as soon as this part has been executed the re-
cord is released. The state needed to handle aborts and commits is handled by the normal opera-
tion records where the pool size is set by the parameter MaxNoOfConcurrentOperations.

The default value of this parameter is 8192. Only in rare cases of extremely high parallelism us-
ing unique hash indexes should this parameter be necessary to increase. To decrease could be
performed for memory savings if the DBA is certain that such high parallelism is not occurring
in the cluster.

• [DB]MaxNoOfFiredTriggers

The default value of MaxNoOfFiredTriggers is 4000. Normally this value should be suffi-
cient for most systems. In some cases it could be decreased if the DBA feels certain the parallel-
ism in the cluster is not so high.

This record is used when an operation is performed that affects a unique hash index. Updating a
column that is part of a unique hash index or inserting/deleting a record in a table with unique
hash indexes fires an insert or delete in the index table. This record is used to represent this in-

MySQL Cluster

859

dex table operation while its waiting for the original operation that fired it to complete. Thus it is
short lived but can still need a fair amount of records in its pool for temporary situations with
many parallel write operations on a base table containing a set of unique hash indexes.

• [DB]TransactionBufferMemory

This parameter is also used for keeping fired operations to update index tables. This part keeps
the key and column information for the fired operations. It should be very rare that this paramet-
er needs to be updated.

Also normal read and write operations use a similar buffer. This buffer is even more short term
in its usage so this is a compile time parameter set to 4000*128 bytes (500KB). The parameter is
ZATTRBUF_FILESIZE in Dbtc.hpp. A similar buffer for key info exists which contains
4000*16 bytes, 62.5KB of buffer space. The parameter in this case is ZDATABUF_FILESIZE
in Dbtc.hpp. Dbtc is the module for handling the transaction coordination.

Similar parameters exist in the Dblqh module taking care of the reads and updates where the
data is located. In Dblqh.hpp with ZATTRINBUF_FILESIZE set to 10000*128 bytes
(1250KB) and ZDATABUF_FILE_SIZE, set to 10000*16 bytes (roughly 156KB) of buffer
space. No known instances of that any of those compile time limits haven't been big enough has
been reported so far or discovered by any of our extensive test suites.

The default size of the TransactionBufferMemory is 1MB.

• [DB]MaxNoOfConcurrentScans

This parameter is used to control the amount of parallel scans that can be performed in the
cluster. Each transaction coordinator can handle the amount of parallel scans defined by this
parameter. Each scan query is performed by scanning all partitions in parallel. Each partition
scan uses a scan record in the node where the partition is located. The number of those records is
the size of this parameter times the number of nodes so that the cluster should be able to sustain
maximum number of scans in parallel from all nodes in the cluster.

Scans are performed in two cases. The first case is when no hash or ordered indexes exists to
handle the query. In this case the query is executed by performing a full table scan. The second
case is when there is no hash index to support the query but there is an ordered index. Using the
ordered index means executing a parallel range scan. Since the order is only kept on the local
partitions it is necessary to perform the index scan on all partitions.

The default value of MaxNoOfConcurrentScans is 256. The maximum value is 500.

This parameter specifies the number of scans possible in the transaction coordinator. If the num-
ber of local scan records is not provided it is calculated as the product of MaxNoOfConcur-
rentScans and the number of storage nodes in the system.

• [DB]MaxNoOfLocalScans

Possible to specify the number of local scan records if many scans are not fully parallelized.

• [DB]BatchSizePerLocalScan

This parameter is used to calculate the number of lock records which needs to be there to handle
many concurrent scan operations.

The default value is 64 and this value has a strong connection to the ScanBatchSize defined
in the API nodes.

• [DB]LongMessageBuffer

This is an internal buffer used for message passing internally in the node and for messages
between nodes in the system. It is highly unlikely that anybody would need to change this para-
meter but it is configurable. By default it is set to 1MB.

MySQL Cluster

860

• [DB]NoOfFragmentLogFiles

This is an important parameter that states the size of the REDO log files in the node. REDO log
files are organized in a ring such that it is important that the tail and the head doesn't meet.
When the tail and head have come to close the each other the node starts aborting all updating
transactions because there is no room for the log records.

REDO log records aren't removed until three local checkpoints have completed since the log re-
cord was inserted. The speed of checkpoint is controlled by a set of other parameters so these
parameters are all glued together.

The default parameter value is 8, which means 8 sets of 4 16MB files. Thus in total 512MB.
Thus the unit is 64MB of REDO log space. In high update scenarios this parameter needs to be
set very high. Test cases where it has been necessary to set it to over 300 have been performed.

If the checkpointing is slow and there are so many writes to the database that the log files are
full and the log tail cannot be cut for recovery reasons then all updating transactions are aborted
with internal error code 410 which is translated to Out of log file space temporar-
ily. This condition prevails until a checkpoint has completed and the log tail can be moved for-
ward.

• [DB]MaxNoOfSavedMessages

This parameter sets the maximum number of trace files that are kept before overwriting old trace
files. Trace files are generated when the node crashes for some reason.

The default is 25 trace files.

The next set of parameters defines the pool sizes for metadata objects. It is necessary to define the
maximum number of attributes, tables, indexes, and trigger objects used by indexes, events and rep-
lication between clusters.

• [DB]MaxNoOfAttributes

This parameter defines the number of attributes that can be defined in the cluster.

The default value of this parameter is 1000. The minimum value is 32 and there is no maximum.
Each attribute consumes around 200 bytes of storage in each node because metadata is fully rep-
licated in the servers.

• [DB]MaxNoOfTables

A table object is allocated for each table, for each unique hash index, and for each ordered index.
This parameter sets the maximum number of table objects in the cluster.

For each attribute that has a BLOB data type an extra table is used to store most of the BLOB
data. These tables also must be taken into account when defining the number of tables.

The default value of this parameter is 128. The minimum is 8 and the maximum is 1600. Each
table object consumes around 20KB in each node.

• [DB]MaxNoOfOrderedIndexes

For each ordered index in the cluster, objects are allocated to describe what it is indexing and its
storage parts. By default each index defined has an ordered index also defined. Unique indexes
and primary key indexes have both an ordered index and a hash index.

MySQL Cluster

861

The default value of this parameter is 128. Each object consumes around 10KB of data per node.

• [DB]MaxNoOfUniqueHashIndexes

For each unique index (not for primary keys) a special table is allocated that maps the unique
key to the primary key of the indexed table. By default there is an ordered index also defined for
each unique index. To avoid this, you must use the USING HASH option in the unique index
definition.

The default value is 64. Each index consumes around 15KB per node.

• [DB]MaxNoOfTriggers

For each unique hash index an internal update, insert and delete trigger is allocated. Thus three
triggers per unique hash index. Ordered indexes use only one trigger object. Backups also use
three trigger objects for each normal table in the cluster. When replication between clusters is
supported it will also use internal triggers.

This parameter sets the maximum number of trigger objects in the cluster.

The default value of this parameter is 768.

• [DB]MaxNoOfIndexes

This parameter was deprecated in MySQL 4.1.5. You should use MaxNoOfOrderedIndexes
and MaxNoOfUniqueHashIndexes instead.

This parameter is only used by unique hash indexes. There needs to be one record in this pool
for each unique hash index defined in the cluster.

The default value of this parameter is 128.

There is a set of boolean parameters affecting the behavior of storage nodes. Boolean parameters
can be specified to true by setting it to Y or 1 and to false by setting it to N or 0.

• [DB]LockPagesInMainMemory

For a number of operating systems such as Solaris and Linux it is possible to lock a process into
memory and avoid all swapping problems. This is an important feature to provide real-time
characteristics of the cluster.

The default is that this feature is not enabled.

• [DB]StopOnError

This parameter states whether the process is to exit on error condition or whether it is perform an
automatic restart.

The default is that this feature is enabled.

• [DB]Diskless

In the internal interfaces it is possible to set tables as diskless tables meaning that the tables are
not checkpointed to disk and no logging occur. They only exist in main memory. The tables still
exist after a crash but not the records in the tables.

This feature makes the entire cluster Diskless, in this case even the tables doesn't exist any-
more after a crash. Enabling this feature can be done by either setting it to Y or 1.

When this feature is enabled, backups are performed but does not be stored because there is no
"disk". In future releases it is likely to make the backup diskless a separate configurable para-

MySQL Cluster

862

meter.

The default is that this feature is not enabled.

• [DB]RestartOnErrorInsert

This feature is only accessible when building the debug version where it is possible to insert er-
rors in the execution of various code parts to test failure cases.

The default is that this feature is not enabled.

There are quite a few parameters specifying timeouts and time intervals between various actions in
the storage nodes. Most of the timeouts are specified in milliseconds with a few exceptions which
are mentioned below.

• [DB]TimeBetweenWatchDogCheck

To ensure that the main thread doesn't get stuck in an eternal loop somewhere there is a watch
dog thread which checks the main thread. This parameter states the number of milliseconds
between each check. After three checks and still being in the same state the process is stopped
by the watch dog thread.

This parameter can easily be changed and can be different in the nodes although there seems to
be little reason for such a difference.

The default timeout is 4000 milliseconds (4 seconds).

• [DB]StartPartialTimeout

This parameter specifies the time that the cluster waits for all storage nodes to come up before
the algorithm to start the cluster is invoked. This time out is used to avoid starting only a partial
cluster if possible.

The default value is 30000 milliseconds (30 seconds). 0 means eternal time out. Thus only start
if all nodes are available.

• [DB]StartPartitionedTimeout

If the cluster is ready start after waiting StartPartialTimeout but is still in a possibly par-
titioned state one waits until also this timeout has passed.

The default timeout is 60000 milliseconds (60 seconds).

• [DB]StartFailureTimeout

If the start is not completed within the time specified by this parameter the node start fails. Set-
ting this parameter to 0 means no time out is applied on the time to start the cluster.

The default value is 60000 milliseconds (60 seconds). For storage nodes containing large data
sets this parameter needs to be increased because it could very well take 10-15 minutes to per-
form a node restart of a storage node with a few gigabytes of data.

• [DB]HeartbeatIntervalDbDb

One of the main methods of discovering failed nodes is by heartbeats. This parameter states how
often heartbeat signals are sent and how often to expect to receive them. After missing three
heartbeat intervals in a row, the node is declared dead. Thus the maximum time of discovering a
failure through the heartbeat mechanism is four times the heartbeat interval.

The default heartbeat interval is 1500 milliseconds (1.5 seconds). This parameter must not be
changed drastically. If one node uses 5000 milliseconds and the node watching it uses 1000 mil-

MySQL Cluster

863

liseconds then obviously the node is declared dead very quickly. So this parameter can be
changed in small steps during an online software upgrade but not in large steps.

• [DB]HeartbeatIntervalDbApi

In a similar manner each storage node sends heartbeats to each of the connected MySQL servers
to ensure that they behave properly. If a MySQL server doesn't send a heartbeat in time (same
algorithm as for storage node with three heartbeats missed causing failure) it is declared down
and all ongoing transactions are completed and all resources are released and the MySQL server
cannot reconnect until the completion of all activities started by the previous MySQL instance
has been completed.

The default interval is 1500 milliseconds. This interval can be different in the storage node be-
cause each storage node independently of all other storage nodes watches the MySQL servers
connected to it.

• [DB]TimeBetweenLocalCheckpoints

This parameter is an exception in that it doesn't state any time to wait before starting a new local
checkpoint. This parameter is used to ensure that in a cluster where not so many updates are tak-
ing place that we don't perform local checkpoints. In most clusters with high update rates it is
likely that a new local checkpoint is started immediately after the previous was completed.

The size of all write operations executed since the start of the previous local checkpoints is ad-
ded. This parameter is specified as the logarithm of the number of words. So the default value 20
means 4MB of write operations, 21 would mean 8MB and so forth up until the maximum value
31 which means 8GB of write operations.

All the write operations in the cluster are added together. Setting it to 6 or lower means that local
checkpoints execute continuously without any wait between them independent of the workload
in the cluster.

• [DB]TimeBetweenGlobalCheckpoints

When a transaction is committed it is committed in main memory in all nodes where mirrors of
the data existed. The log records of the transaction are not forced to disk as part of the commit
however. The reasoning here is that having the transaction safely committed in at least two inde-
pendent computers should be meeting standards of durability.

At the same time it is also important to ensure that even the worst of cases when the cluster com-
pletely crashes is handled properly. To ensure this all transactions in a certain interval is put into
a global checkpoint. A global checkpoint is very similar to a grouped commit of transactions. An
entire group of transactions is sent to disk. Thus as part of the commit the transaction was put in-
to a global checkpoint group. Later this groups log records are forced to disk and then the entire
group of transaction is safely committed also on all computers disk storage as well.

This parameter states the interval between global checkpoints. The default time is 2000 milli-
seconds.

• [DB]TimeBetweenInactiveTransactionAbortCheck

Time-out handling is performed by checking each timer on each transaction every period of time
in accordance with this parameter. Thus if this parameter is set to 1000 milliseconds, then every
transaction is checked for timeout once every second.

The default for this parameter is 1000 milliseconds (1 second).

• [DB]TransactionInactiveTimeout

If the transaction is currently not performing any queries but is waiting for further user input,
this parameter states the maximum time that the user can wait before the transaction is aborted.

The default for this parameter is no timeout. For a real-time database that needs to control that

MySQL Cluster

864

no transaction keeps locks for a too long time this parameter should be set to a much smaller
value. The unit is milliseconds.

• [DB]TransactionDeadlockDetectionTimeout

When a transaction is involved in executing a query it waits for other nodes. If the other nodes
doesn't respond it could depend on three things. First, the node could be dead, second the opera-
tion could have entered a lock queue and finally the node requested to perform the action could
be heavily overloaded. This timeout parameter states how long the transaction coordinator waits
until it aborts the transaction when waiting for query execution of another node.

Thus this parameter is important both for node failure handling and for deadlock detection. Set-
ting it too high would cause a non-desirable behavior at deadlocks and node failures.

The default time out is 1200 milliseconds (1.2 seconds).

• [DB]NoOfDiskPagesToDiskAfterRestartTUP

When executing a local checkpoint the algorithm sends all data pages to disk during the local
checkpoint. Simply sending them there as quickly as possible causes unnecessary load on pro-
cessors, networks, and disks. Thus to control the write speed this parameter specifies how many
pages per 100 milliseconds is to be written. A page is here defined as 8KB. The unit this para-
meter is specified in is thus 80KB per second. So setting it to 20 means writing 1.6MB of data
pages to disk per second during a local checkpoint. Also writing of UNDO log records for data
pages is part of this sum. Writing of index pages (see IndexMemory to understand what index
pages are used for) and their UNDO log records is handled by the parameter NoOf-
DiskPagesToDiskAfterRestartACC. This parameter handles the limitation of writes
from the DataMemory.

So this parameter specifies how quickly local checkpoints are executed. This parameter is im-
portant in connection with NoOfFragmentLogFiles, DataMemory, IndexMemory.

The default value is 40 (3.2MB of data pages per second).

• [DB]NoOfDiskPagesToDiskAfterRestartACC

This parameter has the same unit as NoOfDiskPagesToDiskAfterRestartTUP but lim-
its the speed of writing index pages from IndexMemory.

The default value of this parameter is 20 (1.6MB per second).

• [DB]NoOfDiskPagesToDiskDuringRestartTUP

This parameter specifies the same things as NoOfDiskPagesToDiskAfterRestartTUP
and NoOfDiskPagesToDiskAfterRestartACC, only it does it for local checkpoints ex-
ecuted in the node as part of a local checkpoint when the node is restarting. As part of all node
restarts a local checkpoint is always performed. Since during a node restart it is possible to use a
higher speed of writing to disk because fewer activities are performed in the node due to the re-
start phase.

This parameter handles the DataMemory part.

The default value is 40 (3.2MB per second).

• [DB]NoOfDiskPagesToDiskDuringRestartACC

During Restart for IndexMemory part of local checkpoint.

The default value is 20 (1.6MB per second).

• [DB]ArbitrationTimeout

MySQL Cluster

865

This parameter specifies the time that the storage node waits for a response from the arbitrator
when sending an arbitration message in the case of a split network.

The default value is 1000 milliseconds (1 second).

A number of new configuration parameters were introduced in MySQL 4.1.5. These correspond to
values that previously were compile time parameters. The main reason for this is to enable the ad-
vanced user to have more control of the size of the process and adjust various buffer sizes according
to his needs.

All of these buffers are used as front-ends to the file system when writing log records of various
kinds to disk. If the node runs with Diskless then these parameters can most definitely be set to their
minimum values because all disk writes are faked as okay by the file system abstraction layer in the
NDB storage engine.

• [DB]UndoIndexBuffer

This buffer is used during local checkpoints. The NDB storage engine uses a recovery scheme
based on a consistent checkpoint together with an operational REDO log. In order to produce a
consistent checkpoint without blocking the entire system for writes, UNDO logging is done
while performing the local checkpoint. The UNDO logging is only activated on one fragment of
one table at a time. This optimization is possible because tables are entirely stored in main
memory.

This buffer is used for the updates on the primary key hash index. Inserts and deletes rearrange
the hash index and the NDB storage engine writes UNDO log records that map all physical
changes to an index page such that they can be undone at a system restart. It also logs all active
insert operations at the start of a local checkpoint for the fragment.

Reads and updates only set lock bits and update a header in the hash index entry. These changes
are handled by the page write algorithm to ensure that these operations need no UNDO logging.

This buffer is 2MB by default. The minimum value is 1MB. For most applications this is good
enough. Applications doing extremely heavy inserts and deletes together with large transactions
using large primary keys might need to extend this buffer.

If this buffer is too small, the NDB storage engine issues the internal error code 677 which is
translated into "Index UNDO buffers overloaded".

• [DB]UndoDataBuffer

This buffer has exactly the same role as the UndoIndexBuffer but is used for the data part.
This buffer is used during local checkpoint of a fragment and inserts, deletes, and updates use
the buffer.

Since these UNDO log entries tend to be bigger and more things are logged, the buffer is also
bigger by default. It is set to 16MB by default. For some applications this might be too conser-
vative and they might want to decrease this size, the minimum size is 1MB. It should be rare that
applications need to increase this buffer size. If there is a need for this it is a good idea to check
if the disks can actually handle the load that the update activity in the database causes. If they
cannot then no size of this buffer is big enough.

If this buffer is too small and gets congested, the NDB storage engine issues the internal error
code 891 which is translated to "Data UNDO buffers overloaded".

• [DB]RedoBuffer

All update activities also need to be logged. This enables a replay of these updates at system re-
start. The recovery algorithm uses a consistent checkpoint produced by a "fuzzy" checkpoint of
the data together with UNDO logging of the pages. Then it applies the REDO log to play back
all changes up until the time that is restored in the system restart.

MySQL Cluster

866

This buffer is 8MB by default. The minimum value is 1MB.

If this buffer is too small, the NDB storage engine issues the internal error code 1221 which is
translated into "REDO log buffers overloaded".

For cluster management, it is important to be able to control the amount of log messages sent to
stdout for various event types. The possible events will be listed in this manual soon. There are 16
levels possible from level 0 to level 15. Setting event reporting to level 15 means receiving all event
reports of that category and setting it to 0 means getting no event reports in that category.

The reason why most defaults are set to 0 and thus not causing any output to stdout is that the same
message is sent to the cluster log in the management server. Only the startup message is by default
generated to stdout.

A similar set of levels can be set in management client to define what levels to record in the cluster
log.

• [DB]LogLevelStartup

Events generated during startup of the process.

The default level is 1.

• [DB]LogLevelShutdown

Events generated as part of graceful shutdown of a node.

The default level is 0.

• [DB]LogLevelStatistic

Statistical events such as how many primary key reads, updates, inserts and many other statistic-
al information of buffer usage, and so forth.

The default level is 0.

• [DB]LogLevelCheckpoint

Events generated by local and global checkpoints.

The default level is 0.

• [DB]LogLevelNodeRestart

Events generated during node restart.

The default level is 0.

• [DB]LogLevelConnection

Events generated by connections between nodes in the cluster.

The default level is 0.

• [DB]LogLevelError

Events generated by errors and warnings in the cluster. These are errors not causing a node fail-
ure but still considered worth reporting.

The default level is 0.

• [DB]LogLevelInfo

MySQL Cluster

867

Events generated for information about state of cluster and so forth.

The default level is 0.

There is a set of parameters defining memory buffers that are set aside for online backup execution.

• [DB]BackupDataBufferSize

When executing a backup there are two buffers used for sending data to the disk. This buffer is
used to fill in data recorded by scanning the tables in the node. When filling this to a certain
level the pages are sent to disk. This level is specified by the BackupWriteSize parameter.
When sending data to the disk, the backup can continue filling this buffer until it runs out of buf-
fer space. When running out of buffer space, it simply stops the scan and waits until some disk
writes return and thus free up memory buffers to use for further scanning.

The default value is 2MB.

• [DB]BackupLogBufferSize

This parameter has a similar role but instead used for writing a log of all writes to the tables dur-
ing execution of the backup. The same principles apply for writing those pages as for Backup-
DataBufferSize except that when this part runs out of buffer space, it causes the backup to
fail due to lack of backup buffers. Thus the size of this buffer must be big enough to handle the
load caused by write activities during the backup execution.

The default parameter should be big enough. Actually it is more likely that a backup failure is
caused by a disk not able to write as quickly as it should. If the disk subsystem is not dimen-
sioned for the write load caused by the applications this creates a cluster which has great diffi-
culties to perform the desired actions.

It is important to dimension the nodes in such a manner that the processors becomes the bottle-
neck rather than the disks or the network connections.

The default value is 2MB.

• [DB]BackupMemory

This parameter is simply the sum of the two previous, the BackupDataBufferSize and
BackupLogBufferSize.

The default value is 4MB.

• [DB]BackupWriteSize

This parameter specifies the size of the write messages to disk for the log and data buffer used
for backups.

The default value is 32KB.

16.3.4.6. Defining the MySQL Servers for a MySQL Cluster

The [API] section (with its alias [MYSQLD]) defines the behavior of the MySQL server. No para-
meter is mandatory. If no computer or host name is provided, then any host can use this API node.

• [API]Id

This identity is the node ID used as the address of the node in all cluster internal messages. This
is an integer between 1 and 63. Each node in the cluster must have a unique identity.

MySQL Cluster

868

• [API]ExecuteOnComputer

This is referring to one of the computers defined in the computer section.

• [API]ArbitrationRank

This parameter is used to define which nodes can act as an arbitrator. MGM nodes and API
nodes can be arbitrators. 0 means it isn't used as arbitrator, 1 high priority and 2 low priority. A
normal configuration uses the management server as arbitrator setting the ArbitrationRank to 1
(which is the default) and setting all APIs to 0.

• [API]ArbitrationDelay

If setting this to anything else than 0 it means that the management server delay s responses to
the arbitration requests. Default is no delay and this should not be necessary to change.

• [API]BatchByteSize

For queries that get translated into full table scans or range scans on indexes, it is important for
best performance to fetch records in properly sized batches. It is possible to set the proper size
both in terms of number of records and in terms of bytes. Real batch size is limited by both para-
meters.

Performance of queries can vary more than 40% due to how this parameter is set. In future re-
leases, the MySQL Server will make educated guesses on what to set these parameters to, based
on the query type.

This parameter is measured in bytes and is by default equal to 32KB.

• [API]BatchSize

This parameter is measured in number of records and is by default set to 64. The maximum size
is 992.

• [API]MaxScanBatchSize

The batch size is the size of each batch sent from each storage node. Most scans are performed
in parallel so to protect the MySQL Server from getting too much data from many nodes in par-
allel, this parameter sets a limit to the total batch size over all nodes.

The default value of this parameter is set to 256KB. Its maximum size is 16MB.

16.3.4.7. MySQL Cluster TCP/IP Connections

TCP/IP is the default transport mechanism for establishing connections in MySQL Cluster. It is ac-
tually not necessary to define any connection because there is one connection setup between each of
the storage nodes, between each storage node, and all MySQL server nodes and between each stor-
age node and the management server.

It is only necessary to define a connection if it is necessary to change the default values of the con-
nection. In that case it is necessary to define at least NodeId1, NodeId2 and the parameters to
change.

It is also possible to change the default values by setting the parameters in the [TCP DEFAULT]
section.

• [TCP]NodeId1 , [TCP]NodeId2

To identify a connection between two nodes it is necessary to provide the node identity for both
of them in NodeId1 and NodeId2.

• [TCP]SendBufferMemory

MySQL Cluster

869

TCP transporters use a buffer all messages before performing the send call to the operating sys-
tem. When this buffer reaches 64KB it sends the buffer, the buffer is also sent when a round of
messages have been executed. To handle temporary overload situations it is also possible to
define a bigger send buffer. The default size of the send buffer is 256KB.

• [TCP]SendSignalId

To be able to retrace a distributed message diagram it is necessary to identify each message with
an identity. By setting this parameter to Y these message identities are also transported over the
network. This feature is not enabled by default.

• [TCP]Checksum

This parameter is also a Y/N parameter which is not enabled by default. When enabled all mes-
sages are checksummed before put into the send buffer. This feature enables control that mes-
sages are not corrupted while waiting in the send buffer. It is also a double check that the trans-
port mechanism haven't corrupted the data.

• [TCP]PortNumber

This is the port number to use for listening to connections from other nodes. This port number
should be specified in the [TCP DEFAULT] section normally.

This parameter should no longer be used. Use the parameter ServerPort on storage nodes in-
stead.

• [TCP]ReceiveBufferMemory

This parameter specifies the size of the buffer used when receiving data from the TCP/IP socket.
There is seldom any need to change this parameter from its default value of 64KB. One possible
reason could be to save memory.

16.3.4.8. MySQL Cluster Shared-Memory Connections

Shared memory segments are currently supported only for special builds of MySQL Cluster using
the configure parameter --with-ndb-shm. Its implementation will most likely change. When
defining shared memory as the connection method it is necessary to define at least NodeId1,
NodeId2 and ShmKey. All other parameters have default values that works out fine in most cases.

• [SHM]NodeId1 , [SHM]NodeId2

To identify a connection between two nodes it is necessary to provide the node identity for both
of them in NodeId1 and NodeId2.

• [SHM]ShmKey

When setting up shared memory segments an identifier is used to uniquely identify the shared
memory segment to use for the communication. This is an integer which does not have a default
value.

• [SHM]ShmSize

Each connection has a shared memory segment where messages between the nodes are put by
the sender and read by the reader. This segment has a size defined by this parameter. Default
value is 1MB.

• [SHM]SendSignalId

To be able to retrace a distributed message diagram it is necessary to identify each message with
an identity. By setting this parameter to Y these message identities are also transported over the

MySQL Cluster

870

network. This feature is not enabled by default.

• [SHM]Checksum

This parameter is also a Y/N parameter which is not enabled by default. When enabled all mes-
sages are checksummed before put into the send buffer. This feature enables control that mes-
sages are not corrupted while waiting in the send buffer. It is also a double check that the trans-
port mechanism haven't corrupted the data.

16.3.4.9. MySQL Cluster SCI Transport Connections

SCI Transporters as connection between nodes in the MySQL Cluster is only supported for special
builds of MySQL Cluster using the configure parameter -
-with-ndb-sci=/your/path/to/SCI. The path should point to a directory that contains at
least a lib and a include directory where SISCI libraries and header files are provided.

It is strongly recommended to only use SCI Transporters for communication between ndbd pro-
cesses. Also using SCI Transporters mean that the ndbd process never sleep so use SCI Transporters
only for machines with at least 2 CPU's which are dedicated for use by ndbd process(es). There
should be at least 1 CPU per ndbd process in this case and in addition at least one more is needed to
also handle OS activities.

• [SCI]NodeId1 , [SCI]NodeId2

To identify a connection between two nodes it is necessary to provide the node identity for both
of them in NodeId1 and NodeId2.

• [SCI]Host1SciId0

This identifies the SCI node id on the first node identified by NodeId1.

• [SCI]Host1SciId1

It is possible to set-up SCI Transporters for fail-over between two SCI cards which then should
use separate networks between the nodes. This identifies the node id and the second SCI card to
be used on the first node.

• [SCI]Host2SciId0

This identifies the SCI node id on the second node identified by NodeId2.

• [SCI]Host2SciId1

It is possible to set-up SCI Transporters for fail-over between two SCI cards which then should
use separate networks between the nodes. This identifies the node id and the second SCI card to
be used on the second node.

• [SCI]SharedBufferSize

Each SCI transporter has a shared memory segment between the two nodes. With this segment
set to the default 1 MB most applications should be ok. Smaller sizes such as 256 kB has prob-
lems when performing many parallel inserts. If the buffer is too small it can cause crashes of the
ndbd process.

• [SCI]SendLimit

A small buffer in front of the SCI media buffers up messages before sending them over the SCI
network. By default this is set to 8kB. Most benchmark measurements shows that tops are
reached at 64 kB but 16kB reaches within a few percent of the performance and for all MySQL
Cluster benchmarks it was no measurable difference in increasing it beyond 8kB.

MySQL Cluster

871

• [SCI]SendSignalId

To be able to retrace a distributed message diagram it is necessary to identify each message with
an identity. By setting this parameter to Y these message identities are also transported over the
network. This feature is not enabled by default.

• [SCI]Checksum

This parameter is also a Y/N parameter which is not enabled by default. When enabled all mes-
sages are checksummed before put into the send buffer. This feature enables control that mes-
sages are not corrupted while waiting in the send buffer. It is also a double check that the trans-
port mechanism haven't corrupted the data.

16.4. Process Management in MySQL Cluster
There are four processes that are important to know about when using MySQL Cluster. We cover
how to work with those processes, which options to use when starting and so forth.

16.4.1. MySQL Server Process Usage for MySQL
Cluster

mysqld is the traditional MySQL server process. To be used with MySQL Cluster it needs to be
built with support for the NDB Cluster storage engine. If the mysqld binary has been built in such a
manner, the NDB Cluster storage engine is still disabled by default.

To enable the NDB Cluster storage engine there are two ways. Either use --ndbcluster as a
startup option when starting mysqld or insert a line with ndbcluster in the [mysqld] section
of your my.cnf file. An easy way to verify that your server runs with support for the NDB
Cluster storage engine is to issue the command SHOW ENGINES from a mysql client. You
should see YES for the row listing NDBCLUSTER. If you see NO, you are not running a mysqld that
is compiled with NDB Cluster support enabled. If you see DISABLED, then you need to enable
it in the my.cnf configuration file.

The MySQL server needs to know how to get the configuration of the cluster. To access this config-
uration, it needs to know three things:

• Its own node ID in the cluster.

• The hostname (or IP address) where the management server resides.

• The port on which it can connect to the management server.

The node ID can be skipped from MySQL 4.1.5 on, because a node ID can be dynamically alloc-
ated.

The mysqld parameter ndb-connectstring is used to specify the connectstring either when
starting mysqld or in my.cnf. See also Section 16.3.4.2, “The MySQL Cluster
connectstring” for more info on connectstrings.

shell> mysqld --ndb-connectstring=ndb_mgmd.mysql.com:1186

ndb_mgmd.mysql.com is the host where the management server resides, and it is listening to
port 1186.

With this setup the MySQL server is a full citizen of MySQL Cluster and is fully aware of all stor-
age nodes in the cluster and their status. It setup connection to all storage nodes and is able to use
any storage node as a transaction coordinator and to access their data for reading and updating.

MySQL Cluster

872

16.4.2. ndbd, the Storage Engine Node Process
ndbd is the process that is used to handle all the data in the tables using the NDB Cluster storage
engine. This is the process that contains all the logic of distributed transaction handling, node recov-
ery, checkpointing to disk, online backup, and lots of other functionality.

In a cluster there is a set of ndbd processes cooperating in handling the data. These processes can
execute on the same computer or on different computers, in a completely configurable manner.

Before MySQL 4.1.5, ndbd process should start from a separate directory. The reason for this was
that ndbd generates a set of log files in its starting directory.

In MySQL 4.1.5, this was changed such that the files are placed in the directory specified by
DataDir in the configuration file. Thus ndbd can be started from anywhere.

These log files are (the 2 is the node ID):

• ndb_2_error.log (was error.log in version 4.1.3) is a file that contains information of
all the crashes which the ndbd process has encountered and a smaller error string and reference
to a trace file for this crash. An entry could like this:

Date/Time: Saturday 31 January 2004 - 00:20:01
Type of error: error
Message: Internal program error (failed ndbrequire)
Fault ID: 2341
Problem data: DbtupFixAlloc.cpp
Object of reference: DBTUP (Line: 173)
ProgramName: NDB Kernel
ProcessID: 14909
TraceFile: ndb_2_trace.log.2
EOM

• ndb_2_trace.log.1 (was NDB_TraceFile_1.trace in version 4.1.3) is a trace file
describing exactly what happened before the error occurred. This information is useful for the
MySQL Cluster team when analysing any bugs occurring in MySQL Cluster. The information in
this file is described in the section MySQL Cluster Troubleshooting. There can be a
configurable number of those trace files in the directory before old files are overwritten. 1 in this
context is simply the number of the trace file.

• ndb_2_trace.log.next (was NextTraceFileNo.log in version 4.1.3) is the file that
keeps track of what the next trace file number is to be.

• ndb_2_out.log is the file which contains any data printed by the ndbd process. 2 in this
context is the node ID. (this file only applies if ndbd is started in daemon mode which is default
from 4.1.5, was node2.out in version 4.1.3)

• ndb_2.pid is a file containing the process id of the ndbd when started as a daemon (default
from 4.1.5 and named node2.pid in version 4.1.3). It also functions as a lock file to avoid the
starting of nodes with the same id.

• ndb_2_signal.log (was Signal.log in version 4.1.3) is a file which is only used in de-
bug versions of ndbd where it is possible to trace all incoming, outgoing and internal messages
with their data in the ndbd process.

It is recommended to not use a directory mounted through NFS because in some environments that
can cause problems with the lock on the pid-file remaining even after the process has stopped.

Also when starting the ndbd process it may be necessary to specify the hostname of the manage-
ment server and the port it is listening to, optionally one may specify node ID the process is to use,
see Section 16.3.4.2, “The MySQL Cluster connectstring”.

shell> ndbd --connect-string="nodeid=2;host=ndb_mgmd.mysql.com:1186"

MySQL Cluster

873

When ndbd starts it actually start two processes. The starting process is called the "angel" and its
only job is to discover when the execution process has completed, and then restart the ndbd process
if configured to do so. Thus if one attempts to kill ndbd through the kill command in Unix, it is ne-
cessary to kill both processes. A more proper way to handle the stopping of ndbd processes is to use
the management client and stop the process from there.

The execution process uses one thread for all activities in reading, writing, and scanning data and all
other activities. This thread is designed with asynchronous programming so it can easily handle
thousands of concurrent activities. In addition there is a watch-dog thread supervising the execution
thread to ensure it doesn't stop in an eternal loop or other problem. There is a pool of threads hand-
ling file I/O. Each thread can handle one open file. In addition threads can be used for connection
activities of the transporters in the ndbd process. Thus in a system that performs a large number of
activities including update activities the ndbd process consume up to about 2 CPUs if allowed to.
Thus in a large SMP box with many CPUs it is recommended to use several ndbd processes which
are configured to be part of different node groups.

16.4.3. ndb_mgmd, the Management Server Process
The management server is the process that reads the configuration file of the cluster and distributes
this information to all nodes in the cluster requesting it. It also maintains the log of cluster activities.
Management clients can connect to the management server and use commands to check status of the
cluster in various aspects.

As of MySQL 4.1.5, it is no longer necessary to specify a connectstring when starting the manage-
ment server. However, if you are using several management servers, a connectstring should be
provided and each node in the cluster should specify its nodeid explicitly.

The following files are created or used by ndb_mgmd in its starting directory of ndb_mgmd. From
MySQL 4.1.5, the log and PID files be placed in the DataDir specified in the configuration file:

• config.ini is the configuration file of the cluster. This is created by the user and read by the
management server. How to write this file is described in the section MySQL Cluster Con-
figuration.

• ndb_1_cluster.log (was cluster.log in version 4.1.3) is the file where events in the
cluster are reported. Examples of events are checkpoints started and completed, node failures
and nodes starting, levels of memory usage passed and so forth. The events reported are de-
scribed in the section Section 16.5, “Management of MySQL Cluster”.

• ndb_1_out.log (was node1.out in version 4.1.3) is the file used for stdout and stderr
when executing the management server as a daemon process. 1 in this context is the node ID.

• ndb_1.pid (was node1.pid in version 4.1.3) is the PID file used when executing the man-
agement server as a daemon process. 1 in this context is the node ID.

• ndb_1_cluster.log.1 (was cluster.log.1 in version 4.1.3) when the cluster log be-
comes bigger than one million bytes then the file is renamed to this name where 1 is the number
of the cluster log file, so if 1, 2, and 3 exist the next is having the number 4 instead.

16.4.4. ndb_mgm, the Management Client Process
The final important process to know about is the management client. This process is not needed to
run the cluster. Its value lies in its ability to check status of the cluster, start backups, and perform
other management activities. It does so by providing access to a set of commands.

Actually the management client is using a C API that is used to access the management server so for
advanced users it is also possible to program dedicated management processes which can do similar
things as the management client can do.

MySQL Cluster

874

When starting the management client, it is necessary to state the hostname and port of the manage-
ment server as in the example below. The default is localhost as host and port number 1186 (was
2200 prior to version 4.1.8).

shell> ndb_mgm localhost 1186

16.4.5. Command Options for MySQL Cluster Pro-
cesses

All MySQL Cluster executables (except mysqld) takes the following options as of 4.1.8. If you're
running an earlier version please read carefully, as we have made changes in some of these switches
in order to make them consistent between the different executables and with mysqld. (For example:
-V was -v in earlier versions.) Note also that you can use the -? option to see what is supported in
your version.

• -?, --usage, --help

Prints a short description of the available command options.

• -V, --version

Prints the version number of the ndbd process. The version number is the MySQL Cluster ver-
sion number. It is important because at startup the MySQL Cluster processes verifies that the
versions of the processes in the cluster can co-exist in the cluster. It is also important for online
software upgrade of MySQL Cluster (see section Software Upgrade of MySQL
Cluster).

• -c connect_string (not ndb_mgmd), --connect-string con-
nect_string

Set the connect string to the management server as a command option. (for backward compatib-
ility reasons the ndb_mgmd does not take the -c option until 5.0, as it currently specifies the
config file). Available with ndb_mgm from 4.1.8.

shell> ndbd --connect-string="nodeid=2;host=ndb_mgmd.mysql.com:1186"

• --debug[=options]

This can only be used for versions compiled with debug information. It is used to enable prin-
touts from debug calls in the same manner as for the mysqld process.

16.4.5.1. MySQL Cluster-Related Command Options for mysqld

• --ndbcluster

If the binary includes support for the NDB Cluster storage engine the default disabling of
support for the NDB storage engine can be overruled by using this option. Using the NDB
Cluster storage engine is necessary for using MySQL Cluster.

• --skip-ndbcluster

Disable the NDB Cluster storage engine. This is disabled by default for binaries where it is
included. So this option only applies if the server was configured to use the NDB Cluster
storage engine.

• --ndb-connectstring=connect_string

MySQL Cluster

875

When using the NDB storage engine, it is possible to point out the management server that dis-
tributes the cluster configuration by setting the connect string option.

16.4.5.2. Command Options for ndbd

For common options see Section 16.4.5, “Command Options for MySQL Cluster Processes”.

• -d, --daemon

Instructs ndbd to execute as a daemon process. From MySQL 4.1.5 on, this is the default beha-
vior.

• --nodaemon

Instructs ndbd not to start as a daemon process. Useful when ndbd is debugged and one wants
printouts on the screen.

• --initial

Instructs ndbd to perform an initial start. An initial start erase any files created by earlier ndbd
instances for recovery. It also recreate recovery log files which on some operating systems can
take a substantial amount of time.

An initial start is only to be used at the very first start of the ndbd process. It removes all files
from the file system and creates all REDO log files. When performing a software upgrade which
has changed the file contents on any files it is also necessary to use this option when restarting
the node with a new software version of ndbd. Finally it could also be used as a final resort if
for some reason the node restart or system restart doesn't work. In this case be aware that des-
troying the contents of the file system means that this node can no longer be used to restore data.

This option does not affect any backup files created.

The previous possibility to use -i for this option was removed to ensure that this option is not
used by mistake.

• --nostart

Instructs ndbd not to automatically start. ndbd connect to the management server and get the
configuration and initialize communication objects. It does not start the execution engine until
requested to do so by the management server. The management server can request by command
issued by the management client.

16.4.5.3. Command Options for ndb_mgmd

For common options see Section 16.4.5, “Command Options for MySQL Cluster Processes”.

• -f filename (from 4.1.8), --config-file=filename, -c filename
(obsolete from 5.0)

Instructs the management server which file to use as configuration file. This option must be spe-
cified. The file name defaults to config.ini.

• -d, --daemon

Instructs ndb_mgmd to start as a daemon process. This is the default behavior.

• -nodaemon

MySQL Cluster

876

Instructs the management server not to start as a daemon process.

16.4.5.4. Command Options for ndb_mgm

For common options see Section 16.4.5, “Command Options for MySQL Cluster Processes”.

• [host_name [port_num]]

To start the management client it is necessary to specify where the management server resides.
This means specifying the hostname and the port. The default hostname is localhost and the
default port is 1186 (was 2200 prior to version 4.1.8).

• --try-reconnect=number

If the connection to the management server is broken it is possible to perform only a specified
amount of retries before reporting a fault code to the user. The default is that it keeps retrying
every 5 seconds until it succeeds.

16.5. Management of MySQL Cluster
Managing a MySQL Cluster involves a number of activities. The first activity is to configure and
startup MySQL Cluster. This is covered by the sections Section 16.3, “MySQL Cluster Configura-
tion” and Section 16.4, “Process Management in MySQL Cluster”. This section covers how to man-
age a running MySQL Cluster.

There are essentially two ways of actively managing a running MySQL Cluster. The first is by com-
mands entered into the management client where status of cluster can be checked, log levels
changed, backups started and stopped and nodes can be stopped and started. The second method is
to study the output in the cluster log. The cluster log is directed toward the ndb_2_cluster.log
in the DataDir directory of the management server. The cluster log contains event reports gener-
ated from the ndbd processes in the cluster. It is also possible to send the cluster log entries to a
Unix system log.

16.5.1. Commands in the Management Client
In addition to the central configuration file, the cluster may also be controlled through a command
line interface. The command line interface is available through a separate management client pro-
cess. This is the main administrative interface to a running cluster.

The management client has the following basic commands. Below, <id> denotes either a database
node id (e.g. 21) or the keyword ALL that indicates that the command should be applied to all data-
base nodes in the cluster.

• HELP

Prints information on all available commands.

• SHOW

Prints information on the status of the cluster.

• <id> START

Start a database node identified with <id> or all database nodes.

• <id> STOP

MySQL Cluster

877

Stop a database node identified with <id> or all database nodes.

• <id> RESTART [-N] [-I]

Restart a database node identified with <id> or all database nodes.

• <id> STATUS

Displays status information for database node identified with <id> (or ALL database nodes).

• ENTER SINGLE USER MODE <id>

Enters single user mode where only the API with node <id> is allowed to access the database
system.

• EXIT SINGLE USER MODE

Exists single user mode allowing all APIs to access the database system.

• QUIT

Terminates the management client.

• SHUTDOWN

Shuts down all cluster nodes (except mysql servers) and exits.

Commands for the event logs are given in the next section and commands for backup and restore are
given in a separate section on these topics.

16.5.2. Event Reports Generated in MySQL Cluster
MySQL Cluster has two event logs, the cluster log and the node log.

• The cluster log is a log of the whole cluster and this log can have multiple destinations (file,
management server console window or syslog).

• The node log is a log that is local to each database node and is written to the console window of
the database node. The two logs can be set to log different subsets of the list of events.

Note: The cluster log is the recommended log. The node log is only intended to be used during ap-
plication development or for debugging application code.

Each reportable event has the following properties:

• Category (STARTUP, SHUTDOWN, STATISTICS, CHECKPOINT, NODERESTART, CON-
NECTION, ERROR, INFO)

• Priority (1-15 where 1 - Most important, 15 - Least important)

• Severity (ALERT, CRITICAL, ERROR, WARNING, INFO, DEBUG)

The two logs (the cluster log and the node log) can be filtered on these properties.

16.5.2.1. Logging Management Commands

The following management commands are related to the cluster log:

MySQL Cluster

878

• CLUSTERLOG ON

Turn cluster log on.

• CLUSTERLOG OFF

Turn cluster log off.

• CLUSTERLOG INFO

Information about cluster log settings.

• <id> CLUSTERLOG <category>=<threshold>

Log category events with priority less than or equal to threshold in the cluster log.

• CLUSTERLOG FILTER <severity>

Toggles cluster logging of the specified severity type on/off.

The following table describes the default setting (for all database nodes) of the cluster log category
threshold. If an event has a priority with a value lower than or equal to the priority threshold, then it
is reported in the cluster log.

Note that the events are reported per database node and that the thresholds can be set differently on
different nodes.

Category Default threshold (All database nodes)

STARTUP 7

SHUTDOWN 7

STATISTICS 7

CHECKPOINT 7

NODERESTART 7

CONNECTION 7

ERROR 15

INFO 7

The threshold is used to filter events within each category. For example: a STARTUP event with a
priority of 3 is never sent unless the threshold for STARTUP is changed to 3 or lower. Only events
with priority 3 or lower are sent if the threshold is 3. The event severities are (corresponds to UNIX
syslog levels):

1 ALERT A condition that should be corrected imme-
diately, such as a corrupted system database

2 CRIT-
ICAL

Critical conditions, such as device errors or
out of resources

3 ER-
ROR

Conditions that should be corrected, such as
configuration errors

4 WARN
ING

Conditions that are not error conditions but
might require handling

5 INFO Informational messages

6 DE-
BUG

Messages used during development of NDB
Cluster

Syslog's LOG_EMERG and LOG_NOTICE are not used/mapped.

MySQL Cluster

879

The event severities can be turned on or off. If the severity is on then all events with priority less
than or equal to the category thresholds are logged. If the severity is off then no events belonging to
the severity are logged.

16.5.2.2. Log Events

All reportable events are listed below.

Event Category Priority Severity Description

DB nodes connected CONNEC-
TION

8 INFO

DB nodes disconnected CONNEC-
TION

8 INFO

Communication closed CONNEC-
TION

8 INFO API & DB nodes connection closed

Communication opened CONNEC-
TION

8 INFO API & DB nodes connection opened

Global checkpoint star-
ted

CHECK-
POINT

9 INFO Start of a GCP, i.e., REDO log is writ-
ten to disk

Global checkpoint
completed

CHECK-
POINT

10 INFO GCP finished

Local checkpoint star-
ted

CHECK-
POINT

7 INFO Start of local check pointing, i.e., data
is written to disk. LCP Id and GCI Ids
(keep and oldest restorable)

Local checkpoint com-
pleted

CHECK-
POINT

8 INFO LCP finished

LCP stopped in calc
keep GCI

CHECK-
POINT

0 ALERT LCP stopped!

Local checkpoint frag-
ment completed

CHECK-
POINT

11 INFO A LCP on a fragment has been com-
pleted

Report undo log
blocked

CHECK-
POINT

7 INFO Reports undo logging blocked due buf-
fer near to overflow

DB node start phases
initiated

STARTUP 1 INFO NDB Cluster starting

DB node all start
phases completed

STARTUP 1 INFO NDB Cluster started

Internal start signal re-
ceived STTORRY

STARTUP 15 INFO Internal start signal to blocks received
after restart finished

DB node start phase X
completed

STARTUP 4 INFO A start phase has completed

Node has been success-
fully included into the
cluster

STARTUP 3 INFO President node, own node and dynamic
id is shown

Node has been refused
to be included into the
cluster

STARTUP 8 INFO

DB node neighbours STARTUP 8 INFO Show left and right DB nodes neigh-
bours

DB node shutdown ini-
tiated

STARTUP 1 INFO

DB node shutdown
aborted

STARTUP 1 INFO

New REDO log started STARTUP 10 INFO GCI keep X, newest restorable GCI Y

MySQL Cluster

880

New log started STARTUP 10 INFO Log part X, start MB Y, stop MB Z

Undo records executed STARTUP 15 INFO

Completed copying of
dictionary information

NODERE-
START

8 INFO

Completed copying dis-
tribution information

NODERE-
START

8 INFO

Starting to copy frag-
ments

NODERE-
START

8 INFO

Completed copying a
fragment

NODERE-
START

10 INFO

Completed copying all
fragments

NODERE-
START

8 INFO

Node failure phase
completed

NODERE-
START

8 ALERT Reports node failure phases

Node has failed, node
state was X

NODERE-
START

8 ALERT Reports that a node has failed

Report whether an ar-
bitrator is found or not

NODERE-
START

6 INFO 7 different cases

- President restarts arbitration thread
[state=X]

- Prepare arbitrator node X [ticket=Y]

- Receive arbitrator node X [ticket=Y]

- Started arbitrator node X [ticket=Y]

- Lost arbitrator node X - process fail-
ure [state=Y]

- Lost arbitrator node X - process exit
[state=Y]

- Lost arbitrator node X <error
msg>[state=Y]

Report arbitrator results NODERE-
START

2 ALERT 8 different results

- Arbitration check lost - less than 1/2
nodes left

- Arbitration check won - node group
majority

- Arbitration check lost - missing node
group

- Network partitioning - arbitration re-
quired

- Arbitration won - positive reply from
node X

- Arbitration lost - negative reply from
node X

- Network partitioning - no arbitrator
available

- Network partitioning - no arbitrator
configured

GCP take over started NODERE-
START

7 INFO

GCP take over com-
pleted

NODERE-
START

7 INFO

MySQL Cluster

881

LCP take over started NODERE-
START

7 INFO

LCP take completed
(state = X)

NODERE-
START

7 INFO

Report transaction stat-
istics

STATISTICS 8 INFO # of: transactions, commits, reads,
simple reads, writes, concurrent opera-
tions, attribute info, aborts

Report operations STATISTICS 8 INFO # of operations

Report table create STATISTICS 7 INFO

Report job scheduling
statistics

STATISTICS 9 INFO Mean Internal job scheduling statistics

Sent # of bytes STATISTICS 9 INFO Mean # of bytes sent to node X

Received # of bytes STATISTICS 9 INFO Mean # of bytes received from node X

Memory usage STATISTICS 5 INFO Data and Index memory usage (80%,
90% and 100%)

Transporter errors ERROR 2 ERROR

Transporter warnings ERROR 8 WARN-
ING

Missed heartbeats ERROR 8 WARN-
ING

Node X missed heartbeat # Y

Dead due to missed
heartbeat

ERROR 8 ALERT Node X declared dead due to missed
heartbeat

General warning events ERROR 2 WARN-
ING

Sent heartbeat INFO 12 INFO Heartbeat sent to node X

Create log bytes INFO 11 INFO Log part, log file, MB

General info events INFO 2 INFO

An event report has the following format in the logs:

<date & time in GMT> [<any string>] <event severity> -- <log message>
09:19:30 2003-04-24 [NDB] INFO -- Node 4 Start phase 4 completed

16.5.3. Single User Mode
Single user mode allows the database administrator to restrict access to the database system to only
one application (API node). When entering single user mode all connections to all APIs is gracefully
closed and no transactions are allowed to be started. All running transactions are aborted.

When the cluster has entered single user mode (use the all status command to see when the state has
entered the single user mode), only the allowed API node is granted access to the database.

Example:

ENTER SINGLE USER MODE 5

After executing this command and after cluster has entered the single user mode, the API node with
node id 5 becomes the single user of the cluster.

The node specified in the command above must be a MySQL Server node. Any attempt to specify
any other type of node is rejected.

Note: if the node with id 5 is running when executing ENTER SINGLE USER MODE 5, all trans-

MySQL Cluster

882

actions running on node 5 is aborted, the connection is closed, and the server must be restarted.

The command EXIT SINGLE USER MODE alters the state of the cluster DB nodes from ``single
user mode'' to ``started''. MySQL Servers waiting for a connection, i.e. for the cluster to become
ready, are allowed to connect. The MySQL Server denoted as the single user continues to run, if it is
connected, during and after the state transition.

Example:

EXIT SINGLE USER MODE

Best practice in case of node failures when running in single user mode is to:

1. Finish all single user mode transactions

2. Issue the command exit single user mode

3. Restart database nodes

Or restart database nodes prior to entering single user mode.

16.5.4. On-line Backup of MySQL Cluster
This section describes how to create a backup and later restore the backup to a database.

16.5.4.1. Cluster Backup Concepts

A backup is a snapshot of the database at a given time. The backup contains three main parts:

1. Meta data (what tables exists etc)

2. Table records (data in tables)

3. A log of committed transactions

Each of these parts is saved on all nodes participating in a backup.

During backup each node saves these three parts to disk into three files:

• BACKUP-<BackupId>.<NodeId>.ctl

The control file which contain control information and meta data.

• BACKUP-<BackupId>-0.<NodeId>.data

The data file that contain the table records.

• BACKUP-<BackupId>.<NodeId>.log

The log file that contain the committed transactions.

Above <BackupId> is an identifier for the backup and <NodeId> is the node id of the node creating
the file.

• Meta data

The meta data consists of table definitions. All nodes have the exact same table definitions saved

MySQL Cluster

883

on disk.

• Table records

The table records are saved per fragment. Each fragment contains a header that describes which
table the records belong to. After the list of records there is a footer that contains a checksum for
the records. Different nodes save different fragments during the backup.

• Committed log

The committed log contains committed transaction made during the backup. Only transactions
on tables stored in the backup are stored in the log. The different nodes in the backup saves dif-
ferent log records as they host different database fragments.

16.5.4.2. Using The Management Server to Create a Backup

Before starting make sure that the cluster is properly configured for backups.

1. Start management server.

2. Execute the command START BACKUP.

3. The management server reply with a message ``Start of backup ordered''. This means that the
management server has submitted the request to the cluster, but has not yet received any re-
sponse.

4. The management server reply ``Backup <BackupId> started'' where <BackupId> is the unique
identifier for this particular backup. This also be saved in the cluster log (if not configured oth-
erwise). This means that the cluster has received and processed the backup request. It does not
mean that the backup has completed.

5. The management server when the backup is finished reply ``Backup <BackupId> completed''.

Using the management server to abort a backup:

1. Start management server.

2. Execute the command ABORT BACKUP <BACKUPID>. The number <BackupId> is the iden-
tifier of the backup that is included in the response of the management server when the backup
is started, i.e. in the message ``Backup <BackupId> started''. The identifier is also saved in the
cluster log (cluster.log).

3. The management server reply ``Abort of backup <BackupId> ordered'' This means that it has
submitted the request to the cluster, but has not received any response.

4. The management server reply ``Backup <BackupId> has been aborted reason XYZ''. This
means that the cluster has aborted the backup and removed everything belonging to it, includ-
ing the files in the file system.

Note that if there is not any backup with id <BackupId> running when it is aborted, the management
server does not reply anything. However there is a line in the cluster.log mentioning that an
``invalid'' abort command has been filed.

16.5.4.3. How to Restore a Cluster Backup

The restore program is implemented as separate command line utility. It reads the files created from
the backup and inserts the stored information into the database. The restore program has to be ex-

MySQL Cluster

884

ecuted once for each set of backup files, i.e. as many times as there were database nodes running
when the backup we created.

The first time you run the restore program you also need to restore the meta data, i.e. create tables.
The restore program acts as an API to the cluster and therefore needs a free connection to connect
to. This can be verified with the ndb_mgm command SHOW. The switch -c
<connectstring> may be used to locate the MGM node (see Section 16.3.4.2, “The MySQL
Cluster connectstring” for info on connectstrings). The backup files must be present in the dir-
ectory given as an argument to the restore program. The backup can be restored to a database with a
different configuration than it was created from. For example, consider if a backup (with id 12) cre-
ated in a cluster with two database nodes (with node id 2 and node id 3) that should be restored to a
cluster with four nodes. The restore program then has to be executed two times (one for each data-
base node in the cluster where the backup was taken) as described in the box below.

Note: for rapid restore, the data may be restored in parallel (provided that there are enough free API
connections available). Note however that the data files must always be applied before the logs.

Note: the cluster should have an empty database when starting to restore a backup.

16.5.4.4. Configuration for Cluster Backup

There are four configuration parameters for backup:

• BackupDataBufferSize

Amount of memory (out of the total memory) used to buffer data before it is written to disk.

• BackupLogBufferSize

Amount of memory (out of the total memory) used to buffer log records before these are written
to disk.

• BackupMemory

Total memory allocated in a database node for backups. This should be the sum of the memory
allocated for the two buffers.

• BackupWriteSize

Size of blocks written to disk. This applies for both the data buffer and the log buffer.

16.5.4.5. Backup Troubleshooting

If an error code is returned when issuing a backup request, then check that there is enough memory
allocated for the backup (i.e. the configuration parameters). Also check that there is enough space on
the hard drive partition of the backup target.

16.6. Using High-Speed Interconnects with
MySQL Cluster

Before design of NDB Cluster started in 1996 it was evident that one of the major problems of
building parallel databases is the communication between the nodes in the network. Thus from the
very beginning NDB Cluster was designed with a transporter concept to allow for different trans-
porters.

At the moment the code base includes 4 different transporters where 3 of them are currently work-
ing. Most users today uses TCP/IP over Ethernet since this exists in all machines. This is also by far
the most well-tested transporter in MySQL Cluster.

MySQL Cluster

885

Within MySQL we are working hard to ensure that communication with the ndbd process is made in
as large chunks as possible since this isnefit all communication medias since all means of transport-
ation benefits from sending large messages over small messages.

For users which desire top performance it is however also possible to use cluster interconnects to in-
crease performance even further. There are two ways to achieve this, either a transporter can be de-
signed to handle this case, or one can use socket implementations that bypass the TCP/IP stack to a
small or large extent.

We have made some experiments with both those variants using SCI technology developed by Dol-
phin (www.dolphinics.no).

16.6.1. Configuring MySQL Cluster to use SCI Sockets
In this section we shows how one can use a cluster configured for normal TCP/IP communication to
instead use SCI Sockets. Prerequisites for doing this is that the machines to communicate needs to
be equipped with SCI cards. This documentation is based on the SCI Socket version 2.3.0 as of 1
october 2004.

To use SCI Sockets one can use any version of MySQL Cluster. The tests were performed on an
early 4.1.6 version. No special builds are needed since it uses normal socket calls which is the nor-
mal configuration set-up for MySQL Cluster. SCI Sockets are only supported on Linux 2.4 and 2.6
kernels at the moment. SCI Transporters works on more OS's although only Linux 2.4 have been
verified.

There are essentially four things needed to enable SCI Sockets. First it is necessary to build the SCI
Socket libraries. Second the SCI Socket kernel libraries need to be installed. Third one or two con-
figuration files needs to be installed. At last the SCI Socket kernel library needs to be enabled either
for the entire machine or for the shell where the MySQL Cluster processes are started from. This
process needs to be repeated for each machine in cluster which use SCI Sockets to communicate.

Two packages need to be retrieved to get SCI Sockets working. The first package builds the libraries
which SCI Sockets are built upon and the second is the actual SCI Socket libraries. Currently the
distribution is only in source code format.

The latest versions of these packages is currently found at. Check

http://www.dolphinics.no/support/downloads.html

for latest versions.

http://www.dolphinics.no/ftp/source/DIS_GPL_2_5_0_SEP_10_2004.tar.gz
http://www.dolphinics.no/ftp/source/SCI_SOCKET_2_3_0_OKT_01_2004.tar.gz

The next step is to unpack those directories, SCI Sockets is unpacked below the DIS code. Then the
code base is compiled. The example below shows the commands used in Linux/x86 to perform this.

shell> tar xzf DIS_GPL_2_5_0_SEP_10_2004.tar.gz
shell> cd DIS_GPL_2_5_0_SEP_10_2004/src/
shell> tar xzf ../../SCI_SOCKET_2_3_0_OKT_01_2004.tar.gz
shell> cd ../adm/bin/Linux_pkgs
shell> ./make_PSB_66_release

If the build is made on an Opteron box and is to use the 64 bit extensions then use
make_PSB_66_X86_64_release instead, if the build is made on an Itanium box then use
make_PSB_66_IA64_release instead. The X86-64 variant should work for Intel EM64T architec-
tures but no known tests of this exists yet.

After building the code base it has been put into a zipped tar filed DIS and OS and date. It is time to
install the package in the proper place. In this example we place the installation in /opt/DIS. These
actions most likely require you to log in as root-user.

MySQL Cluster

886

shell> cp DIS_Linux_2.4.20-8_181004.tar.gz /opt/
shell> cd /opt
shell> tar xzf DIS_Linux_2.4.20-8_181004.tar.gz
shell> mv DIS_Linux_2.4.20-8_181004 DIS

Once all the libraries and binaries are in their proper place we need to ensure that SCI cards gets
proper node identities within the SCI address space. Since SCI is a networking gear it is necessary
to decide on the network structure at first.

There are three types of network structures, the first is a simple one-dimensional ring, the second
uses SCI switch(es) with one ring per switch port and finally there are 2D/3D torus. Each has its
standard of providing node ids.

A simple ring uses simply node ids displaced by 4.

4, 8, 12,

The next possibility uses switch(es). The SCI switch has 8 ports. On each port it is possible to place
a ring. It is here necessary to ensure that the rings on the switch uses different node id spaces. So the
first port uses node ids below 64 and the next 64 node ids are allocated for the next port and so forth.

4,8, 12, ... , 60 Ring on first port
68, 72, , 124 Ring on second port
132, 136, ..., 188 Ring on third port
..
452, 456, ..., 508 Ring on the eight port

2D/3D torus network structures takes into account where each node is in each dimension, increment
by 4 for each node in the first dimension, by 64 in the second dimension and by 1024 in the third di-
mension. Please look in the Dolphin for more thorough documentation on this.

In our testing we have used switches. Most of the really big cluster installations uses 2D/3D torus.
The extra feature which switches provide is that with dual SCI cards and dual switches we can eas-
ily build a redundant network where failover times on the SCI network is around 100 microseconds.
This feature is supported by the SCI transporter and is currently also developed for the SCI Socket
implementation.

Failover for 2D/3D torus is also possible but requires sending out new routing indexes to all nodes.
Even this complete in around 100 milliseconds and should be ok for most high-availability cases.

By placing the NDB nodes in proper places in the switched architecture it is possible to use 2
switches to build a structure where 16 computers can be interconnected and no single failure can
hamper more than one computer. With 32 computers and 2 switches it is possible to configure the
cluster in such a manner that no single failure can hamper more than two nodes and in this case it is
also known which pair is hit. Thus by placing those two in separate NDB node groups it is possible
to build a safe MySQL Cluster installation. We won't go into details in how this is done, since it is
likely to be only of interest for users wanting to go real deep into this.

To set the node id of an SCI card use the following command still being in the /opt/DIS/sbin
directory. -c 1 refers to the number of the SCI card, where 1 is this number if only 1 card is in the
machine. In this case use adapter 0 always (set by -a 0). 68 is the node id set in this example.

shell> ./sciconfig -c 1 -a 0 -n 68

In case you have several SCI cards in your machine the only safe to discover which card has which
slot is by issuing the following command

shell> ./sciconfig -c 1 -gsn

This gives the serial number which can be found at the back of the SCI card and on the card itself.

MySQL Cluster

887

Do this then for -c 2 and onwards as many cards there are in the machine. This identify which cards
uses which id. Then set node ids for all cards.

We have installed the necessary libraries and binaries. We have also set the SCI node ids. The next
step is to set the mapping from hostnames (or IP addresses) to SCI node ids.

The configuration file for SCI Sockets is to be placed in the file /etc/sci/scisock.conf.
This file contains a mapping from hostnames (or IP addresses) to SCI node ids. The SCI node id
map the hostname to communicate through the proper SCI card. Below is a very simple such config-
uration file.

#host #nodeId
alpha 8
beta 12
192.168.10.20 16

It is also possible to limit this configuration to only apply for a subset of the ports of these host-
names. To do this another configuration is used which is placed in /
etc/sci/scisock_opt.conf.

#-key -type -values
EnablePortsByDefault yes
EnablePort tcp 2200
DisablePort tcp 2201
EnablePortRange tcp 2202 2219
DisablePortRange tcp 2220 2231

We are ready to install the drivers. We need to first install the low-level drivers and then the SCI
Socket driver.

shell> cd DIS/sbin/
shell> ./drv-install add PSB66
shell> ./scisocket-install add

If desirable one can check the installation by invoking a script which checks that all nodes in the
SCI Socket config files are accessible.

shell> cd /opt/DIS/sbin/
shell> ./status.sh

If you discover an error and need to change the SCI Socket config files then it is necessary to use a
program ksocketconfig to change the configuration.

shell> cd /opt/DIS/util
shell> ./ksocketconfig -f

To check that SCI Sockets are actually used you can use a test program latency_bench which
needs to have a server component and clients can connect to the server to test the latency, whether
SCI is enabled is very clear from the latency you get. Before you use those programs you also need
to set the LD_PRELOAD variable in the same manner as shown below.

To set up a server use the command

shell> cd /opt/DIS/bin/socket
shell> ./latency_bench -server

To run a client use the following command

shell> cd /opt/DIS/bin/socket
shell> ./latency_bench -client hostname_of_server

MySQL Cluster

888

The SCI Socket configuration is completed. MySQL Cluster is now ready to use both SCI Sockets
and the SCI transporter documented in Section 16.3.4.9, “MySQL Cluster SCI Transport Connec-
tions”.

The next step is to start-up MySQL Cluster. To enable usage of SCI Sockets it is necessary to set the
environment variable LD_PRELOAD before starting the ndbd, mysqld and ndb_mgmd processes to
use SCI Sockets. The LD_PRELOAD variable should point to the kernel library for SCI Sockets.

So as an example to start up ndbd in a bash-shell use the following commands.

bash-shell> export LD_PRELOAD=/opt/DIS/lib/libkscisock.so
bash-shell> ndbd

From a tcsh environment the same thing would be accomplished with the following commands.

tcsh-shell> setenv LD_PRELOAD=/opt/DIS/lib/libkscisock.so
tcsh-shell> ndbd

Noteworthy here is that MySQL Cluster can only use the kernel variant of SCI Sockets.

16.6.2. Low-level benchmarks to understand impact of
cluster interconnects

The ndbd process has a number of simple constructs which are used to access the data in MySQL
Cluster. We made a very simple benchmark to check the performance of each such statement and
the effect various interconnects have on their performance.

There are four access methods:

• Primary key access

This is a simple access of one record through its primary key. In the simplest case only one re-
cord is accessed at a time. This means that the full cost of setting up a number of TCP/IP mes-
sage and a number of costs for context switching is taken by this single request. In a batched
case where e.g. 32 primary key accesses are sent in one batch then those 32 accesses share the
set-up cost of TCP/IP messages and context switches (if the TCP/IP are for different destinations
then naturally a number of TCP/IP messages needs to be set up.

• Unique key access

Unique key accesses are very similar to primary key accesses except that they are executed as a
read of an index table followed by a primary key access on the table. However only one request
is sent from the MySQL Server, the read of the index table is handled by the ndbd process. Thus
again these requests benefit from being accessed in batches.

• Full table scan

When no indexes exist for the lookup on a table, then a full scan of a table is performed. This is
one request to the ndbd process which divides the table scan into a set of parallel scans on all nd-
bd processes in the cluster. In future versions the MySQL server is able to push down some fil-
tering in those scans. When no indexes exist for the lookup on a table, then a full scan of a table
is performed. This is one request to the ndbd process which divides the table scan into a set of
parallel scans on all ndbd processes in the cluster. In future versions the MySQL server is able to
push down some filtering in those scans.

• Range scan using ordered index

When an ordered index is used it perform a scan in the same manner as the full table scan except

MySQL Cluster

889

that it only scan those records which are in the range used by the query set-up by the MySQL
server. In future versions a special optimization will ensure that when all index attributes that are
bound includes all attributes in the partitioning key then only one partition is scanned instead of
all in parallel.

To check the base performance of these access methods we developed a set of benchmarks. One
such benchmark, testReadPerf issues, simple primary and unique key access, batched primary and
unique key accesses. The benchmark also measures the set-up cost of range scans by issuing scans
returning a single record and finally there is a variant which uses a range scan to fetch a batch of re-
cords.

In this manner we can test the cost of issuing single key access and single record scan accesses and
measure the impact of the communication media implementation of these base access methods.

We executed those base benchmark both using a normal transporter using TCP/IP sockets and a
similar set-up using SCI sockets. The figures reported below is for small accesses of 20 records per
of data per access. The difference between serial and batched goes down by a factor of 3-4 when us-
ing 2 kB records instead. SCI Sockets were not tested with 2 kB record2 kB records. Tests were per-
formed on a 2-node cluster with 2 dual CPU machines equipped with AMD MP1900+ processors.

Access type: TCP/IP sockets SCI Socket
Serial pk access: 400 microseconds 160 microseconds
Batched pk access: 28 microseconds 22 microseconds
Serial uk access: 500 microseconds 250 microseconds
Batched uk access: 70 microseconds 36 microseconds
Indexed eq-bound: 1250 microseconds 750 microseconds
Index range: 24 microseconds 12 microseconds

We did also another set of tests to check the performance of SCI Sockets compared to using the SCI
transporter and all compared to the TCP/IP transporter. All these tests used primary key accesses
either serially, multi-threaded and multi-threaded and batched simultaneously.

More or less all of these tests showed that SCI sockets were about 100% faster compared to TCP/IP.
The SCI transporter was faster in most cases compared to SCI sockets. One notable case however
with many threads in the test program showed that the SCI transporter behaved really bad if used in
the mysqld process.

Thus our conclusion overall is that for most benchmarks SCI sockets improves performance with
around 100% compared to TCP/IP except in rare cases when communication performance is not an
issue such as when scan filters make up most of processing time or when very large batches of
primary key accesses are achieved. In that case the CPU processing in the ndbd processes becomes a
fairly large part of the cost.

Using the SCI transporter instead of SCI Sockets is only of interest in communicating between ndbd
processes. Using the SCI transporter is also only of interest if a CPU can be dedicated for the ndbd
process since the SCI transporter ensures that the ndbd never go to sleep. It is also important to en-
sure that the ndbd process priority is set in such a way that the process doesn't lose in priority due to
running for a long time (as can be done by locking processes to CPU's in Linux 2.6). If this is a pos-
sible configuration then ndbd process isnefit by 10-70% compared to using SCI sockets (the larger
figures when performing updates and probably also on parallel scan activities).

There are several other implementations of optimized socket variants for clusters reported in various
papers. These include optimized socket variants for Myrinet, Gigabit Ethernet, Infiniband and the
VIA interface. We have only tested MySQL Cluster so far with SCI sockets and we also include
documentation above on how to set-up SCI sockets using ordinary TCP/IP configuration for
MySQL Cluster.

16.7. MySQL Cluster Limitations in 4.1
Below is a list of known limitations with release 4.1 when comparing to the storage engines MyIS-

MySQL Cluster

890

AM and InnoDB. Currently there are no plans to address these in coming releases of 4.1 (but well in
5.0 or later releases). At http://bugs.mysql.com, category cluster, you fill find known bugs which are
intended to be fixed in upcoming releases of 4.1 (if marked 4.1). This list is intended to be complete
with respect to the above, please report discrepancies at http://bugs.mysql.com, category cluster. If
this discrepancy does not be fixed in 4.1 it is added to this list.

• Non compliance in syntax (resulting in error when running an existing application)

• Not all charsets and collations supported, see Section D.10.5, “MySQL Cluster-4.1.6 (10 Oct
2004)” for a list of the ones supported.

• No prefix indexes (can only index complete fields)

• No text indexes

• No geometry type support

• Non compliance in limits/behavior (may result in error when running an existing application)

• No partial rollback of transactions on error. As a result, e.g. duplicate key error, results in a
rollback of the whole transaction.

• A number of hard limits exist which are configurable, but available main memory in the
cluster sets limits. See complete list of configuration parameters Section 16.3.4,
“Configuration File”. Most configuration parameters can be upgraded on-line.

• Database memory size and index memory size, DataMemory and IndexMemory re-
spectively.

• How large transactions can be performed is set with config parameter MaxNoOfCon-
currentOperations (bulk load, truncate table and alter table are handled specially
by running several transactions, and thus does not have this limitation)

• Different limits related to tables and indexes, e.g. max number of ordered indexes,
MaxNoOfOrderedIndexes etc.

• Database names, table names and attribute names cannot be as long in ndb tables as in other
table handlers. Attribute names are truncated to 31 characters, and if they are not unique
after truncation gives an error. Database name and table name can be max a total of 122
characters together.

• Max number of meta data objects is limited to 1600 (includes tables, system tables, indexes
and BLOBs)

• Max number of attributes per table limited to 128

• Max row size of 8k (not including BLOBs)

• Max number of attributes in a key is 32

• Not supported features (no error, but not supported/enforced)

• Foreign key construct is ignored (same behavior as MyISAM)

• Savepoint and rollback to savepoint ignored (same behavior as MyISAM)

• Performance and limitations related

• Query cache disabled since it is not invalidated if update occurs on other MySQL server

• Query performance issues due to sequential access to storage engine and relatively more ex-
pensive to do many range scans.

MySQL Cluster

891

http://bugs.mysql.com
http://bugs.mysql.com

• Records in range statistic not supported, giving non-optimal query plans in some cases. Use
constructs USE INDEX or FORCE INDEX to work around non optimal query plans.

• Unique hash index (constructed with USING HASH) cannot be used for accessing table if
NULL is given as part of the key.

• Missing features

• Only support for READ_COMMITTED isolation level (InnoDB supports
READ_COMMITTED, REPEATABLE_READ and SERIALIZABLE)

• No disk durable commit (are replicated, but no guarantee that logs are flushed to disk at
commit)

• Problems related to multiple MySQL servers (not related to MyISAM or InnoDB)

• Alter table not fully blocking when running multiple MySQL servers (no distributed table
lock)

• MySQL Replication does not work right off if updates are done on several MySQL servers.
If a partitioning scheme of the database is done at the application level, and no transactions
takes place across these partitions, it works.

• Cluster only related (not related to MyISAM or InnoDB)

• All machines in the cluster must use the same architecture; that is, all machines hosting
nodes must be either big-endian or little-endian, and you cannot use a mixture of both. For
example, you cannot have a management node running on a PPC which directs a server node
that is running on an x86 machine. This restriction does not apply to machines simply run-
ning mysql clients that may be accessing the cluster.

• No on-line schema changes (no on-line alter table, Ndb on-line create index not accessible)

• No on-line add/drop node

• When using multiple management servers one must give nodes an id explicitly in the con-
nect strings since the automatic allocation of node id's does not work across several manage-
ment servers.

• When using multiple management servers one must take extreme care to have the same con-
figuration in all management servers. No checks for this are performed.

• Max number of storage nodes 48

• Total max number of nodes 63 (MySQL Servers, storage nodes and management servers)

MySQL Cluster

892

Chapter 17. Introduction to MaxDB
MaxDB is an enterprise-level database. MaxDB is the new name of a database management system
formerly called SAP DB.

17.1. History of MaxDB
The history of SAP DB goes back to the early 1980s when it was developed as a commercial
product (Adabas). The database has changed names several times since then. When SAP AG, a
company based in Walldorf, Germany, took over the development of that database system, it was
called SAP DB.

SAP developed that database system to serve as a storage system for all heavy-duty SAP applica-
tions, namely R/3. SAP DB was meant to provide an alternative to third-party database systems such
as Oracle, Microsoft SQL Server, and DB2 by IBM. In October 2000, SAP AG released SAP DB
under the GNU GPL license (see Appendix H, GNU General Public License), thus making it Open
Source software. In October 2003, more than 2,000 customers of SAP AG were using SAP DB as
their main database system, and more than another 2,000 customers were using it as a separate data-
base system besides their main database, as part of the APO/LiveCache solution.

In May 2003, a technology partnership was formed between MySQL AB and SAP AG. That part-
nership entitles MySQL AB to further develop SAP DB, rename it, and sell commercial licenses of
the renamed SAP DB to customers who do not want to be bound to the restrictions imposed on them
when using that database system under the GNU GPL (see Appendix H, GNU General Public Li-
cense). In August 2003, SAP DB was renamed MaxDB by MySQL AB.

17.2. Licensing and Support
MaxDB can be used under the same licenses available for the other products distributed by MySQL
AB. Thus, MaxDB is available under the GNU General Public License, and a commercial license.
For more information on licensing, see http://www.mysql.com/company/legal/licensing/.

MySQL offers MaxDB support to non-SAP customers.

The first rebranded version was MaxDB 7.5.00, which was released in November 2003.

17.3. MaxDB-Related Links
The main page for information about MaxDB is http://www.mysql.com/products/maxdb. Informa-
tion formerly available at http://www.sapdb.org has been moved there.

17.4. Basic Concepts of MaxDB
MaxDB operates as a client/server product. It was developed to meet the demands of installations
processing a high volume of online transactions. Both online backup and expansion of the database
are supported. Microsoft Clustered Server is supported directly for multiple server implementations;
other failover solutions must be scripted manually. Database management tools are provided in both
Windows and browser-based implementations.

17.5. Feature Differences Between MaxDB
and MySQL

The following list provides a short summary of the main differences between MaxDB and MySQL;
it is not complete.

893

http://www.mysql.com/company/legal/licensing/
http://www.mysql.com/products/maxdb
http://www.sapdb.org

• MaxDB runs as a client/server system. MySQL can run as a client/server system or as an embed-
ded system.

• MaxDB might not run on all platforms supported by MySQL. For example, MaxDB does not
run on IBM's OS/2.

• MaxDB uses a proprietary network protocol for client/server communication. MySQL uses
either TCP/IP (with or without SSL encryption), sockets (under Unix-like systems), or named
pipes (under Windows NT-family systems).

• MaxDB supports stored procedures. For MySQL, stored procedures are implemented in version
5.0. MaxDB also supports programming of triggers through an SQL extension, which is sched-
uled for MySQL 5.1. MaxDB contains a debugger for stored procedure languages, can cascade
nested triggers, and supports multiple triggers per action and row.

• MaxDB is distributed with user interfaces that are text-based, graphical, or Web-based. MySQL
is distributed with text-based user interfaces only; graphical user interface (MySQL Control
Center, MySQL Administrator) are shipped separately from the main distributions. Web-based
user interfaces for MySQL are offered by third parties.

• MaxDB supports a number of programming interfaces that also are supported by MySQL.
However, MaxDB does not support RDO, ADO, or .NET, all of which are supported by
MySQL. MaxDB supports embedded SQL only with C/C++.

• MaxDB includes administrative features that MySQL does not have: job scheduling by time,
event, and alert, and sending messages to a database administrator on alert thresholds.

17.6. Interoperability Features Between
MaxDB and MySQL

As part of MaxDB 7.6, the MaxDB Synchronization Manager is released. The Synchronization
Manager supports creation of asynchronous replication scenarios between several MaxDB instances.
However, interoperability features also are planned, so that the Synchronization Manager supports
replication to and from a MySQL server.

In the first release, the Synchronization Manager supports inserting data into MySQL. This means
that initially only replication from MaxDB to MySQL is supported. In the course of 2005, exporting
of data from a MySQL server to the Synchronization Manager will be added, thus adding support
for MySQL to MaxDB replication scenarios.

MaxDB 7.6, with the Synchronization Manager, was released as a beta version in January 2005. The
production release is planned for April 2005.

17.7. Reserved Words in MaxDB
Like MySQL, MaxDB has a number of reserved words that have special meanings. Normally, they
cannot be used as names of identifiers, such as database or table names. The following table lists re-
served words in MaxDB, indicates the context in which those words are used, and indicates whether
or not they have counterparts in MySQL. If such a counterpart exists, the meaning in MySQL might
be identical or differing in some aspects. The main purpose is to list in which respects MaxDB dif-
fers from MySQL; therefore, this list is not complete.

For the list of reserved words in MySQL, see Section 9.6, “Treatment of Reserved Words in
MySQL”.

Reserved in
MaxDB

Context of usage in
MaxDB

MySQL counterpart

@ Can prefix identifier, like
``@table''

Not allowed

Introduction to MaxDB

894

ADDDATE() SQL function ADDDATE(); new in MySQL 4.1.1

ADDTIME() SQL function ADDTIME(); new in MySQL 4.1.1

ALPHA SQL function Nothing comparable

ARRAY Data type Not implemented

ASCII() SQL function ASCII(), but implemented with a different
meaning

AUTOCOMMIT Transactions; ON by default Transactions; OFF by default

BOOLEAN Column types; BOOLEAN
accepts as values only
TRUE, FALSE, and NULL

BOOLEAN was added in MySQL 4.1.0; it is a
synonym for BOOL which is mapped to TINY-
INT(1). It accepts integer values in the same
range as TINYINT as well as NULL. TRUE and
FALSE can be used as aliases for 1 and 0.

CHECK CHECK TABLE CHECK TABLE; similar, but not identical usage

COLUMN Column types COLUMN; noise word

CHAR() SQL function CHAR(); identical syntax; similar, not identical
usage

COMMIT Implicit commits of transac-
tions happen when data
definition statements are is-
sued

Implicit commits of transactions happen when
data definition statements are issued, and also
with a number of other statements

COSH() SQL function Nothing comparable

COT() SQL function COT(); identical syntax and implementation

CREATE SQL, data definition lan-
guage

CREATE

DATABASE SQL function DATABASE(); DATABASE is used in a different
context; for example, CREATE DATABASE

DATE() SQL function CURRENT_DATE

DATEDIFF() SQL function DATEDIFF(); new in MySQL 4.1.1

DAY() SQL function Nothing comparable

DAYOFWEEK() SQL function DAYOFWEEK(); by default, 1 represents
Monday in MaxDB and Sunday in MySQL

DISTINCT SQL functions AVG, MAX,
MIN, SUM

DISTINCT; but used in a different context: SE-
LECT DISTINCT

DROP DROP INDEX, for example DROP INDEX; similar, but not identical usage

EBCDIC() SQL function Nothing comparable

EXPAND() SQL function Nothing comparable

EXPLAIN Optimization EXPLAIN; similar, but not identical usage

FIXED() SQL function Nothing comparable

FLOAT() SQL function Nothing comparable

HEX() SQL function HEX(); similar, but not identical usage

INDEX() SQL function INSTR() or LOCATE(); similar, but not
identical syntaxes and meanings

INDEX USE INDEX, IGNORE
INDEX and similar hints are
used right after SELECT; for
example, SELECT ...
USE INDEX

USE INDEX, IGNORE INDEX and similar
hints are used in the FROM clause of a SELECT
query; for example, in SELECT ... FROM
... USE INDEX

INITCAP() SQL function Nothing comparable

LENGTH() SQL function LENGTH(); identical syntax, but slightly differ-
ent implementation

Introduction to MaxDB

895

LFILL() SQL function Nothing comparable

LIKE Comparisons LIKE; but the extended LIKE MaxDB provides
rather resembles the MySQL REGEX

LIKE wildcards MaxDB supports ``%'', ``_'',
``Control-underline'',
``Control-up arrow'', ``*'',
and ``?'' as wildcards in
LIKE comparisons

MySQL supports ``%'', and ``_'' as wildcards in
LIKE comparisons

LPAD() SQL function LPAD(); slightly different implementation

LTRIM() SQL function LTRIM(); slightly different implementation

MAKEDATE() SQL function MAKEDATE(); new in MySQL 4.1.1

MAKETIME() SQL function MAKETIME(); new in MySQL 4.1.1

MAPCHAR() SQL function Nothing comparable

MICRO-
SECOND()

SQL function MICROSECOND(); new in MySQL 4.1.1

NOROUND() SQL function Nothing comparable

NULL Column types; comparisons NULL; MaxDB supports special NULL values
that are returned by arithmetic operations that
lead to an overflow or a division by zero;
MySQL does not support such special values

PI SQL function PI(); identical syntax and implementation, but
parentheses are mandatory in MySQL

REF Data type Nothing comparable

RFILL() SQL function Nothing comparable

ROWNO Predicate in WHERE clause Similar to LIMIT clause

RPAD() SQL function RPAD(); slightly different implementation

RTRIM() SQL function RTRIM(); slightly different implementation

SEQUENCE CREATE SEQUENCE,
DROP SEQUENCE

AUTO_INCREMENT; similar concept, but differ-
ent implementation

SINH() SQL function Nothing comparable

SOUNDS() SQL function SOUNDEX(); slightly different syntax

STATISTICS UPDATE STATISTICS ANALYZE TABLE; similar concept, but differ-
ent implementation

SUBSTR() SQL function SUBSTRING(); slightly different implementa-
tion

SUBTIME() SQL function SUBTIME(); new in MySQL 4.1.1

SYNONYM Data definition language:
CREATE [PUBLIC]
SYNONYM, RENAME SYN-
ONYM, DROP SYNONYM

Nothing comparable

TANH() SQL function Nothing comparable

TIME() SQL function CURRENT_TIME

TIMEDIFF() SQL function TIMEDIFF(); new in MySQL 4.1.1

TIMESTAMP() SQL function TIMESTAMP(); new in MySQL 4.1.1

TIMESTAMP()
as argument to
DAYOFMONTH()
and DAY-
OFYEAR()

SQL function Nothing comparable

TIMEZONE() SQL function Nothing comparable

Introduction to MaxDB

896

TRANSAC-
TION()

Returns the ID of the current
transaction

Nothing comparable

TRANSLATE() SQL function REPLACE(); identical syntax and implementa-
tion

TRIM() SQL function TRIM(); slightly different implementation

TRUNC() SQL function TRUNCATE(); slightly different syntax and im-
plementation

USE Switches to a new database
instance; terminates the con-
nection to the current data-
base instance; all subsequent
commands are referred to
this database instance

USE; identical syntax, but does not terminate the
connection to the current database

USER SQL function USER(); identical syntax, but slightly different
implementation, and parentheses are mandatory
in MySQL

UTC_DIFF() SQL function UTC_DATE(); provides a means to calculate
the same result as UTC_DIFF()

VALUE() SQL function, alias for CO-
ALESCE()

COALESCE(); identical syntax and implement-
ation

VARIANCE() SQL function VARIANCE(); new in MySQL 4.1.0

WEEKOFYEAR() SQL function WEEKOFYEAR(); new in MySQL 4.1.1

Introduction to MaxDB

897

Chapter 18. Spatial Extensions in
MySQL

MySQL 4.1 introduces spatial extensions to allow the generation, storage, and analysis of geograph-
ic features. Currently, these features are available for MyISAM tables only.

This chapter covers the following topics:

• The basis of these spatial extensions in the OpenGIS geometry model

• Data formats for representing spatial data

• How to use spatial data in MySQL

• Use of indexing for spatial data

• MySQL differences from the OpenGIS specification

18.1. Introduction
MySQL implements spatial extensions following the specification of the Open GIS Consorti-
um (OGC). This is an international consortium of more than 250 companies, agencies, and universit-
ies participating in the development of publicly available conceptual solutions that can be useful
with all kinds of applications that manage spatial data. The OGC maintains a Web site at ht-
tp://www.opengis.org/.

In 1997, the Open GIS Consortium published the OpenGIS (R) Simple Features Specifications For
SQL, a document that proposes several conceptual ways for extending an SQL RDBMS to support
spatial data. This specification is available from the Open GIS Web site at ht-
tp://www.opengis.org/docs/99-049.pdf. It contains additional information relevant to this chapter.

MySQL implements a subset of the SQL with Geometry Types environment proposed by OGC.
This term refers to an SQL environment that has been extended with a set of geometry types. A geo-
metry-valued SQL column is implemented as a column that has a geometry type. The specifications
describe a set of SQL geometry types, as well as functions on those types to create and analyze geo-
metry values.

A geographic feature is anything in the world that has a location. A feature can be:

• An entity. For example, a mountain, a pond, a city.

• A space. For example, a postcode area, the tropics.

• A definable location. For example, a crossroad, as a particular place where two streets intersect.

You can also find documents that use the term geospatial feature to refer to geographic features.

Geometry is another word that denotes a geographic feature. Originally the word geometry meant
measurement of the earth. Another meaning comes from cartography, referring to the geometric fea-
tures that cartographers use to map the world.

This chapter uses all of these terms synonymously: geographic feature, geospatial feature,
feature, or geometry. The term most commonly used here is geometry.

Let's define a geometry as a point or an aggregate of points representing anything in the world that
has a location.

898

http://www.opengis.org/
http://www.opengis.org/

18.2. The OpenGIS Geometry Model
The set of geometry types proposed by OGC's SQL with Geometry Types environment is based on
the OpenGIS Geometry Model. In this model, each geometric object has the following general
properties:

• It is associated with a Spatial Reference System, which describes the coordinate space in which
the object is defined.

• It belongs to some geometry class.

18.2.1. The Geometry Class Hierarchy
The geometry classes define a hierarchy as follows:

• Geometry (non-instantiable)

• Point (instantiable)

• Curve (non-instantiable)

• LineString (instantiable)

• Line

• LinearRing

• Surface (non-instantiable)

• Polygon (instantiable)

• GeometryCollection (instantiable)

• MultiPoint (instantiable)

• MultiCurve (non-instantiable)

• MultiLineString (instantiable)

• MultiSurface (non-instantiable)

• MultiPolygon (instantiable)

It is not possible to create objects in non-instantiable classes. It is possible to create objects in in-
stantiable classes. All classes have properties, and instantiable classes may also have assertions
(rules that define valid class instances).

Geometry is the base class. It's an abstract class. The instantiable subclasses of Geometry are re-
stricted to zero-, one-, and two-dimensional geometric objects that exist in two-dimensional co-
ordinate space. All instantiable geometry classes are defined so that valid instances of a geometry
class are topologically closed (that is, all defined geometries include their boundary).

The base Geometry class has subclasses for Point, Curve, Surface, and GeometryCol-
lection:

• Point represents zero-dimensional objects.

• Curve represents one-dimensional objects, and has subclass LineString, with sub-
subclasses Line and LinearRing.

Spatial Extensions in MySQL

899

• Surface is designed for two-dimensional objects and has subclass Polygon.

• GeometryCollection has specialized zero-, one-, and two-dimensional collection classes
named MultiPoint, MultiLineString, and MultiPolygon for modeling geometries
corresponding to collections of Points, LineStrings, and Polygons, respectively. Mul-
tiCurve and MultiSurface are introduced as abstract superclasses that generalize the col-
lection interfaces to handle Curves and Surfaces.

Geometry, Curve, Surface, MultiCurve, and MultiSurface are defined as non-
instantiable classes. They define a common set of methods for their subclasses and are included for
extensibility.

Point, LineString, Polygon, GeometryCollection, MultiPoint, MultiLineS-
tring, and MultiPolygon are instantiable classes.

18.2.2. Class Geometry

Geometry is the root class of the hierarchy. It is a non-instantiable class but has a number of prop-
erties that are common to all geometry values created from any of the Geometry subclasses. These
properties are described in the following list. (Particular subclasses have their own specific proper-
ties, described later.)

Geometry Properties

A geometry value has the following properties:

• Its type. Each geometry belongs to one of the instantiable classes in the hierarchy.

• Its SRID, or Spatial Reference Identifier. This value identifies the geometry's associated Spatial
Reference System that describes the coordinate space in which the geometry object is defined.

In MySQL, the SRID value is just an integer associated with the geometry value. All calcula-
tions are done assuming Euclidean (planar) geometry.

• Its coordinates in its Spatial Reference System, represented as double-precision (eight-byte)
numbers. All non-empty geometries include at least one pair of (X,Y) coordinates. Empty geo-
metries contain no coordinates.

Coordinates are related to the SRID. For example, in different coordinate systems, the distance
between two objects may differ even when objects have the same coordinates, because the dis-
tance on the planar coordinate system and the distance on the geocentric system (coordinates
on the Earth's surface) are different things.

• Its interior, boundary, and exterior.

Every geometry occupies some position in space. The exterior of a geometry is all space not oc-
cupied by the geometry. The interior is the space occupied by the geometry. The boundary is the
interface between the geometry's interior and exterior.

• Its MBR (Minimum Bounding Rectangle), or Envelope. This is the bounding geometry, formed
by the minimum and maximum (X,Y) coordinates:

((MINX MINY, MAXX MINY, MAXX MAXY, MINX MAXY, MINX MINY))

• Whether the value is simple or non-simple. Geometry values of types (LineString, Multi-
Point, MultiLineString) are either simple or non-simple. Each type determines its own
assertions for being simple or non-simple.

• Whether the value is closed or not closed. Geometry values of types (LineString,
MultiString) are either closed or not closed. Each type determines its own assertions for be-

Spatial Extensions in MySQL

900

ing closed or not closed.

• Whether the value is empty or non-empty A geometry is empty if it does not have any points.
Exterior, interior, and boundary of an empty geometry are not defined (that is, they are represen-
ted by a NULL value). An empty geometry is defined to be always simple and has an area of 0.

• Its dimension. A geometry can have a dimension of #1, 0, 1, or 2:

• #1 for an empty geometry.

• 0 for a geometry with no length and no area.

• 1 for a geometry with non-zero length and zero area.

• 2 for a geometry with non-zero area.

Point objects have a dimension of zero. LineString objects have a dimension of 1. Poly-
gon objects have a dimension of 2. The dimensions of MultiPoint, MultiLineString,
and MultiPolygon objects are the same as the dimensions of the elements they consist of.

18.2.3. Class Point

A Point is a geometry that represents a single location in coordinate space.

Point Examples

• Imagine a large-scale map of the world with many cities. A Point object could represent each
city.

• On a city map, a Point object could represent a bus stop.

Point Properties

• X-coordinate value.

• Y-coordinate value.

• Point is defined as a zero-dimensional geometry.

• The boundary of a Point is the empty set.

18.2.4. Class Curve

A Curve is a one-dimensional geometry, usually represented by a sequence of points. Particular
subclasses of Curve define the type of interpolation between points. Curve is a non-instantiable
class.

Curve Properties

• A Curve has the coordinates of its points.

• A Curve is defined as a one-dimensional geometry.

• A Curve is simple if it does not pass through the same point twice.

• A Curve is closed if its start point is equal to its end point.

Spatial Extensions in MySQL

901

• The boundary of a closed Curve is empty.

• The boundary of a non-closed Curve consists of its two end points.

• A Curve that is simple and closed is a LinearRing.

18.2.5. Class LineString

A LineString is a Curve with linear interpolation between points.

LineString Examples

• On a world map, LineString objects could represent rivers.

• In a city map, LineString objects could represent streets.

LineString Properties

• A LineString has coordinates of segments, defined by each consecutive pair of points.

• A LineString is a Line if it consists of exactly two points.

• A LineString is a LinearRing if it is both closed and simple.

18.2.6. Class Surface

A Surface is a two-dimensional geometry. It is a non-instantiable class. Its only instantiable sub-
class is Polygon.

Surface Properties

• A Surface is defined as a two-dimensional geometry.

• The OpenGIS specification defines a simple Surface as a geometry that consists of a single
``patch'' that is associated with a single exterior boundary and zero or more interior boundaries.

• The boundary of a simple Surface is the set of closed curves corresponding to its exterior and
interior boundaries.

18.2.7. Class Polygon

A Polygon is a planar Surface representing a multisided geometry. It is defined by a single ex-
terior boundary and zero or more interior boundaries, where each interior boundary defines a hole in
the Polygon.

Polygon Examples

• On a region map, Polygon objects could represent forests, districts, an so on.

Polygon Assertions

• The boundary of a Polygon consists of a set of LinearRing objects (that is, LineString
objects that are both simple and closed) that make up its exterior and interior boundaries.

Spatial Extensions in MySQL

902

• A Polygon has no rings that cross. The rings in the boundary of a Polygon may intersect at a
Point, but only as a tangent.

• A Polygon has no lines, spikes, or punctures.

• A Polygon has an interior that is a connected point set.

• A Polygon may have holes. The exterior of a Polygon with holes is not connected. Each
hole defines a connected component of the exterior.

The preceding assertions make a Polygon a simple geometry.

18.2.8. Class GeometryCollection

A GeometryCollection is a geometry that is a collection of one or more geometries of any
class.

All the elements in a GeometryCollection must be in the same Spatial Reference System (that
is, in the same coordinate system). There are no other constraints on the elements of a Geo-
metryCollection, although the subclasses of GeometryCollection described in the fol-
lowing sections may restrict membership. Restrictions may be based on:

• Element type (for example, a MultiPoint may contain only Point elements)

• Dimension

• Constraints on the degree of spatial overlap between elements

18.2.9. Class MultiPoint

A MultiPoint is a geometry collection composed of Point elements. The points are not con-
nected or ordered in any way.

MultiPoint Examples

• On a world map, a MultiPoint could represent a chain of small islands.

• On a city map, a MultiPoint could represent the outlets for a ticket office.

MultiPoint Properties

• A MultiPoint is a zero-dimensional geometry.

• A MultiPoint is simple if no two of its Point values are equal (have identical coordinate
values).

• The boundary of a MultiPoint is the empty set.

18.2.10. Class MultiCurve

A MultiCurve is a geometry collection composed of Curve elements. MultiCurve is a non-
instantiable class.

MultiCurve Properties

Spatial Extensions in MySQL

903

• A MultiCurve is a one-dimensional geometry.

• A MultiCurve is simple if and only if all of its elements are simple; the only intersections
between any two elements occur at points that are on the boundaries of both elements.

• A MultiCurve boundary is obtained by applying the ``mod 2 union rule'' (also known as the
``odd-even rule''): A point is in the boundary of a MultiCurve if it is in the boundaries of an
odd number of MultiCurve elements.

• A MultiCurve is closed if all of its elements are closed.

• The boundary of a closed MultiCurve is always empty.

18.2.11. Class MultiLineString

A MultiLineString is a MultiCurve geometry collection composed of LineString ele-
ments.

MultiLineString Examples

• On a region map, a MultiLineString could represent a river system or a highway system.

18.2.12. Class MultiSurface

A MultiSurface is a geometry collection composed of surface elements. MultiSurface is a
non-instantiable class. Its only instantiable subclass is MultiPolygon.

MultiSurface Assertions

• Two MultiSurface surfaces have no interiors that intersect.

• Two MultiSurface elements have boundaries that intersect at most at a finite number of
points.

18.2.13. Class MultiPolygon

A MultiPolygon is a MultiSurface object composed of Polygon elements.

MultiPolygon Examples

• On a region map, a MultiPolygon could represent a system of lakes.

MultiPolygon Assertions

• A MultiPolygon has no two Polygon elements with interiors that intersect.

• A MultiPolygon has no two Polygon elements that cross (crossing is also forbidden by the
previous assertion), or that touch at an infinite number of points.

• A MultiPolygon may not have cut lines, spikes, or punctures. A MultiPolygon is a regu-
lar, closed point set.

• A MultiPolygon that has more than one Polygon has an interior that is not connected. The
number of connected components of the interior of a MultiPolygon is equal to the number of

Spatial Extensions in MySQL

904

Polygon values in the MultiPolygon.

MultiPolygon Properties

• A MultiPolygon is a two-dimensional geometry.

• A MultiPolygon boundary is a set of closed curves (LineString values) corresponding to
the boundaries of its Polygon elements.

• Each Curve in the boundary of the MultiPolygon is in the boundary of exactly one Poly-
gon element.

• Every Curve in the boundary of an Polygon element is in the boundary of the MultiPoly-
gon.

18.3. Supported Spatial Data Formats
This section describes the standard spatial data formats that are used to represent geometry objects
in queries. They are:

• Well-Known Text (WKT) format

• Well-Known Binary (WKB) format

Internally, MySQL stores geometry values in a format that is not identical to either WKT or WKB
format.

18.3.1. Well-Known Text (WKT) Format
The Well-Known Text (WKT) representation of Geometry is designed to exchange geometry data in
ASCII form.

Examples of WKT representations of geometry objects are:

• A Point:

POINT(15 20)

Note that point coordinates are specified with no separating comma.

• A LineString with four points:

LINESTRING(0 0, 10 10, 20 25, 50 60)

Note that point coordinate pairs are separated by commas.

• A Polygon with one exterior ring and one interior ring:

POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7, 5 5))

• A MultiPoint with three Point values:

MULTIPOINT(0 0, 20 20, 60 60)

Spatial Extensions in MySQL

905

• A MultiLineString with two LineString values:

MULTILINESTRING((10 10, 20 20), (15 15, 30 15))

• A MultiPolygon with two Polygon values:

MULTIPOLYGON(((0 0,10 0,10 10,0 10,0 0)),((5 5,7 5,7 7,5 7, 5 5)))

• A GeometryCollection consisting of two Point values and one LineString:

GEOMETRYCOLLECTION(POINT(10 10), POINT(30 30), LINESTRING(15 15, 20 20))

A Backus-Naur grammar that specifies the formal production rules for writing WKT values can be
found in the OGC specification document referenced near the beginning of this chapter.

18.3.2. Well-Known Binary (WKB) Format
The Well-Known Binary (WKB) representation for geometric values is defined by the OpenGIS
specifications. It is also defined in the ISO ``SQL/MM Part 3: Spatial'' standard.

WKB is used to exchange geometry data as binary streams represented by BLOB values containing
geometric WKB information.

WKB uses one-byte unsigned integers, four-byte unsigned integers, and eight-byte double-precision
numbers (IEEE 754 format). A byte is eight bits.

For example, a WKB value that corresponds to POINT(1 1) consists of this sequence of 21 bytes
(each represented here by two hex digits):

0101000000000000000000F03F000000000000F03F

The sequence may be broken down into these components:

Byte order : 01
WKB type : 01000000
X : 000000000000F03F
Y : 000000000000F03F

Component representation is as follows:

• The byte order may be either 0 or 1 to indicate little-endian or big-endian storage. The little-
endian and big-endian byte orders are also known as Network Data Representation (NDR) and
External Data Representation (XDR), respectively.

• The WKB type is a code that indicates the geometry type. Values from 1 through 7 indicate
Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon,
and GeometryCollection.

• A Point value has X and Y coordinates, each represented as a double-precision value.

WKB values for more complex geometry values are represented by more complex data structures,
as detailed in the OpenGIS specification.

18.4. Creating a Spatially Enabled MySQL

Spatial Extensions in MySQL

906

Database
This section describes the data types you can use for representing spatial data in MySQL, and the
functions available for creating and retrieving spatial values.

18.4.1. MySQL Spatial Data Types
MySQL has data types that correspond to OpenGIS classes. Some of these types hold single geo-
metry values:

• GEOMETRY

• POINT

• LINESTRING

• POLYGON

GEOMETRY can store geometry values of any type. The other single-value types, POINT and LIN-
ESTRING and POLYGON, restrict their values to a particular geometry type.

The other data types hold collections of values:

• MULTIPOINT

• MULTILINESTRING

• MULTIPOLYGON

• GEOMETRYCOLLECTION

GEOMETRYCOLLECTION can store a collection of objects of any type. The other collection types,
MULTIPOINT and MULTILINESTRING and MULTIPOLYGON and GEOMETRYCOLLECTION,
restrict collection members to those having a particular geometry type.

18.4.2. Creating Spatial Values
This section describes how to create spatial values using Well-Known Text and Well-Known Binary
functions that are defined in the OpenGIS standard, and using MySQL-specific functions.

18.4.2.1. Creating Geometry Values Using WKT Functions

MySQL provides a number of functions that take as input parameters a Well-Known Text represent-
ation and, optionally, a spatial reference system identifier (SRID). They return the corresponding
geometry.

GeomFromText() accepts a WKT of any geometry type as its first argument. An implementation
also provides type-specific construction functions for construction of geometry values of each geo-
metry type.

• GeomCollFromText(wkt[,srid]) ,
GeometryCollectionFromText(wkt[,srid])

Constructs a GEOMETRYCOLLECTION value using its WKT representation and SRID.

Spatial Extensions in MySQL

907

• GeomFromText(wkt[,srid]) , GeometryFromText(wkt[,srid])

Constructs a geometry value of any type using its WKT representation and SRID.

• LineFromText(wkt[,srid]) , LineStringFromText(wkt[,srid])

Constructs a LINESTRING value using its WKT representation and SRID.

• MLineFromText(wkt[,srid]) , MultiLineStringFromText(wkt[,srid])

Constructs a MULTILINESTRING value using its WKT representation and SRID.

• MPointFromText(wkt[,srid]) , MultiPointFromText(wkt[,srid])

Constructs a MULTIPOINT value using its WKT representation and SRID.

• MPolyFromText(wkt[,srid]) , MultiPolygonFromText(wkt[,srid])

Constructs a MULTIPOLYGON value using its WKT representation and SRID.

• PointFromText(wkt[,srid])

Constructs a POINT value using its WKT representation and SRID.

• PolyFromText(wkt[,srid]) , PolygonFromText(wkt[,srid])

Constructs a POLYGON value using its WKT representation and SRID.

The OpenGIS specification also describes optional functions for constructing Polygon or Multi-
Polygon values based on the WKT representation of a collection of rings or closed LineString
values. These values may intersect. MySQL does not implement these functions:

• BdMPolyFromText(wkt,srid)

Constructs a MultiPolygon value from a MultiLineString value in WKT format con-
taining an arbitrary collection of closed LineString values.

• BdPolyFromText(wkt,srid)

Constructs a Polygon value from a MultiLineString value in WKT format containing an
arbitrary collection of closed LineString values.

18.4.2.2. Creating Geometry Values Using WKB Functions

MySQL provides a number of functions that take as input parameters a BLOB containing a Well-
Known Binary representation and, optionally, a spatial reference system identifier (SRID). They re-
turn the corresponding geometry.

GeomFromWKT() accepts a WKB of any geometry type as its first argument. An implementation

Spatial Extensions in MySQL

908

also provides type-specific construction functions for construction of geometry values of each geo-
metry type.

• GeomCollFromWKB(wkb[,srid]) ,
GeometryCollectionFromWKB(wkt[,srid])

Constructs a GEOMETRYCOLLECTION value using its WKB representation and SRID.

• GeomFromWKB(wkb[,srid]) , GeometryFromWKB(wkt[,srid])

Constructs a geometry value of any type using its WKB representation and SRID.

• LineFromWKB(wkb[,srid]) , LineStringFromWKB(wkb[,srid])

Constructs a LINESTRING value using its WKB representation and SRID.

• MLineFromWKB(wkb[,srid]) , MultiLineStringFromWKB(wkb[,srid])

Constructs a MULTILINESTRING value using its WKB representation and SRID.

• MPointFromWKB(wkb[,srid]) , MultiPointFromWKB(wkb[,srid])

Constructs a MULTIPOINT value using its WKB representation and SRID.

• MPolyFromWKB(wkb[,srid]) , MultiPolygonFromWKB(wkb[,srid])

Constructs a MULTIPOLYGON value using its WKB representation and SRID.

• PointFromWKB(wkb[,srid])

Constructs a POINT value using its WKB representation and SRID.

• PolyFromWKB(wkb[,srid]) , PolygonFromWKB(wkb[,srid])

Constructs a POLYGON value using its WKB representation and SRID.

The OpenGIS specification also describes optional functions for constructing Polygon or Multi-
Polygon values based on the WKB representation of a collection of rings or closed LineString
values. These values may intersect. MySQL does not implement these functions:

• BdMPolyFromWKB(wkb,srid)

Constructs a MultiPolygon value from a MultiLineString value in WKB format con-
taining an arbitrary collection of closed LineString values.

• BdPolyFromWKB(wkb,srid)

Constructs a Polygon value from a MultiLineString value in WKB format containing an

Spatial Extensions in MySQL

909

arbitrary collection of closed LineString values.

18.4.2.3. Creating Geometry Values Using MySQL-Specific Func-
tions

Note: MySQL does not implement the functions listed in this section.

MySQL provides a set of useful functions for creating geometry WKB representations. The func-
tions described in this section are MySQL extensions to the OpenGIS specifications. The results of
these functions are BLOB values containing WKB representations of geometry values with no SRID.
The results of these functions can be substituted as the first argument for any function in the Geom-
FromWKB() function family.

• GeometryCollection(g1,g2,...)

Constructs a WKB GeometryCollection. If any argument is not a well-formed WKB rep-
resentation of a geometry, the return value is NULL.

• LineString(pt1,pt2,...)

Constructs a WKB LineString value from a number of WKB Point arguments. If any ar-
gument is not a WKB Point, the return value is NULL. If the number of Point arguments is
less than two, the return value is NULL.

• MultiLineString(ls1,ls2,...)

Constructs a WKB MultiLineString value using WKB LineString arguments. If any
argument is not a WKB LineString, the return value is NULL.

• MultiPoint(pt1,pt2,...)

Constructs a WKB MultiPoint value using WKB Point arguments. If any argument is not
a WKB Point, the return value is NULL.

• MultiPolygon(poly1,poly2,...)

Constructs a WKB MultiPolygon value from a set of WKB Polygon arguments. If any ar-
gument is not a WKB Polygon, the return value is NULL.

• Point(x,y)

Constructs a WKB Point using its coordinates.

• Polygon(ls1,ls2,...)

Constructs a WKB Polygon value from a number of WKB LineString arguments. If any
argument does not represent the WKB of a LinearRing (that is, not a closed and simple
LineString) the return value is NULL.

Spatial Extensions in MySQL

910

18.4.3. Creating Spatial Columns
MySQL provides a standard way of creating spatial columns for geometry types, for example, with
CREATE TABLE or ALTER TABLE. Currently, spatial columns are supported only for MyISAM
tables.

• Use the CREATE TABLE statement to create a table with a spatial column:

mysql> CREATE TABLE geom (g GEOMETRY);
Query OK, 0 rows affected (0.02 sec)

• Use the ALTER TABLE statement to add or drop a spatial column to or from an existing table:

mysql> ALTER TABLE geom ADD pt POINT;
Query OK, 0 rows affected (0.00 sec)
Records: 0 Duplicates: 0 Warnings: 0
mysql> ALTER TABLE geom DROP pt;
Query OK, 0 rows affected (0.00 sec)
Records: 0 Duplicates: 0 Warnings: 0

18.4.4. Populating Spatial Columns
After you have created spatial columns, you can populate them with spatial data.

Values should be stored in internal geometry format, but you can convert them to that format from
either Well-Known Text (WKT) or Well-Known Binary (WKB) format. The following examples
demonstrate how to insert geometry values into a table by converting WKT values into internal geo-
metry format.

You can perform the conversion directly in the INSERT statement:

INSERT INTO geom VALUES (GeomFromText('POINT(1 1)'));
SET @g = 'POINT(1 1)';
INSERT INTO geom VALUES (GeomFromText(@g));

Or you can perform the conversion prior to the INSERT:

SET @g = GeomFromText('POINT(1 1)');
INSERT INTO geom VALUES (@g);

The following examples insert more complex geometries into the table:

SET @g = 'LINESTRING(0 0,1 1,2 2)';
INSERT INTO geom VALUES (GeomFromText(@g));
SET @g = 'POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7, 5 5))';
INSERT INTO geom VALUES (GeomFromText(@g));
SET @g =
'GEOMETRYCOLLECTION(POINT(1 1),LINESTRING(0 0,1 1,2 2,3 3,4 4))';
INSERT INTO geom VALUES (GeomFromText(@g));

The preceding examples all use GeomFromText() to create geometry values. You can also use
type-specific functions:

SET @g = 'POINT(1 1)';
INSERT INTO geom VALUES (PointFromText(@g));
SET @g = 'LINESTRING(0 0,1 1,2 2)';
INSERT INTO geom VALUES (LineStringFromText(@g));
SET @g = 'POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7, 5 5))';
INSERT INTO geom VALUES (PolygonFromText(@g));

Spatial Extensions in MySQL

911

SET @g =
'GEOMETRYCOLLECTION(POINT(1 1),LINESTRING(0 0,1 1,2 2,3 3,4 4))';
INSERT INTO geom VALUES (GeomCollFromText(@g));

Note that if a client application program wants to use WKB representations of geometry values, it is
responsible for sending correctly formed WKB in queries to the server. However, there are several
ways of satisfying this requirement. For example:

• Inserting a POINT(1 1) value with hex literal syntax:

mysql> INSERT INTO geom VALUES
-> (GeomFromWKB(0x0101000000000000000000F03F000000000000F03F));

• An ODBC application can send a WKB representation, binding it to a placeholder using an argu-
ment of BLOB type:

INSERT INTO geom VALUES (GeomFromWKB(?))

Other programming interfaces may support a similar placeholder mechanism.

• In a C program, you can escape a binary value using mysql_real_escape_string() and
include the result in a query string that is sent to the server. See Section 22.2.3.47,
“mysql_real_escape_string()”.

18.4.5. Fetching Spatial Data
Geometry values stored in a table can be fetched in internal format. You can also convert them into
WKT or WKB format.

18.4.5.1. Fetching Spatial Data in Internal Format

Fetching geometry values using internal format can be useful in table-to-table transfers:

CREATE TABLE geom2 (g GEOMETRY) SELECT g FROM geom;

18.4.5.2. Fetching Spatial Data in WKT Format

The AsText() function converts a geometry from internal format into a WKT string.

mysql> SELECT AsText(g) FROM geom;
+-------------------------+
| AsText(p1) |
+-------------------------+
| POINT(1 1) |
| LINESTRING(0 0,1 1,2 2) |
+-------------------------+

18.4.5.3. Fetching Spatial Data in WKB Format

The AsBinary() function converts a geometry from internal format into a BLOB containing the
WKB value.

SELECT AsBinary(g) FROM geom;

18.5. Analyzing Spatial Information

Spatial Extensions in MySQL

912

After populating spatial columns with values, you are ready to query and analyze them. MySQL
provides a set of functions to perform various operations on spatial data. These functions can be
grouped into four major categories according to the type of operation they perform:

• Functions that convert geometries between various formats

• Functions that provide access to qualitative or quantitative properties of a geometry

• Functions that describe relations between two geometries

• Functions that create new geometries from existing ones

Spatial analysis functions can be used in many contexts, such as:

• Any interactive SQL program, such as mysql or MySQLCC

• Application programs written in any language that supports a MySQL client API

18.5.1. Geometry Format Conversion Functions
MySQL supports the following functions for converting geometry values between internal format
and either WKT or WKB format:

• AsBinary(g)

Converts a value in internal geometry format to its WKB representation and returns the binary
result.

• AsText(g)

Converts a value in internal geometry format to its WKT representation and returns the string
result.

mysql> SET @g = 'LineString(1 1,2 2,3 3)';
mysql> SELECT AsText(GeomFromText(@g));
+--------------------------+
| AsText(GeomFromText(@G)) |
+--------------------------+
| LINESTRING(1 1,2 2,3 3) |
+--------------------------+

• GeomFromText(wkt[,srid])

Converts a string value from its WKT representation into internal geometry format and returns
the result. A number of type-specific functions are also supported, such as PointFrom-
Text() and LineFromText(); see Section 18.4.2.1, “Creating Geometry Values Using
WKT Functions”.

• GeomFromWKB(wkb[,srid])

Converts a binary value from its WKB representation into internal geometry format and returns
the result. A number of type-specific functions are also supported, such as PointFromWKB()
and LineFromWKB(); see Section 18.4.2.2, “Creating Geometry Values Using WKB Func-

Spatial Extensions in MySQL

913

tions”.

18.5.2. Geometry Functions
Each function that belongs to this group takes a geometry value as its argument and returns some
quantitative or qualitative property of the geometry. Some functions restrict their argument type.
Such functions return NULL if the argument is of an incorrect geometry type. For example, Area()
returns NULL if the object type is neither Polygon nor MultiPolygon.

18.5.2.1. General Geometry Functions

The functions listed in this section do not restrict their argument and accept a geometry value of any
type.

• Dimension(g)

Returns the inherent dimension of the geometry value g. The result can be #1, 0, 1, or 2. (The
meaning of these values is given in Section 18.2.2, “Class Geometry”.)

mysql> SELECT Dimension(GeomFromText('LineString(1 1,2 2)'));
+--+
| Dimension(GeomFromText('LineString(1 1,2 2)')) |
+--+
| 1 |
+--+

• Envelope(g)

Returns the Minimum Bounding Rectangle (MBR) for the geometry value g. The result is re-
turned as a Polygon value.

mysql> SELECT AsText(Envelope(GeomFromText('LineString(1 1,2 2)')));
+---+
| AsText(Envelope(GeomFromText('LineString(1 1,2 2)'))) |
+---+
| POLYGON((1 1,2 1,2 2,1 2,1 1)) |
+---+

The polygon is defined by the corner points of the bounding box:

POLYGON((MINX MINY, MAXX MINY, MAXX MAXY, MINX MAXY, MINX MINY))

• GeometryType(g)

Returns as a string the name of the geometry type of which the geometry instance g is a mem-
ber. The name corresponds to one of the instantiable Geometry subclasses.

mysql> SELECT GeometryType(GeomFromText('POINT(1 1)'));
+--+

Spatial Extensions in MySQL

914

| GeometryType(GeomFromText('POINT(1 1)')) |
+--+
| POINT |
+--+

• SRID(g)

Returns an integer indicating the Spatial Reference System ID for the geometry value g.

In MySQL, the SRID value is just an integer associated with the geometry value. All calcula-
tions are done assuming Euclidean (planar) geometry.

mysql> SELECT SRID(GeomFromText('LineString(1 1,2 2)',101));
+---+
| SRID(GeomFromText('LineString(1 1,2 2)',101)) |
+---+
| 101 |
+---+

The OpenGIS specification also defines the following functions, which MySQL does not imple-
ment:

• Boundary(g)

Returns a geometry that is the closure of the combinatorial boundary of the geometry value g.

• IsEmpty(g)

Returns 1 if the geometry value g is the empty geometry, 0 if it is not empty, and #1 if the argu-
ment is NULL. If the geometry is empty, it represents the empty point set.

• IsSimple(g)

Currently, this function is a placeholder and should not be used. If implemented, its behavior
will be as described in the next paragraph.

Returns 1 if the geometry value g has no anomalous geometric points, such as self-intersection
or self-tangency. IsSimple() returns 0 if the argument is not simple, and #1 if it is NULL.

The description of each instantiable geometric class given earlier in the chapter includes the spe-
cific conditions that cause an instance of that class to be classified as not simple.

18.5.2.2. Point Functions

A Point consists of X and Y coordinates, which may be obtained using the following functions:

• X(p)

Returns the X-coordinate value for the point p as a double-precision number.

Spatial Extensions in MySQL

915

mysql> SELECT X(GeomFromText('Point(56.7 53.34)'));
+--------------------------------------+
| X(GeomFromText('Point(56.7 53.34)')) |
+--------------------------------------+
| 56.7 |
+--------------------------------------+

• Y(p)

Returns the Y-coordinate value for the point p as a double-precision number.

mysql> SELECT Y(GeomFromText('Point(56.7 53.34)'));
+--------------------------------------+
| Y(GeomFromText('Point(56.7 53.34)')) |
+--------------------------------------+
| 53.34 |
+--------------------------------------+

18.5.2.3. LineString Functions

A LineString consists of Point values. You can extract particular points of a LineString,
count the number of points that it contains, or obtain its length.

• EndPoint(ls)

Returns the Point that is the end point of the LineString value ls.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT AsText(EndPoint(GeomFromText(@ls)));
+-------------------------------------+
| AsText(EndPoint(GeomFromText(@ls))) |
+-------------------------------------+
| POINT(3 3) |
+-------------------------------------+

• GLength(ls)

Returns as a double-precision number the length of the LineString value ls in its associated
spatial reference.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT GLength(GeomFromText(@ls));
+----------------------------+
| GLength(GeomFromText(@ls)) |
+----------------------------+
| 2.8284271247462 |
+----------------------------+

Spatial Extensions in MySQL

916

• IsClosed(ls)

Returns 1 if the LineString value ls is closed (that is, its StartPoint() and End-
Point() values are the same). Returns 0 if ls is not closed, and #1 if it is NULL.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT IsClosed(GeomFromText(@ls));
+-----------------------------+
| IsClosed(GeomFromText(@ls)) |
+-----------------------------+
| 0 |
+-----------------------------+

• NumPoints(ls)

Returns the number of points in the LineString value ls.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT NumPoints(GeomFromText(@ls));
+------------------------------+
| NumPoints(GeomFromText(@ls)) |
+------------------------------+
| 3 |
+------------------------------+

• PointN(ls,n)

Returns the n-th point in the Linestring value ls. Point numbers begin at 1.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT AsText(PointN(GeomFromText(@ls),2));
+-------------------------------------+
| AsText(PointN(GeomFromText(@ls),2)) |
+-------------------------------------+
| POINT(2 2) |
+-------------------------------------+

• StartPoint(ls)

Returns the Point that is the start point of the LineString value ls.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT AsText(StartPoint(GeomFromText(@ls)));
+---------------------------------------+
| AsText(StartPoint(GeomFromText(@ls))) |
+---------------------------------------+
| POINT(1 1) |
+---------------------------------------+

Spatial Extensions in MySQL

917

The OpenGIS specification also defines the following function, which MySQL does not implement:

• IsRing(ls)

Returns 1 if the LineString value ls is closed (that is, its StartPoint() and End-
Point() values are the same) and is simple (does not pass through the same point more than
once). Returns 0 if ls is not a ring, and #1 if it is NULL.

18.5.2.4. MultiLineString Functions

• GLength(mls)

Returns as a double-precision number the length of the MultiLineString value mls. The
length of mls is equal to the sum of the lengths of its elements.

mysql> SET @mls = 'MultiLineString((1 1,2 2,3 3),(4 4,5 5))';
mysql> SELECT GLength(GeomFromText(@mls));
+-----------------------------+
| GLength(GeomFromText(@mls)) |
+-----------------------------+
| 4.2426406871193 |
+-----------------------------+

• IsClosed(mls)

Returns 1 if the MultiLineString value mls is closed (that is, the StartPoint() and
EndPoint() values are the same for each LineString in mls). Returns 0 if mls is not
closed, and #1 if it is NULL.

mysql> SET @mls = 'MultiLineString((1 1,2 2,3 3),(4 4,5 5))';
mysql> SELECT IsClosed(GeomFromText(@mls));
+------------------------------+
| IsClosed(GeomFromText(@mls)) |
+------------------------------+
| 0 |
+------------------------------+

18.5.2.5. Polygon Functions

• Area(poly)

Returns as a double-precision number the area of the Polygon value poly, as measured in its
spatial reference system.

mysql> SET @poly = 'Polygon((0 0,0 3,3 0,0 0),(1 1,1 2,2 1,1 1))';
mysql> SELECT Area(GeomFromText(@poly));
+---------------------------+
| Area(GeomFromText(@poly)) |
+---------------------------+
| 4 |
+---------------------------+

Spatial Extensions in MySQL

918

• ExteriorRing(poly)

Returns the exterior ring of the Polygon value poly as a LineString.

mysql> SET @poly =
-> 'Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))';

mysql> SELECT AsText(ExteriorRing(GeomFromText(@poly)));
+---+
| AsText(ExteriorRing(GeomFromText(@poly))) |
+---+
| LINESTRING(0 0,0 3,3 3,3 0,0 0) |
+---+

• InteriorRingN(poly,n)

Returns the n-th interior ring for the Polygon value poly as a LineString. Ring numbers
begin at 1.

mysql> SET @poly =
-> 'Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))';

mysql> SELECT AsText(InteriorRingN(GeomFromText(@poly),1));
+--+
| AsText(InteriorRingN(GeomFromText(@poly),1)) |
+--+
| LINESTRING(1 1,1 2,2 2,2 1,1 1) |
+--+

• NumInteriorRings(poly)

Returns the number of interior rings in the Polygon value poly.

mysql> SET @poly =
-> 'Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))';

mysql> SELECT NumInteriorRings(GeomFromText(@poly));
+---------------------------------------+
| NumInteriorRings(GeomFromText(@poly)) |
+---------------------------------------+
| 1 |
+---------------------------------------+

18.5.2.6. MultiPolygon Functions

• Area(mpoly)

Returns as a double-precision number the area of the MultiPolygon value mpoly, as meas-
ured in its spatial reference system.

mysql> SET @mpoly =

Spatial Extensions in MySQL

919

-> 'MultiPolygon(((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1)))';
mysql> SELECT Area(GeomFromText(@mpoly));
+----------------------------+
| Area(GeomFromText(@mpoly)) |
+----------------------------+
| 8 |
+----------------------------+

The OpenGIS specification also defines the following functions, which MySQL does not imple-
ment:

• Centroid(mpoly)

Returns the mathematical centroid for the MultiPolygon value mpoly as a Point. The res-
ult is not guaranteed to be on the MultiPolygon.

• PointOnSurface(mpoly)

Returns a Point value that is guaranteed to be on the MultiPolygon value mpoly.

18.5.2.7. GeometryCollection Functions

• GeometryN(gc,n)

Returns the n-th geometry in the GeometryCollection value gc. Geometry numbers begin
at 1.

mysql> SET @gc = 'GeometryCollection(Point(1 1),LineString(2 2, 3 3))';
mysql> SELECT AsText(GeometryN(GeomFromText(@gc),1));
+--+
| AsText(GeometryN(GeomFromText(@gc),1)) |
+--+
| POINT(1 1) |
+--+

• NumGeometries(gc)

Returns the number of geometries in the GeometryCollection value gc.

mysql> SET @gc = 'GeometryCollection(Point(1 1),LineString(2 2, 3 3))';
mysql> SELECT NumGeometries(GeomFromText(@gc));
+----------------------------------+
| NumGeometries(GeomFromText(@gc)) |
+----------------------------------+
| 2 |
+----------------------------------+

18.5.3. Functions That Create New Geometries from
Existing Ones

Spatial Extensions in MySQL

920

18.5.3.1. Geometry Functions That Produce New Geometries

In the section Section 18.5.2, “Geometry Functions”, we've discussed some functions that can
construct new geometries from the existing ones:

• Envelope(g)

• StartPoint(ls)

• EndPoint(ls)

• PointN(ls,n)

• ExteriorRing(poly)

• InteriorRingN(poly,n)

• GeometryN(gc,n)

18.5.3.2. Spatial Operators

OpenGIS proposes a number of other functions that can produce geometries. They are designed to
implement spatial operators.

These functions are not implemented in MySQL. They may appear in future releases.

• Buffer(g,d)

Returns a geometry that represents all points whose distance from the geometry value g is less
than or equal to a distance of d.

• ConvexHull(g)

Returns a geometry that represents the convex hull of the geometry value g.

• Difference(g1,g2)

Returns a geometry that represents the point set difference of the geometry value g1 with g2.

• Intersection(g1,g2)

Returns a geometry that represents the point set intersection of the geometry values g1 with g2.

• SymDifference(g1,g2)

Returns a geometry that represents the point set symmetric difference of the geometry value g1
with g2.

• Union(g1,g2)

Returns a geometry that represents the point set union of the geometry values g1 and g2.

18.5.4. Functions for Testing Spatial Relations

Spatial Extensions in MySQL

921

Between Geometric Objects
The functions described in these sections take two geometries as input parameters and return a qual-
itative or quantitative relation between them.

18.5.5. Relations on Geometry Minimal Bounding Rect-
angles (MBRs)

MySQL provides some functions that can test relations between minimal bounding rectangles of
two geometries g1 and g2. They include:

• MBRContains(g1,g2)

Returns 1 or 0 to indicate whether or not the Minimum Bounding Rectangle of g1 contains the
Minimum Bounding Rectangle of g2.

mysql> SET @g1 = GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))');
mysql> SET @g2 = GeomFromText('Point(1 1)');
mysql> SELECT MBRContains(@g1,@g2), MBRContains(@g2,@g1);
----------------------+----------------------+
| MBRContains(@g1,@g2) | MBRContains(@g2,@g1) |
+----------------------+----------------------+
| 1 | 0 |
+----------------------+----------------------+

• MBRDisjoint(g1,g2)

Returns 1 or 0 to indicate whether or not the Minimum Bounding Rectangles of the two geomet-
ries g1 and g2 are disjoint (do not intersect).

• MBREqual(g1,g2)

Returns 1 or 0 to indicate whether or not the Minimum Bounding Rectangles of the two geomet-
ries g1 and g2 are the same.

• MBRIntersects(g1,g2)

Returns 1 or 0 to indicate whether or not the Minimum Bounding Rectangles of the two geomet-
ries g1 and g2 intersect.

• MBROverlaps(g1,g2)

Returns 1 or 0 to indicate whether or not the Minimum Bounding Rectangles of the two geomet-
ries g1 and g2 overlap.

• MBRTouches(g1,g2)

Returns 1 or 0 to indicate whether or not the Minimum Bounding Rectangles of the two geomet-
ries g1 and g2 touch.

Spatial Extensions in MySQL

922

• MBRWithin(g1,g2)

Returns 1 or 0 to indicate whether or not the Minimum Bounding Rectangle of g1 is within the
Minimum Bounding Rectangle of g2.

mysql> SET @g1 = GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))');
mysql> SET @g2 = GeomFromText('Polygon((0 0,0 5,5 5,5 0,0 0))');
mysql> SELECT MBRWithin(@g1,@g2), MBRWithin(@g2,@g1);
+--------------------+--------------------+
| MBRWithin(@g1,@g2) | MBRWithin(@g2,@g1) |
+--------------------+--------------------+
| 1 | 0 |
+--------------------+--------------------+

18.5.6. Functions That Test Spatial Relationships
Between Geometries

The OpenGIS specification defines the following functions. Currently, MySQL does not implement
them according to the specification. Those that are implemented return the same result as the corres-
ponding MBR-based functions. This includes functions in the following list other than Dis-
tance() and Related().

These functions may be implemented in future releases with full support for spatial analysis, not just
MBR-based support.

The functions operate on two geometry values g1 and g2.

• Contains(g1,g2)

Returns 1 or 0 to indicate whether or not g1 completely contains g2.

• Crosses(g1,g2)

Returns 1 if g1 spatially crosses g2. Returns NULL if g1 is a Polygon or a MultiPolygon,
or if g2 is a Point or a MultiPoint. Otherwise, returns 0.

The term spatially crosses denotes a spatial relation between two given geometries that has the
following properties:

• The two geometries intersect

• Their intersection results in a geometry that has a dimension that is one less than the maxim-
um dimension of the two given geometries

• Their intersection is not equal to either of the two given geometries

• Disjoint(g1,g2)

Returns 1 or 0 to indicate whether or not g1 is spatially disjoint from (does not intersect) g2.

Spatial Extensions in MySQL

923

• Distance(g1,g2)

Returns as a double-precision number the shortest distance between any two points in the two
geometries.

• Equals(g1,g2)

Returns 1 or 0 to indicate whether or not g1 is spatially equal to g2.

• Intersects(g1,g2)

Returns 1 or 0 to indicate whether or not g1 spatially intersects g2.

• Overlaps(g1,g2)

Returns 1 or 0 to indicate whether or not g1 spatially overlaps g2. The term spatially overlaps
is used if two geometries intersect and their intersection results in a geometry of the same di-
mension but not equal to either of the given geometries.

• Related(g1,g2,pattern_matrix)

Returns 1 or 0 to indicate whether or not the spatial relationship specified by pat-
tern_matrix exists between g1 and g2. Returns #1 if the arguments are NULL. The pattern
matrix is a string. Its specification will be noted here if this function is implemented.

• Touches(g1,g2)

Returns 1 or 0 to indicate whether or not g1 spatially touches g2. Two geometries spatially
touch if the interiors of the geometries do not intersect, but the boundary of one of the geomet-
ries intersects either the boundary or the interior of the other.

• Within(g1,g2)

Returns 1 or 0 to indicate whether or not g1 is spatially within g2.

18.6. Optimizing Spatial Analysis
Search operations in non-spatial databases can be optimized using indexes. This is true for spatial
databases as well. With the help of a great variety of multi-dimensional indexing methods that have
previously been designed, it is possible to optimize spatial searches. The most typical of these are:

• Point queries that search for all objects that contain a given point

• Region queries that search for all objects that overlap a given region

MySQL uses R-Trees with quadratic splitting to index spatial columns. A spatial index is built us-
ing the MBR of a geometry. For most geometries, the MBR is a minimum rectangle that surrounds

Spatial Extensions in MySQL

924

the geometries. For a horizontal or a vertical linestring, the MBR is a rectangle degenerated into the
linestring. For a point, the MBR is a rectangle degenerated into the point.

18.6.1. Creating Spatial Indexes
MySQL can create spatial indexes using syntax similar to that for creating regular indexes, but ex-
tended with the SPATIAL keyword. Spatial columns that are indexed currently must be declared
NOT NULL. The following examples demonstrate how to create spatial indexes.

• With CREATE TABLE:

mysql> CREATE TABLE geom (g GEOMETRY NOT NULL, SPATIAL INDEX(g));

• With ALTER TABLE:

mysql> ALTER TABLE geom ADD SPATIAL INDEX(g);

• With CREATE INDEX:

mysql> CREATE SPATIAL INDEX sp_index ON geom (g);

To drop spatial indexes, use ALTER TABLE or DROP INDEX:

• With ALTER TABLE:

mysql> ALTER TABLE geom DROP INDEX g;

• With DROP INDEX:

mysql> DROP INDEX sp_index ON geom;

Example: Suppose that a table geom contains more than 32,000 geometries, which are stored in the
column g of type GEOMETRY. The table also has an AUTO_INCREMENT column fid for storing
object ID values.

mysql> DESCRIBE geom;
+-------+----------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------+----------+------+-----+---------+----------------+
| fid | int(11) | | PRI | NULL | auto_increment |
| g | geometry | | | | |
+-------+----------+------+-----+---------+----------------+
2 rows in set (0.00 sec)
mysql> SELECT COUNT(*) FROM geom;
+----------+
| count(*) |
+----------+
| 32376 |
+----------+
1 row in set (0.00 sec)

To add a spatial index on the column g, use this statement:

mysql> ALTER TABLE geom ADD SPATIAL INDEX(g);
Query OK, 32376 rows affected (4.05 sec)
Records: 32376 Duplicates: 0 Warnings: 0

Spatial Extensions in MySQL

925

18.6.2. Using a Spatial Index
The optimizer investigates whether available spatial indexes can be involved in the search for quer-
ies that use a function such as MBRContains() or MBRWithin() in the WHERE clause. For ex-
ample, let's say we want to find all objects that are in the given rectangle:

mysql> SELECT fid,AsText(g) FROM geom WHERE
mysql> MBRContains(GeomFromText('Polygon((30000 15000,31000 15000,31000 16000,30000 16000,30000 15000))'),g);
+-----+---+
| fid | AsText(g) |
+-----+---+
21	LINESTRING(30350.4 15828.8,30350.6 15845,30333.8 15845,30333.8 15828.8)
22	LINESTRING(30350.6 15871.4,30350.6 15887.8,30334 15887.8,30334 15871.4)
23	LINESTRING(30350.6 15914.2,30350.6 15930.4,30334 15930.4,30334 15914.2)
24	LINESTRING(30290.2 15823,30290.2 15839.4,30273.4 15839.4,30273.4 15823)
25	LINESTRING(30291.4 15866.2,30291.6 15882.4,30274.8 15882.4,30274.8 15866.2)
26	LINESTRING(30291.6 15918.2,30291.6 15934.4,30275 15934.4,30275 15918.2)
249	LINESTRING(30337.8 15938.6,30337.8 15946.8,30320.4 15946.8,30320.4 15938.4)
1	LINESTRING(30250.4 15129.2,30248.8 15138.4,30238.2 15136.4,30240 15127.2)
2	LINESTRING(30220.2 15122.8,30217.2 15137.8,30207.6 15136,30210.4 15121)
3	LINESTRING(30179 15114.4,30176.6 15129.4,30167 15128,30169 15113)
4	LINESTRING(30155.2 15121.4,30140.4 15118.6,30142 15109,30157 15111.6)
5	LINESTRING(30192.4 15085,30177.6 15082.2,30179.2 15072.4,30194.2 15075.2)
6	LINESTRING(30244 15087,30229 15086.2,30229.4 15076.4,30244.6 15077)
7	LINESTRING(30200.6 15059.4,30185.6 15058.6,30186 15048.8,30201.2 15049.4)
10	LINESTRING(30179.6 15017.8,30181 15002.8,30190.8 15003.6,30189.6 15019)
11	LINESTRING(30154.2 15000.4,30168.6 15004.8,30166 15014.2,30151.2 15009.8)
13	LINESTRING(30105 15065.8,30108.4 15050.8,30118 15053,30114.6 15067.8)
154	LINESTRING(30276.2 15143.8,30261.4 15141,30263 15131.4,30278 15134)
155	LINESTRING(30269.8 15084,30269.4 15093.4,30258.6 15093,30259 15083.4)
157	LINESTRING(30128.2 15011,30113.2 15010.2,30113.6 15000.4,30128.8 15001)
+-----+---+
20 rows in set (0.00 sec)

Lets use EXPLAIN to check the way this query is executed (the id column has been removed so the
output better fits the page):

mysql> EXPLAIN SELECT fid,AsText(g) FROM geom WHERE
mysql> MBRContains(GeomFromText('Polygon((30000 15000,31000 15000,31000 16000,30000 16000,30000 15000))'),g);
+-------------+-------+-------+---------------+------+---------+------+------+-------------+
| select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+-------------+-------+-------+---------------+------+---------+------+------+-------------+
| SIMPLE | geom | range | g | g | 32 | NULL | 50 | Using where |
+-------------+-------+-------+---------------+------+---------+------+------+-------------+
1 row in set (0.00 sec)

Lets check what would happen without a spatial index:

mysql> EXPLAIN SELECT fid,AsText(g) FROM g IGNORE INDEX (g) WHERE
mysql> MBRContains(GeomFromText('Polygon((30000 15000,31000 15000,31000 16000,30000 16000,30000 15000))'),g);
+-------------+-------+------+---------------+------+---------+------+-------+-------------+
| select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+-------------+-------+------+---------------+------+---------+------+-------+-------------+
| SIMPLE | geom | ALL | NULL | NULL | NULL | NULL | 32376 | Using where |
+-------------+-------+------+---------------+------+---------+------+-------+-------------+
1 row in set (0.00 sec)

Let's execute the SELECT statement, ignoring the spatial key we have:

mysql> SELECT fid,AsText(g) FROM geom IGNORE INDEX (g) WHERE
mysql> MBRContains(GeomFromText('Polygon((30000 15000,31000 15000,31000 16000,30000 16000,30000 15000))'),g);
+-----+---+
| fid | AsText(g) |
+-----+---+

Spatial Extensions in MySQL

926

1	LINESTRING(30250.4 15129.2,30248.8 15138.4,30238.2 15136.4,30240 15127.2)
2	LINESTRING(30220.2 15122.8,30217.2 15137.8,30207.6 15136,30210.4 15121)
3	LINESTRING(30179 15114.4,30176.6 15129.4,30167 15128,30169 15113)
4	LINESTRING(30155.2 15121.4,30140.4 15118.6,30142 15109,30157 15111.6)
5	LINESTRING(30192.4 15085,30177.6 15082.2,30179.2 15072.4,30194.2 15075.2)
6	LINESTRING(30244 15087,30229 15086.2,30229.4 15076.4,30244.6 15077)
7	LINESTRING(30200.6 15059.4,30185.6 15058.6,30186 15048.8,30201.2 15049.4)
10	LINESTRING(30179.6 15017.8,30181 15002.8,30190.8 15003.6,30189.6 15019)
11	LINESTRING(30154.2 15000.4,30168.6 15004.8,30166 15014.2,30151.2 15009.8)
13	LINESTRING(30105 15065.8,30108.4 15050.8,30118 15053,30114.6 15067.8)
21	LINESTRING(30350.4 15828.8,30350.6 15845,30333.8 15845,30333.8 15828.8)
22	LINESTRING(30350.6 15871.4,30350.6 15887.8,30334 15887.8,30334 15871.4)
23	LINESTRING(30350.6 15914.2,30350.6 15930.4,30334 15930.4,30334 15914.2)
24	LINESTRING(30290.2 15823,30290.2 15839.4,30273.4 15839.4,30273.4 15823)
25	LINESTRING(30291.4 15866.2,30291.6 15882.4,30274.8 15882.4,30274.8 15866.2)
26	LINESTRING(30291.6 15918.2,30291.6 15934.4,30275 15934.4,30275 15918.2)
154	LINESTRING(30276.2 15143.8,30261.4 15141,30263 15131.4,30278 15134)
155	LINESTRING(30269.8 15084,30269.4 15093.4,30258.6 15093,30259 15083.4)
157	LINESTRING(30128.2 15011,30113.2 15010.2,30113.6 15000.4,30128.8 15001)
249	LINESTRING(30337.8 15938.6,30337.8 15946.8,30320.4 15946.8,30320.4 15938.4)
+-----+---+
20 rows in set (0.46 sec)

When the index is not used, the execution time for this query rises from 0.00 seconds to 0.46
seconds.

In future releases, spatial indexes may also be used for optimizing other functions. See Sec-
tion 18.5.4, “Functions for Testing Spatial Relations Between Geometric Objects”.

18.7. MySQL Conformance and Compatibility
18.7.1. GIS Features That Are Not Yet Implemented

• Additional Metadata Views

OpenGIS specifications propose several additional metadata views. For example, a system view
named GEOMETRY_COLUMNS contains a description of geometry columns, one row for each
geometry column in the database.

• The OpenGIS function Length() on LineString and MultiLineString currently
should be called in MySQL as GLength()

The problem is that there is an existing SQL function Length() which calculates the length of
string values, and sometimes it is not possible to distinguish whether the function is called in a
textual or spatial context. We need either to solve this somehow, or decide on another function
name.

Spatial Extensions in MySQL

927

Chapter 19. Stored Procedures and
Functions

Stored procedures and functions are a new feature in MySQL version 5.0. A stored procedure is a
set of SQL statements that can be stored in the server. Once this has been done, clients don't need to
keep reissuing the individual statements but can refer to the stored procedure instead.

Some situations where stored procedures can be particularly useful:

• When multiple client applications are written in different languages or work on different plat-
forms, but need to perform the same database operations.

• When security is paramount. Banks, for example, use stored procedures for all common opera-
tions. This provides a consistent and secure environment, and procedures can ensure that each
operation is properly logged. In such a setup, applications and users would not get any access to
the database tables directly, but can only execute specific stored procedures.

Stored procedures can provide improved performance because less information needs to be sent
between the server and the client. The tradeoff is that this does increase the load on the database
server system because more of the work is done on the server side and less is done on the client
(application) side. Consider this if many client machines (such as Web servers) are serviced by only
one or a few database servers.

Stored procedures also allow you to have libraries of functions in the database server. This is a fea-
ture shared by modern application languages that allow such design internally, for example, by us-
ing classes. Using these client application language features is beneficial for the programmer even
outside the scope of database use.

MySQL follows the SQL:2003 syntax for stored procedures, which is also used by IBM's DB2.

The MySQL implementation of stored procedures is still in progress. All syntax described in this
chapter is supported and any limitations and extensions are documented where appropriate.

Stored procedures require the proc table in the mysql database. This table is created during the
MySQL 5.0 installation procedure. If you are upgrading to MySQL 5.0 from an earlier version, be
sure to update your grant tables to make sure that the proc table exists. See Section 2.10.7,
“Upgrading the Grant Tables”.

Beginning with MySQL 5.0.3, the grant system has been modified to take stored routines into ac-
count as follows:

• The CREATE ROUTINE is needed to create stored routines.

• The ALTER ROUTINE privilege is needed to alter or drop stored routines. This privilege is
granted automatically to the creator of a routine.

• The EXECUTE privilege is required to execute stored routines. However, this privilege is gran-
ted automatically to the creator of a routine. Also, the default SQL SECURITY characteristic
for a routine is DEFINER, which allows users who have access to the database with which the
routine is associated to execute the routine.

19.1. Stored Procedure Syntax
Stored procedures and functions are routines that are created with CREATE PROCEDURE and
CREATE FUNCTION statements. A routine is either a procedure or a function. A procedure is in-

928

voked using a CALL statement, and can only pass back values using output variables. A function
can be called from inside a statement just like any other function (that is, by invoking the function's
name), and can return a scalar value. Stored routines may call other stored routines.

As of MySQL 5.0.1, a stored procedure or function is associated with a particular database. This has
several implications:

• When the routine is invoked, an implicit USE db_name is performed (and undone when the
routine terminates). USE statements within stored routines are disallowed.

• You can qualify routine names with the database name. This can be used to refer to a routine
that is not in the current database. For example, to invoke a stored procedure p or function f that
is associated with the test database, you can say CALL test.p() or test.f().

• When a database is dropped, all stored routines associated with it are dropped as well.

(In MySQL 5.0.0, stored routines are global and not associated with a database. They inherit the de-
fault database from the caller. If a USE db_name is executed within the routine, the original de-
fault database is restored upon routine exit.)

MySQL supports the very useful extension that allows the use of regular SELECT statements (that
is, without using cursors or local variables) inside a stored procedure. The result set of such a query
is simply sent directly to the client. Multiple SELECT statements generate multiple result sets, so
the client must use a MySQL client library that supports multiple result sets. This means the client
must use a client library from a version of MySQL at least as recent as 4.1.

This following section describes the syntax used to create, alter, drop, and query stored procedures
and functions.

19.1.1. Maintaining Stored Procedures

19.1.1.1. CREATE PROCEDURE and CREATE FUNCTION

CREATE PROCEDURE sp_name ([parameter[,...]])
[characteristic ...] routine_body

CREATE FUNCTION sp_name ([parameter[,...]])
RETURNS type
[characteristic ...] routine_body

parameter:
[IN | OUT | INOUT] param_name type

type:
Any valid MySQL data type

characteristic:
LANGUAGE SQL

| [NOT] DETERMINISTIC
| SQL SECURITY {DEFINER | INVOKER}
| COMMENT 'string'

routine_body:
Valid SQL procedure statements or statements

These statements create a stored routine. As of MySQL 5.0.3, to create a routine, it is necessary to
have the CREATE ROUTINE privilege for it, and the ALTER ROUTINE and EXECUTE privileges
are granted automatically to its creator.

By default, the routine is associated with the current database. To associate the routine explicitly
with a given database, specify the name as db_name.sp_name when you create it.

If the routine name is the same as the name of a built-in SQL function, you need to use a space
between the name and the following parenthesis when defining the routine, or a syntax error occurs.
This is also true when you invoke the routine later.

The RETURNS clause may be specified only for a FUNCTION, for which it is mandatory. It is used

Stored Procedures and Functions

929

to indicate the return type of the function, and the function body must contain a RETURN value
statement.

The parameter list enclosed within parentheses must always be present. If there are no parameters,
an empty parameter list of () should be used. Each parameter is an IN parameter by default. To
specify otherwise for a parameter, use the keyword OUT or INOUT before the parameter name. Spe-
cifying IN, OUT, or INOUT is only valid for a PROCEDURE.

The CREATE FUNCTION statement is used in earlier versions of MySQL to support UDFs (User
Defined Functions). See Section 25.2, “Adding New Functions to MySQL”. UDFs continue to be
supported, even with the existence of stored functions. A UDF can be regarded as an external stored
function. However, do note that stored functions share their namespace with UDFs.

A framework for external stored procedures will be introduced in the near future. This will allow
you to write stored procedures in languages other than SQL. Most likely, one of the first languages
to be supported is PHP because the core PHP engine is small, thread-safe, and can easily be embed-
ded. Because the framework is public, it is expected that many other languages can also be suppor-
ted.

A function is considered ``deterministic'' if it always returns the same result for the same input para-
meters, and ``not deterministic'' otherwise. Currently, the DETERMINISTIC characteristic is accep-
ted, but not yet used by the optimizer.

The SQL SECURITY characteristic can be used to specify whether the routine should be executed
using the permissions of the user who creates the routine or the user who invokes it. The default
value is DEFINER. This feature is new in SQL:2003. The creator or invoker must have permission
to access the database with which the routine is associated. As of MySQL 5.0.3, it is necessary to
have the EXECUTE privilege to be able to execute the routine. The user that must have this privilege
is either the definer or invoker, depending on how the SQL SECURITY characteristic is set.

MySQL stores the sql_mode system variable setting that is in effect at the time a routine is cre-
ated, and always executes the routine with this setting in force.

The COMMENT clause is a MySQL extension, and may be used to describe the stored procedure.
This information is displayed by the SHOW CREATE PROCEDURE and SHOW CREATE FUNC-
TION statements.

MySQL allows routines to contain DDL statements (such as CREATE and DROP) and SQL transac-
tion statements (such as COMMIT). This is not required by the standard and therefore is implementa-
tion-specific.

Note: Currently, stored functions created with CREATE FUNCTION may not contain references to
tables. Please note that this includes some SET statements, but excludes some SELECT statements.
This limitation will be lifted as soon as possible.

The following is an example of a simple stored procedure that uses an OUT parameter. The example
uses the mysql client delimiter command to change the statement delimiter from ; to // while
the procedure is being defined. This allows the ; delimiter used in the procedure body to be passed
through to the server rather than being interpreted by mysql itself.

mysql> delimiter //
mysql> CREATE PROCEDURE simpleproc (OUT param1 INT)

-> BEGIN
-> SELECT COUNT(*) INTO param1 FROM t;
-> END
-> //

Query OK, 0 rows affected (0.00 sec)
mysql> delimiter ;
mysql> CALL simpleproc(@a);
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT @a;
+------+
| @a |
+------+
| 3 |

Stored Procedures and Functions

930

+------+
1 row in set (0.00 sec)

The following is an example of a function that takes a parameter, performs an operation using an
SQL function, and returns the result:

mysql> delimiter //
mysql> CREATE FUNCTION hello (s CHAR(20)) RETURNS CHAR(50)

-> RETURN CONCAT('Hello, ',s,'!');
-> //

Query OK, 0 rows affected (0.00 sec)
mysql> delimiter ;
mysql> SELECT hello('world');
+----------------+
| hello('world') |
+----------------+
| Hello, world! |
+----------------+
1 row in set (0.00 sec)

19.1.1.2. ALTER PROCEDURE and ALTER FUNCTION

ALTER {PROCEDURE | FUNCTION} sp_name [characteristic ...]
characteristic:

SQL SECURITY {DEFINER | INVOKER}
| COMMENT 'string'

This statement can be used to change the characteristics of a stored procedure or function. You must
have the ALTER ROUTINE privilege for the routine as of MySQL 5.0.3. This privilege is granted
automatically to the routine creator.

More than one change may be specified in an ALTER PROCEDURE or ALTER FUNCTION state-
ment.

19.1.1.3. DROP PROCEDURE and DROP FUNCTION

DROP {PROCEDURE | FUNCTION} [IF EXISTS] sp_name

This statement is used to drop a stored procedure or function. That is, the specified routine is re-
moved from the server. You must have the ALTER ROUTINE privilege for the routine as of
MySQL 5.0.3. This privilege is granted automatically to the routine creator.

The IF EXISTS clause is a MySQL extension. It prevents an error from occurring if the procedure
or function does not exist. A warning is produced that can be viewed with SHOW WARNINGS.

19.1.1.4. SHOW CREATE PROCEDURE and SHOW CREATE FUNCTION

SHOW CREATE {PROCEDURE | FUNCTION} sp_name

This statement is a MySQL extension. Similar to SHOW CREATE TABLE, it returns the exact
string that can be used to re-create the named routine.

mysql> SHOW CREATE FUNCTION test.hello\G
*************************** 1. row ***************************

Function: hello
sql_mode:

Create Function: CREATE FUNCTION `test`.`hello`(s CHAR(20)) RETURNS CHAR(50)
RETURN CONCAT('Hello, ',s,'!')

Stored Procedures and Functions

931

19.1.2. SHOW PROCEDURE STATUS and SHOW FUNCTION
STATUS

SHOW {PROCEDURE | FUNCTION} STATUS [LIKE 'pattern']

This statement is a MySQL extension. It returns characteristics of routines, such as the database,
name, type, creator, and creation and modification dates. If no pattern is specified, the information
for all stored procedures or all stored functions is listed, depending on which statement you use.

mysql> SHOW FUNCTION STATUS LIKE 'hello'\G
*************************** 1. row ***************************

Db: test
Name: hello
Type: FUNCTION

Definer: testuser@localhost
Modified: 2004-08-03 15:29:37
Created: 2004-08-03 15:29:37

Security_type: DEFINER
Comment:

19.1.3. CALL Statement
CALL sp_name([parameter[,...]])

The CALL statement is used to invoke a procedure that was defined previously with CREATE
PROCEDURE.

CALL can return values through its parameters. It also ``returns'' the number of rows affected, which
a client program can obtain at the SQL level by calling the ROW_COUNT() function and from C by
calling the mysql_affected_rows() C API function.

19.1.4. BEGIN ... END Compound Statement
[begin_label:] BEGIN

[statement_list]
END [end_label]

Stored routines may contain multiple statements, using a BEGIN ... END compound statement.

begin_label and end_label must be the same, if both are specified.

Please note that the optional [NOT] ATOMIC clause is not yet supported. This means that no trans-
actional savepoint is set at the start of the instruction block and the BEGIN clause used in this con-
text has no effect on the current transaction.

Using multiple statements requires that a client is able to send query strings containing the ; state-
ment delimiter. This is handled in the mysql command-line client with the delimiter command.
Changing the ; end-of-query delimiter (for example, to //) allows ; to be used in a routine body.

19.1.5. DECLARE Statement
The DECLARE statement is used to define various items local to a routine: local variables (see Sec-
tion 19.1.6, “Variables in Stored Procedures”), conditions and handlers (see Section 19.1.7,
“Conditions and Handlers”) and cursors (see Section 19.1.8, “Cursors”). SIGNAL and RESIGNAL
statements are not currently supported.

DECLARE may be used only inside a BEGIN ... END compound statement and must be at its
start, before any other statements.

Stored Procedures and Functions

932

Cursors must be declared before declaring handlers, and variables must be declared before declaring
either cursors or handlers.

19.1.6. Variables in Stored Procedures
You may declare and use variables within a routine.

19.1.6.1. DECLARE Local Variables

DECLARE var_name[,...] type [DEFAULT value]

This statement is used to declare local variables. The scope of a variable is within the BEGIN ...
END block.

19.1.6.2. Variable SET Statement

SET var_name = expr [, var_name = expr] ...

The SET statement in stored procedures is an extended version of the general SET statement. Refer-
enced variables may be ones declared inside a routine, or global server variables.

The SET statement in stored procedures is implemented as part of the pre-existing SET syntax. This
allows an extended syntax of SET a=x, b=y, ... where different variable types (locally de-
clared variables, server variables, and global and session server variables) can be mixed. This also
allows combinations of local variables and some options that make sense only for global/system
variables; in that case, the options are accepted but ignored.

19.1.6.3. SELECT ... INTO Statement

SELECT col_name[,...] INTO var_name[,...] table_expr

This SELECT syntax stores selected columns directly into variables. Therefore, only a single row
may be retrieved. This statement is also extremely useful when used in combination with cursors.

SELECT id,data INTO x,y FROM test.t1 LIMIT 1;

19.1.7. Conditions and Handlers
Certain conditions may require specific handling. These conditions can relate to errors, as well as
general flow control inside a routine.

19.1.7.1. DECLARE Conditions

DECLARE condition_name CONDITION FOR condition_value
condition_value:

SQLSTATE [VALUE] sqlstate_value
| mysql_error_code

This statement specifies conditions that need specific handling. It associates a name with a specified
error condition. The name can subsequently be used in a DECLARE HANDLER statement. See Sec-
tion 19.1.7.2, “DECLARE Handlers”.

In addition to SQLSTATE values, MySQL error codes are also supported.

19.1.7.2. DECLARE Handlers

Stored Procedures and Functions

933

DECLARE handler_type HANDLER FOR condition_value[,...] sp_statement
handler_type:

CONTINUE
| EXIT
| UNDO

condition_value:
SQLSTATE [VALUE] sqlstate_value

| condition_name
| SQLWARNING
| NOT FOUND
| SQLEXCEPTION
| mysql_error_code

This statement specifies handlers that each may deal with one or more conditions. If one of these
conditions occurs, the specified statement is executed.

For a CONTINUE handler, execution of the current routine continues after execution of the handler
statement. For an EXIT handler, execution of the current BEGIN...END compound statement is
terminated. The UNDO handler type statement is not yet supported.

• SQLWARNING is shorthand for all SQLSTATE codes that begin with 01.

• NOT FOUND is shorthand for all SQLSTATE codes that begin with 02.

• SQLEXCEPTION is shorthand for all SQLSTATE codes not caught by SQLWARNING or NOT
FOUND.

In addition to SQLSTATE values, MySQL error codes are also supported.

For example:

mysql> CREATE TABLE test.t (s1 int,primary key (s1));
Query OK, 0 rows affected (0.00 sec)
mysql> delimiter //
mysql> CREATE PROCEDURE handlerdemo ()

-> BEGIN
-> DECLARE CONTINUE HANDLER FOR SQLSTATE '23000' SET @x2 = 1;
-> SET @x = 1;
-> INSERT INTO test.t VALUES (1);
-> SET @x = 2;
-> INSERT INTO test.t VALUES (1);
-> SET @x = 3;
-> END;
-> //

Query OK, 0 rows affected (0.00 sec)
mysql> CALL handlerdemo()//
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT @x//

+------+
| @x |
+------+
| 3 |
+------+
1 row in set (0.00 sec)

Notice that @x is 3, which shows that MySQL executed to the end of the procedure. If the line DE-
CLARE CONTINUE HANDLER FOR SQLSTATE '23000' SET @x2 = 1; had not been
present, MySQL would have taken the default (EXIT) path after the second INSERT failed due to
the PRIMARY KEY constraint, and SELECT @x would have returned 2.

19.1.8. Cursors

Stored Procedures and Functions

934

Simple cursors are supported inside stored procedures and functions. The syntax is as in embedded
SQL. Cursors are currently asensitive, read-only, and non-scrolling. Asensitive means that the server
may or may not make a copy of its result table.

Cursors must be declared before declaring handlers, and variables must be declared before declaring
either cursors or handlers.

For example:

CREATE PROCEDURE curdemo()
BEGIN
DECLARE done INT DEFAULT 0;
DECLARE a CHAR(16);
DECLARE b,c INT;
DECLARE cur1 CURSOR FOR SELECT id,data FROM test.t1;
DECLARE cur2 CURSOR FOR SELECT i FROM test.t2;
DECLARE CONTINUE HANDLER FOR SQLSTATE '02000' SET done = 1;
OPEN cur1;
OPEN cur2;
REPEAT
FETCH cur1 INTO a, b;
FETCH cur2 INTO c;
IF NOT done THEN

IF b < c THEN
INSERT INTO test.t3 VALUES (a,b);

ELSE
INSERT INTO test.t3 VALUES (a,c);

END IF;
END IF;

UNTIL done END REPEAT;
CLOSE cur1;
CLOSE cur2;

END

19.1.8.1. Declaring Cursors

DECLARE cursor_name CURSOR FOR select_statement

This statement declares a cursor. Multiple cursors may be defined in a routine, but each must have a
unique name.

The SELECT statement cannot have an INTO clause.

19.1.8.2. Cursor OPEN Statement

OPEN cursor_name

This statement opens a previously declared cursor.

19.1.8.3. Cursor FETCH Statement

FETCH cursor_name INTO var_name [, var_name] ...

This statement fetches the next row (if a row exists) using the specified open cursor, and advances
the cursor pointer.

19.1.8.4. Cursor CLOSE Statement

CLOSE cursor_name

Stored Procedures and Functions

935

This statement closes a previously opened cursor.

If not closed explicitly, a cursor is closed at the end of the compound statement in which it was de-
clared.

19.1.9. Flow Control Constructs
The IF, CASE, LOOP, WHILE, ITERATE, and LEAVE constructs are fully implemented.

These constructs may each contain either a single statement, or a block of statements using the BE-
GIN ... END compound statement. Constructs may be nested.

FOR loops are not currently supported.

19.1.9.1. IF Statement

IF search_condition THEN statement_list
[ELSEIF search_condition THEN statement_list]
...
[ELSE statement_list]

END IF

IF implements a basic conditional construct. If the search_condition evaluates to true, the
corresponding SQL statement list is executed. If no search_condition matches, the statement
list in the ELSE clause is executed. statement_list can consist of one or more statements.

Please note that there is also an IF() function. See Section 12.2, “Control Flow Functions”.

19.1.9.2. CASE Statement

CASE case_value
WHEN when_value THEN statement_list
[WHEN when_value THEN statement_list ...]
[ELSE statement_list]

END CASE

Or:

CASE
WHEN search_condition THEN statement_list
[WHEN search_condition THEN statement_list ...]
[ELSE statement_list]

END CASE

The CASE statement for stored procedures implements a complex conditional construct. If a
search_condition evaluates to true, the corresponding SQL statement is executed. If no search
condition matches, the statement in the ELSE clause is executed.

Note: The syntax of a CASE statement shown here for use inside a stored procedure differs slightly
from that of the SQL CASE expression described in Section 12.2, “Control Flow Functions”. The
CASE statement cannot have an ELSE NULL clause, and it is terminated with END CASE instead
of END.

19.1.9.3. LOOP Statement

[begin_label:] LOOP
statement_list

END LOOP [end_label]

LOOP implements a simple loop construct, enabling repeated execution of a particular statement or

Stored Procedures and Functions

936

statements. The statements within the loop are repeated until the loop is exited; usually this is ac-
complished with a LEAVE statement.

begin_label and end_label must be the same, if both are specified.

19.1.9.4. LEAVE Statement

LEAVE label

This statement is used to exit any flow control construct.

19.1.9.5. ITERATE Statement

ITERATE label

ITERATE can only appear within LOOP, REPEAT, and WHILE statements. ITERATE means ``do
the loop iteration again.''

For example:

CREATE PROCEDURE doiterate(p1 INT)
BEGIN
label1: LOOP
SET p1 = p1 + 1;
IF p1 < 10 THEN ITERATE label1; END IF;
LEAVE label1;

END LOOP label1;
SET @x = p1;

END

19.1.9.6. REPEAT Statement

[begin_label:] REPEAT
statement_list

UNTIL search_condition
END REPEAT [end_label]

The statement or statements within a REPEAT statement are repeated until the
search_condition is true.

begin_label and end_label must be the same, if both are specified.

For example:

mysql> delimiter //
mysql> CREATE PROCEDURE dorepeat(p1 INT)

-> BEGIN
-> SET @x = 0;
-> REPEAT SET @x = @x + 1; UNTIL @x > p1 END REPEAT;
-> END
-> //

Query OK, 0 rows affected (0.00 sec)
mysql> CALL dorepeat(1000)//
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT @x//
+------+
| @x |
+------+
| 1001 |
+------+
1 row in set (0.00 sec)

Stored Procedures and Functions

937

19.1.9.7. WHILE Statement

[begin_label:] WHILE search_condition DO
statement_list

END WHILE [end_label]

The statement or statements within a WHILE statement are repeated as long as the
search_condition is true.

begin_label and end_label must be the same, if both are specified.

For example:

CREATE PROCEDURE dowhile()
BEGIN
DECLARE v1 INT DEFAULT 5;
WHILE v1 > 0 DO
...
SET v1 = v1 - 1;

END WHILE;
END

Stored Procedures and Functions

938

Chapter 20. Triggers
Rudimentary support for triggers is included beginning with MySQL 5.0.2. A trigger is a named
database object that is associated with a table, and that activates when a particular event occurs for
the table. For example, the following statements set up a table, as well as a trigger for INSERT
statements into the table. The trigger sums the values inserted into one of the table's columns:

mysql> CREATE TABLE account (acct_num INT, amount DECIMAL(10,2));
mysql> CREATE TRIGGER ins_sum BEFORE INSERT ON account

-> FOR EACH ROW SET @sum = @sum + NEW.amount;

This chapter describes the syntax for creating and dropping triggers, and show some examples of
how to use them.

20.1. CREATE TRIGGER Syntax
CREATE TRIGGER trigger_name trigger_time trigger_event

ON tbl_name FOR EACH ROW trigger_stmt

A trigger is a named database object that is associated with a table, and that activates when a partic-
ular event occurs for the table.

The trigger becomes associated with the table named tbl_name. tbl_name must refer to a per-
manent table. You cannot associate a trigger with a TEMPORARY table or a view.

trigger_time is the trigger action time. It can be BEFORE or AFTER to indicate that the trigger
activates before or after the statement that activated it.

trigger_event indicates the kind of statement that activates the trigger. It can be INSERT, UP-
DATE, or DELETE. For example, a BEFORE trigger for INSERT statements could be used to check
the values to be inserted into new rows.

There cannot be two triggers for a given table that have the same trigger action time and event. For
example, you cannot have two BEFORE UPDATE triggers for a table. But you can have a BEFORE
UPDATE and a BEFORE INSERT trigger, or a BEFORE UPDATE and an AFTER UPDATE trig-
ger.

trigger_stmt is the statement to execute when the trigger activates. If you want to execute mul-
tiple statements, use the BEGIN ... END compound statement construct. This also enables you to
use the same statements that are allowable within stored routines. See Section 19.1.4, “BEGIN ...
END Compound Statement”.

Note: Currently, triggers have the same limitation as stored functions that they may not contain dir-
ect references to tables by name. This limitation will be lifted as soon as possible.

However, in the triggered statement, you can refer to columns in the table associated with the trigger
by using the names OLD and NEW. OLD.col_name refers to a column of a an existing row before
it is updated or deleted. NEW.col_name refers to the column of a new row to be inserted or an ex-
isting row after it is updated.

Use of SET NEW.col_name = value requires the UPDATE privilege on the column. Use of
SET value = NEW.col_name requires the SELECT privilege on the column.

The CREATE TRIGGER statement requires the SUPER privilege. It was added in MySQL 5.0.2.

20.2. DROP TRIGGER Syntax
DROP TRIGGER tbl_name.trigger_name

939

Drops a trigger. The name of the trigger to drop must include the table name because each trigger is
associated with a particular table.

The DROP TRIGGER statement requires the SUPER privilege. It was added in MySQL 5.0.2.

20.3. Using Triggers
Support for triggers is included beginning with MySQL 5.0.2. Currently, trigger support is rudi-
mentary, so there are certain limitations on what you can do with them. This section discusses how
to use triggers and what the current limitations are.

A trigger is a named database object that is associated with a table, and that activates when a partic-
ular event occurs for the table. Some uses for triggers are to perform checks of values to be inserted
into a table or to perform calculations on values involved in an update.

A trigger is associated with a table and is defined to activate when an INSERT, DELETE, or UP-
DATE statement for the table executes. A trigger can be set to activate either before or after the trig-
gering statement. For example, you can have a trigger activate before each row that is deleted from a
table or after each row that is updated.

To create a trigger or drop a trigger, use the CREATE TRIGGER or DROP TRIGGER statement.
The syntax for these statements is described in Section 20.1, “CREATE TRIGGER Syntax” and
Section 20.2, “DROP TRIGGER Syntax”.

Here is a simple example that associates a trigger with a table for INSERT statements. It acts as an
accumulator to sum the values inserted into one of the columns of the table.

The following statements create a table and a trigger for it:

mysql> CREATE TABLE account (acct_num INT, amount DECIMAL(10,2));
mysql> CREATE TRIGGER ins_sum BEFORE INSERT ON account

-> FOR EACH ROW SET @sum = @sum + NEW.amount;

The CREATE TRIGGER statement creates a trigger named ins_sum that is associated with the
account table. It also includes clauses that specify the trigger activation time, the triggering event,
and what to do with the trigger activates:

• The keyword BEFORE indicates the trigger action time. In this case, the trigger should activate
before each row inserted into the table. The other allowable keyword here is AFTER.

• The keyword INSERT indicates the event that activates the trigger. In the example, INSERT
statements cause trigger activation. You can also create triggers for DELETE and UPDATE state-
ments.

• The statement following FOR EACH ROW defines the statement to execute each time the trigger
activates, which occurs once for each row affected by the triggering statement In the example,
the triggered statement is a simple SET that accumulates the values inserted into the amount
column. The statement refers to the column as NEW.amount which means ``the value of the
amount column to be inserted into the new row.''

To use the trigger, set the accumulator variable to zero, execute an INSERT statement, and then see
what value the variable has afterward:

mysql> SET @sum = 0;
mysql> INSERT INTO account VALUES(137,14.98),(141,1937.50),(97,-100.00);
mysql> SELECT @sum AS 'Total amount inserted';
+-----------------------+
| Total amount inserted |
+-----------------------+
| 1852.48 |

Triggers

940

+-----------------------+

In this case, the value of @sum after the INSERT statement has executed is 14.98 + 1937.50
- 100 or 1852.48.

To destroy the trigger, use a DROP TRIGGER statement. The trigger name must include the table
name:

mysql> DROP TRIGGER account.ins_sum;

Because a trigger is associated with a particular table, you cannot have multiple triggers for a table
that have the same name. You should also be aware that the namespace for triggers might change in
the future from table to database. That is, the requirement that trigger names be unique for a given
table might be strengthened to the requirement that they be unique within the database. For better
forward compatibility with future development, try to use trigger names that do not overlap within a
database.

In addition to the requirement that trigger names be unique for a table, there are other limitations on
the types of triggers you can create. In particular, you cannot have two triggers for a table that have
the same activate time and activation event. For example, you cannot define two BEFORE INSERT
triggers or two AFTER UPDATE triggers for a table. This should rarely be a significant limitation,
because it is possible to define a trigger that executes multiple statements by using the BEGIN …
END compound statement construct after FOR EACH ROW. (An example appears later in this sec-
tion.)

There are also limitations on what can appear in the statement that the trigger executes when activ-
ated:

• The trigger cannot refer directly to tables by name, including the table with which the table is as-
sociated. You can, however, use the keywords OLD and NEW. OLD refers to an existing row to be
deleted or a row to be updated before the update occurs. NEW refers to a new row to be inserted
or an updated row after the update occurs.

• The trigger cannot invoke stored procedures using the CALL statement. (This means, for ex-
ample, that you cannot get around the prohibition on referring to tables by name by invoking a
stored procedure that refers to the tables.)

• The trigger cannot use statements that begin or end a transaction such as START TRANSAC-
TION, COMMIT, or ROLLBACK.

The OLD and NEW keywords enable you to access columns in the rows affected by a trigger. (OLD
and NEW are not case sensitive.) In an INSERT trigger, only NEW.col_name can be used; there is
no old row. In a DELETE trigger, only OLD.col_name can be used; there is no new row. In an
UPDATE trigger, you can use OLD.col_name to refer to the columns of a row before it is updated
and NEW.col_name to refer to the columns of the row after it is updated.

A column named with OLD is read-only. You can refer to it but not modify it. A column named with
NEW can be referred to if you have the SELECT privilege for it. In a BEFORE trigger, you can also
change its value with SET NEW.col_name = value if you have the UPDATE privilege for it.
This means you can use a trigger to modify the values to be inserted into a new row or that are used
to update a row.

OLD and NEW are MySQL extensions to triggers.

By using the BEGIN … END construct, you can define a trigger that executes multiple statements.
Within the BEGIN block, you also can use other syntax that is allowed within stored routines such
as conditionals and loops. However, just as for stored routines, when you define a trigger that ex-
ecutes multiple statements, it becomes necessary to redefine the statement delimiter if you are enter-
ing the trigger with the mysql program so that you can use the ';' character within the trigger defini-
tion. The following example illustrates these points. It defines an UPDATE trigger that checks the

Triggers

941

new value to be used for updating each row, and modifies the value to be within the range from 0 to
100. This must be a BEFORE trigger because the value needs to be checked before it is used to up-
date the row:

mysql> delimiter //
mysql> CREATE TRIGGER upd_check BEFORE UPDATE ON account

-> FOR EACH ROW
-> BEGIN
-> IF NEW.amount < 0 THEN
-> SET NEW.amount = 0;
-> ELSEIF NEW.amount > 100 THEN
-> SET NEW.amount = 100;
-> END IF;
-> END//

mysql> delimiter ;

It might occur to you that it would be easier to define a stored procedure separately and then invoke
it from the trigger using a simple CALL statement. That would also be advantageous if you wanted
to invoke the same routine from within several triggers. However, a limitation on triggers is that
CALL cannot be used. You have to write out the compound statement in each CREATE TRIGGER
statement where you want to use it.

Triggers

942

Chapter 21. The
INFORMATION_SCHEMA Information
Database

INFORMATION_SCHEMA support is available in MySQL 5.0.2 and later. It provides access to data-
base metadata.

``Metadata'' is data about the data, such as the name of a database or table, the data type of a
column, or access privileges. Other terms that sometimes are used for this information are ``data
dictionary'' or ``system catalog.''

Here is an example:

mysql> SELECT table_name, table_type, engine
-> FROM information_schema.tables
-> WHERE table_schema = 'db5'
-> ORDER BY table_name DESC;

+------------+------------+--------+
| table_name | table_type | engine |
+------------+------------+--------+
v56	VIEW	NULL
v3	VIEW	NULL
v2	VIEW	NULL
v	VIEW	NULL
tables	BASE TABLE	MyISAM
t7	BASE TABLE	MyISAM
t3	BASE TABLE	MyISAM
t2	BASE TABLE	MyISAM
t	BASE TABLE	MyISAM
pk	BASE TABLE	InnoDB
loop	BASE TABLE	MyISAM
kurs	BASE TABLE	MyISAM
k	BASE TABLE	MyISAM
into	BASE TABLE	MyISAM
goto	BASE TABLE	MyISAM
fk2	BASE TABLE	InnoDB
fk	BASE TABLE	InnoDB
+------------+------------+--------+
17 rows in set (0.01 sec)

Explanation: The statement requests a list of all the tables in database db5, in reverse alphabetical
order, showing just three pieces of information: the name of the table, its type, and its engine.

INFORMATION_SCHEMA is the ``information database'', the place that stores information about all
the other databases that the MySQL server maintains. Inside INFORMATION_SCHEMA there are
several read-only tables. They are actually views, not base tables, so you won't actually see any file
associated with them.

Each MySQL user has the right to access these tables, but only the rows in the tables that corres-
pond to objects for which the user has the proper access privileges.

Advantages of SELECT

The SELECT ... FROM INFORMATION_SCHEMA statement is intended as a more consistent
way to provide access to the information provided by the various SHOW statements that MySQL
supports (SHOW DATABASES, SHOW TABLES, and so forth). Using SELECT has these advant-
ages, compared to SHOW:

• It conforms to Codd's rules. That is, all access is done on tables.

943

• Nobody needs to learn a new statement syntax. Because they already know how SELECT works,
they only need to learn the object names.

• The implementor need not worry about adding keywords.

• There are millions of possible output variations, instead of just one. This provides more flexibil-
ity for applications that have varying requirements about what metadata they need.

• Migration is easier because every other DBMS does it this way.

However, because SHOW is popular with MySQL employees and users, and because it might be con-
fusing were it to disappear, the advantages of conventional syntax are not a sufficient reason to
eliminate SHOW. In fact, there are enhancements to SHOW in MySQL 5.0, too. These are described in
Section 21.2, “Extensions to SHOW Statements”.

Standards

The implementation for the INFORMATION_SCHEMA table structures in MySQL follows the AN-
SI/ISO SQL:2003 standard Part 11 ``Schemata.'' Our intent is approximate compliance with
SQL:2003 core feature F021 ``Basic information schema.''

Users of SQL Server 2000 (which also follows the standard) may notice a strong similarity.
However, MySQL has omitted many columns that are not relevant for our implementation, and ad-
ded columns that are MySQL-specific. One such column is the engine column in the INFORMA-
TION_SCHEMA.TABLES table.

Although other DBMSs use a variety of names, like syscat or system, the standard name is IN-
FORMATION_SCHEMA.

In effect, we have a new ``database'' named information_schema, though there is never a need
to make a file by that name. It is not possible to issue USE INFORMATION_SCHEMA. The only
thing you can do with these tables is SELECT. You cannot update, insert, delete, or even reference
them.

Privileges

There is no difference between the current (SHOW) privilege requirement and the SELECT require-
ment. In either case, you have to have some privilege on an object in order to see information about
it.

21.1. INFORMATION_SCHEMA Tables
Explanation of following sections

In the following sections, we take the tables and columns that are in INFORMATION_SCHEMA. For
each column, there are three pieces of information:

• ``Standard Name'' indicates the standard SQL name for the column.

• ``SHOW name'' indicates what the equivalent field name is in the closest SHOW statement, if any.

• ``Remarks'' provides additional information where applicable. We have marked ``omit'' those
columns for which MySQL has no present use. We have omitted these columns, that is, they ap-
pear in the standard but not in MySQL. So their presence here is a matter of record only.

To avoid using any name that's reserved in the standard or in DB2 or in SQL Server or in Oracle we
changed the names of columns marked ``MySQL extension.'' (For example, we changed COLLA-
TION to TABLE_COLLATION in the TABLES table.) See the list of reserved words near the end of
this article: http://www.dbazine.com/gulutzan5.shtml.

The INFORMATION_SCHEMA Information
Database

944

http://www.dbazine.com/gulutzan5.shtml

The definition for character columns (for example, TABLES.TABLE_NAME), is generally
VARCHAR(N) CHARACTER SET utf8 where N is at least 64.

Each section indicates what SHOW statement is equivalent to a SELECT that retrieves information
from INFORMATION_SCHEMA, or else that there is no such equivalent statement.

Note: At present, there are some missing columns and some columns out of order. We are working
on this and intend to update the documentation as changes are made.

21.1.1. The INFORMATION_SCHEMA SCHEMATA Table
A schema is a database, so the SCHEMATA table provides information about databases.

Standard Name SHOW name Remarks

CATALOG_NAME - NULL

SCHEMA_NAME Database

SCHEMA_OWNER omit

DE-
FAULT_CHARACTER_SET_CATALO
G

omit

DE-
FAULT_CHARACTER_SET_SCHEMA

omit

DEFAULT_CHARACTER_SET_NAME

SQL_PATH NULL

Notes:

• For SQL_PATH, we might eventually support something in MySQL 5.x. For now, it's always
NULL.

The following statements are equivalent:

SELECT SCHEMA_NAME AS `Database`
FROM INFORMATION_SCHEMA.SCHEMATA
[WHERE SCHEMA_NAME LIKE 'wild']

SHOW DATABASES
[LIKE 'wild']

21.1.2. The INFORMATION_SCHEMA TABLES Table
The TABLES table provides information about tables in databases.

Standard Name SHOW name Remarks

TABLE_CATALOG NULL

TABLE_SCHEMA Table_...

TABLE_NAME Table_...

TABLE_TYPE

SELF_REFERENCING_COLUMN_NA
ME

omit

REFERENCE_GENERATION omit

USER_DEFINED_TYPE_NAME omit

IS_INSERTABLE_INTO omit

The INFORMATION_SCHEMA Information
Database

945

IS_TYPED omit

COMMIT_ACTION omit

ENGINE Engine MySQL extension

VERSION Version MySQL extension

ROW_FORMAT Row_format MySQL extension

TABLE_ROWS Rows MySQL extension

AVG_ROW_LENGTH Avg_row_length MySQL extension

DATA_LENGTH Data_length MySQL extension

MAX_DATA_LENGTH Max_data_length MySQL extension

INDEX_LENGTH Index_length MySQL extension

DATA_FREE Data_free MySQL extension

AUTO_INCREMENT Auto_increment MySQL extension

CREATE_TIME Create_time MySQL extension

UPDATE_TIME Update_time MySQL extension

CHECK_TIME Check_time MySQL extension

TABLE_COLLATION Collation MySQL extension

CHECKSUM Checksum MySQL extension

CREATE_OPTIONS Create_options MySQL extension

TABLE_COMMENT Comment MySQL extension

Notes:

• TABLE_SCHEMA and TABLE_NAME are a single field in a SHOW display, for example Ta-
ble_in_db1.

• TABLE_TYPE should be BASE TABLE or VIEW. If table is temporary, then TABLE_TYPE =
TEMPORARY. (There are no temporary views, so this is not ambiguous.)

• We have nothing for the table's default character set. TABLE_COLLATION is close, because
collation names begin with a character set name.

The following statements are equivalent:

SELECT table_name FROM INFORMATION_SCHEMA.TABLES
[WHERE table_schema = 'db_name']
[WHERE|AND table_name LIKE 'wild']

SHOW TABLES
[FROM db_name]
[LIKE 'wild']

21.1.3. The INFORMATION_SCHEMA COLUMNS Table
The COLUMNS table provides information about columns in tables.

Standard Name SHOW name Remarks

TABLE_CATALOG NULL

TABLE_SCHEMA

TABLE_NAME

COLUMN_NAME Field

ORDINAL_POSITION see notes

The INFORMATION_SCHEMA Information
Database

946

COLUMN_DEFAULT Default

IS_NULLABLE Null

DATA_TYPE Type

CHARACTER_MAXIMUM_LENGTH Type

CHARACTER_OCTET_LENGTH

NUMERIC_PRECISION Type

NUMERIC_PRECISION_RADIX omit

NUMERIC_SCALE Type

DATETIME_PRECISION omit

INTERVAL_TYPE omit

INTERVAL_PRECISION omit

CHARACTER_SET_CATALOG omit

CHARACTER_SET_SCHEMA omit

CHARACTER_SET_NAME

COLLATION_CATALOG omit

COLLATION_SCHEMA omit

COLLATION_NAME Collation

DOMAIN_NAME omit

UDT_CATALOG omit

UDT_SCHEMA omit

UDT_NAME omit

SCOPE_CATALOG omit

SCOPE_SCHEMA omit

SCOPE_NAME omit

MAXIMUM_CARDINALITY omit

DTD_IDENTIFIER omit

IS_SELF_REFERENCING omit

IS_IDENTITY omit

IDENTITY_GENERATION omit

IDENTITY_START omit

IDENTITY_INCREMENT omit

IDENTITY_MAXIMUM omit

IDENTITY_MINIMUM omit

IDENTITY_CYCLE omit

IS_GENERATED omit

GENERATION_EXPRESSION omit

COLUMN_KEY Key MySQL extension

EXTRA Extra MySQL extension

COLUMN_COMMENT Comment MySQL extension

Notes:

• In SHOW, the Type display includes values from several different COLUMNS columns.

• ORDINAL_POSITION is necessary because you might someday want to say ORDER BY OR-

The INFORMATION_SCHEMA Information
Database

947

DINAL_POSITION. Unlike SHOW, SELECT does not have automatic ordering.

• CHARACTER_OCTET_LENGTH should be the same as CHARACTER_MAXIMUM_LENGTH, ex-
cept for multi-byte character sets.

• CHARACTER_SET_NAME can be derived from Collation. For example, if you say SHOW
FULL COLUMNS FROM t, and you see in the Collation column a value of lat-
in1_swedish_ci, the character set is what's before the first underscore: latin1.

The following statements are nearly equivalent:

SELECT COLUMN_NAME, DATA_TYPE, IS_NULLABLE, COLUMN_DEFAULT
FROM INFORMATION_SCHEMA.COLUMNS
WHERE table_name = 'tbl_name'
[AND schema_name = 'db_name']
[AND column_name LIKE 'wild']

SHOW COLUMNS
FROM tbl_name
[FROM db_name]
[LIKE wild]

21.1.4. The INFORMATION_SCHEMA STATISTICS Table
The STATISTICS table provides information about table indexes.

Standard Name SHOW name Remarks

TABLE_CATALOG NULL

TABLE_SCHEMA = Database

TABLE_NAME Table

NON_UNIQUE Non_unique

INDEX_SCHEMA = Database

INDEX_NAME Key_name

TYPE omit

SEQ_IN_INDEX Seq_in_index

COLUMN_NAME Column_name

COLLATION Collation

CARDINALITY Cardinality

PAGES omit

FILTER_CONDITION omit

SUB_PART Sub_part MySQL extension

PACKED Packed MySQL extension

NULLABLE Null MySQL extension

INDEX_TYPE Index_type MySQL extension

COMMENT Comment MySQL extension

Notes:

• There is no standard table for indexes. The preceding list is similar to what SQL Server 2000 re-
turns for sp_statistics, except that we replaced the name QUALIFIER with CATALOG
and we replaced the name OWNER with SCHEMA.

Clearly, the preceding table and the output from SHOW INDEX are derived from the same par-

The INFORMATION_SCHEMA Information
Database

948

ent. So the correlation is already close.

The following statements are equivalent:

SELECT * FROM INFORMATION_SCHEMA.STATISTICS
WHERE table_name = 'tbl_name'
[AND schema_name = 'db_name'

SHOW INDEX
FROM tbl_name
[FROM db_name]

21.1.5. The INFORMATION_SCHEMA USER_PRIVILEGES
Table

The USER_PRIVILEGES table provides information about global privileges. This information
comes from the mysql.user grant table.

Standard Name SHOW name Remarks

GRANTEE e.g. 'user'@'host'

TABLE_CATALOG NULL

PRIVILEGE_TYPE

IS_GRANTABLE

Notes:

• This is a non-standard table. It takes its values from the mysql.user table.

21.1.6. The INFORMATION_SCHEMA
SCHEMA_PRIVILEGES Table

The SCHEMA_PRIVILEGES table provides information about schema (database) privileges. This
information comes from the mysql.db grant table.

Standard Name SHOW name Remarks

GRANTEE e.g. 'user'@'host'

TABLE_CATALOG NULL

TABLE_SCHEMA

PRIVILEGE_TYPE

IS_GRANTABLE

Notes:

• This is a non-standard table. It takes its values from the mysql.db table.

21.1.7. The INFORMATION_SCHEMA TA-
BLE_PRIVILEGES Table

The TABLE_PRIVILEGES table provides information about table privileges. This information

The INFORMATION_SCHEMA Information
Database

949

comes from the mysql.tables_priv grant table.

Standard Name SHOW name Remarks

GRANTOR omit

GRANTEE e.g. 'user'@'host'

TABLE_CATALOG NULL

TABLE_SCHEMA

TABLE_NAME

PRIVILEGE_TYPE

IS_GRANTABLE

WITH_HIERARCHY omit

The following statements are not equivalent:

SELECT ... FROM INFORMATION_SCHEMA.TABLE_PRIVILEGES
SHOW GRANTS ...

PRIVILEGE_TYPE can contain one (and only one) of these values: SELECT, INSERT, UPDATE,
REFERENCES, ALTER, INDEX, DROP, CREATE VIEW.

21.1.8. The INFORMATION_SCHEMA
COLUMN_PRIVILEGES Table

The COLUMN_PRIVILEGES table provides information about column privileges. This information
comes from the mysql.columns_priv grant table.

Standard Name SHOW name Remarks

GRANTOR omit

GRANTEE e.g. 'user'@'host'

TABLE_CATALOG NULL

TABLE_SCHEMA

TABLE_NAME

COLUMN_NAME

PRIVILEGE_TYPE

IS_GRANTABLE

Notes:

• In the output from SHOW FULL COLUMNS, the privileges are all in one field and in lowercase,
for example, select,insert,update,references. In COLUMN_PRIVILEGES, there
is one row per privilege, and it's uppercase.

• PRIVILEGE_TYPE can contain one (and only one) of these values: SELECT, INSERT, UP-
DATE, REFERENCES.

• If the user has GRANT OPTION privilege, then IS_GRANTABLE should be YES. Otherwise,
IS_GRANTABLE should be NO. The output does not list GRANT OPTION as a separate priv-
ilege.

The following statements are not equivalent:

The INFORMATION_SCHEMA Information
Database

950

SELECT ... FROM INFORMATION_SCHEMA.COLUMN_PRIVILEGES
SHOW GRANTS ...

21.1.9. The INFORMATION_SCHEMA CHARACTER_SETS
Table

The CHARACTER_SETS table provides information about available character sets.

Standard Name SHOW name Remarks

CHARACTER_SET_CATALOG omit

CHARACTER_SET_SCHEMA omit

CHARACTER_SET_NAME Charset

CHARACTER_REPERTOIRE omit

FORM_OF_USE omit

NUMBER_OF_CHARACTERS omit

DEFAULT_COLLATE_CATALOG omit

DEFAULT_COLLATE_SCHEMA omit

DEFAULT_COLLATE_NAME Default collation

DESCRIPION Description MySQL extension

MAXLEN Maxlen MySQL extension

Notes:

• We have added two non-standard columns corresponding to the Description and Maxlen
columns in the output from SHOW CHARACTER SET.

The following statements are equivalent:

SELECT * FROM INFORMATION_SCHEMA.CHARACTER_SETS
[WHERE name LIKE 'wild']

SHOW CHARACTER SET
[LIKE 'wild']

21.1.10. The INFORMATION_SCHEMA COLLATIONS Ta-
ble

The COLLATIONS table provides information about collations for each character set.

Standard Name SHOW name Remarks

COLLATION_CATALOG omit

COLLATION_SCHEMA omit

COLLATION_NAME Collation

PAD_ATTRIBUTE omit

COLLATION_TYPE omit

COLLATION_DEFINITION omit

COLLATION_DICTIONARY omit

CHARACTER_SET_NAME omit MySQL extension

ID omit MySQL extension

The INFORMATION_SCHEMA Information
Database

951

IS_DEFAULT omit MySQL extension

IS_COMPILED omit MySQL extension

SORTLEN omit MySQL extension

Notes:

• We have added five non-standard columns corresponding to the Charset, Id, Default,
Compiled, and Sortlen columns in the output from SHOW COLLATION.

The following statements are equivalent:

SELECT COLLATION_NAME FROM INFORMATION_SCHEMA.COLLATIONS
[WHERE collation_name LIKE 'wild']

SHOW COLLATION
[LIKE 'wild']

21.1.11. The INFORMATION_SCHEMA COLLA-
TION_CHARACTER_SET_APPLICABILITY Table

The COLLATION_CHARACTER_SET_APPLICABILITY table indicates what character set is ap-
plicable for what collation. The columns are equivalent to the first two display fields that we get
from SHOW COLLATION.

Standard Name SHOW name Remarks

COLLATION_CATALOG omit

COLLATION_SCHEMA omit

COLLATION_NAME Collation

CHARACTER_SET_CATALOG omit

CHARACTER_SET_SCHEMA omit

CHARACTER_SET_NAME Charset

21.1.12. The INFORMATION_SCHEMA TA-
BLE_CONSTRAINTS Table

The TABLE_CONSTRAINTS table describes which tables have constraints.

Standard Name SHOW name Remarks

CONSTRAINT_CATALOG NULL

CONSTRAINT_SCHEMA

CONSTRAINT_NAME

TABLE_CATALOG omit

TABLE_SCHEMA

TABLE_NAME

CONSTRAINT_TYPE

IS_DEFERRABLE omit

INITIALLY_DEFERRED omit

The INFORMATION_SCHEMA Information
Database

952

Notes:

• The CONSTRAINT_TYPE value can be UNIQUE, PRIMARY KEY, or FOREIGN KEY.

• The UNIQUE and PRIMARY KEY information is about the same as what you get from the
Key_name field in the output from SHOW INDEX when the Non_unique field is 0.

• The CONSTRAINT_TYPE column can contain one of these values: UNIQUE, PRIMARY KEY,
FOREIGN KEY, CHECK. This is a CHAR (not ENUM) column. The CHECK value is not available
until we support CHECK.

21.1.13. The INFORMATION_SCHEMA
KEY_COLUMN_USAGE Table

The KEY_COLUMN_USAGE table describes which key columns have constraints.

Standard Name SHOW name Remarks

CONSTRAINT_CATALOG NULL

CONSTRAINT_SCHEMA

CONSTRAINT_NAME

TABLE_CATALOG

TABLE_SCHEMA

TABLE_NAME

COLUMN_NAME

ORDINAL_POSITION

POSI-
TION_IN_UNIQUE_CONSTRAINT

Notes:

• If the constraint is a foreign key, then this is the column of the foreign key, not the column that
the foreign key references.

• The value of ORDINAL_POSITION is the column's position within the constraint, not the
column's position within the table. Column positions are numbered beginning with 1.

• The value of POSITION_IN_UNIQUE_CONSTRAINT is NULL for unique and primary-key
constraints. For foreign-key constraints, it is the ordinal position in key of the table that is being
referenced.

For example, suppose that there are two tables name t1 and t3 that have the following defini-
tions:

CREATE TABLE t1
(

s1 INT,
s2 INT,
s3 INT,
PRIMARY KEY(s3)

) ENGINE=InnoDB;
CREATE TABLE t3
(

s1 INT,
s2 INT,
s3 INT,

The INFORMATION_SCHEMA Information
Database

953

KEY(s1),
CONSTRAINT CO FOREIGN KEY (s2) REFERENCES t1(s3)

) ENGINE=InnoDB;

For those two tables, the KEY_COLUMN_USAGE table has two rows:

• One row with CONSTRAINT_NAME='PRIMARY', TABLE_NAME='t1',
COLUMN_NAME='s3', ORDINAL_POSITION=1, POSI-
TION_IN_UNIQUE_CONSTRAINT=NULL.

• One row with CONSTRAINT_NAME='CO', TABLE_NAME='t3', COLUMN_NAME='s2', OR-
DINAL_POSITION=1, POSITION_IN_UNIQUE_CONSTRAINT=1.

21.1.14. The INFORMATION_SCHEMA ROUTINES Table
The ROUTINES table provides information about stored routines (both procedures and functions).
The ROUTINES table does not include user-defined functions (UDFs) at this time.

The column named ``mysql.proc name'' indicates the mysql.proc table column that corres-
ponds to the INFORMATION_SCHEMA.ROUTINES table column, if any.

Standard Name mysql.proc name Remarks

SPECIFIC_CATALOG omit

SPECIFIC_SCHEMA db omit

SPECIFIC_NAME specific_name

ROUTINE_CATALOG NULL

ROUTINE_SCHEMA db

ROUTINE_NAME name

MODULE_CATALOG omit

MODULE_SCHEMA omit

MODULE_NAME omit

USER_DEFINED_TYPE_CATALOG omit

USER_DEFINED_TYPE_SCHEMA omit

USER_DEFINED_TYPE_NAME omit

ROUTINE_TYPE type {PROCEDURE|FUNCTION
}

DTD_IDENTIFIER (data type descriptor)

ROUTINE_BODY SQL

ROUTINE_DEFINITION body

EXTERNAL_NAME NULL

EXTERNAL_LANGUAGE language NULL

PARAMETER_STYLE SQL

IS_DETERMINISTIC is_deterministic

SQL_DATA_ACCESS sql_data_access

IS_NULL_CALL omit

SQL_PATH NULL

SCHEMA_LEVEL_ROUTINE omit

MAX_DYNAMIC_RESULT_SETS omit

IS_USER_DEFINED_CAST omit

The INFORMATION_SCHEMA Information
Database

954

IS_IMPLICITLY_INVOCABLE omit

SECURITY_TYPE security_type

TO_SQL_SPECIFIC_CATALOG omit

TO_SQL_SPECIFIC_SCHEMA omit

TO_SQL_SPECIFIC_NAME omit

AS_LOCATOR omit

CREATED created

LAST_ALTERED modified

NEW_SAVEPOINT_LEVEL omit

IS_UDT_DEPENDENT omit

RES-
ULT_CAST_FROM_DTD_IDENTIFI
ER

omit

RESULT_CAST_AS_LOCATOR omit

SQL_MODE sql_mode MySQL extension

ROUTINE_COMMENT comment MySQL extension

DEFINER definer MySQL extension

Notes:

• MySQL calculates EXTERNAL_LANGUAGE thus:

• If mysql.proc.language='SQL', then EXTERNAL_LANGUAGE is NULL

• Otherwise, EXTERNAL_LANGUAGE is what's in mysql.proc.language. However, we
don't have external languages yet, so it's always NULL.

21.1.15. The INFORMATION_SCHEMA VIEWS Table
The VIEWS table provides information about views in databases.

Standard Name SHOW name Remarks

TABLE_CATALOG NULL

TABLE_SCHEMA

TABLE_NAME

VIEW_DEFINITION

CHECK_OPTION

IS_UPDATABLE

INSERTABLE_INTO omit

Notes:

• There is a new privilege, SHOW VIEW, without which you cannot see the VIEWS table.

• The VIEW_DEFINITION column has most of what you see in the Create Table field that
SHOW CREATE VIEW produces. Skip the words before SELECT and skip the words WITH
CHECK OPTION. For example, if the original statement was:

CREATE VIEW v AS

The INFORMATION_SCHEMA Information
Database

955

SELECT s2,s1 FROM t
WHERE s1 > 5
ORDER BY s1
WITH CHECK OPTION;

then the view definition is:

SELECT s2,s1 FROM t WHERE s1 > 5 ORDER BY s1

• The CHECK_OPTION column always has a value of NONE.

• The IS_UPDATABLE column is YES if the view is updatable, NO if the view is not updatable.

21.1.16. Other INFORMATION_SCHEMA Tables
We will add more INFORMATION_SCHEMA tables soon. Particularly, we acknowledge the need
for INFORMATION_SCHEMA.PARAMETERS and for INFORMA-
TION_SCHEMA.REFERENTIAL_CONSTRAINTS and for INFORMA-
TION_SCHEMA.TRIGGERS.

21.2. Extensions to SHOW Statements
Some extensions to SHOW statements accompany the implementation of INFORMATION_SCHEMA:

• SHOW can be used to get information about the structure of INFORMATION_SCHEMA itself.

• Several SHOW statements accept a WHERE clause that provides more flexibility in specifying
which rows to display.

These extensions are available beginning with MySQL 5.0.3.

INFORMATION_SCHEMA is an information database, so its name is included in the output from
SHOW DATABASES. Similarly, SHOW TABLES can be used with INFORMATION_SCHEMA to ob-
tain a list of its tables:

mysql> SHOW TABLES FROM INFORMATION_SCHEMA;
+---------------------------------------+
| Tables_in_information_schema |
+---------------------------------------+
| SCHEMATA |
| TABLES |
| COLUMNS |
| CHARACTER_SETS |
| COLLATIONS |
| COLLATION_CHARACTER_SET_APPLICABILITY |
| ROUTINES |
| STATISTICS |
| VIEWS |
| USER_PRIVILEGES |
| SCHEMA_PRIVILEGES |
| TABLE_PRIVILEGES |
| COLUMN_PRIVILEGES |
| TABLE_CONSTRAINTS |
| KEY_COLUMN_USAGE |
+---------------------------------------+

SHOW COLUMNS and DESCRIBE can display information about the columns in individual IN-
FORMATION_SCHEMA tables.

The INFORMATION_SCHEMA Information
Database

956

Several SHOW statement have been extended to allow a WHERE clause:

SHOW CHARACTER SET
SHOW COLLATION
SHOW COLUMNS
SHOW DATABASES
SHOW FUNCTION STATUS
SHOW KEYS
SHOW OPEN TABLES
SHOW PROCEDURE STATUS
SHOW STATUS
SHOW TABLE STATUS
SHOW TABLES
SHOW VARIABLES

The WHERE clause, if present, is evaluated against the column names displayed by the SHOW state-
ment. For example, the SHOW COLLATION statement produces these output columns:

For example, the SHOW CHARACTER SET statement produces these output columns:

mysql> SHOW CHARACTER SET;
+----------+-----------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+----------+-----------------------------+---------------------+--------+
big5	Big5 Traditional Chinese	big5_chinese_ci	2
dec8	DEC West European	dec8_swedish_ci	1
cp850	DOS West European	cp850_general_ci	1
hp8	HP West European	hp8_english_ci	1
koi8r	KOI8-R Relcom Russian	koi8r_general_ci	1
latin1	ISO 8859-1 West European	latin1_swedish_ci	1
latin2	ISO 8859-2 Central European	latin2_general_ci	1
...

To use a WHERE clause with SHOW CHARACTER SET, you would refer to those column names.
As an example, the following statement displays information about character sets for which the de-
fault collation contains the string "japanese":

mysql> SHOW CHARACTER SET WHERE `Default collation` LIKE '%japanese%';
+---------+---------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+---------------------------+---------------------+--------+
ujis	EUC-JP Japanese	ujis_japanese_ci	3
sjis	Shift-JIS Japanese	sjis_japanese_ci	2
cp932	SJIS for Windows Japanese	cp932_japanese_ci	2
eucjpms	UJIS for Windows Japanese	eucjpms_japanese_ci	3
+---------+---------------------------+---------------------+--------+

This statement displays the multi-byte character sets:

mysql> SHOW CHARACTER SET WHERE Maxlen > 1;
+---------+---------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+---------------------------+---------------------+--------+
big5	Big5 Traditional Chinese	big5_chinese_ci	2
ujis	EUC-JP Japanese	ujis_japanese_ci	3
sjis	Shift-JIS Japanese	sjis_japanese_ci	2
euckr	EUC-KR Korean	euckr_korean_ci	2
gb2312	GB2312 Simplified Chinese	gb2312_chinese_ci	2
gbk	GBK Simplified Chinese	gbk_chinese_ci	2
utf8	UTF-8 Unicode	utf8_general_ci	3
ucs2	UCS-2 Unicode	ucs2_general_ci	2
cp932	SJIS for Windows Japanese	cp932_japanese_ci	2
eucjpms	UJIS for Windows Japanese	eucjpms_japanese_ci	3
+---------+---------------------------+---------------------+--------+

The INFORMATION_SCHEMA Information
Database

957

Chapter 22. MySQL APIs
This chapter describes the APIs available for MySQL, where to get them, and how to use them. The
C API is the most extensively covered, because it was developed by the MySQL team, and is the
basis for most of the other APIs.

22.1. MySQL Program Development Utilities
This section describes some utilities that you may find useful when developing MySQL programs.

• msql2mysql

A shell script that converts mSQL programs to MySQL. It doesn't handle every case, but it gives
a good start when converting.

• mysql_config

A shell script that produces the option values needed when compiling MySQL programs.

22.1.1. msql2mysql, Convert mSQL Programs for Use
with MySQL

Initially, the MySQL C API was developed to be very similar to that for the mSQL database system.
Because of this, mSQL programs often can be converted relatively easily for use with MySQL by
changing the names of the C API functions.

The msql2mysql utility performs the conversion of mSQL C API function calls to their MySQL
equivalents. msql2mysql converts the input file in place, so make a copy of the original before con-
verting it. For example, use msql2mysql like this:

shell> cp client-prog.c client-prog.c.orig
shell> msql2mysql client-prog.c
client-prog.c converted

Then examine client-prog.c and make any post-conversion revisions that may be necessary.

msql2mysql uses the replace utility to make the function name substitutions. See Section 8.13,
“The replace String-Replacement Utility”.

22.1.2. mysql_config, Get compile options for compil-
ing clients

mysql_config provides you with useful information for compiling your MySQL client and connect-
ing it to MySQL.

mysql_config supports the following options:

• --cflags

Compiler flags to find include files and critical compiler flags and defines used when compiling
the libmysqlclient library.

• --include

958

Compiler options to find MySQL include files. (Note that normally you would use --cflags
instead of this option.)

• --libmysqld-libs, --embedded

Libraries and options required to link with the MySQL embedded server.

• --libs

Libraries and options required to link with the MySQL client library.

• --libs_r

Libraries and options required to link with the thread-safe MySQL client library.

• --port

The default TCP/IP port number, defined when configuring MySQL.

• --socket

The default Unix socket file, defined when configuring MySQL.

• --version

Version number and version for the MySQL distribution.

If you invoke mysql_config with no options, it displays a list of all options that it supports, and their
values:

shell> mysql_config
Usage: /usr/local/mysql/bin/mysql_config [options]
Options:
--cflags [-I/usr/local/mysql/include/mysql -mcpu=pentiumpro]
--include [-I/usr/local/mysql/include/mysql]
--libs [-L/usr/local/mysql/lib/mysql -lmysqlclient -lz

-lcrypt -lnsl -lm -L/usr/lib -lssl -lcrypto]
--libs_r [-L/usr/local/mysql/lib/mysql -lmysqlclient_r

-lpthread -lz -lcrypt -lnsl -lm -lpthread]
--socket [/tmp/mysql.sock]
--port [3306]
--version [4.0.16]
--libmysqld-libs [-L/usr/local/mysql/lib/mysql -lmysqld -lpthread -lz

-lcrypt -lnsl -lm -lpthread -lrt]

You can use mysql_config within a command line to include the value that it displays for a particu-
lar option. For example, to compile a MySQL client program, use mysql_config as follows:

CFG=/usr/local/mysql/bin/mysql_config
sh -c "gcc -o progname `$CFG --cflags` progname.c `$CFG --libs`"

When you use mysql_config this way, be sure to invoke it within backtick ('`') characters. That tells
the shell to execute it and substitute its output into the surrounding command.

22.2. MySQL C API
The C API code is distributed with MySQL. It is included in the mysqlclient library and allows
C programs to access a database.

Many of the clients in the MySQL source distribution are written in C. If you are looking for ex-
amples that demonstrate how to use the C API, take a look at these clients. You can find these in the

MySQL APIs

959

clients directory in the MySQL source distribution.

Most of the other client APIs (all except Connector/J) use the mysqlclient library to communic-
ate with the MySQL server. This means that, for example, you can take advantage of many of the
same environment variables that are used by other client programs, because they are referenced
from the library. See Chapter 8, MySQL Client and Utility Programs, for a list of these variables.

The client has a maximum communication buffer size. The size of the buffer that is allocated ini-
tially (16KB) is automatically increased up to the maximum size (the maximum is 16MB). Because
buffer sizes are increased only as demand warrants, simply increasing the default maximum limit
does not in itself cause more resources to be used. This size check is mostly a check for erroneous
queries and communication packets.

The communication buffer must be large enough to contain a single SQL statement (for client-
to-server traffic) and one row of returned data (for server-to-client traffic). Each thread's communic-
ation buffer is dynamically enlarged to handle any query or row up to the maximum limit. For ex-
ample, if you have BLOB values that contain up to 16MB of data, you must have a communication
buffer limit of at least 16MB (in both server and client). The client's default maximum is 16MB, but
the default maximum in the server is 1MB. You can increase this by changing the value of the
max_allowed_packet parameter when the server is started. See Section 7.5.2, “Tuning Server
Parameters”.

The MySQL server shrinks each communication buffer to net_buffer_length bytes after each
query. For clients, the size of the buffer associated with a connection is not decreased until the con-
nection is closed, at which time client memory is reclaimed.

For programming with threads, see Section 22.2.15, “How to Make a Threaded Client”. For creating
a standalone application which includes the "server" and "client" in the same program (and does not
communicate with an external MySQL server), see Section 22.2.16, “libmysqld, the Embedded
MySQL Server Library”.

22.2.1. C API Data types

• MYSQL

This structure represents a handle to one database connection. It is used for almost all MySQL
functions.

• MYSQL_RES

This structure represents the result of a query that returns rows (SELECT, SHOW, DESCRIBE,
EXPLAIN). The information returned from a query is called the result set in the remainder of
this section.

• MYSQL_ROW

This is a type-safe representation of one row of data. It is currently implemented as an array of
counted byte strings. (You cannot treat these as null-terminated strings if field values may con-
tain binary data, because such values may contain null bytes internally.) Rows are obtained by
calling mysql_fetch_row().

• MYSQL_FIELD

This structure contains information about a field, such as the field's name, type, and size. Its
members are described in more detail here. You may obtain the MYSQL_FIELD structures for
each field by calling mysql_fetch_field() repeatedly. Field values are not part of this
structure; they are contained in a MYSQL_ROW structure.

• MYSQL_FIELD_OFFSET

MySQL APIs

960

This is a type-safe representation of an offset into a MySQL field list. (Used by
mysql_field_seek().) Offsets are field numbers within a row, beginning at zero.

• my_ulonglong

The type used for the number of rows and for mysql_affected_rows(),
mysql_num_rows(), and mysql_insert_id(). This type provides a range of 0 to
1.84e19.

On some systems, attempting to print a value of type my_ulonglong does not work. To print
such a value, convert it to unsigned long and use a %lu print format. Example:

printf ("Number of rows: %lu\n", (unsigned long) mysql_num_rows(result));

The MYSQL_FIELD structure contains the members listed here:

• char * name

The name of the field, as a null-terminated string.

• char * table

The name of the table containing this field, if it isn't a calculated field. For calculated fields, the
table value is an empty string.

• char * def

The default value of this field, as a null-terminated string. This is set only if you use
mysql_list_fields().

• enum enum_field_types type

The type of the field. The type value may be one of the following:

Type Value Type Description

FIELD_TYPE_TINY TINYINT field

FIELD_TYPE_SHORT SMALLINT field

FIELD_TYPE_LONG INTEGER field

FIELD_TYPE_INT24 MEDIUMINT field

FIELD_TYPE_LONGLONG BIGINT field

FIELD_TYPE_DECIMAL DECIMAL or NUMERIC field

FIELD_TYPE_FLOAT FLOAT field

FIELD_TYPE_DOUBLE DOUBLE or REAL field

FIELD_TYPE_TIMESTAMP TIMESTAMP field

FIELD_TYPE_DATE DATE field

FIELD_TYPE_TIME TIME field

FIELD_TYPE_DATETIME DATETIME field

FIELD_TYPE_YEAR YEAR field

FIELD_TYPE_STRING CHAR field

FIELD_TYPE_VAR_STRING VARCHAR field

FIELD_TYPE_BLOB BLOB or TEXT field (use max_length to determine
the maximum length)

MySQL APIs

961

FIELD_TYPE_SET SET field

FIELD_TYPE_ENUM ENUM field

FIELD_TYPE_NULL NULL-type field

FIELD_TYPE_CHAR Deprecated; use FIELD_TYPE_TINY instead

You can use the IS_NUM() macro to test whether a field has a numeric type. Pass the type
value to IS_NUM() and it evaluates to TRUE if the field is numeric:

if (IS_NUM(field->type))
printf("Field is numeric\n");

• unsigned int length

The width of the field, as specified in the table definition.

• unsigned int max_length

The maximum width of the field for the result set (the length of the longest field value for the
rows actually in the result set). If you use mysql_store_result() or
mysql_list_fields(), this contains the maximum length for the field. If you use
mysql_use_result(), the value of this variable is zero.

• unsigned int flags

Different bit-flags for the field. The flags value may have zero or more of the following bits
set:

Flag Value Flag Description

NOT_NULL_FLAG Field can't be NULL

PRI_KEY_FLAG Field is part of a primary key

UNIQUE_KEY_FLAG Field is part of a unique key

MULTIPLE_KEY_FLAG Field is part of a non-unique key

UNSIGNED_FLAG Field has the UNSIGNED attribute

ZEROFILL_FLAG Field has the ZEROFILL attribute

BINARY_FLAG Field has the BINARY attribute

AUTO_INCREMENT_FLAG Field has the AUTO_INCREMENT attribute

ENUM_FLAG Field is an ENUM (deprecated)

SET_FLAG Field is a SET (deprecated)

BLOB_FLAG Field is a BLOB or TEXT (deprecated)

TIMESTAMP_FLAG Field is a TIMESTAMP (deprecated)

Use of the BLOB_FLAG, ENUM_FLAG, SET_FLAG, and TIMESTAMP_FLAG flags is deprec-
ated because they indicate the type of a field rather than an attribute of its type. It is preferable to
test field->type against FIELD_TYPE_BLOB, FIELD_TYPE_ENUM,
FIELD_TYPE_SET, or FIELD_TYPE_TIMESTAMP instead.

The following example illustrates a typical use of the flags value:

if (field->flags & NOT_NULL_FLAG)
printf("Field can't be null\n");

MySQL APIs

962

You may use the following convenience macros to determine the boolean status of the flags
value:

Flag Status Description

IS_NOT_NULL(flags
)

True if this field is defined as NOT NULL

IS_PRI_KEY(flags) True if this field is a primary key

IS_BLOB(flags) True if this field is a BLOB or TEXT (deprecated; test field-
>type instead)

• unsigned int decimals

The number of decimals for numeric fields.

22.2.2. C API Function Overview
The functions available in the C API are summarized here and described in greater detail in a later
section. See Section 22.2.3, “C API Function Descriptions”.

Function Description

mysql_affected_rows() Returns the number of rows changed/deleted/inserted by the last
UPDATE, DELETE, or INSERT query.

mysql_change_user() Changes user and database on an open connection.

mysql_charset_name() Returns the name of the default character set for the connection.

mysql_close() Closes a server connection.

mysql_connect() Connects to a MySQL server. This function is deprecated; use
mysql_real_connect() instead.

mysql_create_db() Creates a database. This function is deprecated; use the SQL state-
ment CREATE DATABASE instead.

mysql_data_seek() Seeks to an arbitrary row number in a query result set.

mysql_debug() Does a DBUG_PUSH with the given string.

mysql_drop_db() Drops a database. This function is deprecated; use the SQL state-
ment DROP DATABASE instead.

mysql_dump_debug_info() Makes the server write debug information to the log.

mysql_eof() Determines whether the last row of a result set has been read. This
function is deprecated; mysql_errno() or mysql_error()
may be used instead.

mysql_errno() Returns the error number for the most recently invoked MySQL
function.

mysql_error() Returns the error message for the most recently invoked MySQL
function.

mysql_escape_string() Escapes special characters in a string for use in an SQL statement.

mysql_fetch_field() Returns the type of the next table field.

mysql_fetch_field_direct() Returns the type of a table field, given a field number.

mysql_fetch_fields() Returns an array of all field structures.

mysql_fetch_lengths() Returns the lengths of all columns in the current row.

mysql_fetch_row() Fetches the next row from the result set.

mysql_field_seek() Puts the column cursor on a specified column.

mysql_field_count() Returns the number of result columns for the most recent state-

MySQL APIs

963

ment.

mysql_field_tell() Returns the position of the field cursor used for the last
mysql_fetch_field().

mysql_free_result() Frees memory used by a result set.

mysql_get_client_info() Returns client version information as a string.

mysql_get_client_version() Returns client version information as an integer.

mysql_get_host_info() Returns a string describing the connection.

mysql_get_server_version() Returns version number of server as an integer (new in 4.1).

mysql_get_proto_info() Returns the protocol version used by the connection.

mysql_get_server_info() Returns the server version number.

mysql_info() Returns information about the most recently executed query.

mysql_init() Gets or initializes a MYSQL structure.

mysql_insert_id() Returns the ID generated for an AUTO_INCREMENT column by
the previous query.

mysql_kill() Kills a given thread.

mysql_library_end() Finalize MySQL C API library.

mysql_library_init() Initialize MySQL C API library.

mysql_list_dbs() Returns database names matching a simple regular expression.

mysql_list_fields() Returns field names matching a simple regular expression.

mysql_list_processes() Returns a list of the current server threads.

mysql_list_tables() Returns table names matching a simple regular expression.

mysql_num_fields() Returns the number of columns in a result set.

mysql_num_rows() Returns the number of rows in a result set.

mysql_options() Sets connect options for mysql_connect().

mysql_ping() Checks whether the connection to the server is working, reconnect-
ing as necessary.

mysql_query() Executes an SQL query specified as a null-terminated string.

mysql_real_connect() Connects to a MySQL server.

mysql_real_escape_string() Escapes special characters in a string for use in an SQL statement,
taking into account the current charset of the connection.

mysql_real_query() Executes an SQL query specified as a counted string.

mysql_reload() Tells the server to reload the grant tables.

mysql_row_seek() Seeks to a row offset in a result set, using value returned from
mysql_row_tell().

mysql_row_tell() Returns the row cursor position.

mysql_select_db() Selects a database.

mysql_server_end() Finalize embedded server library.

mysql_server_init() Initialize embedded server library.

mysql_set_server_option() Sets an option for the connection (like multi-statements).

mysql_sqlstate() Returns the SQLSTATE error code for the last error.

mysql_shutdown() Shuts down the database server.

mysql_stat() Returns the server status as a string.

mysql_store_result() Retrieves a complete result set to the client.

mysql_thread_id() Returns the current thread ID.

mysql_thread_safe() Returns 1 if the clients are compiled as thread-safe.

mysql_use_result() Initiates a row-by-row result set retrieval.

MySQL APIs

964

mysql_warning_count() Returns the warning count for the previous SQL statement.

mysql_commit() Commits the transaction.

mysql_rollback() Rolls back the transaction.

mysql_autocommit() Toggles autocommit mode on/off.

mysql_more_results() Checks whether any more results exist.

mysql_next_result() Returns/initiates the next result in multiple-statement executions.

Application programs should use this general outline for interacting with MySQL:

1. Initialize the MySQL library by calling mysql_library_init(). The library can be either
the mysqlclient C client library or the mysqld embedded server library, depending on
whether the application was linked with the -libmysqlclient or -libmysqld flag.

2. Open a connection to the MySQL server by calling mysql_init().

3. Issue SQL statements and process their results. (The following discussion provides more in-
formation about how to do this.)

4. Close the connection to the MySQL server by calling mysql_close().

5. End use of the MySQL library by calling mysql_library_end().

The purpose of calling mysql_library_init() and mysql_library_end() is to provide
proper initialization and finalization of the MySQL library. For applications that are linked with the
client library, they provide improved memory management. If you don't use these functions, a block
of memory remains allocated. (This does not increase the amount of memory used by the applica-
tion, but some memory leak detectors will complain about it.) For applications that are linked with
the embedded server, these calls start and stop the server.

mysql_library_init() and mysql_library_end() are available as of MySQL 4.1.10
and 5.0.3. These actually are #define symbols that make them equivalent to
mysql_server_init() and mysql_server_end(), but the names more clearly indicate
that they should be called when beginning and ending use of a MySQL library no matter whether
the application uses the mysqlclient or mysqld library. For older versions of MySQL, you can
call mysql_server_init() and mysql_server_end() instead.

To connect to the server, call mysql_init() to initialize a connection handler, then call
mysql_real_connect() with that handler (along with other information such as the hostname,
username, and password). Upon connection, mysql_real_connect() sets the reconnect
flag (part of the MYSQL structure) to a value of 1 in versions of the API strictly older than 5.0.3, of
0 in newer versions. A value of 1 for this flag indicates, in the event that a query cannot be per-
formed because of a lost connection, to try reconnecting to the server before giving up. When you
are done with the connection, call mysql_close() to terminate it.

While a connection is active, the client may send SQL queries to the server using
mysql_query() or mysql_real_query(). The difference between the two is that
mysql_query() expects the query to be specified as a null-terminated string whereas
mysql_real_query() expects a counted string. If the string contains binary data (which may
include null bytes), you must use mysql_real_query().

For each non-SELECT query (for example, INSERT, UPDATE, DELETE), you can find out how
many rows were changed (affected) by calling mysql_affected_rows().

For SELECT queries, you retrieve the selected rows as a result set. (Note that some statements are
SELECT-like in that they return rows. These include SHOW, DESCRIBE, and EXPLAIN. They
should be treated the same way as SELECT statements.)

There are two ways for a client to process result sets. One way is to retrieve the entire result set all at

MySQL APIs

965

once by calling mysql_store_result(). This function acquires from the server all the rows
returned by the query and stores them in the client. The second way is for the client to initiate a row-
by-row result set retrieval by calling mysql_use_result(). This function initializes the retriev-
al, but does not actually get any rows from the server.

In both cases, you access rows by calling mysql_fetch_row(). With
mysql_store_result(), mysql_fetch_row() accesses rows that have previously been
fetched from the server. With mysql_use_result(), mysql_fetch_row() actually re-
trieves the row from the server. Information about the size of the data in each row is available by
calling mysql_fetch_lengths().

After you are done with a result set, call mysql_free_result() to free the memory used for it.

The two retrieval mechanisms are complementary. Client programs should choose the approach that
is most appropriate for their requirements. In practice, clients tend to use
mysql_store_result() more commonly.

An advantage of mysql_store_result() is that because the rows have all been fetched to the
client, you not only can access rows sequentially, you can move back and forth in the result set us-
ing mysql_data_seek() or mysql_row_seek() to change the current row position within
the result set. You can also find out how many rows there are by calling mysql_num_rows(). On
the other hand, the memory requirements for mysql_store_result() may be very high for
large result sets and you are more likely to encounter out-of-memory conditions.

An advantage of mysql_use_result() is that the client requires less memory for the result set
because it maintains only one row at a time (and because there is less allocation overhead,
mysql_use_result() can be faster). Disadvantages are that you must process each row quickly
to avoid tying up the server, you don't have random access to rows within the result set (you can
only access rows sequentially), and you don't know how many rows are in the result set until you
have retrieved them all. Furthermore, you must retrieve all the rows even if you determine in mid-
retrieval that you've found the information you were looking for.

The API makes it possible for clients to respond appropriately to queries (retrieving rows only as ne-
cessary) without knowing whether or not the query is a SELECT. You can do this by calling
mysql_store_result() after each mysql_query() (or mysql_real_query()). If the
result set call succeeds, the query was a SELECT and you can read the rows. If the result set call
fails, call mysql_field_count() to determine whether a result was actually to be expected. If
mysql_field_count() returns zero, the query returned no data (indicating that it was an IN-
SERT, UPDATE, DELETE, etc.), and was not expected to return rows. If
mysql_field_count() is non-zero, the query should have returned rows, but didn't. This indic-
ates that the query was a SELECT that failed. See the description for mysql_field_count()
for an example of how this can be done.

Both mysql_store_result() and mysql_use_result() allow you to obtain information
about the fields that make up the result set (the number of fields, their names and types, etc.). You
can access field information sequentially within the row by calling mysql_fetch_field() re-
peatedly, or by field number within the row by calling mysql_fetch_field_direct(). The
current field cursor position may be changed by calling mysql_field_seek(). Setting the field
cursor affects subsequent calls to mysql_fetch_field(). You can also get information for
fields all at once by calling mysql_fetch_fields().

For detecting and reporting errors, MySQL provides access to error information by means of the
mysql_errno() and mysql_error() functions. These return the error code or error message
for the most recently invoked function that can succeed or fail, allowing you to determine when an
error occurred and what it was.

22.2.3. C API Function Descriptions
In the descriptions here, a parameter or return value of NULL means NULL in the sense of the C pro-
gramming language, not a MySQL NULL value.

Functions that return a value generally return a pointer or an integer. Unless specified otherwise,

MySQL APIs

966

functions returning a pointer return a non-NULL value to indicate success or a NULL value to indic-
ate an error, and functions returning an integer return zero to indicate success or non-zero to indicate
an error. Note that ``non-zero'' means just that. Unless the function description says otherwise, do
not test against a value other than zero:

if (result) /* correct */
... error ...

if (result < 0) /* incorrect */
... error ...

if (result == -1) /* incorrect */
... error ...

When a function returns an error, the Errors subsection of the function description lists the possible
types of errors. You can find out which of these occurred by calling mysql_errno(). A string
representation of the error may be obtained by calling mysql_error().

22.2.3.1. mysql_affected_rows()

my_ulonglong mysql_affected_rows(MYSQL *mysql)

Description

Returns the number of rows changed by the last UPDATE, deleted by the last DELETE or inserted by
the last INSERT statement. May be called immediately after mysql_query() for UPDATE, DE-
LETE, or INSERT statements. For SELECT statements, mysql_affected_rows() works like
mysql_num_rows().

Return Values

An integer greater than zero indicates the number of rows affected or retrieved. Zero indicates that
no records were updated for an UPDATE statement, no rows matched the WHERE clause in the query
or that no query has yet been executed. #1 indicates that the query returned an error or that, for a
SELECT query, mysql_affected_rows() was called prior to calling
mysql_store_result(). Because mysql_affected_rows() returns an unsigned value,
you can check for #1 by comparing the return value to (my_ulonglong)-1 (or to
(my_ulonglong)~0, which is equivalent).

Errors

None.

Example

mysql_query(&mysql,"UPDATE products SET cost=cost*1.25 WHERE group=10");
printf("%ld products updated",(long) mysql_affected_rows(&mysql));

If you specify the flag CLIENT_FOUND_ROWS when connecting to mysqld,
mysql_affected_rows() returns the number of rows matched by the WHERE statement for
UPDATE statements.

Note that when you use a REPLACE command, mysql_affected_rows() returns 2 if the new
row replaced an old row. This is because in this case one row was inserted after the duplicate was
deleted.

If you use INSERT ... ON DUPLICATE KEY UPDATE to insert a row,
mysql_affected_rows() returns 1 if the row is inserted as a new row and 2 if an existing row
is updated.

22.2.3.2. mysql_change_user()

my_bool mysql_change_user(MYSQL *mysql, const char *user, const
char *password, const char *db)

MySQL APIs

967

Description

Changes the user and causes the database specified by db to become the default (current) database
on the connection specified by mysql. In subsequent queries, this database is the default for table
references that do not include an explicit database specifier.

This function was introduced in MySQL 3.23.3.

mysql_change_user() fails if the connected user cannot be authenticated or doesn't have per-
mission to use the database. In this case the user and database are not changed

The db parameter may be set to NULL if you don't want to have a default database.

Starting from MySQL 4.0.6 this command always performs a ROLLBACK of any active transac-
tions, closes all temporary tables, unlocks all locked tables and resets the state as if one had done a
new connect. This happens even if the user didn't change.

Return Values

Zero for success. Non-zero if an error occurred.

Errors

The same that you can get from mysql_real_connect().

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

• ER_UNKNOWN_COM_ERROR

The MySQL server doesn't implement this command (probably an old server).

• ER_ACCESS_DENIED_ERROR

The user or password was wrong.

• ER_BAD_DB_ERROR

The database didn't exist.

• ER_DBACCESS_DENIED_ERROR

The user did not have access rights to the database.

• ER_WRONG_DB_NAME

The database name was too long.

Example

MySQL APIs

968

if (mysql_change_user(&mysql, "user", "password", "new_database"))
{

fprintf(stderr, "Failed to change user. Error: %s\n",
mysql_error(&mysql));

}

22.2.3.3. mysql_character_set_name()

const char *mysql_character_set_name(MYSQL *mysql)

Description

Returns the default character set for the current connection.

Return Values

The default character set

Errors

None.

22.2.3.4. mysql_close()

void mysql_close(MYSQL *mysql)

Description

Closes a previously opened connection. mysql_close() also deallocates the connection handle
pointed to by mysql if the handle was allocated automatically by mysql_init() or
mysql_connect().

Return Values

None.

Errors

None.

22.2.3.5. mysql_connect()

MYSQL *mysql_connect(MYSQL *mysql, const char *host, const char
*user, const char *passwd)

Description

This function is deprecated. It is preferable to use mysql_real_connect() instead.

mysql_connect() attempts to establish a connection to a MySQL database engine running on
host. mysql_connect() must complete successfully before you can execute any of the other
API functions, with the exception of mysql_get_client_info().

The meanings of the parameters are the same as for the corresponding parameters for
mysql_real_connect() with the difference that the connection parameter may be NULL. In
this case the C API allocates memory for the connection structure automatically and frees it when
you call mysql_close(). The disadvantage of this approach is that you can't retrieve an error
message if the connection fails. (To get error information from mysql_errno() or
mysql_error(), you must provide a valid MYSQL pointer.)

Return Values

MySQL APIs

969

Same as for mysql_real_connect().

Errors

Same as for mysql_real_connect().

22.2.3.6. mysql_create_db()

int mysql_create_db(MYSQL *mysql, const char *db)

Description

Creates the database named by the db parameter.

This function is deprecated. It is preferable to use mysql_query() to issue an SQL CREATE
DATABASE statement instead.

Return Values

Zero if the database was created successfully. Non-zero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

if(mysql_create_db(&mysql, "my_database"))
{

fprintf(stderr, "Failed to create new database. Error: %s\n",
mysql_error(&mysql));

}

22.2.3.7. mysql_data_seek()

void mysql_data_seek(MYSQL_RES *result, my_ulonglong offset)

Description

Seeks to an arbitrary row in a query result set. The offset value is a row number and should be in
the range from 0 to mysql_num_rows(result)-1.

This function requires that the result set structure contains the entire result of the query, so
mysql_data_seek() may be used only in conjunction with mysql_store_result(), not
with mysql_use_result().

Return Values

MySQL APIs

970

None.

Errors

None.

22.2.3.8. mysql_debug()

void mysql_debug(const char *debug)

Description

Does a DBUG_PUSH with the given string. mysql_debug() uses the Fred Fish debug library. To
use this function, you must compile the client library to support debugging. See Section E.1,
“Debugging a MySQL Server”. See Section E.2, “Debugging a MySQL Client”.

Return Values

None.

Errors

None.

Example

The call shown here causes the client library to generate a trace file in /tmp/client.trace on
the client machine:

mysql_debug("d:t:O,/tmp/client.trace");

22.2.3.9. mysql_drop_db()

int mysql_drop_db(MYSQL *mysql, const char *db)

Description

Drops the database named by the db parameter.

This function is deprecated. It is preferable to use mysql_query() to issue an SQL DROP
DATABASE statement instead.

Return Values

Zero if the database was dropped successfully. Non-zero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

MySQL APIs

971

An unknown error occurred.

Example

if(mysql_drop_db(&mysql, "my_database"))
fprintf(stderr, "Failed to drop the database: Error: %s\n",

mysql_error(&mysql));

22.2.3.10. mysql_dump_debug_info()

int mysql_dump_debug_info(MYSQL *mysql)

Description

Instructs the server to write some debug information to the log. For this to work, the connected user
must have the SUPER privilege.

Return Values

Zero if the command was successful. Non-zero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

22.2.3.11. mysql_eof()

my_bool mysql_eof(MYSQL_RES *result)

Description

This function is deprecated. mysql_errno() or mysql_error() may be used instead.

mysql_eof() determines whether the last row of a result set has been read.

If you acquire a result set from a successful call to mysql_store_result(), the client receives
the entire set in one operation. In this case, a NULL return from mysql_fetch_row() always
means the end of the result set has been reached and it is unnecessary to call mysql_eof(). When
used with mysql_store_result(), mysql_eof() always returns true.

On the other hand, if you use mysql_use_result() to initiate a result set retrieval, the rows of
the set are obtained from the server one by one as you call mysql_fetch_row() repeatedly. Be-
cause an error may occur on the connection during this process, a NULL return value from
mysql_fetch_row() does not necessarily mean the end of the result set was reached normally.
In this case, you can use mysql_eof() to determine what happened. mysql_eof() returns a

MySQL APIs

972

non-zero value if the end of the result set was reached and zero if an error occurred.

Historically, mysql_eof() predates the standard MySQL error functions mysql_errno() and
mysql_error(). Because those error functions provide the same information, their use is pre-
ferred over mysql_eof(), which is deprecated. (In fact, they provide more information, because
mysql_eof() returns only a boolean value whereas the error functions indicate a reason for the
error when one occurs.)

Return Values

Zero if no error occurred. Non-zero if the end of the result set has been reached.

Errors

None.

Example

The following example shows how you might use mysql_eof():

mysql_query(&mysql,"SELECT * FROM some_table");
result = mysql_use_result(&mysql);
while((row = mysql_fetch_row(result)))
{

// do something with data
}
if(!mysql_eof(result)) // mysql_fetch_row() failed due to an error
{

fprintf(stderr, "Error: %s\n", mysql_error(&mysql));
}

However, you can achieve the same effect with the standard MySQL error functions:

mysql_query(&mysql,"SELECT * FROM some_table");
result = mysql_use_result(&mysql);
while((row = mysql_fetch_row(result)))
{

// do something with data
}
if(mysql_errno(&mysql)) // mysql_fetch_row() failed due to an error
{

fprintf(stderr, "Error: %s\n", mysql_error(&mysql));
}

22.2.3.12. mysql_errno()

unsigned int mysql_errno(MYSQL *mysql)

Description

For the connection specified by mysql, mysql_errno() returns the error code for the most re-
cently invoked API function that can succeed or fail. A return value of zero means that no error oc-
curred. Client error message numbers are listed in the MySQL errmsg.h header file. Server error
message numbers are listed in mysqld_error.h. In the MySQL source distribution you can find
a complete list of error messages and error numbers in the file Docs/mysqld_error.txt. The
server error codes also are listed at Chapter 24, Error Handling in MySQL.

Note that some functions like mysql_fetch_row() don't set mysql_errno() if they suc-
ceed.

A rule of thumb is that all functions that have to ask the server for information reset
mysql_errno() if they succeed.

Return Values

MySQL APIs

973

An error code value for the last mysql_xxx() call, if it failed. zero means no error occurred.

Errors

None.

22.2.3.13. mysql_error()

const char *mysql_error(MYSQL *mysql)

Description

For the connection specified by mysql, mysql_error() returns a null-terminated string con-
taining the error message for the most recently invoked API function that failed. If a function didn't
fail, the return value of mysql_error() may be the previous error or an empty string to indicate
no error.

A rule of thumb is that all functions that have to ask the server for information reset
mysql_error() if they succeed.

For functions that reset mysql_errno(), the following two tests are equivalent:

if(mysql_errno(&mysql))
{

// an error occurred
}
if(mysql_error(&mysql)[0] != '\0')
{

// an error occurred
}

The language of the client error messages may be changed by recompiling the MySQL client lib-
rary. Currently you can choose error messages in several different languages. See Section 5.8.2,
“Setting the Error Message Language”.

Return Values

A null-terminated character string that describes the error. An empty string if no error occurred.

Errors

None.

22.2.3.14. mysql_escape_string()

You should use mysql_real_escape_string() instead!

This function is identical to mysql_real_escape_string() except that
mysql_real_escape_string() takes a connection handler as its first argument and escapes
the string according to the current character set. mysql_escape_string() does not take a con-
nection argument and does not respect the current charset setting.

22.2.3.15. mysql_fetch_field()

MYSQL_FIELD *mysql_fetch_field(MYSQL_RES *result)

Description

Returns the definition of one column of a result set as a MYSQL_FIELD structure. Call this function
repeatedly to retrieve information about all columns in the result set. mysql_fetch_field()
returns NULL when no more fields are left.

MySQL APIs

974

mysql_fetch_field() is reset to return information about the first field each time you execute
a new SELECT query. The field returned by mysql_fetch_field() is also affected by calls to
mysql_field_seek().

If you've called mysql_query() to perform a SELECT on a table but have not called
mysql_store_result(), MySQL returns the default blob length (8KB) if you call
mysql_fetch_field() to ask for the length of a BLOB field. (The 8KB size is chosen because
MySQL doesn't know the maximum length for the BLOB. This should be made configurable some-
time.) Once you've retrieved the result set, field->max_length contains the length of the
largest value for this column in the specific query.

Return Values

The MYSQL_FIELD structure for the current column. NULL if no columns are left.

Errors

None.

Example

MYSQL_FIELD *field;
while((field = mysql_fetch_field(result)))
{

printf("field name %s\n", field->name);
}

22.2.3.16. mysql_fetch_fields()

MYSQL_FIELD *mysql_fetch_fields(MYSQL_RES *result)

Description

Returns an array of all MYSQL_FIELD structures for a result set. Each structure provides the field
definition for one column of the result set.

Return Values

An array of MYSQL_FIELD structures for all columns of a result set.

Errors

None.

Example

unsigned int num_fields;
unsigned int i;
MYSQL_FIELD *fields;
num_fields = mysql_num_fields(result);
fields = mysql_fetch_fields(result);
for(i = 0; i < num_fields; i++)
{

printf("Field %u is %s\n", i, fields[i].name);
}

22.2.3.17. mysql_fetch_field_direct()

MYSQL_FIELD *mysql_fetch_field_direct(MYSQL_RES *result, unsigned
int fieldnr)

Description

MySQL APIs

975

Given a field number fieldnr for a column within a result set, returns that column's field defini-
tion as a MYSQL_FIELD structure. You may use this function to retrieve the definition for an arbit-
rary column. The value of fieldnr should be in the range from 0 to
mysql_num_fields(result)-1.

Return Values

The MYSQL_FIELD structure for the specified column.

Errors

None.

Example

unsigned int num_fields;
unsigned int i;
MYSQL_FIELD *field;
num_fields = mysql_num_fields(result);
for(i = 0; i < num_fields; i++)
{

field = mysql_fetch_field_direct(result, i);
printf("Field %u is %s\n", i, field->name);

}

22.2.3.18. mysql_fetch_lengths()

unsigned long *mysql_fetch_lengths(MYSQL_RES *result)

Description

Returns the lengths of the columns of the current row within a result set. If you plan to copy field
values, this length information is also useful for optimization, because you can avoid calling
strlen(). In addition, if the result set contains binary data, you must use this function to determ-
ine the size of the data, because strlen() returns incorrect results for any field containing null
characters.

The length for empty columns and for columns containing NULL values is zero. To see how to dis-
tinguish these two cases, see the description for mysql_fetch_row().

Return Values

An array of unsigned long integers representing the size of each column (not including any terminat-
ing null characters). NULL if an error occurred.

Errors

mysql_fetch_lengths() is valid only for the current row of the result set. It returns NULL if
you call it before calling mysql_fetch_row() or after retrieving all rows in the result.

Example

MYSQL_ROW row;
unsigned long *lengths;
unsigned int num_fields;
unsigned int i;
row = mysql_fetch_row(result);
if (row)
{

num_fields = mysql_num_fields(result);
lengths = mysql_fetch_lengths(result);
for(i = 0; i < num_fields; i++)
{

printf("Column %u is %lu bytes in length.\n", i, lengths[i]);

MySQL APIs

976

}
}

22.2.3.19. mysql_fetch_row()

MYSQL_ROW mysql_fetch_row(MYSQL_RES *result)

Description

Retrieves the next row of a result set. When used after mysql_store_result(),
mysql_fetch_row() returns NULL when there are no more rows to retrieve. When used after
mysql_use_result(), mysql_fetch_row() returns NULL when there are no more rows to
retrieve or if an error occurred.

The number of values in the row is given by mysql_num_fields(result). If row holds the
return value from a call to mysql_fetch_row(), pointers to the values are accessed as row[0]
to row[mysql_num_fields(result)-1]. NULL values in the row are indicated by NULL
pointers.

The lengths of the field values in the row may be obtained by calling
mysql_fetch_lengths(). Empty fields and fields containing NULL both have length 0; you
can distinguish these by checking the pointer for the field value. If the pointer is NULL, the field is
NULL; otherwise, the field is empty.

Return Values

A MYSQL_ROW structure for the next row. NULL if there are no more rows to retrieve or if an error
occurred.

Errors

Note that error is not reset between calls to mysql_fetch_row()

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

MYSQL_ROW row;
unsigned int num_fields;
unsigned int i;
num_fields = mysql_num_fields(result);
while ((row = mysql_fetch_row(result)))
{

unsigned long *lengths;
lengths = mysql_fetch_lengths(result);
for(i = 0; i < num_fields; i++)
{

printf("[%.*s] ", (int) lengths[i], row[i] ? row[i] : "NULL");
}
printf("\n");

}

22.2.3.20. mysql_field_count()

unsigned int mysql_field_count(MYSQL *mysql)

MySQL APIs

977

If you are using a version of MySQL earlier than Version 3.22.24, you should use unsigned int
mysql_num_fields(MYSQL *mysql) instead.

Description

Returns the number of columns for the most recent query on the connection.

The normal use of this function is when mysql_store_result() returned NULL (and thus you
have no result set pointer). In this case, you can call mysql_field_count() to determine
whether mysql_store_result() should have produced a non-empty result. This allows the
client program to take proper action without knowing whether the query was a SELECT (or SE-
LECT-like) statement. The example shown here illustrates how this may be done.

See Section 22.2.13.1, “Why mysql_store_result() Sometimes Returns NULL After
mysql_query() Returns Success”.

Return Values

An unsigned integer representing the number of columns in a result set.

Errors

None.

Example

MYSQL_RES *result;
unsigned int num_fields;
unsigned int num_rows;
if (mysql_query(&mysql,query_string))
{

// error
}
else // query succeeded, process any data returned by it
{

result = mysql_store_result(&mysql);
if (result) // there are rows
{

num_fields = mysql_num_fields(result);
// retrieve rows, then call mysql_free_result(result)

}
else // mysql_store_result() returned nothing; should it have?
{

if(mysql_field_count(&mysql) == 0)
{

// query does not return data
// (it was not a SELECT)
num_rows = mysql_affected_rows(&mysql);

}
else // mysql_store_result() should have returned data
{

fprintf(stderr, "Error: %s\n", mysql_error(&mysql));
}

}
}

An alternative is to replace the mysql_field_count(&mysql) call with
mysql_errno(&mysql). In this case, you are checking directly for an error from
mysql_store_result() rather than inferring from the value of mysql_field_count()
whether the statement was a SELECT.

22.2.3.21. mysql_field_seek()

MYSQL_FIELD_OFFSET mysql_field_seek(MYSQL_RES *result,
MYSQL_FIELD_OFFSET offset)

MySQL APIs

978

Description

Sets the field cursor to the given offset. The next call to mysql_fetch_field() retrieves the
field definition of the column associated with that offset.

To seek to the beginning of a row, pass an offset value of zero.

Return Values

The previous value of the field cursor.

Errors

None.

22.2.3.22. mysql_field_tell()

MYSQL_FIELD_OFFSET mysql_field_tell(MYSQL_RES *result)

Description

Returns the position of the field cursor used for the last mysql_fetch_field(). This value can
be used as an argument to mysql_field_seek().

Return Values

The current offset of the field cursor.

Errors

None.

22.2.3.23. mysql_free_result()

void mysql_free_result(MYSQL_RES *result)

Description

Frees the memory allocated for a result set by mysql_store_result(),
mysql_use_result(), mysql_list_dbs(), etc. When you are done with a result set, you
must free the memory it uses by calling mysql_free_result().

Do not attempt to access a result set after freeing it.

Return Values

None.

Errors

None.

22.2.3.24. mysql_get_client_info()

char *mysql_get_client_info(void)

Description

Returns a string that represents the client library version.

Return Values

A character string that represents the MySQL client library version.

MySQL APIs

979

Errors

None.

22.2.3.25. mysql_get_client_version()

unsigned long mysql_get_client_version(void)

Description

Returns an integer that represents the client library version. The value has the format XYYZZ where
X is the major version, YY is the release level, and ZZ is the version number within the release level.
For example, a value of 40102 represents a client library version of 4.1.2.

This function was added in MySQL 4.0.16.

Return Values

An integer that represents the MySQL client library version.

Errors

None.

22.2.3.26. mysql_get_host_info()

char *mysql_get_host_info(MYSQL *mysql)

Description

Returns a string describing the type of connection in use, including the server hostname.

Return Values

A character string representing the server hostname and the connection type.

Errors

None.

22.2.3.27. mysql_get_proto_info()

unsigned int mysql_get_proto_info(MYSQL *mysql)

Description

Returns the protocol version used by current connection.

Return Values

An unsigned integer representing the protocol version used by the current connection.

Errors

None.

22.2.3.28. mysql_get_server_info()

char *mysql_get_server_info(MYSQL *mysql)

Description

Returns a string that represents the server version number.

MySQL APIs

980

Return Values

A character string that represents the server version number.

Errors

None.

22.2.3.29. mysql_get_server_version()

unsigned long mysql_get_server_version(MYSQL *mysql)

Description

Returns the version number of the server as an integer.

This function was added in MySQL 4.1.0.

Return Values

A number that represents the MySQL server version in this format:

major_version*10000 + minor_version *100 + sub_version

For example, 4.1.2 is returned as 40102.

This function is useful in client programs for quickly determining whether some version-specific
server capability exists.

Errors

None.

22.2.3.30. mysql_hex_string()

unsigned long mysql_hex_string(char *to, const char *from, unsigned
long length)

Description

This function is used to create a legal SQL string that you can use in a SQL statement. See Sec-
tion 9.1.1, “Strings”.

The string in from is encoded to hexadecimal format, with each character encoded as two hexa-
decimal digits. The result is placed in to and a terminating null byte is appended.

The string pointed to by from must be length bytes long. You must allocate the to buffer to be
at least length*2+1 bytes long. When mysql_hex_string() returns, the contents of to is a
null-terminated string. The return value is the length of the encoded string, not including the termin-
ating null character.

The return value can be placed into an SQL statement using either 0xvalue or X'value' format.
However, the return value does not include the 0x or X'...'. The caller must supply whichever of
those is desired.

mysql_hex_string() was added in MySQL 4.0.23 and 4.1.8.

Example

char query[1000],*end;
end = strmov(query,"INSERT INTO test_table values(");
end = strmov(end,"0x");
end += mysql_hex_string(end,"What's this",11);

MySQL APIs

981

end = strmov(end,",0x");
end += mysql_hex_string(end,"binary data: \0\r\n",16);
*end++ = ')';
if (mysql_real_query(&mysql,query,(unsigned int) (end - query)))
{

fprintf(stderr, "Failed to insert row, Error: %s\n",
mysql_error(&mysql));

}

The strmov() function used in the example is included in the mysqlclient library and works
like strcpy() but returns a pointer to the terminating null of the first parameter.

Return Values

The length of the value placed into to, not including the terminating null character.

Errors

None.

22.2.3.31. mysql_info()

char *mysql_info(MYSQL *mysql)

Description

Retrieves a string providing information about the most recently executed query, but only for the
statements listed here. For other statements, mysql_info() returns NULL. The format of the
string varies depending on the type of query, as described here. The numbers are illustrative only;
the string contains values appropriate for the query.

• INSERT INTO ... SELECT ...

String format: Records: 100 Duplicates: 0 Warnings: 0

• INSERT INTO ... VALUES (...),(...),(...)...

String format: Records: 3 Duplicates: 0 Warnings: 0

• LOAD DATA INFILE ...

String format: Records: 1 Deleted: 0 Skipped: 0 Warnings: 0

• ALTER TABLE

String format: Records: 3 Duplicates: 0 Warnings: 0

• UPDATE

String format: Rows matched: 40 Changed: 40 Warnings: 0

Note that mysql_info() returns a non-NULL value for INSERT ... VALUES only for the
multiple-row form of the statement (that is, only if multiple value lists are specified).

Return Values

A character string representing additional information about the most recently executed query.
NULL if no information is available for the query.

Errors

None.

MySQL APIs

982

22.2.3.32. mysql_init()

MYSQL *mysql_init(MYSQL *mysql)

Description

Allocates or initializes a MYSQL object suitable for mysql_real_connect(). If mysql is a
NULL pointer, the function allocates, initializes, and returns a new object. Otherwise, the object is
initialized and the address of the object is returned. If mysql_init() allocates a new object, it is
freed when mysql_close() is called to close the connection.

To avoid a memory leak, use the following procedure, which should be done whether the applica-
tion is linked with the libmysqlclient or libmysqld library:

• Call mysql_library_init() before the first call to mysql_init()

• Call mysql_library_end() after the application has closed any open connections and is
done using the MySQL C API.

• If you like, the call to mysql_library_init() may be omitted, because mysql_init()
will invoke it automatically as necessary.

See Section 22.2.3.35, “mysql_library_init()”. See Section 22.2.3.36,
“mysql_library_end()”.

Return Values

An initialized MYSQL* handle. NULL if there was insufficient memory to allocate a new object.

Errors

In case of insufficient memory, NULL is returned.

22.2.3.33. mysql_insert_id()

my_ulonglong mysql_insert_id(MYSQL *mysql)

Description

Returns the value generated for an AUTO_INCREMENT column by the previous INSERT or UP-
DATE statement. Use this function after you have performed an INSERT statement into a table that
contains an AUTO_INCREMENT field.

More precisely, mysql_insert_id() is updated under these conditions:

• INSERT statements that store a value into an AUTO_INCREMENT column. This is true whether
the value is automatically generated by storing the special values NULL or 0 into the column, or
is an explicit non-special value.

• In the case of a multiple-row INSERT statement, mysql_insert_id() returns the first
automatically generated AUTO_INCREMENT value; if no such value is generated, it returns the
last last explicit value inserted into the AUTO_INCREMENT column.

• INSERT statements that generate an AUTO_INCREMENT value by inserting
LAST_INSERT_ID(expr) into any column.

• INSERT statements that generate an AUTO_INCREMENT value by updating any column to
LAST_INSERT_ID(expr).

• The value of mysql_insert_id() is not affected by statements such as SELECT that return

MySQL APIs

983

a result set.

• If the previous statement returned an error, the value of mysql_insert_id() is undefined.

Note that mysql_insert_id() returns 0 if the previous statement does not use an
AUTO_INCREMENT value. If you need to save the value for later, be sure to call
mysql_insert_id() immediately after the statement that generates the value.

The value of mysql_insert_id() is affected only by statements issued within the current client
connection. It is not affected by statements issued by other clients.

See Section 12.8.3, “Information Functions”.

Also note that the value of the SQL LAST_INSERT_ID() function always contains the most re-
cently generated AUTO_INCREMENT value, and is not reset between statements because the value
of that function is maintained in the server. Another difference is that LAST_INSERT_ID() is not
updated if you set an AUTO_INCREMENT column to a specific non-special value.

The reason for the difference between LAST_INSERT_ID() and mysql_insert_id() is that
LAST_INSERT_ID() is made easy to use in scripts while mysql_insert_id() tries to
provide a little more exact information of what happens to the AUTO_INCREMENT column.

Return Values

Described in the preceding discussion.

Errors

None.

22.2.3.34. mysql_kill()

int mysql_kill(MYSQL *mysql, unsigned long pid)

Description

Asks the server to kill the thread specified by pid.

Return Values

Zero for success. Non-zero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

22.2.3.35. mysql_library_init()

MySQL APIs

984

int mysql_library_init(int argc, char **argv, char **groups)

Description

This is a synonym for the mysql_server_init() function. It was added in MySQL 4.1.10 and
5.0.3.

See Section 22.2.2, “C API Function Overview” for usage information.

22.2.3.36. mysql_library_end()

void mysql_library_end(void)

Description

This is a synonym for the mysql_server_end() function. It was added in MySQL 4.1.10 and
5.0.3.

See Section 22.2.2, “C API Function Overview” for usage information.

22.2.3.37. mysql_list_dbs()

MYSQL_RES *mysql_list_dbs(MYSQL *mysql, const char *wild)

Description

Returns a result set consisting of database names on the server that match the simple regular expres-
sion specified by the wild parameter. wild may contain the wildcard characters '%' or '_', or may
be a NULL pointer to match all databases. Calling mysql_list_dbs() is similar to executing the
query SHOW databases [LIKE wild].

You must free the result set with mysql_free_result().

Return Values

A MYSQL_RES result set for success. NULL if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

22.2.3.38. mysql_list_fields()

MySQL APIs

985

MYSQL_RES *mysql_list_fields(MYSQL *mysql, const char *table, const
char *wild)

Description

Returns a result set consisting of field names in the given table that match the simple regular expres-
sion specified by the wild parameter. wild may contain the wildcard characters '%' or '_', or may
be a NULL pointer to match all fields. Calling mysql_list_fields() is similar to executing
the query SHOW COLUMNS FROM tbl_name [LIKE wild].

Note that it's recommended that you use SHOW COLUMNS FROM tbl_name instead of
mysql_list_fields().

You must free the result set with mysql_free_result().

Return Values

A MYSQL_RES result set for success. NULL if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

22.2.3.39. mysql_list_processes()

MYSQL_RES *mysql_list_processes(MYSQL *mysql)

Description

Returns a result set describing the current server threads. This is the same kind of information as that
reported by mysqladmin processlist or a SHOW PROCESSLIST query.

You must free the result set with mysql_free_result().

Return Values

A MYSQL_RES result set for success. NULL if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

MySQL APIs

986

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

22.2.3.40. mysql_list_tables()

MYSQL_RES *mysql_list_tables(MYSQL *mysql, const char *wild)

Description

Returns a result set consisting of table names in the current database that match the simple regular
expression specified by the wild parameter. wild may contain the wildcard characters '%' or '_', or
may be a NULL pointer to match all tables. Calling mysql_list_tables() is similar to execut-
ing the query SHOW tables [LIKE wild].

You must free the result set with mysql_free_result().

Return Values

A MYSQL_RES result set for success. NULL if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

22.2.3.41. mysql_num_fields()

unsigned int mysql_num_fields(MYSQL_RES *result)

Or:

unsigned int mysql_num_fields(MYSQL *mysql)

The second form doesn't work on MySQL 3.22.24 or newer. To pass a MYSQL* argument, you must
use unsigned int mysql_field_count(MYSQL *mysql) instead.

Description

Returns the number of columns in a result set.

Note that you can get the number of columns either from a pointer to a result set or to a connection
handle. You would use the connection handle if mysql_store_result() or
mysql_use_result() returned NULL (and thus you have no result set pointer). In this case,

MySQL APIs

987

you can call mysql_field_count() to determine whether mysql_store_result()
should have produced a non-empty result. This allows the client program to take proper action
without knowing whether or not the query was a SELECT (or SELECT-like) statement. The ex-
ample shown here illustrates how this may be done.

See Section 22.2.13.1, “Why mysql_store_result() Sometimes Returns NULL After
mysql_query() Returns Success”.

Return Values

An unsigned integer representing the number of columns in a result set.

Errors

None.

Example

MYSQL_RES *result;
unsigned int num_fields;
unsigned int num_rows;
if (mysql_query(&mysql,query_string))
{

// error
}
else // query succeeded, process any data returned by it
{

result = mysql_store_result(&mysql);
if (result) // there are rows
{

num_fields = mysql_num_fields(result);
// retrieve rows, then call mysql_free_result(result)

}
else // mysql_store_result() returned nothing; should it have?
{

if (mysql_errno(&mysql))
{

fprintf(stderr, "Error: %s\n", mysql_error(&mysql));
}
else if (mysql_field_count(&mysql) == 0)
{

// query does not return data
// (it was not a SELECT)
num_rows = mysql_affected_rows(&mysql);

}
}

}

An alternative (if you know that your query should have returned a result set) is to replace the
mysql_errno(&mysql) call with a check whether mysql_field_count(&mysql) is = 0.
This happens only if something went wrong.

22.2.3.42. mysql_num_rows()

my_ulonglong mysql_num_rows(MYSQL_RES *result)

Description

Returns the number of rows in the result set.

The use of mysql_num_rows() depends on whether you use mysql_store_result() or
mysql_use_result() to return the result set. If you use mysql_store_result(),
mysql_num_rows() may be called immediately. If you use mysql_use_result(),
mysql_num_rows() does not return the correct value until all the rows in the result set have
been retrieved.

MySQL APIs

988

Return Values

The number of rows in the result set.

Errors

None.

22.2.3.43. mysql_options()

int mysql_options(MYSQL *mysql, enum mysql_option option, const
char *arg)

Description

Can be used to set extra connect options and affect behavior for a connection. This function may be
called multiple times to set several options.

mysql_options() should be called after mysql_init() and before mysql_connect() or
mysql_real_connect().

The option argument is the option that you want to set; the arg argument is the value for the op-
tion. If the option is an integer, then arg should point to the value of the integer.

Possible option values:

Option Argument Type Function

MYSQL_INIT_COMMAND char * Command to execute when connect-
ing to the MySQL server. Will auto-
matically be re-executed when re-
connecting.

MYSQL_OPT_COMPRESS Not used Use the compressed client/server
protocol.

MYSQL_OPT_CONNECT_TIMEOUT unsigned int
*

Connect timeout in seconds.

MYSQL_OPT_LOCAL_INFILE optional pointer to
uint

If no pointer is given or if pointer
points to an unsigned int !=
0 the command LOAD LOCAL IN-
FILE is enabled.

MYSQL_OPT_NAMED_PIPE Not used Use named pipes to connect to a
MySQL server on NT.

MYSQL_OPT_PROTOCOL unsigned int
*

Type of protocol to use. Should be
one of the enum values of
mysql_protocol_type defined
in mysql.h. New in 4.1.0.

MYSQL_OPT_READ_TIMEOUT unsigned int
*

Timeout for reads from server
(works currently only on Windows
on TCP/IP connections). New in
4.1.1.

MYSQL_OPT_WRITE_TIMEOUT unsigned int
*

Timeout for writes to server (works
currently only on Windows on TCP/
IP connections). New in 4.1.1.

MYSQL_READ_DEFAULT_FILE char * Read options from the named option
file instead of from my.cnf.

MYSQL_READ_DEFAULT_GROUP char * Read options from the named group
from my.cnf or the file specified
with
MYSQL_READ_DEFAULT_FILE.

MySQL APIs

989

MYSQL_REPORT_DATA_TRUNCATIO
N

my_bool * Enable or disable reporting of data
truncation errors for prepared state-
ments via MYSQL_BIND.error.
(Default: disabled) New in 5.0.3.

MYSQL_SECURE_AUTH my_bool* Whether to connect to a server that
does not support the new 4.1.1 pass-
word hashing. New in 4.1.1.

MYSQL_SET_CHARSET_DIR char* The pathname to the directory that
contains character set definition
files.

MYSQL_SET_CHARSET_NAME char* The name of the character set to use
as the default character set.

MYSQL_SHARED_MEMORY_BASE_NA
ME

char* Named of shared memory object for
communication to server. Should be
same as the option -
shared-memory-base-name
used for the mysqld server you
want's to connect to. New in 4.1.0.

Note that the client group is always read if you use MYSQL_READ_DEFAULT_FILE or
MYSQL_READ_DEFAULT_GROUP.

The specified group in the option file may contain the following options:

Option Description

connect-timeout Connect timeout in seconds. On Linux this timeout is also used for
waiting for the first answer from the server.

compress Use the compressed client/server protocol.

database Connect to this database if no database was specified in the connect
command.

debug Debug options.

disable-loc-
al-infile

Disable use of LOAD DATA LOCAL.

host Default hostname.

init-command Command to execute when connecting to MySQL server. Will auto-
matically be re-executed when reconnecting.

interactive-timeout Same as specifying CLIENT_INTERACTIVE to
mysql_real_connect(). See Section 22.2.3.46,
“mysql_real_connect()”.

local-in-
file[=(0|1)]

If no argument or argument != 0 then enable use of LOAD DATA
LOCAL.

max_allowed_packet Max size of packet client can read from server.

multi-results Allow multiple result sets from multiple-statement executions or
stored procedures. New in 4.1.1.

multi-statements Allow the client to send multiple statements in a single string
(separated by ';'). New in 4.1.9.

password Default password.

pipe Use named pipes to connect to a MySQL server on NT.

protocol={TCP |
SOCKET | PIPE |
MEMORY}

The protocol to use when connecting to server (New in 4.1)

port Default port number.

return-found-rows Tell mysql_info() to return found rows instead of updated rows

MySQL APIs

990

when using UPDATE.

shared-
na
memory-base-name=me

Shared memory name to use to connect to server (default is
"MYSQL"). New in MySQL 4.1.

socket Default socket file.

user Default user.

Note that timeout has been replaced by connect-timeout, but timeout still works for a
while.

For more information about option files, see Section 4.3.2, “Using Option Files”.

Return Values

Zero for success. Non-zero if you used an unknown option.

Example

MYSQL mysql;
mysql_init(&mysql);
mysql_options(&mysql,MYSQL_OPT_COMPRESS,0);
mysql_options(&mysql,MYSQL_READ_DEFAULT_GROUP,"odbc");
if (!mysql_real_connect(&mysql,"host","user","passwd","database",0,NULL,0))
{

fprintf(stderr, "Failed to connect to database: Error: %s\n",
mysql_error(&mysql));

}

This code requests the client to use the compressed client/server protocol and read the additional op-
tions from the odbc section in the my.cnf file.

22.2.3.44. mysql_ping()

int mysql_ping(MYSQL *mysql)

Description

Checks whether the connection to the server is working. If it has gone down, an automatic reconnec-
tion is attempted.

This function can be used by clients that remain idle for a long while, to check whether the server
has closed the connection and reconnect if necessary.

Return Values

Zero if the server is alive. Non-zero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_UNKNOWN_ERROR

An unknown error occurred.

MySQL APIs

991

22.2.3.45. mysql_query()

int mysql_query(MYSQL *mysql, const char *query)

Description

Executes the SQL query pointed to by the null-terminated string query. Normally, the string must
consist of a single SQL statement and you should not add a terminating semicolon (';') or \g to the
statement. If multiple-statement execution has been enabled, the string can contain several state-
ments separated by semicolons. See Section 22.2.9, “C API Handling of Multiple Query
Execution”.

mysql_query() cannot be used for queries that contain binary data; you should use
mysql_real_query() instead. (Binary data may contain the '\0' character, which
mysql_query() interprets as the end of the query string.)

If you want to know whether the query should return a result set, you can use
mysql_field_count() to check for this. See Section 22.2.3.20,
“mysql_field_count()”.

Return Values

Zero if the query was successful. Non-zero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

22.2.3.46. mysql_real_connect()

MYSQL *mysql_real_connect(MYSQL *mysql, const char *host, const
char *user, const char *passwd, const char *db, unsigned int port,
const char *unix_socket, unsigned long client_flag)

Description

mysql_real_connect() attempts to establish a connection to a MySQL database engine run-
ning on host. mysql_real_connect() must complete successfully before you can execute
any of the other API functions, with the exception of mysql_get_client_info().

The parameters are specified as follows:

• The first parameter should be the address of an existing MYSQL structure. Before calling
mysql_real_connect() you must call mysql_init() to initialize the MYSQL structure.
You can change a lot of connect options with the mysql_options() call. See Sec-
tion 22.2.3.43, “mysql_options()”.

MySQL APIs

992

• The value of host may be either a hostname or an IP address. If host is NULL or the string
"localhost", a connection to the local host is assumed. If the OS supports sockets (Unix) or
named pipes (Windows), they are used instead of TCP/IP to connect to the server.

• The user parameter contains the user's MySQL login ID. If user is NULL or the empty string
"", the current user is assumed. Under Unix, this is the current login name. Under Windows
ODBC, the current username must be specified explicitly. See Section 23.1.9.2, “Configuring a
MyODBC DSN on Windows”.

• The passwd parameter contains the password for user. If passwd is NULL, only entries in
the user table for the user that have a blank (empty) password field are checked for a match.
This allows the database administrator to set up the MySQL privilege system in such a way that
users get different privileges depending on whether or not they have specified a password.

Note: Do not attempt to encrypt the password before calling mysql_real_connect();
password encryption is handled automatically by the client API.

• db is the database name. If db is not NULL, the connection sets the default database to this
value.

• If port is not 0, the value is used as the port number for the TCP/IP connection. Note that the
host parameter determines the type of the connection.

• If unix_socket is not NULL, the string specifies the socket or named pipe that should be
used. Note that the host parameter determines the type of the connection.

• The value of client_flag is usually 0, but can be set to a combination of the following flags
in very special circumstances:

Flag Name Flag Description

CLIENT_COMPRESS Use compression protocol.

CLIENT_FOUND_ROWS Return the number of found (matched) rows, not the number of
affected rows.

CLI-
ENT_IGNORE_SPACE

Allow spaces after function names. Makes all functions names
reserved words.

CLIENT_INTERACTIVE Allow interactive_timeout seconds (instead of
wait_timeout seconds) of inactivity before closing the con-
nection. The client's session wait_timeout variable is set to
the value of the session interactive_timeout variable.

CLIENT_LOCAL_FILES Enable LOAD DATA LOCAL handling.

CLI-
ENT_MULTI_STATEMEN
TS

Tell the server that the client may send multiple statements in a
single string (separated by ';'). If this flag is not set, multiple-
statement execution is disabled. New in 4.1.

CLI-
ENT_MULTI_RESULTS

Tell the server that the client can handle multiple result sets
from multiple-statement executions or stored procedures. This
is automatically set if CLIENT_MULTI_STATEMENTS is set.
New in 4.1.

CLIENT_NO_SCHEMA Don't allow the db_name.tbl_name.col_name syntax.
This is for ODBC. It causes the parser to generate an error if
you use that syntax, which is useful for trapping bugs in some
ODBC programs.

CLIENT_ODBC The client is an ODBC client. This changes mysqld to be more
ODBC-friendly.

CLIENT_SSL Use SSL (encrypted protocol). This option should not be set by
application programs; it is set internally in the client library.

Return Values

MySQL APIs

993

A MYSQL* connection handle if the connection was successful, NULL if the connection was unsuc-
cessful. For a successful connection, the return value is the same as the value of the first parameter.

Errors

• CR_CONN_HOST_ERROR

Failed to connect to the MySQL server.

• CR_CONNECTION_ERROR

Failed to connect to the local MySQL server.

• CR_IPSOCK_ERROR

Failed to create an IP socket.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SOCKET_CREATE_ERROR

Failed to create a Unix socket.

• CR_UNKNOWN_HOST

Failed to find the IP address for the hostname.

• CR_VERSION_ERROR

A protocol mismatch resulted from attempting to connect to a server with a client library that
uses a different protocol version. This can happen if you use a very old client library to connect
to a new server that wasn't started with the --old-protocol option.

• CR_NAMEDPIPEOPEN_ERROR

Failed to create a named pipe on Windows.

• CR_NAMEDPIPEWAIT_ERROR

Failed to wait for a named pipe on Windows.

• CR_NAMEDPIPESETSTATE_ERROR

Failed to get a pipe handler on Windows.

• CR_SERVER_LOST

If connect_timeout > 0 and it took longer than connect_timeout seconds to connect
to the server or if the server died while executing the init-command.

Example

MYSQL mysql;
mysql_init(&mysql);
mysql_options(&mysql,MYSQL_READ_DEFAULT_GROUP,"your_prog_name");
if (!mysql_real_connect(&mysql,"host","user","passwd","database",0,NULL,0))
{

fprintf(stderr, "Failed to connect to database: Error: %s\n",
mysql_error(&mysql));

}

MySQL APIs

994

By using mysql_options() the MySQL library reads the [client] and
[your_prog_name] sections in the my.cnf file which ensures that your program works, even
if someone has set up MySQL in some non-standard way.

Note that upon connection, mysql_real_connect() sets the reconnect flag (part of the
MYSQL structure) to a value of 1 in versions of the API strictly older than 5.0.3, of 0 in newer ver-
sions. A value of 1 for this flag indicates, in the event that a query cannot be performed because of a
lost connection, to try reconnecting to the server before giving up.

22.2.3.47. mysql_real_escape_string()

unsigned long mysql_real_escape_string(MYSQL *mysql, char *to,
const char *from, unsigned long length)

Note that mysql must be a valid, open connection. This is needed because the escaping depends on
the character-set in use by the server.

Description

This function is used to create a legal SQL string that you can use in a SQL statement. See Sec-
tion 9.1.1, “Strings”.

The string in from is encoded to an escaped SQL string, taking into account the current character
set of the connection. The result is placed in to and a terminating null byte is appended. Characters
encoded are NUL (ASCII 0), '\n', '\r', '\', ''', '"', and Control-Z (see Section 9.1, “Literal Values”).
(Strictly speaking, MySQL requires only that backslash and the quote character used to quote the
string in the query be escaped. This function quotes the other characters to make them easier to read
in log files.)

The string pointed to by from must be length bytes long. You must allocate the to buffer to be
at least length*2+1 bytes long. (In the worst case, each character may need to be encoded as us-
ing two bytes, and you need room for the terminating null byte.) When
mysql_real_escape_string() returns, the contents of to is a null-terminated string. The
return value is the length of the encoded string, not including the terminating null character.

Example

char query[1000],*end;
end = strmov(query,"INSERT INTO test_table values(");
*end++ = '\'';
end += mysql_real_escape_string(&mysql, end,"What's this",11);
*end++ = '\'';
*end++ = ',';
*end++ = '\'';
end += mysql_real_escape_string(&mysql, end,"binary data: \0\r\n",16);
*end++ = '\'';
*end++ = ')';
if (mysql_real_query(&mysql,query,(unsigned int) (end - query)))
{

fprintf(stderr, "Failed to insert row, Error: %s\n",
mysql_error(&mysql));

}

The strmov() function used in the example is included in the mysqlclient library and works
like strcpy() but returns a pointer to the terminating null of the first parameter.

Return Values

The length of the value placed into to, not including the terminating null character.

Errors

None.

MySQL APIs

995

22.2.3.48. mysql_real_query()

int mysql_real_query(MYSQL *mysql, const char *query, unsigned long
length)

Description

Executes the SQL query pointed to by query, which should be a string length bytes long. Nor-
mally, the string must consist of a single SQL statement and you should not add a terminating semi-
colon (';') or \g to the statement. If multiple-statement execution has been enabled, the string can
contain several statements separated by semicolons. See Section 22.2.9, “C API Handling of Mul-
tiple Query Execution”.

You must use mysql_real_query() rather than mysql_query() for queries that contain
binary data, because binary data may contain the '\0' character. In addition,
mysql_real_query() is faster than mysql_query() because it does not call strlen() on
the query string.

If you want to know whether the query should return a result set, you can use
mysql_field_count() to check for this. See Section 22.2.3.20,
“mysql_field_count()”.

Return Values

Zero if the query was successful. Non-zero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

22.2.3.49. mysql_reload()

int mysql_reload(MYSQL *mysql)

Description

Asks the MySQL server to reload the grant tables. The connected user must have the RELOAD priv-
ilege.

This function is deprecated. It is preferable to use mysql_query() to issue an SQL FLUSH
PRIVILEGES statement instead.

Return Values

Zero for success. Non-zero if an error occurred.

Errors

MySQL APIs

996

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

22.2.3.50. mysql_row_seek()

MYSQL_ROW_OFFSET mysql_row_seek(MYSQL_RES *result, MYSQL_ROW_OFFSET
offset)

Description

Sets the row cursor to an arbitrary row in a query result set. The offset value is a row offset that
should be a value returned from mysql_row_tell() or from mysql_row_seek(). This
value is not a row number; if you want to seek to a row within a result set by number, use
mysql_data_seek() instead.

This function requires that the result set structure contains the entire result of the query, so
mysql_row_seek() may be used only in conjunction with mysql_store_result(), not
with mysql_use_result().

Return Values

The previous value of the row cursor. This value may be passed to a subsequent call to
mysql_row_seek().

Errors

None.

22.2.3.51. mysql_row_tell()

MYSQL_ROW_OFFSET mysql_row_tell(MYSQL_RES *result)

Description

Returns the current position of the row cursor for the last mysql_fetch_row(). This value can
be used as an argument to mysql_row_seek().

You should use mysql_row_tell() only after mysql_store_result(), not after
mysql_use_result().

Return Values

The current offset of the row cursor.

Errors

None.

22.2.3.52. mysql_select_db()

MySQL APIs

997

int mysql_select_db(MYSQL *mysql, const char *db)

Description

Causes the database specified by db to become the default (current) database on the connection spe-
cified by mysql. In subsequent queries, this database is the default for table references that do not
include an explicit database specifier.

mysql_select_db() fails unless the connected user can be authenticated as having permission
to use the database.

Return Values

Zero for success. Non-zero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

22.2.3.53. mysql_set_server_option()

int mysql_set_server_option(MYSQL *mysql, enum
enum_mysql_set_option option)

Description

Enables or disables an option for the connection. option can have one of the following values:

MYSQL_OPTION_MULTI_
STATEMENTS_ON

Enable multi statement support.

MYSQL_OPTION_MULTI_
STATEMENTS_OFF

Disable multi statement support.

This function was added in MySQL 4.1.1.

Return Values

Zero for success. Non-zero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

MySQL APIs

998

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• ER_UNKNOWN_COM_ERROR

The server didn't support mysql_set_server_option() (which is the case that the server
is older than 4.1.1) or the server didn't support the option one tried to set.

22.2.3.54. mysql_shutdown()

int mysql_shutdown(MYSQL *mysql, enum enum_shutdown_level shut-
down_level)

Description

Asks the database server to shut down. The connected user must have SHUTDOWN privileges. The
shutdown_level argument was added in MySQL 4.1.3 (and 5.0.1). The MySQL server cur-
rently supports only one type (level of gracefulness) of shutdown; shutdown_level must be
equal to SHUTDOWN_DEFAULT. Later we wil add more levels and then the shutdown_level
argument will enable us to choose the desired level. MySQL servers and MySQL clients before and
after 4.1.3 are compatible; MySQL servers newer than 4.1.3 accept the
mysql_shutdown(MYSQL *mysql) call, and MySQL servers older than 4.1.3 accept the new
mysql_shutdown() call. But dynamically linked executables which have been compiled with
older versions of libmysqlclient headers, and call mysql_shutdown(), need to be used
with the old libmysqlclient dynamic library.

The shutdown process is described in Section 5.3, “The MySQL Server Shutdown Process”.

Return Values

Zero for success. Non-zero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

22.2.3.55. mysql_sqlstate()

const char *mysql_sqlstate(MYSQL *mysql)

Description

MySQL APIs

999

Returns a null-terminated string containing the SQLSTATE error code for the last error. The error
code consists of five characters. '00000' means ``no error.'' The values are specified by ANSI
SQL and ODBC. For a list of possible values, see Chapter 24, Error Handling in MySQL.

Note that not all MySQL errors are yet mapped to SQLSTATE's. The value 'HY000' (general er-
ror) is used for unmapped errors.

This function was added to MySQL 4.1.1.

Return Values

A null-terminated character string containing the SQLSTATE error code.

See Also

See Section 22.2.3.12, “mysql_errno()”. See Section 22.2.3.13, “mysql_error()”. See Sec-
tion 22.2.7.26, “mysql_stmt_sqlstate()”.

22.2.3.56. mysql_ssl_set()

int mysql_ssl_set(MYSQL *mysql, const char *key, const char *cert,
const char *ca, const char *capath, const char *cipher)

Description

mysql_ssl_set() is used for establishing secure connections using SSL. It must be called be-
fore mysql_real_connect().

mysql_ssl_set() does nothing unless OpenSSL support is enabled in the client library.

mysql is the connection handler returned from mysql_init(). The other parameters are spe-
cified as follows:

• key is the pathname to the key file.

• cert is the pathname to the certificate file.

• ca is the pathname to the certificate authority file.

• capath is the pathname to a directory that contains trusted SSL CA certificates in pem format.

• cipher is a list of allowable ciphers to use for SSL encryption.

Any unused SSL parameters may be given as NULL.

Return Values

This function always returns 0. If SSL setup is incorrect, mysql_real_connect() returns an
error when you attempt to connect.

22.2.3.57. mysql_stat()

char *mysql_stat(MYSQL *mysql)

Description

Returns a character string containing information similar to that provided by the mysqladmin status
command. This includes uptime in seconds and the number of running threads, questions, reloads,
and open tables.

Return Values

MySQL APIs

1000

A character string describing the server status. NULL if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

22.2.3.58. mysql_store_result()

MYSQL_RES *mysql_store_result(MYSQL *mysql)

Description

You must call mysql_store_result() or mysql_use_result() for every query that suc-
cessfully retrieves data (SELECT, SHOW, DESCRIBE, EXPLAIN, CHECK TABLE, and so forth).

You don't have to call mysql_store_result() or mysql_use_result() for other queries,
but it does not do any harm or cause any notable performance degredation if you call
mysql_store_result() in all cases. You can detect if the query didn't have a result set by
checking if mysql_store_result() returns 0 (more about this later on).

If you want to know whether the query should return a result set, you can use
mysql_field_count() to check for this. See Section 22.2.3.20,
“mysql_field_count()”.

mysql_store_result() reads the entire result of a query to the client, allocates a
MYSQL_RES structure, and places the result into this structure.

mysql_store_result() returns a null pointer if the query didn't return a result set (if the query
was, for example, an INSERT statement).

mysql_store_result() also returns a null pointer if reading of the result set failed. You can
check whether an error occurred by checking if mysql_error() returns a non-empty string, if
mysql_errno() returns non-zero, or if mysql_field_count() returns zero.

An empty result set is returned if there are no rows returned. (An empty result set differs from a null
pointer as a return value.)

Once you have called mysql_store_result() and got a result back that isn't a null pointer,
you may call mysql_num_rows() to find out how many rows are in the result set.

You can call mysql_fetch_row() to fetch rows from the result set, or mysql_row_seek()
and mysql_row_tell() to obtain or set the current row position within the result set.

You must call mysql_free_result() once you are done with the result set.

See Section 22.2.13.1, “Why mysql_store_result() Sometimes Returns NULL After
mysql_query() Returns Success”.

MySQL APIs

1001

Return Values

A MYSQL_RES result structure with the results. NULL if an error occurred.

Errors

mysql_store_result() resets mysql_error() and mysql_errno() if it succeeds.

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

22.2.3.59. mysql_thread_id()

unsigned long mysql_thread_id(MYSQL *mysql)

Description

Returns the thread ID of the current connection. This value can be used as an argument to
mysql_kill() to kill the thread.

If the connection is lost and you reconnect with mysql_ping(), the thread ID changes. This
means you should not get the thread ID and store it for later. You should get it when you need it.

Return Values

The thread ID of the current connection.

Errors

None.

22.2.3.60. mysql_use_result()

MYSQL_RES *mysql_use_result(MYSQL *mysql)

Description

You must call mysql_store_result() or mysql_use_result() for every query that suc-
cessfully retrieves data (SELECT, SHOW, DESCRIBE, EXPLAIN).

mysql_use_result() initiates a result set retrieval but does not actually read the result set into
the client like mysql_store_result() does. Instead, each row must be retrieved individually
by making calls to mysql_fetch_row(). This reads the result of a query directly from the serv-
er without storing it in a temporary table or local buffer, which is somewhat faster and uses much
less memory than mysql_store_result(). The client allocates memory only for the current

MySQL APIs

1002

row and a communication buffer that may grow up to max_allowed_packet bytes.

On the other hand, you shouldn't use mysql_use_result() if you are doing a lot of processing
for each row on the client side, or if the output is sent to a screen on which the user may type a ^S
(stop scroll). This ties up the server and prevent other threads from updating any tables from which
the data is being fetched.

When using mysql_use_result(), you must execute mysql_fetch_row() until a NULL
value is returned, otherwise, the unfetched rows are returned as part of the result set for your next
query. The C API gives the error Commands out of sync; you can't run this
command now if you forget to do this!

You may not use mysql_data_seek(), mysql_row_seek(), mysql_row_tell(),
mysql_num_rows(), or mysql_affected_rows() with a result returned from
mysql_use_result(), nor may you issue other queries until the mysql_use_result() has
finished. (However, after you have fetched all the rows, mysql_num_rows() accurately returns
the number of rows fetched.)

You must call mysql_free_result() once you are done with the result set.

Return Values

A MYSQL_RES result structure. NULL if an error occurred.

Errors

mysql_use_result() resets mysql_error() and mysql_errno() if it succeeds.

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

22.2.3.61. mysql_warning_count()

unsigned int mysql_warning_count(MYSQL *mysql)

Description

Returns the number of warnings generated during execution of the previous SQL statement.

This function was added in MySQL 4.1.0.

Return Values

The warning count.

Errors

MySQL APIs

1003

None.

22.2.3.62. mysql_commit()

my_bool mysql_commit(MYSQL *mysql)

Description

Commits the current transaction.

This function was added in MySQL 4.1.0.

Return Values

Zero if successful. Non-zero if an error occurred.

Errors

None.

22.2.3.63. mysql_rollback()

my_bool mysql_rollback(MYSQL *mysql)

Description

Rolls back the current transaction.

This function was added in MySQL 4.1.0.

Return Values

Zero if successful. Non-zero if an error occurred.

Errors

None.

22.2.3.64. mysql_autocommit()

my_bool mysql_autocommit(MYSQL *mysql, my_bool mode)

Description

Sets autocommit mode on if mode is 1, off if mode is 0.

This function was added in MySQL 4.1.0.

Return Values

Zero if successful. Non-zero if an error occurred.

Errors

None.

22.2.3.65. mysql_more_results()

my_bool mysql_more_results(MYSQL *mysql)

Description

Returns true if more results exist from the currently executed query, and the application must call

MySQL APIs

1004

mysql_next_result() to fetch the results.

This function was added in MySQL 4.1.0.

Return Values

TRUE (1) if more results exist. FALSE (0) if no more results exist.

In most cases, you can call mysql_next_result() instead to test whether more results exist
and initiate retrieval if so.

See Section 22.2.9, “C API Handling of Multiple Query Execution”. See Section 22.2.3.66,
“mysql_next_result()”.

Errors

None.

22.2.3.66. mysql_next_result()

int mysql_next_result(MYSQL *mysql)

Description

If more query results exist, mysql_next_result() reads the next query results and returns the
status back to application.

You must call mysql_free_result() for the preceding query if it returned a result set.

After calling mysql_next_result() the state of the connection is as if you had called
mysql_real_query() or mysql_query() for the next query. This means that you can call
mysql_store_result(), mysql_warning_count(), mysql_affected_rows(), and
so forth.

If mysql_next_result() returns an error, no other statements are executed and there are no
more results to fetch.

See Section 22.2.9, “C API Handling of Multiple Query Execution”.

This function was added in MySQL 4.1.0.

Return Values

Return Value Description

0 Successful and there are more results

#1 Successful and there are no more results

>0 An error occurred

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order. For example if you didn't call
mysql_use_result() for a previous result set.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

MySQL APIs

1005

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

22.2.4. C API Prepared Statements
As of MySQL 4.1, the client/server protocol provides for the use of prepared statements. This cap-
ability uses the MYSQL_STMT statement handler data structure returned by the
mysql_stmt_init() initialization function. Prepared execution is an efficient way to execute a
statement more than once. The statement is first parsed to prepare it for execution. Then it is ex-
ecuted one or more times at a later time, using the statement handle returned by the initialization
function.

Prepared execution is faster than direct execution for statements executed more than once, primarily
because the query is parsed only once. In the case of direct execution, the query is parsed every time
it is executed. Prepared execution also can provide a reduction of network traffic because for each
execution of the prepared statement, it is necessary only to send the data for the parameters.

Another advantage of prepared statements is that it uses a binary protocol that makes data transfer
between client and server more efficient.

The following statements can be used as prepared statements: CREATE TABLE, DELETE, DO, IN-
SERT, REPLACE, SELECT, SET, UPDATE, and most SHOW, statements. Other statements are not
yet supported.

22.2.5. C API Prepared Statement Data types
Note: Some incompatible changes were made in MySQL 4.1.2. See Section 22.2.7, “C API Pre-
pared Statement Function Descriptions” for details.

Prepared statements mainly use the MYSQL_STMT and MYSQL_BIND data structures. A third struc-
ture, MYSQL_TIME, is used to transfer temporal data.

• MYSQL_STMT

This structure represents a prepared statement. A statement is created by calling
mysql_stmt_init(), which returns a statement handle, that is, a pointer to a
MYSQL_STMT. The handle is used for all subsequent statement-related functions until you close
it with mysql_stmt_close().

The MYSQL_STMT structure has no members that are for application use.

Multiple statement handles can be associated with a single connection. The limit on the number
of handles depends on the available system resources.

• MYSQL_BIND

This structure is used both for statement input (data values sent to the server) and output (result
values returned from the server). For input, it is used with mysql_stmt_bind_param() to
bind parameter data values to buffers for use by mysql_stmt_execute(). For output, it is
used with mysql_stmt_bind_result() to bind result set buffers for use in fetching rows
with mysql_stmt_fetch().

The MYSQL_BIND structure contains the following members for use by application programs.
Each is used both for input and for output, although sometimes for different purposes depending
on the direction of data transfer.

MySQL APIs

1006

• enum enum_field_types buffer_type

The type of the buffer. The allowable buffer_type values are listed later in this section.
For input, buffer_type indicates what type of value you are binding to a statement para-
meter. For output, it indicates what type of value you expect to receive in a result buffer.

• void *buffer

For input, this is a pointer to the buffer in which a statement parameter's data value is stored.
For output, it is a pointer to the buffer in which to return a result set column value. For nu-
meric column types, buffer should point to a variable of the proper C type. (If you are as-
sociating the variable with a column that has the UNSIGNED attribute, the variable should be
an unsigned C type. Indicate whether the variable is signed or unsigned by using the
is_unsigned member, described later in this list.) For date and time column types, buf-
fer should point to a MYSQL_TIME structure. For character and binary string column
types, buffer should point to a character buffer.

• unsigned long buffer_length

The actual size of *buffer in bytes. This indicates the maximum amount of data that can
be stored in the buffer. For character and binary C data, the buffer_length value spe-
cifies the length of *buffer when used with mysql_stmt_bind_param(), or the
maximum number of data bytes that can be fetched into the buffer when used with
mysql_stmt_bind_result().

• unsigned long *length

A pointer to an unsigned long variable that indicates the actual number of bytes of data
stored in *buffer. length is used for character or binary C data. For input parameter
data binding, length points to an unsigned long variable that indicates the length of
the parameter value stored in *buffer; this is used by mysql_stmt_execute(). For
output value binding, mysql_stmt_fetch() places the length of the column value that
is returned into the variable that length points to.

length is ignored for numeric and temporal data types because the length of the data value
is determined by the buffer_type value.

• my_bool *is_null

This member points to a my_bool variable that is true if a value is NULL, false if it is not
NULL. For input, set *is_null to true to indicate that you are passing a NULL value as a
statement parameter. For output, this value is set to true after you fetch a row if the result set
column value returned from the statement is NULL.

• my_bool is_unsigned

This member is used for integer types. (These correspond to the MYSQL_TYPE_TINY,
MYSQL_TYPE_SHORT, MYSQL_TYPE_LONG, and MYSQL_TYPE_LONGLONG type
codes.) is_unsigned should be set to true for unsigned types and false for signed types.

• my_bool error

For output, this member is used output to report data truncation errors. Truncation reporting
must be enabled by calling mysql_options() with the
MYSQL_REPORT_DATA_TRUNCATION option. When enabled, mysql_stmt_fetch()
returns MYSQL_DATA_TRUNCATED and error is true in the MYSQL_BIND structures for
parameters in which truncation occurred. Truncation indicates loss of sign or significant di-
gits, or that a string was too long to fit in a column. The error member was added in
MySQL 5.0.3.

To use a MYSQL_BIND structure, you should zero its contents to initialize it, and then set the
members just described appropriately. For example, to declare and initialize an array of three

MySQL APIs

1007

MYSQL_BIND structures, use this code:

MYSQL_BIND bind[3];
memset(bind, 0, sizeof(bind));

• MYSQL_TIME

This structure is used to send and receive DATE, TIME, DATETIME, and TIMESTAMP data dir-
ectly to and from the server. This is done by setting the buffer_type member of a
MYSQL_BIND structure to one of the temporal types, and setting the buffer member to point
to a MYSQL_TIME structure.

The MYSQL_TIME structure contains the following members:

• unsigned int year

The year.

• unsigned int month

The month of the year.

• unsigned int day

The day of the month.

• unsigned int hour

The hour of the day.

• unsigned int minute

The minute of the hour.

• unsigned int second

The second of the minute.

• my_bool neg

A boolean flag to indicate whether the time is negative.

• unsigned long second_part

The fractional part of the second. This member currently is unused.

Only those parts of a MYSQL_TIME structure that apply to a given type of temporal value are
used: The year, month, and day elements are used for DATE, DATETIME, and TIMESTAMP
values. The hour, minute, and second elements are used for TIME, DATETIME, and
TIMESTAMP values. See Section 22.2.10, “C API Handling of Date and Time Values”.

The following table shows the allowable values that may be specified in the buffer_type mem-
ber of MYSQL_BIND structures. The table also shows those SQL types that correspond most closely
to each buffer_type value, and, for numeric and temporal types, the corresponding C type.

MySQL APIs

1008

buffer_type Value SQL Type C Type

MYSQL_TYPE_TINY TINYINT char

MYSQL_TYPE_SHORT SMALLINT short int

MYSQL_TYPE_LONG INT int

MYSQL_TYPE_LONGLONG BIGINT long long int

MYSQL_TYPE_FLOAT FLOAT float

MYSQL_TYPE_DOUBLE DOUBLE double

MYSQL_TYPE_TIME TIME MYSQL_TIME

MYSQL_TYPE_DATE DATE MYSQL_TIME

MYSQL_TYPE_DATETIME DATETIME MYSQL_TIME

MYSQL_TYPE_TIMESTAMP TIMESTAMP MYSQL_TIME

MYSQL_TYPE_STRING CHAR

MYSQL_TYPE_VAR_STRING VARCHAR

MYSQL_TYPE_TINY_BLOB TINYBLOB/TINYTEXT

MYSQL_TYPE_BLOB BLOB/TEXT

MYSQL_TYPE_MEDIUM_BLO
B

MEDIUMBLOB/MEDIUMTEXT

MYSQL_TYPE_LONG_BLOB LONGBLOB/LONGTEXT

Implicit type conversion may be performed in both directions.

22.2.6. C API Prepared Statement Function Overview
Note: Some incompatible changes were made in MySQL 4.1.2. See Section 22.2.7, “C API Pre-
pared Statement Function Descriptions” for details.

The functions available for prepared statement processing are summarized here and described in
greater detail in a later section. See Section 22.2.7, “C API Prepared Statement Function Descrip-
tions”.

Function Description

mysql_stmt_affected_rows() Returns the number of rows changes, deleted, or inserted by pre-
pared UPDATE, DELETE, or INSERT statement.

mysql_stmt_attr_get() Get value of an attribute for a prepared statement.

mysql_stmt_attr_set() Sets an attribute for a prepared statement.

mysql_stmt_bind_param() Associates application data buffers with the parameter markers in a
prepared SQL statement.

mysql_stmt_bind_result() Associates application data buffers with columns in the result set.

mysql_stmt_close() Frees memory used by prepared statement.

mysql_stmt_data_seek() Seeks to an arbitrary row number in a statement result set.

mysql_stmt_errno() Returns the error number for the last statement execution.

mysql_stmt_error() Returns the error message for the last statement execution.

mysql_stmt_execute() Executes the prepared statement.

mysql_stmt_fetch() Fetches the next row of data from the result set and returns data for
all bound columns.

mysql_stmt_fetch_column() Fetch data for one column of the current row of the result set.

mysql_stmt_field_count() Returns the number of result columns for the most recent state-
ment.

mysql_stmt_free_result() Free the resources allocated to the statement handle.

MySQL APIs

1009

mysql_stmt_init() Allocates memory for MYSQL_STMT structure and initializes it.

mysql_stmt_insert_id() Returns the ID generated for an AUTO_INCREMENT column by
prepared statement.

mysql_stmt_num_rows() Returns total rows from the statement buffered result set.

mysql_stmt_param_count() Returns the number of parameters in a prepared SQL statement.

mysql_stmt_param_metadat
a()

Return parameter metadata in the form of a result set.

mysql_stmt_prepare() Prepares an SQL string for execution.

mysql_stmt_reset() Reset the statement buffers in the server.

mysql_stmt_result_metadata
()

Returns prepared statement metadata in the form of a result set.

mysql_stmt_row_seek() Seeks to a row offset in a statement result set, using value returned
from mysql_stmt_row_tell().

mysql_stmt_row_tell() Returns the statement row cursor position.

mysql_stmt_send_long_data(
)

Sends long data in chunks to server.

mysql_stmt_sqlstate() Returns the SQLSTATE error code for the last statement execu-
tion.

mysql_stmt_store_result() Retrieves the complete result set to the client.

Call mysql_stmt_init() to create a statement handle, then mysql_stmt_prepare to pre-
pare it, mysql_stmt_bind_param() to supply the parameter data, and
mysql_stmt_execute() to execute the statement. You can repeat the
mysql_stmt_execute() by changing parameter values in the respective buffers supplied
through mysql_stmt_bind_param().

If the statement is a SELECT or any other statement that produces a result set,
mysql_stmt_prepare() also returns the result set metadata information in the form of a
MYSQL_RES result set through mysql_stmt_result_metadata().

You can supply the result buffers using mysql_stmt_bind_result(), so that the
mysql_stmt_fetch() automatically returns data to these buffers. This is row-by-row fetching.

You can also send the text or binary data in chunks to server using
mysql_stmt_send_long_data(). See Section 22.2.7.25,
“mysql_stmt_send_long_data()”.

When statement execution has been completed, the statement handle must be closed using
mysql_stmt_close() so that all resources associated with it can be freed.

If you obtained a SELECT statement's result set metadata by calling
mysql_stmt_result_metadata(), you should also free the metadata using
mysql_free_result().

Execution Steps

To prepare and execute a statement, an application follows these steps:

1. Create a prepared statement handle with msyql_stmt_init(). To prepare the statement on
the server, call mysql_stmt_prepare() and pass it a string containing the SQL statement.

2. If the statement produces a result set, call mysql_stmt_result_metadata() to obtain
the result set metadata. This metadata is itself in the form of result set, albeit a separate one
from the one that contains the rows returned by the query. The metadata result set indicates
how many columns are in the result and contains information about each column.

MySQL APIs

1010

3. Set the values of any parameters using mysql_stmt_bind_param(). All parameters must
be set. Otherwise, statement execution returns an error or produces unexpected results.

4. Call mysql_stmt_execute() to execute the statement.

5. If the statement produces a result set, bind the data buffers to use for retrieving the row values
by calling mysql_stmt_bind_result().

6. Fetch the data into the buffers row by row by calling mysql_stmt_fetch() repeatedly un-
til no more rows are found.

7. Repeat steps 3 through 6 as necessary, by changing the parameter values and re-executing the
statement.

When mysql_stmt_prepare() is called, the MySQL client/server protocol performs these ac-
tions:

• The server parses the statement and sends the okay status back to the client by assigning a state-
ment ID. It also sends total number of parameters, a column count, and its metadata if it is a res-
ult set oriented statement. All syntax and semantics of the statement are checked by the server
during this call.

• The client uses this statement ID for the further operations, so that the server can identify the
statement from among its pool of statements.

When mysql_stmt_execute() is called, the MySQL client/server protocol performs these ac-
tions:

• The client uses the statement handle and sends the parameter data to the server.

• The server identifies the statement using the ID provided by the client, replaces the parameter
markers with the newly supplied data, and executes the statement. If the statement produces a
result set, the server sends the data back to the client. Otherwise, it sends an okay status and total
number of rows changed, deleted, or inserted.

When mysql_stmt_fetch() is called, the MySQL client/server protocol performs these ac-
tions:

• The client reads the data from the packet row by row and places it into the application data buf-
fers by doing the necessary conversions. If the application buffer type is same as that of the field
type returned from the server, the conversions are straightforward.

If an error occurs, you can get the statement error code, error message, and SQLSTATE value using
mysql_stmt_errno(), mysql_stmt_error(), and mysql_stmt_sqlstate(), re-
spectively.

22.2.7. C API Prepared Statement Function Descrip-
tions

To prepare and execute queries, use the functions in the following sections.

In MySQL 4.1.2, the names of several prepared statement functions were changed:

Old Name New Name

mysql_bind_param() mysql_stmt_bind_param()

MySQL APIs

1011

mysql_bind_result() mysql_stmt_bind_result()

mysql_prepare() mysql_stmt_prepare()

mysql_execute() mysql_stmt_execute()

mysql_fetch() mysql_stmt_fetch()

mysql_fetch_column(
)

mysql_stmt_fetch_column()

mysql_param_count() mysql_stmt_param_count()

mysql_param_result(
)

mysql_stmt_param_metadata()

mysql_get_metadata(
)

mysql_stmt_result_metadata()

mysql_send_long_dat
a()

mysql_stmt_send_long_data()

All functions that operate with a MYSQL_STMT structure begin with the prefix mysql_stmt_.

Also in 4.1.2, the signature of the mysql_stmt_prepare() function was changed to int
mysql_stmt_prepare(MYSQL_STMT *stmt, const char *query, unsigned
long length). To create a MYSQL_STMT handle, you should use the mysql_stmt_init()
function.

22.2.7.1. mysql_stmt_affected_rows()

my_ulonglong mysql_stmt_affected_rows(MYSQL_STMT *stmt)

Description

Returns the total number of rows changed, deleted, or inserted by the last executed statement. May
be called immediately after mysql_stmt_execute() for UPDATE, DELETE, or INSERT state-
ments. For SELECT statements, mysql_stmt_affected_rows() works like
mysql_num_rows().

This function was added in MySQL 4.1.0.

Return Values

An integer greater than zero indicates the number of rows affected or retrieved. Zero indicates that
no records were updated for an UPDATE statement, no rows matched the WHERE clause in the
query, or that no query has yet been executed. #1 indicates that the query returned an error or that,
for a SELECT query, mysql_stmt_affected_rows() was called prior to calling
mysql_stmt_store_result(). Because mysql_stmt_affected_rows() returns an
unsigned value, you can check for #1 by comparing the return value to (my_ulonglong)-1 (or
to (my_ulonglong)~0, which is equivalent).

See Section 22.2.3.1, “mysql_affected_rows()” for additional information on the return
value.

Errors

None.

Example

For the usage of mysql_stmt_affected_rows(), refer to the Example from Sec-
tion 22.2.7.10, “mysql_stmt_execute()”.

22.2.7.2. mysql_stmt_attr_get()

MySQL APIs

1012

int mysql_stmt_attr_get(MYSQL_STMT *stmt, enum enum_stmt_attr_type
option, void *arg)

Description

Can be used to get the current value for a statement attribute.

The option argument is the option that you want to get; the arg should point to a variable that
should contain the option value. If the option is an integer, then arg should point to the value of the
integer.

See mysql_stmt_attr_set() for a list of options and option types. See Section 22.2.7.3,
“mysql_stmt_attr_set()”.

This function was added in MySQL 4.1.2.

Return Values

0 if okay. Non-zero if option is unknown.

Errors

None.

22.2.7.3. mysql_stmt_attr_set()

int mysql_stmt_attr_set(MYSQL_STMT *stmt, enum enum_stmt_attr_type
option, const void *arg)

Description

Can be used to set affect behavior for a statement. This function may be called multiple times to set
several options.

The option argument is the option that you want to set; the arg argument is the value for the op-
tion. If the option is an integer, then arg should point to the value of the integer.

Possible options values:

Option Argument Type Function

STMT_ATTR_UPDATE_MAX_LENGTH my_bool * If set to 1: Update metadata
MYSQL_FIELD->max_length in
mysql_stmt_store_result(
).

This function was added in MySQL 4.1.2.

Return Values

0 if okay. Non-zero if option is unknown.

Errors

None.

22.2.7.4. mysql_stmt_bind_param()

my_bool mysql_stmt_bind_param(MYSQL_STMT *stmt, MYSQL_BIND *bind)

Description

mysql_stmt_bind_param() is used to bind data for the parameter markers in the SQL state-

MySQL APIs

1013

ment that was passed to mysql_stmt_prepare(). It uses MYSQL_BIND structures to supply
the data. bind is the address of an array of MYSQL_BIND structures. The client library expects the
array to contain an element for each '?' parameter marker that is present in the query.

Suppose that you prepare the following statement:

INSERT INTO mytbl VALUES(?,?,?)

When you bind the parameters, the array of MYSQL_BIND structures must contain three elements,
and can be declared like this:

MYSQL_BIND bind[3];

The members of each MYSQL_BIND element that should be set are described in Section 22.2.5, “C
API Prepared Statement Data types”.

This function was added in MySQL 4.1.2.

Return Values

Zero if the bind was successful. Non-zero if an error occurred.

Errors

• CR_INVALID_BUFFER_USE

Indicates if the bind is to supply the long data in chunks and if the buffer type is non string or
binary.

• CR_UNSUPPORTED_PARAM_TYPE

The conversion is not supported. Possibly the buffer_type value is illegal or is not one of
the supported types.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

For the usage of mysql_stmt_bind_param(), refer to the Example from Section 22.2.7.10,
“mysql_stmt_execute()”.

22.2.7.5. mysql_stmt_bind_result()

my_bool mysql_stmt_bind_result(MYSQL_STMT *stmt, MYSQL_BIND *bind)

Description

mysql_stmt_bind_result() is used to associate (bind) columns in the result set to data buf-
fers and length buffers. When mysql_stmt_fetch() is called to fetch data, the MySQL client/
server protocol places the data for the bound columns into the specified buffers.

All columns must be bound to buffers prior to calling mysql_stmt_fetch(). bind is the ad-
dress of an array of MYSQL_BIND structures. The client library expects the array to contain an ele-
ment for each column of the result set. If you do not bind columns to MYSQL_BIND structures,
mysql_stmt_fetch() simply ignores the data fetch. The buffers should be large enough to

MySQL APIs

1014

hold the data values, because the protocol doesn't return data values in chunks.

A column can be bound or rebound at any time, even after a result set has been partially retrieved.
The new binding takes effect the next time mysql_stmt_fetch() is called. Suppose that an ap-
plication binds the columns in a result set and calls mysql_stmt_fetch(). The client/server
protocol returns data in the bound buffers. Then suppose the application binds the columns to a dif-
ferent set of buffers. The protocol does not place data into the newly bound buffers until the next
call to mysql_stmt_fetch() occurs.

To bind a column, an application calls mysql_stmt_bind_result() and passes the type, ad-
dress, and the address of the length buffer. The members of each MYSQL_BIND element that should
be set are described in Section 22.2.5, “C API Prepared Statement Data types”.

This function was added in MySQL 4.1.2.

Return Values

Zero if the bind was successful. Non-zero if an error occurred.

Errors

• CR_UNSUPPORTED_PARAM_TYPE

The conversion is not supported. Possibly the buffer_type value is illegal or is not one of
the supported types.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

For the usage of mysql_stmt_bind_result(), refer to the Example from Section 22.2.7.13,
“mysql_stmt_fetch()”.

22.2.7.6. mysql_stmt_close()

my_bool mysql_stmt_close(MYSQL_STMT *)

Description

Closes the prepared statement. mysql_stmt_close() also deallocates the statement handle
pointed to by stmt.

If the current statement has pending or unread results, this function cancels them so that the next
query can be executed.

This function was added in MySQL 4.1.0.

Return Values

Zero if the statement was freed successfully. Non-zero if an error occurred.

Errors

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

MySQL APIs

1015

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

For the usage of mysql_stmt_close(), refer to the Example from Section 22.2.7.10,
“mysql_stmt_execute()”.

22.2.7.7. mysql_stmt_data_seek()

void mysql_stmt_data_seek(MYSQL_STMT *stmt, my_ulonglong offset)

Description

Seeks to an arbitrary row in a statement result set. The offset value is a row number and should
be in the range from 0 to mysql_stmt_num_rows(stmt)-1.

This function requires that the statement result set structure contains the entire result of the last ex-
ecuted query, so mysql_stmt_data_seek() may be used only in conjunction with
mysql_stmt_store_result().

This function was added in MySQL 4.1.1.

Return Values

None.

Errors

None.

22.2.7.8. mysql_stmt_errno()

unsigned int mysql_stmt_errno(MYSQL_STMT *stmt)

Description

For the statement specified by stmt, mysql_stmt_errno() returns the error code for the most
recently invoked statement API function that can succeed or fail. A return value of zero means that
no error occurred. Client error message numbers are listed in the MySQL errmsg.h header file.
Server error message numbers are listed in mysqld_error.h. In the MySQL source distribution
you can find a complete list of error messages and error numbers in the file Docs/
mysqld_error.txt. The server error codes also are listed at Chapter 24, Error Handling in
MySQL.

This function was added in MySQL 4.1.0.

Return Values

An error code value. Zero if no error occurred.

Errors

None.

22.2.7.9. mysql_stmt_error()

const char *mysql_stmt_error(MYSQL_STMT *stmt)

Description

MySQL APIs

1016

For the statement specified by stmt, mysql_stmt_error() returns a null-terminated string
containing the error message for the most recently invoked statement API function that can succeed
or fail. An empty string ("") is returned if no error occurred. This means the following two tests are
equivalent:

if (mysql_stmt_errno(stmt))
{
// an error occurred

}
if (mysql_stmt_error(stmt)[0])
{
// an error occurred

}

The language of the client error messages may be changed by recompiling the MySQL client lib-
rary. Currently you can choose error messages in several different languages.

This function was added in MySQL 4.1.0.

Return Values

A character string that describes the error. An empty string if no error occurred.

Errors

None.

22.2.7.10. mysql_stmt_execute()

int mysql_stmt_execute(MYSQL_STMT *stmt)

Description

mysql_stmt_execute() executes the prepared query associated with the statement handle.
The currently bound parameter marker values are sent to server during this call, and the server re-
places the markers with this newly supplied data.

If the statement is an UPDATE, DELETE, or INSERT, the total number of changed, deleted, or in-
serted rows can be found by calling mysql_stmt_affected_rows(). If this is a result set
query such as SELECT, you must call mysql_stmt_fetch() to fetch the data prior to calling
any other functions that result in query processing. For more information on how to fetch the results,
refer to Section 22.2.7.13, “mysql_stmt_fetch()”.

This function was added in MySQL 4.1.2.

Return Values

Zero if execution was successful. Non-zero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

MySQL APIs

1017

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

The following example demonstrates how to create and populate a table using
mysql_stmt_init(), mysql_stmt_prepare(), mysql_stmt_param_count(),
mysql_stmt_bind_param(), mysql_stmt_execute(), and
mysql_stmt_affected_rows(). The mysql variable is assumed to be a valid connection
handle.

#define STRING_SIZE 50
#define DROP_SAMPLE_TABLE "DROP TABLE IF EXISTS test_table"
#define CREATE_SAMPLE_TABLE "CREATE TABLE test_table(col1 INT,\

col2 VARCHAR(40),\
col3 SMALLINT,\
col4 TIMESTAMP)"

#define INSERT_SAMPLE "INSERT INTO test_table(col1,col2,col3) VALUES(?,?,?)"
MYSQL_STMT *stmt;
MYSQL_BIND bind[3];
my_ulonglong affected_rows;
int param_count;
short small_data;
int int_data;
char str_data[STRING_SIZE];
unsigned long str_length;
my_bool is_null;
if (mysql_query(mysql, DROP_SAMPLE_TABLE))
{
fprintf(stderr, " DROP TABLE failed\n");
fprintf(stderr, " %s\n", mysql_error(mysql));
exit(0);

}
if (mysql_query(mysql, CREATE_SAMPLE_TABLE))
{
fprintf(stderr, " CREATE TABLE failed\n");
fprintf(stderr, " %s\n", mysql_error(mysql));
exit(0);

}
/* Prepare an INSERT query with 3 parameters */
/* (the TIMESTAMP column is not named; the server */
/* sets it to the current date and time) */
stmt = mysql_stmt_init(mysql);
if (!stmt)
{
fprintf(stderr, " mysql_stmt_init(), out of memory\n");
exit(0);

}
if (mysql_stmt_prepare(stmt, INSERT_SAMPLE, strlen(INSERT_SAMPLE)))
{
fprintf(stderr, " mysql_stmt_prepare(), INSERT failed\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);

}
fprintf(stdout, " prepare, INSERT successful\n");
/* Get the parameter count from the statement */
param_count= mysql_stmt_param_count(stmt);
fprintf(stdout, " total parameters in INSERT: %d\n", param_count);
if (param_count != 3) /* validate parameter count */
{
fprintf(stderr, " invalid parameter count returned by MySQL\n");
exit(0);

MySQL APIs

1018

}
/* Bind the data for all 3 parameters */
memset(bind, 0, sizeof(bind));
/* INTEGER PARAM */
/* This is a number type, so there is no need to specify buffer_length */
bind[0].buffer_type= MYSQL_TYPE_LONG;
bind[0].buffer= (char *)&int_data;
bind[0].is_null= 0;
bind[0].length= 0;
/* STRING PARAM */
bind[1].buffer_type= MYSQL_TYPE_STRING;
bind[1].buffer= (char *)str_data;
bind[1].buffer_length= STRING_SIZE;
bind[1].is_null= 0;
bind[1].length= &str_length;
/* SMALLINT PARAM */
bind[2].buffer_type= MYSQL_TYPE_SHORT;
bind[2].buffer= (char *)&small_data;
bind[2].is_null= &is_null;
bind[2].length= 0;
/* Bind the buffers */
if (mysql_stmt_bind_param(stmt, bind))
{
fprintf(stderr, " mysql_stmt_bind_param() failed\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);

}
/* Specify the data values for the first row */
int_data= 10; /* integer */
strncpy(str_data, "MySQL", STRING_SIZE); /* string */
str_length= strlen(str_data);
/* INSERT SMALLINT data as NULL */
is_null= 1;
/* Execute the INSERT statement - 1*/
if (mysql_stmt_execute(stmt))
{
fprintf(stderr, " mysql_stmt_execute(), 1 failed\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);

}
/* Get the total number of affected rows */
affected_rows= mysql_stmt_affected_rows(stmt);
fprintf(stdout, " total affected rows(insert 1): %lu\n",

(unsigned long) affected_rows);
if (affected_rows != 1) /* validate affected rows */
{
fprintf(stderr, " invalid affected rows by MySQL\n");
exit(0);

}
/* Specify data values for second row, then re-execute the statement */
int_data= 1000;
strncpy(str_data, "The most popular Open Source database", STRING_SIZE);
str_length= strlen(str_data);
small_data= 1000; /* smallint */
is_null= 0; /* reset */
/* Execute the INSERT statement - 2*/
if (mysql_stmt_execute(stmt))
{
fprintf(stderr, " mysql_stmt_execute, 2 failed\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);

}
/* Get the total rows affected */
affected_rows= mysql_stmt_affected_rows(stmt);
fprintf(stdout, " total affected rows(insert 2): %lu\n",

(unsigned long) affected_rows);
if (affected_rows != 1) /* validate affected rows */
{
fprintf(stderr, " invalid affected rows by MySQL\n");

MySQL APIs

1019

exit(0);
}
/* Close the statement */
if (mysql_stmt_close(stmt))
{
fprintf(stderr, " failed while closing the statement\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);

}

Note: For complete examples on the use of prepared statement functions, refer to the file tests/
mysql_client_test.c. This file can be obtained from a MySQL source distribution or from
the BitKeeper source repository.

22.2.7.11. mysql_stmt_free_result()

my_bool mysql_stmt_free_result(MYSQL_STMT *stmt)

Description

Releases memory associated with the result set produced by execution of the prepared statement.

This function was added in MySQL 4.1.1.

Return Values

Zero if the result set was freed successfully. Non-zero if an error occurred.

Errors

22.2.7.12. mysql_stmt_insert_id()

my_ulonglong mysql_stmt_insert_id(MYSQL_STMT *stmt)

Description

Returns the value generated for an AUTO_INCREMENT column by the prepared INSERT or UP-
DATE statement. Use this function after you have executed prepared INSERT statement into a table
which contains an AUTO_INCREMENT field.

See Section 22.2.3.33, “mysql_insert_id()” for more information.

This function was added in MySQL 4.1.2.

Return Values

Value for AUTO_INCREMENT column which was automatically generated or explicitly set during
execution of prepared statement, or value generated by LAST_INSERT_ID(expr) function. Re-
turn value is undefined if statement does not set AUTO_INCREMENT value.

Errors

None.

22.2.7.13. mysql_stmt_fetch()

int mysql_stmt_fetch(MYSQL_STMT *stmt)

Description

mysql_stmt_fetch() returns the next row in the result set. It can be called only while the res-
ult set exists, that is, after a call to mysql_stmt_execute() that creates a result set or after
mysql_stmt_store_result(), which is called after mysql_stmt_execute() to buffer

MySQL APIs

1020

the entire result set.

mysql_stmt_fetch() returns row data using the buffers bound by
mysql_stmt_bind_result(). It returns the data in those buffers for all the columns in the
current row set and the lengths are returned to the length pointer.

All columns must be bound by the application before calling mysql_stmt_fetch().

If a fetched data value is a NULL value, the *is_null value of the corresponding MYSQL_BIND
structure contains TRUE (1). Otherwise, the data and its length are returned in the *buffer and
*length elements based on the buffer type specified by the application. Each numeric and tem-
poral type has a fixed length, as listed in the following table. The length of the string types depends
on the length of the actual data value, as indicated by data_length.

Type Length

MYSQL_TYPE_TINY 1

MYSQL_TYPE_SHORT 2

MYSQL_TYPE_LONG 4

MYSQL_TYPE_LONGLONG 8

MYSQL_TYPE_FLOAT 4

MYSQL_TYPE_DOUBLE 8

MYSQL_TYPE_TIME sizeof(MYSQL_TIME)

MYSQL_TYPE_DATE sizeof(MYSQL_TIME)

MYSQL_TYPE_DATETIME sizeof(MYSQL_TIME)

MYSQL_TYPE_STRING data length

MYSQL_TYPE_BLOB data_length

This function was added in MySQL 4.1.2.

Return Values

Return Value Description

0 Successful, the data has been fetched to application data buffers.

1 Error occurred. Error code and message can be obtained by calling
mysql_stmt_errno() and mysql_stmt_error().

MYSQL_NO_DATA No more rows/data exists

MYSQL_DATA_TRUNCATED Data truncation occurred

MYSQL_DATA_TRUNCATED is not returned unless truncation reporting is enabled with
mysql_options(). To determine which parameters were truncated when this value is returned,
check the error members of the MYSQL_BIND parameter structures.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

MySQL APIs

1021

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

• CR_UNSUPPORTED_PARAM_TYPE

The buffer type is MYSQL_TYPE_DATE, MYSQL_TYPE_TIME, MYSQL_TYPE_DATETIME,
or MYSQL_TYPE_TIMESTAMP, but the data type is not DATE, TIME, DATETIME, or
TIMESTAMP.

• All other unsupported conversion errors are returned from mysql_stmt_bind_result().

Example

The following example demonstrates how to fetch data from a table using
mysql_stmt_result_metadata(), mysql_stmt_bind_result(), and
mysql_stmt_fetch(). (This example expects to retrieve the two rows inserted by the example
shown in Section 22.2.7.10, “mysql_stmt_execute()”.) The mysql variable is assumed to be
a valid connection handle.

#define STRING_SIZE 50
#define SELECT_SAMPLE "SELECT col1, col2, col3, col4 FROM test_table"
MYSQL_STMT *stmt;
MYSQL_BIND bind[4];
MYSQL_RES *prepare_meta_result;
MYSQL_TIME ts;
unsigned long length[4];
int param_count, column_count, row_count;
short small_data;
int int_data;
char str_data[STRING_SIZE];
my_bool is_null[4];
/* Prepare a SELECT query to fetch data from test_table */
stmt = mysql_stmt_init(mysql);
if (!stmt)
{
fprintf(stderr, " mysql_stmt_init(), out of memory\n");
exit(0);

}
if (mysql_stmt_prepare(stmt, SELECT_SAMPLE, strlen(SELECT_SAMPLE)))
{
fprintf(stderr, " mysql_stmt_prepare(), SELECT failed\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);

}
fprintf(stdout, " prepare, SELECT successful\n");
/* Get the parameter count from the statement */
param_count= mysql_stmt_param_count(stmt);
fprintf(stdout, " total parameters in SELECT: %d\n", param_count);
if (param_count != 0) /* validate parameter count */
{
fprintf(stderr, " invalid parameter count returned by MySQL\n");
exit(0);

}
/* Fetch result set meta information */
prepare_meta_result = mysql_stmt_result_metadata(stmt);
if (!prepare_meta_result)
{
fprintf(stderr,

" mysql_stmt_result_metadata(), returned no meta information\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);

MySQL APIs

1022

}
/* Get total columns in the query */
column_count= mysql_num_fields(prepare_meta_result);
fprintf(stdout, " total columns in SELECT statement: %d\n", column_count);
if (column_count != 4) /* validate column count */
{
fprintf(stderr, " invalid column count returned by MySQL\n");
exit(0);

}
/* Execute the SELECT query */
if (mysql_stmt_execute(stmt))
{
fprintf(stderr, " mysql_stmt_execute(), failed\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);

}
/* Bind the result buffers for all 4 columns before fetching them */
memset(bind, 0, sizeof(bind));
/* INTEGER COLUMN */
bind[0].buffer_type= MYSQL_TYPE_LONG;
bind[0].buffer= (char *)&int_data;
bind[0].is_null= &is_null[0];
bind[0].length= &length[0];
/* STRING COLUMN */
bind[1].buffer_type= MYSQL_TYPE_STRING;
bind[1].buffer= (char *)str_data;
bind[1].buffer_length= STRING_SIZE;
bind[1].is_null= &is_null[1];
bind[1].length= &length[1];
/* SMALLINT COLUMN */
bind[2].buffer_type= MYSQL_TYPE_SHORT;
bind[2].buffer= (char *)&small_data;
bind[2].is_null= &is_null[2];
bind[2].length= &length[2];
/* TIMESTAMP COLUMN */
bind[3].buffer_type= MYSQL_TYPE_TIMESTAMP;
bind[3].buffer= (char *)&ts;
bind[3].is_null= &is_null[3];
bind[3].length= &length[3];
/* Bind the result buffers */
if (mysql_stmt_bind_result(stmt, bind))
{
fprintf(stderr, " mysql_stmt_bind_result() failed\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);

}
/* Now buffer all results to client */
if (mysql_stmt_store_result(stmt))
{
fprintf(stderr, " mysql_stmt_store_result() failed\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);

}
/* Fetch all rows */
row_count= 0;
fprintf(stdout, "Fetching results ...\n");
while (!mysql_stmt_fetch(stmt))
{
row_count++;
fprintf(stdout, " row %d\n", row_count);
/* column 1 */
fprintf(stdout, " column1 (integer) : ");
if (is_null[0])
fprintf(stdout, " NULL\n");

else
fprintf(stdout, " %d(%ld)\n", int_data, length[0]);

/* column 2 */
fprintf(stdout, " column2 (string) : ");
if (is_null[1])

MySQL APIs

1023

fprintf(stdout, " NULL\n");
else
fprintf(stdout, " %s(%ld)\n", str_data, length[1]);

/* column 3 */
fprintf(stdout, " column3 (smallint) : ");
if (is_null[2])
fprintf(stdout, " NULL\n");

else
fprintf(stdout, " %d(%ld)\n", small_data, length[2]);

/* column 4 */
fprintf(stdout, " column4 (timestamp): ");
if (is_null[3])
fprintf(stdout, " NULL\n");

else
fprintf(stdout, " %04d-%02d-%02d %02d:%02d:%02d (%ld)\n",

ts.year, ts.month, ts.day,
ts.hour, ts.minute, ts.second,
length[3]);

fprintf(stdout, "\n");
}
/* Validate rows fetched */
fprintf(stdout, " total rows fetched: %d\n", row_count);
if (row_count != 2)
{
fprintf(stderr, " MySQL failed to return all rows\n");
exit(0);

}
/* Free the prepared result metadata */
mysql_free_result(prepare_meta_result);
/* Close the statement */
if (mysql_stmt_close(stmt))
{
fprintf(stderr, " failed while closing the statement\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);

}

22.2.7.14. mysql_stmt_fetch_column()

int mysql_stmt_fetch_column(MYSQL_STMT *stmt, MYSQL_BIND *bind, un-
signed int column, unsigned long offset)

Description

Fetch one column from the current result set row. bind provides the buffer where data should be
placed. It should be set up the same way as for mysql_stmt_bind_result(). column indic-
ates which column to fetch. The first column is numbered 0. offset is the offset within the data
value at which to begin retrieving data. This can be used for fetching the data value in pieces. The
beginning of the value is offset 0.

This function was added in MySQL 4.1.2.

Return Values

Zero if the value was fetched successfully. Non-zero if an error occurred.

Errors

• CR_INVALID_PARAMETER_NO

Invalid column number.

• CR_NO_DATA

MySQL APIs

1024

The end of the result set has already been reached.

22.2.7.15. mysql_stmt_field_count()

unsigned int mysql_stmt_field_count(MYSQL_STMT *stmt)

Description

Returns the number of columns for the most recent statement for the statement handler. This value is
zero for statements such as INSERT or DELETE that do not produce result sets.

mysql_stmt_field_count() can be called after you have prepared a statement by invoking
mysql_stmt_prepare().

This function was added in MySQL 4.1.3.

Return Values

An unsigned integer representing the number of columns in a result set.

Errors

None.

22.2.7.16. mysql_stmt_init()

MYSQL_STMT *mysql_stmt_init(MYSQL *mysql)

Description

Create a MYSQL_STMT handle. The handle should be freed with
mysql_stmt_close(MYSQL_STMT *).

This function was added in MySQL 4.1.2.

Return values

A pointer to a MYSQL_STMT structure in case of success. NULL if out of memory.

Errors

• CR_OUT_OF_MEMORY

Out of memory.

22.2.7.17. mysql_stmt_num_rows()

my_ulonglong mysql_stmt_num_rows(MYSQL_STMT *stmt)

Description

Returns the number of rows in the result set.

The use of mysql_stmt_num_rows() depends on whether or not you used
mysql_stmt_store_result() to buffer the entire result set in the statement handle.

If you use mysql_stmt_store_result(), mysql_stmt_num_rows() may be called im-
mediately.

MySQL APIs

1025

This function was added in MySQL 4.1.1.

Return Values

The number of rows in the result set.

Errors

None.

22.2.7.18. mysql_stmt_param_count()

unsigned long mysql_stmt_param_count(MYSQL_STMT *stmt)

Description

Returns the number of parameter markers present in the prepared statement.

This function was added in MySQL 4.1.2.

Return Values

An unsigned long integer representing the number of parameters in a statement.

Errors

None.

Example

For the usage of mysql_stmt_param_count(), refer to the Example from Section 22.2.7.10,
“mysql_stmt_execute()”.

22.2.7.19. mysql_stmt_param_metadata()

MYSQL_RES *mysql_stmt_param_metadata(MYSQL_STMT *stmt)

To be added.

This function was added in MySQL 4.1.2.

Description

Return Values

Errors

22.2.7.20. mysql_stmt_prepare()

int mysql_stmt_prepare(MYSQL_STMT *stmt, const char *query, un-
signed long length)

Description

Given the statement handle returned by mysql_stmt_init(), prepares the SQL statement poin-
ted to by the string query and returns a status value. The string length should be given by the
length argument. The string must consist of a single SQL statement. You should not add a termin-
ating semicolon (';') or \g to the statement.

The application can include one or more parameter markers in the SQL statement by embedding
question mark ('?') characters into the SQL string at the appropriate positions.

The markers are legal only in certain places in SQL statements. For example, they are allowed in the

MySQL APIs

1026

VALUES() list of an INSERT statement (to specify column values for a row), or in a comparison
with a column in a WHERE clause to specify a comparison value. However, they are not allowed for
identifiers (such as table or column names), or to specify both operands of a binary operator such as
the = equal sign. The latter restriction is necessary because it would be impossible to determine the
parameter type. In general, parameters are legal only in Data Manipulation Languange (DML) state-
ments, and not in Data Definition Language (DDL) statements.

The parameter markers must be bound to application variables using
mysql_stmt_bind_param() before executing the statement.

This function was added in MySQL 4.1.2.

Return Values

Zero if the statement was prepared successfully. Non-zero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query

• CR_UNKNOWN_ERROR

An unknown error occurred.

If the prepare operation was unsuccessful (that is, mysql_stmt_prepare() returns non-zero),
the error message can be obtained by calling mysql_stmt_error().

Example

For the usage of mysql_stmt_prepare(), refer to the Example from Section 22.2.7.10,
“mysql_stmt_execute()”.

22.2.7.21. mysql_stmt_reset()

my_bool mysql_stmt_reset(MYSQL_STMT *stmt)

Description

Reset prepared statement on client and server to state after prepare. This is mainly used to reset data
sent with mysql_stmt_send_long_data().

To re-prepare the statement with another query, use mysql_stmt_prepare().

This function was added in MySQL 4.1.1.

Return Values

Zero if the statement was reset successfully. Non-zero if an error occurred.

MySQL APIs

1027

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query

• CR_UNKNOWN_ERROR

An unknown error occurred.

22.2.7.22. mysql_stmt_result_metadata()

MYSQL_RES *mysql_stmt_result_metadata(MYSQL_STMT *stmt)

Description

If a statement passed to mysql_stmt_prepare() is one that produces a result set,
mysql_stmt_result_metadata() returns the result set metadata in the form of a pointer to a
MYSQL_RES structure that can be used to process the meta information such as total number of
fields and individual field information. This result set pointer can be passed as an argument to any
of the field-based API functions that process result set metadata, such as:

• mysql_num_fields()

• mysql_fetch_field()

• mysql_fetch_field_direct()

• mysql_fetch_fields()

• mysql_field_count()

• mysql_field_seek()

• mysql_field_tell()

• mysql_free_result()

The result set structure should be freed when you are done with it, which you can do by passing it to
mysql_free_result(). This is similar to the way you free a result set obtained from a call to
mysql_store_result().

The result set returned by mysql_stmt_result_metadata() contains only metadata. It does
not contain any row results. The rows are obtained by using the statement handle with
mysql_stmt_fetch().

This function was added in MySQL 4.1.2.

Return Values

A MYSQL_RES result structure. NULL if no meta information exists for the prepared query.

MySQL APIs

1028

Errors

• CR_OUT_OF_MEMORY

Out of memory.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

For the usage of mysql_stmt_result_metadata(), refer to the Example from Sec-
tion 22.2.7.13, “mysql_stmt_fetch()”.

22.2.7.23. mysql_stmt_row_seek()

MYSQL_ROW_OFFSET mysql_stmt_row_seek(MYSQL_STMT *stmt,
MYSQL_ROW_OFFSET offset)

Description

Sets the row cursor to an arbitrary row in a statement result set. The offset value is a row offset
that should be a value returned from mysql_stmt_row_tell() or from
mysql_stmt_row_seek(). This value is not a row number; if you want to seek to a row within
a result set by number, use mysql_stmt_data_seek() instead.

This function requires that the result set structure contains the entire result of the query, so
mysql_stmt_row_seek() may be used only in conjunction with
mysql_stmt_store_result().

This function was added in MySQL 4.1.1.

Return Values

The previous value of the row cursor. This value may be passed to a subsequent call to
mysql_stmt_row_seek().

Errors

None.

22.2.7.24. mysql_stmt_row_tell()

MYSQL_ROW_OFFSET mysql_stmt_row_tell(MYSQL_STMT *stmt)

Description

Returns the current position of the row cursor for the last mysql_stmt_fetch(). This value can
be used as an argument to mysql_stmt_row_seek().

You should use mysql_stmt_row_tell() only after mysql_stmt_store_result().

This function was added in MySQL 4.1.1.

Return Values

The current offset of the row cursor.

Errors

None.

MySQL APIs

1029

22.2.7.25. mysql_stmt_send_long_data()

my_bool mysql_stmt_send_long_data(MYSQL_STMT *stmt, unsigned int
parameter_number, const char *data, unsigned long length)

Description

Allows an application to send parameter data to the server in pieces (or ``chunks''). This function
can be called multiple times to send the parts of a character or binary data value for a column, which
must be one of the TEXT or BLOB data types.

parameter_number indicates which parameter to associate the data with. Parameters are
numbered beginning with 0. data is a pointer to a buffer containing data to be sent, and length
indicates the number of bytes in the buffer.

Note: The next mysql_stmt_execute() call ignores the bind buffer for all parameters that
have been used with mysql_stmt_send_long_data() since last
mysql_stmt_execute() or mysql_stmt_reset().

If you want to reset/forget the sent data, you can do it with mysql_stmt_reset(). See Sec-
tion 22.2.7.21, “mysql_stmt_reset()”.

This function was added in MySQL 4.1.2.

Return Values

Zero if the data is sent successfully to server. Non-zero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

The following example demonstrates how to send the data for a TEXT column in chunks. It inserts
the data value 'MySQL - The most popular Open Source database' into the
text_column column. The mysql variable is assumed to be a valid connection handle.

#define INSERT_QUERY "INSERT INTO test_long_data(text_column) VALUES(?)"
MYSQL_BIND bind[1];
long length;
smtt = mysql_stmt_init(mysql);
if (!stmt)
{
fprintf(stderr, " mysql_stmt_init(), out of memory\n");
exit(0);

}
if (mysql_stmt_prepare(stmt, INSERT_QUERY, strlen(INSERT_QUERY)))
{

MySQL APIs

1030

fprintf(stderr, "\n mysql_stmt_prepare(), INSERT failed");
fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
exit(0);

}
memset(bind, 0, sizeof(bind));
bind[0].buffer_type= MYSQL_TYPE_STRING;
bind[0].length= &length;
bind[0].is_null= 0;
/* Bind the buffers */
if (mysql_stmt_bind_param(stmt, bind))
{
fprintf(stderr, "\n param bind failed");
fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
exit(0);

}
/* Supply data in chunks to server */
if (!mysql_stmt_send_long_data(stmt,0,"MySQL",5))
{
fprintf(stderr, "\n send_long_data failed");
fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
exit(0);

}
/* Supply the next piece of data */
if (mysql_stmt_send_long_data(stmt,0," - The most popular Open Source database",40))
{
fprintf(stderr, "\n send_long_data failed");
fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
exit(0);

}
/* Now, execute the query */
if (mysql_stmt_execute(stmt))
{
fprintf(stderr, "\n mysql_stmt_execute failed");
fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
exit(0);

}

22.2.7.26. mysql_stmt_sqlstate()

const char *mysql_stmt_sqlstate(MYSQL_STMT *stmt)

Description

For the statement specified by stmt, mysql_stmt_sqlstate() returns a null-terminated
string containing the SQLSTATE error code for the most recently invoked prepared statement API
function that can succeed or fail. The error code consists of five characters. "00000" means ``no
error.'' The values are specified by ANSI SQL and ODBC. For a list of possible values, see
Chapter 24, Error Handling in MySQL.

Note that not all MySQL errors are yet mapped to SQLSTATE's. The value "HY000" (general er-
ror) is used for unmapped errors.

This function was added to MySQL 4.1.1.

Return Values

A null-terminated character string containing the SQLSTATE error code.

22.2.7.27. mysql_stmt_store_result()

int mysql_stmt_store_result(MYSQL_STMT *stmt)

Description

You must call mysql_stmt_store_result() for every statement that successfully produces a

MySQL APIs

1031

result set (SELECT, SHOW, DESCRIBE, EXPLAIN), and only if you want to buffer the complete
result set by the client, so that the subsequent mysql_stmt_fetch() call returns buffered data.

It is unnecessary to call mysql_stmt_store_result() for other statements, but if you do, it
does not harm or cause any notable performance problem. You can detect whether the statement
produced a result set by checking if mysql_stmt_result_metadata() returns NULL. For
more information, refer to Section 22.2.7.22, “mysql_stmt_result_metadata()”.

Note: MySQL doesn't by default calculate MYSQL_FIELD->max_length for all columns in
mysql_stmt_store_result() because calculating this would slow down
mysql_stmt_store_result() considerably and most applications doesn't need
max_length. If you want max_length to be updated, you can call
mysql_stmt_attr_set(MYSQL_STMT, STMT_ATTR_UPDATE_MAX_LENGTH, &flag)
to enable this. See Section 22.2.7.3, “mysql_stmt_attr_set()”.

This function was added in MySQL 4.1.0.

Return Values

Zero if the results are buffered successfully. Non-zero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

22.2.8. C API Prepared statement problems
Here follows a list of the currently known problems with prepared statements:

• TIME, TIMESTAMP, and DATETIME don't support sub seconds (for example from
DATE_FORMAT().

• When converting an integer to string, ZEROFILL is honored with prepared statements in some
cases where the MySQL server doesn't print the leading zeros. (For example, with
MIN(number-with-zerofill)).

• When converting a floating point number to a string in the client, the value may be slightly dif-
ferent in the last digits.

22.2.9. C API Handling of Multiple Query Execution
From version 4.1, MySQL supports the execution of multiple statements specified in a single query

MySQL APIs

1032

string. To use this capability with a given connection, you must specify the CLI-
ENT_MULTI_STATEMENTS option in the flags parameter of mysql_real_connect() when
opening the connection. You can also set this for an existing connection by calling
mysql_set_server_option(MYSQL_OPTION_MULTI_STATEMENTS_ON)

By default, mysql_query() and mysql_real_query() return only the first query status and
the subsequent queries status can be processed using mysql_more_results() and
mysql_next_result().

/* Connect to server with option CLIENT_MULTI_STATEMENTS */
mysql_real_connect(..., CLIENT_MULTI_STATEMENTS);
/* Now execute multiple queries */
mysql_query(mysql,"DROP TABLE IF EXISTS test_table;\

CREATE TABLE test_table(id INT);\
INSERT INTO test_table VALUES(10);\
UPDATE test_table SET id=20 WHERE id=10;\
SELECT * FROM test_table;\
DROP TABLE test_table");

do
{
/* Process all results */
...
printf("total affected rows: %lld", mysql_affected_rows(mysql));
...
if (!(result= mysql_store_result(mysql)))
{

printf(stderr, "Got fatal error processing query\n");
exit(1);

}
process_result_set(result); /* client function */
mysql_free_result(result);

} while (!mysql_next_result(mysql));

22.2.10. C API Handling of Date and Time Values
The new binary protocol available in MySQL 4.1 and above allows you to send and receive date and
time values (DATE, TIME, DATETIME, and TIMESTAMP), using the MYSQL_TIME structure. The
members of this structure are described in Section 22.2.5, “C API Prepared Statement Data types”.

To send temporal data values, you create a prepared statement with mysql_stmt_prepare().
Then, before calling mysql_stmt_execute() to execute the statement, use the following pro-
cedure to set up each temporal parameter:

1. In the MYSQL_BIND structure associated with the data value, set the buffer_type member
to the type that indicates what kind of temporal value you're sending. For DATE, TIME, DATE-
TIME, or TIMESTAMP values, set buffer_type to MYSQL_TYPE_DATE,
MYSQL_TYPE_TIME, MYSQL_TYPE_DATETIME, or MYSQL_TYPE_TIMESTAMP, respect-
ively.

2. Set the buffer member of the MYSQL_BIND structure to the address of the MYSQL_TIME
structure in which you pass the temporal value.

3. Fill in the members of the MYSQL_TIME structure that are appropriate for the type of temporal
value you're passing.

Use mysql_stmt_bind_param() to bind the parameter data to the statement. Then you can
call mysql_stmt_execute().

To retrieve temporal values, the procedure is similar, except that you set the buffer_type mem-
ber to the type of value you expect to receive, and the buffer member to the address of a
MYSQL_TIME structure into which the returned value should be placed. Use
mysql_bind_results() to bind the buffers to the statement after calling

MySQL APIs

1033

mysql_stmt_execute() and before fetching the results.

Here is a simple example that inserts DATE, TIME, and TIMESTAMP data. The mysql variable is
assumed to be a valid connection handle.

MYSQL_TIME ts;
MYSQL_BIND bind[3];
MYSQL_STMT *stmt;
strmov(query, "INSERT INTO test_table(date_field, time_field,

timestamp_field) VALUES(?,?,?");
stmt = mysql_stmt_init(mysql);
if (!stmt)
{
fprintf(stderr, " mysql_stmt_init(), out of memory\n");
exit(0);

}
if (mysql_stmt_prepare(mysql, query, strlen(query)))
{
fprintf(stderr, "\n mysql_stmt_prepare(), INSERT failed");
fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
exit(0);

}
/* set up input buffers for all 3 parameters */
bind[0].buffer_type= MYSQL_TYPE_DATE;
bind[0].buffer= (char *)&ts;
bind[0].is_null= 0;
bind[0].length= 0;
...
bind[1]= bind[2]= bind[0];
...
mysql_stmt_bind_param(stmt, bind);
/* supply the data to be sent in the ts structure */
ts.year= 2002;
ts.month= 02;
ts.day= 03;
ts.hour= 10;
ts.minute= 45;
ts.second= 20;
mysql_stmt_execute(stmt);
..

22.2.11. C API Threaded Function Descriptions
You need to use the following functions when you want to create a threaded client. See Sec-
tion 22.2.15, “How to Make a Threaded Client”.

22.2.11.1. my_init()

void my_init(void)

Description

This function needs to be called once in the program before calling any MySQL function. This ini-
tializes some global variables that MySQL needs. If you are using a thread-safe client library, this
also calls mysql_thread_init() for this thread.

This is automatically called by mysql_init(), mysql_library_init(),
mysql_server_init() and mysql_connect().

Return Values

None.

22.2.11.2. mysql_thread_init()

MySQL APIs

1034

my_bool mysql_thread_init(void)

Description

This function needs to be called for each created thread to initialize thread-specific variables.

This is automatically called by my_init() and mysql_connect().

Return Values

Zero if successful. Non-zero if an error occurred.

22.2.11.3. mysql_thread_end()

void mysql_thread_end(void)

Description

This function needs to be called before calling pthread_exit() to free memory allocated by
mysql_thread_init().

Note that this function is not invoked automatically by the client library. It must be called expli-
citly to avoid a memory leak.

Return Values

None.

22.2.11.4. mysql_thread_safe()

unsigned int mysql_thread_safe(void)

Description

This function indicates whether the client is compiled as thread-safe.

Return Values

1 is the client is thread-safe, 0 otherwise.

22.2.12. C API Embedded Server Function Descrip-
tions

If you want to allow your application to be linked against the embedded MySQL server library, you
must use the mysql_server_init() and mysql_server_end() functions. See Sec-
tion 22.2.16, “libmysqld, the Embedded MySQL Server Library”.

However, to provide improved memory management, even programs that are linked with -
lmysqlclient rather than -lmysqld should include calls to begin and end use of the library.
As of MySQL 4.1.10 and 5.0.3, the mysql_library_init() and mysql_library_end()
functions can be used to do this. These actually are #define symbols that make them equivalent to
mysql_server_init() and mysql_server_end(), but the names more clearly indicate
that they should be called when beginning and ending use of a MySQL C API library no matter
whether the application uses libmysqlclient or libmysqld. For more information, see Sec-
tion 22.2.2, “C API Function Overview”.

22.2.12.1. mysql_server_init()

int mysql_server_init(int argc, char **argv, char **groups)

Description

MySQL APIs

1035

This function must be called once in the program using the embedded server before calling any oth-
er MySQL function. It starts the server and initializes any subsystems (mysys, InnoDB, etc.) that
the server uses. If this function is not called, the next call to mysql_init() executes
mysql_server_init(). If you are using the DBUG package that comes with MySQL, you
should call this after you have called my_init().

The argc and argv arguments are analogous to the arguments to main(). The first element of
argv is ignored (it typically contains the program name). For convenience, argc may be 0 (zero)
if there are no command-line arguments for the server. mysql_server_init() makes a copy of
the arguments so it's safe to destroy argv or groups after the call.

If you want to connect to an external server without starting the embedded server, you have to spe-
cify a negative value for argc.

The NULL-terminated list of strings in groups selects which groups in the option files are active.
See Section 4.3.2, “Using Option Files”. For convenience, groups may be NULL, in which case
the [server] and [embedded] groups are active.

Example

#include <mysql.h>
#include <stdlib.h>
static char *server_args[] = {
"this_program", /* this string is not used */
"--datadir=.",
"--key_buffer_size=32M"

};
static char *server_groups[] = {
"embedded",
"server",
"this_program_SERVER",
(char *)NULL

};
int main(void) {
if (mysql_server_init(sizeof(server_args) / sizeof(char *),

server_args, server_groups))
exit(1);

/* Use any MySQL API functions here */
mysql_server_end();
return EXIT_SUCCESS;

}

Return Values

0 if okay, 1 if an error occurred.

22.2.12.2. mysql_server_end()

void mysql_server_end(void)

Description

This function must be called once in the program after all other MySQL functions. It shuts down
the embedded server.

Return Values

None.

22.2.13. Common questions and problems when using
the C API

MySQL APIs

1036

22.2.13.1. Why mysql_store_result() Sometimes Returns
NULL After mysql_query() Returns Success

It is possible for mysql_store_result() to return NULL following a successful call to
mysql_query(). When this happens, it means one of the following conditions occurred:

• There was a malloc() failure (for example, if the result set was too large).

• The data couldn't be read (an error occurred on the connection).

• The query returned no data (for example, it was an INSERT, UPDATE, or DELETE).

You can always check whether the statement should have produced a non-empty result by calling
mysql_field_count(). If mysql_field_count() returns zero, the result is empty and the
last query was a statement that does not return values (for example, an INSERT or a DELETE). If
mysql_field_count() returns a non-zero value, the statement should have produced a non-
empty result. See the description of the mysql_field_count() function for an example.

You can test for an error by calling mysql_error() or mysql_errno().

22.2.13.2. What Results You Can Get from a Query

In addition to the result set returned by a query, you can also get the following information:

• mysql_affected_rows() returns the number of rows affected by the last query when do-
ing an INSERT, UPDATE, or DELETE.

In MySQL 3.23, there is an exception when DELETE is used without a WHERE clause. In this
case, the table is re-created as an empty table and mysql_affected_rows() returns zero
for the number of records affected. In MySQL 4.0, DELETE always returns the correct number
of rows deleted. For a fast recreate, use TRUNCATE TABLE.

• mysql_num_rows() returns the number of rows in a result set. With
mysql_store_result(), mysql_num_rows() may be called as soon as
mysql_store_result() returns. With mysql_use_result(), mysql_num_rows()
may be called only after you have fetched all the rows with mysql_fetch_row().

• mysql_insert_id() returns the ID generated by the last query that inserted a row into a ta-
ble with an AUTO_INCREMENT index. See Section 22.2.3.33, “mysql_insert_id()”.

• Some queries (LOAD DATA INFILE ..., INSERT INTO ... SELECT ..., UPDATE)
return additional information. The result is returned by mysql_info(). See the description
for mysql_info() for the format of the string that it returns. mysql_info() returns a
NULL pointer if there is no additional information.

22.2.13.3. How to Get the Unique ID for the Last Inserted Row

If you insert a record into a table that contains an AUTO_INCREMENT column, you can obtain the
value stored into that column by calling the mysql_insert_id() function.

You can check from your C applications whether a value was stored into an AUTO_INCREMENT
column by executing the following code (which assumes that you've checked that the statement suc-
ceeded). It determines whether the query was an INSERT with an AUTO_INCREMENT index:

if ((result = mysql_store_result(&mysql)) == 0 &&
mysql_field_count(&mysql) == 0 &&
mysql_insert_id(&mysql) != 0)

{

MySQL APIs

1037

used_id = mysql_insert_id(&mysql);
}

For more information, see Section 22.2.3.33, “mysql_insert_id()”.

When a new AUTO_INCREMENT value has been generated, you can also obtain it by executing a
SELECT LAST_INSERT_ID() statement with mysql_query() and retrieving the value from
the result set returned by the statement.

For LAST_INSERT_ID(), the most recently generated ID is maintained in the server on a per-
connection basis. It is not changed by another client. It is not even changed if you update another
AUTO_INCREMENT column with a non-magic value (that is, a value that is not NULL and not 0).

If you want to use the ID that was generated for one table and insert it into a second table, you can
use SQL statements like this:

INSERT INTO foo (auto,text)
VALUES(NULL,'text'); # generate ID by inserting NULL

INSERT INTO foo2 (id,text)
VALUES(LAST_INSERT_ID(),'text'); # use ID in second table

Note that mysql_insert_id() returns the value stored into an AUTO_INCREMENT column,
whether that value is automatically generated by storing NULL or 0 or was specified as an explicit
value. LAST_INSERT_ID() returns only automatically generated AUTO_INCREMENT values. If
you store an explicit value other than NULL or 0, it does not affect the value returned by
LAST_INSERT_ID().

22.2.13.4. Problems Linking with the C API

When linking with the C API, the following errors may occur on some systems:

gcc -g -o client test.o -L/usr/local/lib/mysql -lmysqlclient -lsocket -lnsl
Undefined first referenced
symbol in file
floor /usr/local/lib/mysql/libmysqlclient.a(password.o)
ld: fatal: Symbol referencing errors. No output written to client

If this happens on your system, you must include the math library by adding -lm to the end of the
compile/link line.

22.2.14. Building Client Programs
If you compile MySQL clients that you've written yourself or that you obtain from a third-party,
they must be linked using the -lmysqlclient -lz option on the link command. You may also
need to specify a -L option to tell the linker where to find the library. For example, if the library is
installed in /usr/local/mysql/lib, use -L/usr/local/mysql/lib -
lmysqlclient -lz on the link command.

For clients that use MySQL header files, you may need to specify a -I option when you compile
them (for example, -I/usr/local/mysql/include), so the compiler can find the header
files.

To make it simpler to compile MySQL programs on Unix, we have provided the mysql_config
script for you. See Section 22.1.2, “mysql_config, Get compile options for compiling clients”.

You can use it to compile a MySQL client as follows:

CFG=/usr/local/mysql/bin/mysql_config
sh -c "gcc -o progname `$CFG --cflags` progname.c `$CFG --libs`"

MySQL APIs

1038

The sh -c is needed to get the shell not to treat the output from mysql_config as one word.

22.2.15. How to Make a Threaded Client
The client library is almost thread-safe. The biggest problem is that the subroutines in net.c that
read from sockets are not interrupt safe. This was done with the thought that you might want to have
your own alarm that can break a long read to a server. If you install interrupt handlers for the SIG-
PIPE interrupt, the socket handling should be thread-safe.

New in 4.0.16: To not abort the program when a connection terminates, MySQL blocks SIGPIPE
on the first call to mysql_server_init(), mysql_init() or mysql_connect(). If you
want to have your own SIGPIPE handler, you should first call mysql_server_init() and
then install your handler. In older versions of MySQL SIGPIPE was blocked, but only in the thread
safe client library, for every call to mysql_init().

In the older binaries we distribute on our Web site (http://www.mysql.com/), the client libraries are
not normally compiled with the thread-safe option (the Windows binaries are by default compiled to
be thread-safe). Newer binary distributions should have both a normal and a thread-safe client lib-
rary.

To get a threaded client where you can interrupt the client from other threads and set timeouts when
talking with the MySQL server, you should use the -lmysys, -lmystrings, and -ldbug lib-
raries and the net_serv.o code that the server uses.

If you don't need interrupts or timeouts, you can just compile a thread-safe client library
(mysqlclient_r) and use this. See Section 22.2, “MySQL C API”. In this case, you don't have
to worry about the net_serv.o object file or the other MySQL libraries.

When using a threaded client and you want to use timeouts and interrupts, you can make great use
of the routines in the thr_alarm.c file. If you are using routines from the mysys library, the
only thing you must remember is to call my_init() first! See Section 22.2.11, “C API Threaded
Function Descriptions”.

All functions except mysql_real_connect() are by default thread-safe. The following notes
describe how to compile a thread-safe client library and use it in a thread-safe manner. (The notes
below for mysql_real_connect() actually apply to mysql_connect() as well, but be-
cause mysql_connect() is deprecated, you should be using mysql_real_connect() any-
way.)

To make mysql_real_connect() thread-safe, you must recompile the client library with this
command:

shell> ./configure --enable-thread-safe-client

This creates a thread-safe client library libmysqlclient_r. (Assuming that your OS has a
thread-safe gethostbyname_r() function.) This library is thread-safe per connection. You can
let two threads share the same connection with the following caveats:

• Two threads can't send a query to the MySQL server at the same time on the same connection.
In particular, you have to ensure that between a mysql_query() and
mysql_store_result() no other thread is using the same connection.

• Many threads can access different result sets that are retrieved with
mysql_store_result().

• If you use mysql_use_result, you have to ensure that no other thread is using the same
connection until the result set is closed. However, it really is best for threaded clients that share
the same connection to use mysql_store_result().

• If you want to use multiple threads on the same connection, you must have a mutex lock around
your mysql_query() and mysql_store_result() call combination. Once

MySQL APIs

1039

http://www.mysql.com/

mysql_store_result() is ready, the lock can be released and other threads may query the
same connection.

• If you program with POSIX threads, you can use pthread_mutex_lock() and
pthread_mutex_unlock() to establish and release a mutex lock.

You need to know the following if you have a thread that is calling MySQL functions which did not
create the connection to the MySQL database:

When you call mysql_init() or mysql_connect(), MySQL creates a thread-specific vari-
able for the thread that is used by the debug library (among other things).

If you call a MySQL function, before the thread has called mysql_init() or
mysql_connect(), the thread does have the necessary thread-specific variables in place and you
are likely to end up with a core dump sooner or later.

The get things to work smoothly you have to do the following:

1. Call my_init() at the start of your program if it calls any other MySQL function before call-
ing mysql_real_connect().

2. Call mysql_thread_init() in the thread handler before calling any MySQL function.

3. In the thread, call mysql_thread_end() before calling pthread_exit(). This frees
the memory used by MySQL thread-specific variables.

You may get some errors because of undefined symbols when linking your client with libmysql-
client_r. In most cases this is because you haven't included the thread libraries on the link/
compile line.

22.2.16. libmysqld, the Embedded MySQL Server Lib-
rary

22.2.16.1. Overview of the Embedded MySQL Server Library

The embedded MySQL server library makes it possible to run a full-featured MySQL server inside a
client application. The main benefits are increased speed and more simple management for embed-
ded applications.

The embedded server library is based on the client/server version of MySQL, which is written in C/
C++. Consequently, the embedded server also is written in C/C++. There is no embedded server
available in other languages.

The API is identical for the embedded MySQL version and the client/server version. To change an
old threaded application to use the embedded library, you normally only have to add calls to the fol-
lowing functions:

Function When to Call

mysql_server_ini
t()

Should be called before any other MySQL function is called, preferably
early in the main() function.

mysql_server_end
()

Should be called before your program exits.

mysql_thread_ini
t()

Should be called in each thread you create that accesses MySQL.

mysql_thread_end
()

Should be called before calling pthread_exit()

MySQL APIs

1040

Then you must link your code with libmysqld.a instead of libmysqlclient.a.

The mysql_server_xxx() functions are also included in libmysqlclient.a to allow you
to change between the embedded and the client/server version by just linking your application with
the right library. See Section 22.2.12.1, “mysql_server_init()”.

22.2.16.2. Compiling Programs with libmysqld

To get a libmysqld library you should configure MySQL with the -
-with-embedded-server option.

When you link your program with libmysqld, you must also include the system-specific
pthread libraries and some libraries that the MySQL server uses. You can get the full list of lib-
raries by executing mysql_config --libmysqld-libs.

The correct flags for compiling and linking a threaded program must be used, even if you do not dir-
ectly call any thread functions in your code.

22.2.16.3. Restrictions when using the Embedded MySQL Server

The embedded server has the following limitations:

• No support for ISAM tables. (This is mainly done to make the library smaller)

• No user-defined functions (UDFs).

• No stack trace on core dump.

• No internal RAID support. (This is not normally needed as most current operating systems sup-
port big files).

• You cannot set this up as a master or a slave (no replication).

• You can't connect to an embedded server from an outside process with sockets or TCP/IP.

Some of these limitations can be changed by editing the mysql_embed.h include file and recom-
piling MySQL.

22.2.16.4. Using Option Files with the Embedded Server

The following is the recommended way to use option files to make it easy to switch between a cli-
ent/server application and one where MySQL is embedded. See Section 4.3.2, “Using Option Files”.

• Put common options in the [server] section. These are read by both MySQL versions.

• Put client/server-specific options in the [mysqld] section.

• Put embedded MySQL-specific options in the [embedded] section.

• Put application-specific options in a [ApplicationName_SERVER] section.

22.2.16.5. Things left to do in Embedded Server (TODO)

• We are going to provide options to leave out some parts of MySQL to make the library smaller.

• There is still a lot of speed optimization to do.

• Errors are written to stderr. We will add an option to specify a filename for these.

MySQL APIs

1041

• We have to change InnoDB to not be so verbose when using in the embedded version.

22.2.16.6. A Simple Embedded Server Example

This example program and makefile should work without any changes on a Linux or FreeBSD sys-
tem. For other operating systems, minor changes are needed. This example is designed to give
enough details to understand the problem, without the clutter that is a necessary part of a real applic-
ation.

To try out the example, create an test_libmysqld directory at the same level as the mysql-4.0
source directory. Save the test_libmysqld.c source and the GNUmakefile in the directory,
and run GNU make from inside the test_libmysqld directory.

test_libmysqld.c

/*
* A simple example client, using the embedded MySQL server library
*/
#include <mysql.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
MYSQL *db_connect(const char *dbname);
void db_disconnect(MYSQL *db);
void db_do_query(MYSQL *db, const char *query);
const char *server_groups[] = {
"test_libmysqld_SERVER", "embedded", "server", NULL

};
int
main(int argc, char **argv)
{
MYSQL *one, *two;
/* mysql_server_init() must be called before any other mysql
* functions.
*
* You can use mysql_server_init(0, NULL, NULL), and it
* initializes the server using groups = {
* "server", "embedded", NULL
* }.
*
* In your $HOME/.my.cnf file, you probably want to put:

[test_libmysqld_SERVER]
language = /path/to/source/of/mysql/sql/share/english

* You could, of course, modify argc and argv before passing
* them to this function. Or you could create new ones in any
* way you like. But all of the arguments in argv (except for
* argv[0], which is the program name) should be valid options
* for the MySQL server.
*
* If you link this client against the normal mysqlclient
* library, this function is just a stub that does nothing.
*/
mysql_server_init(argc, argv, (char **)server_groups);
one = db_connect("test");
two = db_connect(NULL);
db_do_query(one, "SHOW TABLE STATUS");
db_do_query(two, "SHOW DATABASES");
mysql_close(two);
mysql_close(one);
/* This must be called after all other mysql functions */
mysql_server_end();
exit(EXIT_SUCCESS);

}
static void
die(MYSQL *db, char *fmt, ...)
{

MySQL APIs

1042

va_list ap;
va_start(ap, fmt);
vfprintf(stderr, fmt, ap);
va_end(ap);
(void)putc('\n', stderr);
if (db)
db_disconnect(db);

exit(EXIT_FAILURE);
}
MYSQL *
db_connect(const char *dbname)
{
MYSQL *db = mysql_init(NULL);
if (!db)
die(db, "mysql_init failed: no memory");

/*
* Notice that the client and server use separate group names.
* This is critical, because the server does not accept the
* client's options, and vice versa.
*/
mysql_options(db, MYSQL_READ_DEFAULT_GROUP, "test_libmysqld_CLIENT");
if (!mysql_real_connect(db, NULL, NULL, NULL, dbname, 0, NULL, 0))
die(db, "mysql_real_connect failed: %s", mysql_error(db));

return db;
}
void
db_disconnect(MYSQL *db)
{
mysql_close(db);

}
void
db_do_query(MYSQL *db, const char *query)
{
if (mysql_query(db, query) != 0)
goto err;

if (mysql_field_count(db) > 0)
{
MYSQL_RES *res;
MYSQL_ROW row, end_row;
int num_fields;
if (!(res = mysql_store_result(db)))
goto err;

num_fields = mysql_num_fields(res);
while ((row = mysql_fetch_row(res)))
{
(void)fputs(">> ", stdout);
for (end_row = row + num_fields; row < end_row; ++row)
(void)printf("%s\t", row ? (char*)*row : "NULL");

(void)fputc('\n', stdout);
}
(void)fputc('\n', stdout);
mysql_free_result(res);

}
else
(void)printf("Affected rows: %lld\n", mysql_affected_rows(db));

return;
err:
die(db, "db_do_query failed: %s [%s]", mysql_error(db), query);

}

GNUmakefile

This assumes the MySQL software is installed in /usr/local/mysql
inc := /usr/local/mysql/include/mysql
lib := /usr/local/mysql/lib
If you have not installed the MySQL software yet, try this instead
#inc := $(HOME)/mysql-4.0/include
#lib := $(HOME)/mysql-4.0/libmysqld

MySQL APIs

1043

CC := gcc
CPPFLAGS := -I$(inc) -D_THREAD_SAFE -D_REENTRANT
CFLAGS := -g -W -Wall
LDFLAGS := -static
You can change -lmysqld to -lmysqlclient to use the
client/server library
LDLIBS = -L$(lib) -lmysqld -lz -lm -lcrypt
ifneq (,$(shell grep FreeBSD /COPYRIGHT 2>/dev/null))
FreeBSD
LDFLAGS += -pthread
else
Assume Linux
LDLIBS += -lpthread
endif
This works for simple one-file test programs
sources := $(wildcard *.c)
objects := $(patsubst %c,%o,$(sources))
targets := $(basename $(sources))
all: $(targets)
clean:

rm -f $(targets) $(objects) *.core

22.2.16.7. Licensing the Embedded Server

We encourage everyone to promote free software by releasing code under the GPL or a compatible
license. For those who are not able to do this, another option is to purchase a commercial license for
the MySQL code from MySQL AB. For details, please see ht-
tp://www.mysql.com/company/legal/licensing/.

22.3. MySQL PHP API
PHP is a server-side, HTML-embedded scripting language that may be used to create dynamic Web
pages. It contains support for accessing several databases, including MySQL. PHP may be run as a
separate program or compiled as a module for use with the Apache Web server.

The distribution and documentation are available at the PHP Web site (http://www.php.net/).

22.3.1. Common Problems with MySQL and PHP

• Error: "Maximum Execution Time Exceeded" This is a PHP limit; go into the php.ini file and
set the maximum execution time up from 30 seconds to something higher, as needed. It is also
not a bad idea to double the RAM allowed per script to 16MB instead of 8MB.

• Error: "Fatal error: Call to unsupported or undefined function mysql_connect() in .." This means
that your PHP version isn't compiled with MySQL support. You can either compile a dynamic
MySQL module and load it into PHP or recompile PHP with built-in MySQL support. This is
described in detail in the PHP manual.

• Error: "undefined reference to `uncompress'" This means that the client library is compiled with
support for a compressed client/server protocol. The fix is to add -lz last when linking with -
lmysqlclient.

22.4. MySQL Perl API
The Perl DBI module provides a generic interface for database access. You can write a DBI script
that works with many different database engines without change. To use DBI, you must install the
DBI module, as well as a DataBase Driver (DBD) module for each type of server you want to ac-
cess. For MySQL, this driver is the DBD::mysql module.

MySQL APIs

1044

http://www.mysql.com/company/legal/licensing/
http://www.mysql.com/company/legal/licensing/
http://www.php.net/

Perl DBI is the recommended Perl interface. It replaces an older interface called mysqlperl,
which should be considered obsolete.

Installation instructions for Perl DBI support are given in Section 2.13, “Perl Installation Notes”.

DBI information is available at the command line, online, or in printed form:

• Once you have the DBI and DBD::mysql modules installed, you can get information about
them at the command line with the perldoc command:

shell> perldoc DBI
shell> perldoc DBI::FAQ
shell> perldoc DBD::mysql

You can also use pod2man, pod2html, and so forth to translate this information into other
formats.

• For online information about Perl DBI, visit the DBI Web site, http://dbi.perl.org/. That site
hosts a general DBI mailing list. MySQL AB hosts a list specifically about DBD::mysql; see
Section 1.4.1.1, “The MySQL Mailing Lists”.

• For printed information, the official DBI book is Programming the Perl DBI (Alligator
Descartes and Tim Bunce, O'Reilly & Associates, 2000). Information about the book is available
at the DBI Web site, http://dbi.perl.org/.

For information that focuses specifically on using DBI with MySQL, see MySQL and Perl for
the Web (Paul DuBois, New Riders, 2001). This book's Web site is ht-
tp://www.kitebird.com/mysql-perl/.

22.5. MySQL C++ API
MySQL++ is the MySQL API for C++. More information can be found at ht-
tp://www.mysql.com/products/mysql++/.

22.5.1. Borland C++
You can compile the MySQL Windows source with Borland C++ 5.02. (The Windows source in-
cludes only projects for Microsoft VC++, for Borland C++ you have to do the project files yourself.)

One known problem with Borland C++ is that it uses a different structure alignment than VC++.
This means that you run into problems if you try to use the default libmysql.dll libraries (that
were compiled with VC++) with Borland C++. To avoid this problem, only call mysql_init()
with NULL as an argument, not a pre-allocated MYSQL structure.

22.6. MySQL Python API
MySQLdb provides MySQL support for Python, compliant with the Python DB API version 2.0. It
can be found at http://sourceforge.net/projects/mysql-python/.

22.7. MySQL Tcl API
MySQLtcl is a simple API for accessing a MySQL database server from the Tcl programming lan-
guage. It can be found at http://www.xdobry.de/mysqltcl/.

22.8. MySQL Eiffel Wrapper

MySQL APIs

1045

http://dbi.perl.org/
http://dbi.perl.org/
http://www.kitebird.com/mysql-perl/
http://www.kitebird.com/mysql-perl/
http://www.mysql.com/products/mysql++/
http://www.mysql.com/products/mysql++/
http://sourceforge.net/projects/mysql-python/
http://www.xdobry.de/mysqltcl/

Eiffel MySQL is an interface to the MySQL database server using the Eiffel programming language,
written by Michael Ravits. It can be found at http://efsa.sourceforge.net/archive/ravits/mysql.htm.

MySQL APIs

1046

http://efsa.sourceforge.net/archive/ravits/mysql.htm

Chapter 23. MySQL Connectors
This chapter describes MySQL Connectors, drivers that provide connectivity to the MySQL server
for client programs.

23.1. MySQL ODBC Support
MySQL provides support for ODBC by means of MySQL Connector/ODBC, the family of MyOD-
BC drivers. This is the reference for the Connector/ODBC product family of MyODBC drivers that
provide ODBC 3.5x compliant access to the MySQL Database System. It teaches you how to install
MyODBC and how to use it. There is also information about common programs that are known to
work with MyODBC and answers to some of the most frequently asked questions about MyODBC.

This reference applies to MyODBC 3.51. You can find a manual for an older version of MyODBC
in the binary or source distribution for that version.

This is a reference to the MySQL ODBC drivers, not a general ODBC reference. For more informa-
tion about ODBC, refer to http://www.microsoft.com/data/.

The application development part of this reference assumes a good working knowledge of C, gener-
al DBMS knowledge, and finally, but not least, familiarity with MySQL. For more information
about MySQL functionality and its syntax, refer to http://dev.mysql.com/doc/.

If you have questions that are not answered in this document, please send a mail message to
<myodbc@lists.mysql.com>.

23.1.1. Introduction to MyODBC

23.1.1.1. What is ODBC?

ODBC (Open Database Connectivity) provides a way for client programs to access a wide range of
databases or data sources. ODBC is a standardized API that allows connections to SQL database
servers. It was developed according to the specifications of the SQL Access Group and defines a set
of function calls, error codes, and data types that can be used to develop database-independent ap-
plications. ODBC usually is used when database independence or simultaneous access to different
data sources is required.

For more information about ODBC, refer to http://www.microsoft.com/data/.

23.1.1.2. What is Connector/ODBC?

Connector/ODBC is the term designating the MySQL AB product family of MySQL ODBC drivers.
These are known as the MyODBC drivers.

23.1.1.3. What is MyODBC 2.50?

MyODBC 2.50 is a 32-bit ODBC driver from MySQL AB that is based on ODBC 2.50 specification
level 0 (with level 1 and 2 features). This is one of the most popular ODBC drivers in the Open
Source market, used by many users to access the MySQL functionality.

23.1.1.4. What is MyODBC 3.51?

MyODBC 3.51 is a 32-bit ODBC driver, also known as the MySQL ODBC 3.51 driver. This ver-
sion is enhanced compared to the existing MyODBC 2.50 driver. It has support for ODBC 3.5x spe-
cification level 1 (complete core API + level 2 features) in order to continue to provide all function-
ality of ODBC for accessing MySQL.

23.1.1.5. Where to Get MyODBC

1047

http://www.microsoft.com/data/
http://dev.mysql.com/doc/
http://www.microsoft.com/data/

MySQL AB distributes all its products under the General Public License (GPL). You can get a copy
of the latest version of MyODBC binaries and sources from the MySQL AB Web site ht-
tp://dev.mysql.com/downloads/.

For more information about MyODBC, visit http://www.mysql.com/products/myodbc/.

For more information about licensing, visit http://www.mysql.com/company/legal/licensing/.

23.1.1.6. Supported Platforms

MyODBC can be used on all major platforms supported by MySQL, such as:

• Windows 95, 98, Me, NT, 2000, XP, and 2003

• All Unix Operating Systems

• AIX

• Amiga

• BSDI

• DEC

• FreeBSD

• HP-UX 10, 11

• Linux

• Mac OS X Server

• Mac OS X

• NetBSD

• OpenBSD

• OS/2

• SGI Irix

• Solaris

• SunOS

• SCO OpenServer

• SCO UnixWare

• Tru64 Unix

If a binary distribution is not available for downloading for a particular platform, you can build the
driver yourself by downloading the driver sources. You can contribute the binaries to MySQL by
sending a mail message to <myodbc@lists.mysql.com>, so that it becomes available for oth-
er users.

23.1.1.7. MyODBC Mailing List

MySQL AB provides assistance to the user community by means of its mailing lists. For MyODBC-re-
lated issues, you can get help from experienced users by using the
<myodbc@lists.mysql.com> mailing list.

MySQL Connectors

1048

http://dev.mysql.com/downloads/
http://dev.mysql.com/downloads/
http://www.mysql.com/products/myodbc/
http://www.mysql.com/company/legal/licensing/

For information about subscribing to MySQL mailing lists or to browse list archives, visit ht-
tp://lists.mysql.com/.

Of particular interest is the ODBC forum in the MySQL Connectors section of the forums.

23.1.1.8. MyODBC Forum

Community support from experienced users is available through the MySQL Forums, located at ht-
tp://forums.mysql.com.

23.1.1.9. How to Report MyODBC Problems or Bugs

If you encounter difficulties or problems with MyODBC, you should start by making a log file from
the ODBC Manager (the log you get when requesting logs from ODBC ADMIN) and MyODBC.
The procedure for doing this is described in Section 23.1.9.7, “Getting an ODBC Trace File”.

Check the MyODBC trace file to find out what could be wrong. You should be able to determine
what statements were issued by searching for the string >mysql_real_query in the myod-
bc.log file.

You should also try issuing the statements from the mysql client program or from admndemo. This
helps you determine whether the error is in MyODBC or MySQL.

If you find out something is wrong, please only send the relevant rows (maximum 40 rows) to the
myodbc mailing list. See Section 1.4.1.1, “The MySQL Mailing Lists”. Please never send the
whole MyODBC or ODBC log file!

If you are unable to find out what's wrong, the last option is to create an archive in tar or Zip format
that contains a MyODBC trace file, the ODBC log file, and a README file that explains the prob-
lem. You can send this to ftp://ftp.mysql.com/pub/mysql/upload/. Only we at MySQL AB has ac-
cess to the files you upload, and we are very discreet with the data.

If you can create a program that also demonstrates the problem, please include it in the archive as
well.

If the program works with some other SQL server, you should include an ODBC log file where you
do exactly the same thing in the other SQL server.

Remember that the more information you can supply to us, the more likely it is that we can fix the
problem.

23.1.1.10. How to Submit a MyODBC Patch

You can send a patch or suggest a better solution for any existing code or problems by sending a
mail message to <myodbc@lists.mysql.com>.

23.1.2. General Information About ODBC and MyODBC

23.1.2.1. Introduction to ODBC

Open Database Connectivity (ODBC) is a widely accepted application-programming interface (API)
for database access. It is based on the Call-Level Interface (CLI) specifications from X/Open and
ISO/IEC for database APIs and uses Structured Query Language (SQL) as its database access lan-
guage.

A survey of ODBC functions supported by MyODBC is given at Section 23.1.16, “MyODBC API
Reference”. For general information about ODBC, see http://www.microsoft.com/data/.

23.1.2.2. MyODBC Architecture

The MyODBC architecture is based on five components, as shown in the following diagram:

MySQL Connectors

1049

http://lists.mysql.com/
http://lists.mysql.com/
http://forums.mysql.com
http://forums.mysql.com
ftp://ftp.mysql.com/pub/mysql/upload/
http://www.microsoft.com/data/

• Application:

An application is a program that calls the ODBC API to access the data from the MySQL server.
The Application communicates with the Driver Manager using the standard ODBC calls. The
Application does not care where the data is stored, how it is stored, or even how the system is
configured to access the data. It needs to know only the Data Source Name (DSN).

A number of tasks are common to all applications, no matter how they use ODBC. These tasks
are:

• Selecting the MySQL server and connecting to it

• Submitting SQL statements for execution

• Retrieving results (if any)

• Processing errors

• Committing or rolling back the transaction enclosing the SQL statement

• Disconnecting from the MySQL server

Because most data access work is done with SQL, the primary tasks for applications that use
ODBC are submitting SQL statements and retrieving any results generated by those statements.

MySQL Connectors

1050

• Driver manager:

The Driver Manager is a library that manages communication between application and driver or
drivers. It performs the following tasks:

• Resolves Data Source Names (DSN)

• Driver loading and unloading

• Processes ODBC function calls or passes them to the driver

• MyODBC Driver:

The MyODBC driver is a library that implements the functions in the ODBC API. It processes
ODBC function calls, submits SQL requests to MySQL server, and returns results back to the
application. If necessary, the driver modifies an application's request so that the request con-
forms to syntax supported by the MySQL.

• ODBC.INI:

ODBC.INI is the ODBC configuration file that stores the driver and database information re-
quired to connect to the server. It is used by the Driver Manager to determine which driver to be
loaded using the Data Source Name. The driver uses this to read connection parameters based on
the DSN specified. For more information, Section 23.1.9, “MyODBC Configuration”.

• MySQL Server:

The MySQL server is the source of data. MySQL is:

• A database management system (DBMS)

• A relational database management system (RDBMS)

• Open Source Software

23.1.2.3. ODBC Driver Managers

An ODBC Driver Manager is a library that manages communication between the ODBC aware ap-
plication and driver(s). Its main functionality includes:

• Resolving Data Source Names (DSN)

• Driver loading and unloading

• Processing ODBC function calls or passing them to the driver

The following driver managers are commonly used:

• Microsoft Windows ODBC Driver Manager (odbc32.dll), http://www.microsoft.com/data/

• unixODBC Driver Manager for Unix (libodbc.so), http://www.unixodbc.org.

• iODBC ODBC Driver Manager for Unix (libiodbc.so), http://www.iodbc.org

MyODBC 3.51 also is shipped with UnixODBC beginning with version 2.1.2.

23.1.2.4. Types of MySQL ODBC Drivers

MySQL Connectors

1051

http://www.microsoft.com/data/
http://www.unixodbc.org
http://www.iodbc.org

MySQL AB supports two Open Source ODBC drivers for accessing MySQL functionality through
the ODBC API: MyODBC (MyODBC 2.50) and MySQL ODBC 3.51 Driver (MyODBC 3.51).

Note: From this section onward, we refer both the drivers generically as MyODBC. Whenever there
is a difference, we use the original names.

23.1.3. How to Install MyODBC
MyODBC works on Windows 9x, Me, NT, 2000, XP, and 2003, and on most Unix platforms.

MyODBC is Open Source. You can find the newest version at ht-
tp://dev.mysql.com/downloads/connector/odbc/. Please note that the 2.50.x versions are LGPL li-
censed, whereas the 3.51.x versions are GPL licensed.

If you have problem with MyODBC and your program also works with OLEDB, you should try the
OLEDB driver.

Normally you need to install MyODBC only on Windows machines. You need MyODBC for Unix
only if you have a program like ColdFusion that is running on a Unix machine and uses ODBC to
connect for database access.

If you want to install MyODBC on a Unix box, you also need an ODBC manager. MyODBC is
known to work with most Unix ODBC managers.

• To make a connection to a Unix box from a Windows box with an ODBC application (one that
doesn't support MySQL natively), you must first install MyODBC on the Windows machine.

• The user and Windows machine must have access privileges for the MySQL server on the Unix
machine. This is set up with the GRANT command. See Section 13.5.1.3, “GRANT and REVOKE
Syntax”.

• You must create an ODBC DSN entry as follows:

1. Open the Control Panel on the Windows machine.

2. Double-click the ODBC Data Sources 32-bit icon.

3. Click the tab User DSN.

4. Click the Add button.

5. Select MySQL in the screen Create New Data Source and click the Finish but-
ton.

6. The MySQL Driver default configuration screen is shown. See Section 23.1.9.2,
“Configuring a MyODBC DSN on Windows”.

• Start your application and select the ODBC driver with the DSN that you specified in the ODBC
administrator.

Notice that other configuration options are shown on the MySQL screen that you can try if you run
into problems (options such as trace, don't prompt on connect, and so forth).

23.1.4. Installing MyODBC from a Binary Distribution
on Windows

To install MyODBC on Windows, you should download the appropriate distribution file from ht-
tp://dev.mysql.com/downloads/connector/odbc/, unpack it, and execute the
MyODBC-VERSION.exe file.

MySQL Connectors

1052

http://dev.mysql.com/downloads/connector/odbc/
http://dev.mysql.com/downloads/connector/odbc/
http://dev.mysql.com/downloads/connector/odbc/
http://dev.mysql.com/downloads/connector/odbc/

On Windows, you may get the following error when trying to install the older MyODBC 2.50
driver:

An error occurred while copying C:\WINDOWS\SYSTEM\MFC30.DLL. Restart
Windows and try installing again (before running any applications
which use ODBC)

The problem is that some other program is using ODBC. Because of how Windows is designed, you
may not be able in this case to install new ODBC drivers with Microsoft's ODBC setup program. In
most cases, you can continue by pressing Ignore to copy the rest of the MyODBC files and the fi-
nal installation should still work. If it doesn't, the solution is to re-boot your computer in ``safe
mode.'' Choose safe mode by pressing F8 just before your machine starts Windows during re-
booting, install MyODBC, and re-boot to normal mode.

23.1.5. Installing MyODBC from a Binary Distribution
on Unix

23.1.5.1. Installing MyODBC from an RPM Distribution

To install or upgrade MyODBC from an RPM distribution on Linux, simply download the RPM dis-
tribution of the latest version of MyODBC and follow the instructions below. Use su root to be-
come root, then install the RPM file.

If you are installing for the first time:

shell> su root
shell> rpm -ivh MyODBC-3.51.01.i386-1.rpm

If the driver exists, upgrade it like this:

shell> su root
shell> rpm -Uvh MyODBC-3.51.01.i386-1.rpm

If there is any dependancy error for MySQL client library, libmysqlclient, simply ignore it by
supplying the --nodeps option, and then make sure the MySQL client shared library is in the path
or set through LD_LIBRARY_PATH.

This installs the driver libraries and related documents to /usr/local/lib and /
usr/share/doc/MyODBC respectively. Proceed onto Section 23.1.9.3, “Configuring a MyOD-
BC DSN on Unix”.

To uninstall the driver, become root and execute an rpm command:

shell> su root
shell> rpm -e MyODBC

23.1.5.2. Installing MyODBC from a Binary Tarball Distribution

To install the driver from a tarball distribution (.tar.gz file), download the latest version of the
driver for your operating system and follow these steps:

shell> su root
shell> gunzip MyODBC-3.51.01-i686-pc-linux.tar.gz
shell> tar xvf MyODBC-3.51.01-i686-pc-linux.tar
shell> cd MyODBC-3.51.01-i686-pc-linux

Read the installation instructions in the INSTALL-BINARY file and execute these commands.

MySQL Connectors

1053

shell> cp libmyodbc* /usr/local/lib
shell> cp odbc.ini /usr/local/etc
shell> export ODBCINI=/usr/local/etc/odbc.ini

Then proceed on to Section 23.1.9.3, “Configuring a MyODBC DSN on Unix” to configure the
DSN for MyODBC. For more information, refer to the INSTALL-BINARY file that comes with
your distribution.

23.1.6. Installing MyODBC from a Source Distribution
on Windows

23.1.6.1. Requirements

• MDAC, Microsoft Data Access SDK from http://www.microsoft.com/data/.

• MySQL client libraries and include files from MySQL 4.0.0 or higher. (Preferably MySQL
4.0.16 or higher). This is required because MyODBC uses new calls and structures that exist
only starting from this version of the library. To get the client libraries and include files, visit ht-
tp://dev.mysql.com/downloads/.

23.1.6.2. Building MyODBC 3.51

MyODBC 3.51 source distributions include Makefiles that uses nmake. In the distribution, you
can find Makefile for building the release version and Makefile_debug for building debug-
ging versions of the driver libraries and DLLs.

To build the driver, use this procedure:

1. Download and extract the sources to a folder, then change location into that folder. The follow-
ing command assumes the folder is named myodbc3-src:

C:\> cd myodbc3-src

2. Edit Makefile to specify the correct path for the MySQL client libraries and header files.
Then use the following commands to build and install the release version:

C:\> nmake -f Makefile
C:\> nmake -f Makefile install

nmake -f Makefile builds the release version of the driver and places the binaries in subdirect-
ory called Release.

nmake -f Makefile install installs (copies) the driver DLLs and libraries(myodbc3.dll,
myodbc3.lib) to your system directory.

3. To build the debug version, use Makefile_Debug rather than Makefile, as shown below:

C:\> nmake -f Makefile_debug
C:\> nmake -f Makefile_debug install

4. You can clean and rebuild the driver by using:

C:\> nmake -f Makefile clean
C:\> nmake -f Makefile install

MySQL Connectors

1054

http://www.microsoft.com/data/
http://dev.mysql.com/downloads/
http://dev.mysql.com/downloads/

Note:

• Make sure to specify the correct MySQL client libraries and header files path in the Makefiles
(set the MYSQL_LIB_PATH and MYSQL_INCLUDE_PATH variables). The default header file
path is assumed to be C:\mysql\include. The default library path is assumed to be
C:\mysql\lib\opt for release DLLs and C:\mysql\lib\debug for debug versions.

• For the complete usage of nmake, visit ht-
tp://msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_vcce4/html/evgrfRunningNM
AKE.asp.

• If you are using the BitKeeper tree for compiling, All Windows-specific Makefiles are
named as Win_Makefile*.

23.1.6.3. Testing

After the driver libraries are copied/installed to the system directory, you can test whether the librar-
ies are properly built by using the samples provided in the samples subdirectory:

C:\> cd samples
C:\> nmake -f Makefile all

23.1.6.4. Building MyODBC 2.50

The MyODBC 2.50 source distribution includes VC workspace files. You can build the driver using
these files (.dsp and .dsw) directly by loading them from Microsoft Visual Studio 6.0 or higher.

23.1.7. Installing MyODBC from a Source Distribution
on Unix

23.1.7.1. Requirements

• MySQL client libraries and include files from MySQL 4.0.0 or higher. (Preferably MySQL
4.0.16 or higher). This is required because MyODBC uses new calls and structures that exist
only starting from this version of the library. To get the client libraries and include files, visit ht-
tp://dev.mysql.com/downloads/.

• The MySQL library must be configured with the --enable-thread-safe-client op-
tion. libmysqlclient installed as a shared library.

• One of the following Unix ODBC driver managers must be installed:

• iodbc 3.0 or later (http://www.iodbc.org)

• unixodbc Alpha 3 or later (http://www.unixodbc.org)

• If using a character set that isn't compiled into the MySQL client library (the defaults are: lat-
in1 big5 czech euc_kr gb2312 gbk sjis tis620 ujis) then you need to install the mysql character
definitions from the charsets directory into SHAREDIR (by default, /
usr/local/mysql/share/mysql/charsets). These should be in place if you have in-
stalled the MySQL server on the same machine.

Once you have all the required files, unpack the source files to a separate directory and follow the
instructions as given below:

23.1.7.2. Typical configure Options

MySQL Connectors

1055

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_vcce4/html/evgrfRunningNMAKE.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_vcce4/html/evgrfRunningNMAKE.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_vcce4/html/evgrfRunningNMAKE.asp
http://dev.mysql.com/downloads/
http://dev.mysql.com/downloads/
http://www.iodbc.org
http://www.unixodbc.org

The configure script gives you a great deal of control over how you configure your MyODBC
build. Typically you do this using options on the configure command line. You can also affect con-
figure using certain environment variables. For a list of options and environment variables suppor-
ted by configure, run this command:

shell> ./configure --help

Some of the more commonly used configure options are described here:

1. To compile MyODBC, you need to supply the MySQL client include and library files path us-
ing the --with-mysql-path=DIR option, where DIR is the directory where the MySQL is
installed.

MySQL compile options can be determined by running DIR/bin/mysql_config.

2. Supply the standard header and library files path for your ODBC Driver Manager(iodbc or
unixobc).

• If you are using iodbc and iodbc is not installed in its default location (/usr/local),
you might have to use the --with-iodbc=DIR option, where DIR is the directory
where iodbc is installed.

If the iodbc headers do not reside in DIR/include, you can use the -
-with-iodbc-includes=INCDIR option to specify their location.

The applies to libraries. If they are not in DIR/lib, you can use the -
-with-iodbc-libs=LIBDIR option.

• If you are using unixODBC, use the --with-unixODBC=DIR option (case sensitive) to
make configure look for unixODBC instead of iodbc by default, DIR is the directory
where unixODBC is installed.

If the unixODBC headers and libraries aren't located in DIR/include and DIR/lib,
use the --with-unixODBC-includes=INCDIR and
--with-unixODBC-libs=LIBDIR options.

3. You might want to specify an installation prefix other than /usr/local. For example, to in-
stall the MyODBC drivers in /usr/local/odbc/lib, use the -
-prefix=/usr/local/odbc option.

The final configuration command looks something like this:

shell> ./configure --prefix=/usr/local \
--with-iodbc=/usr/local \
--with-mysql-path=/usr/local/mysql

23.1.7.3. Thread-Safe Client

In order to link the driver with MySQL thread safe client libraries libmysqlclient_r.so or
libmysqlclient_r.a, you must specify the following configure option:

--enable-thread-safe

and can be disabled(default) using

--disable-thread-safe

This option enables the building of driver thread-safe library libmyodbc3_r.so from by linking

MySQL Connectors

1056

with mysql thread-safe client library libmysqlclient_r.so (The extensions are OS depend-
ent).

In case while configuring with thread-safe option, and gotten into a configure error; then look at the
config.log and see if it is due to the lack of thread-libraries in the system; and supply one with
LIBS options i.e.

LIBS="-lpthread" ./configure ..

23.1.7.4. Shared or Static Options

You can enable or disable the shared and static versions using these options:

--enable-shared[=yes/no]
--disable-shared
--enable-static[=yes/no]
--disable-static

23.1.7.5. Enabling Debugging Information

By default, all the binary distributions are built as non-debugging versions (configured with -
-without-debug).

To enable debugging information, build the driver from source distribution and use the -
-with-debug) when you run configure.

23.1.7.6. Enabling the Documentation

This option is available only for BK clone trees; not for normal source distributions.

By default, the driver is built with (--without-docs); And in case if you want the documenta-
tion to be taken care in the normal build, then configure with:

--with-docs

23.1.7.7. Building and Compilation

To build the driver libraries, you have to just execute make, which takes care of everything.

shell> make

If any errors occur, correct them and continue the build process. If you aren't able to build, then send
a detailed email to <myodbc@lists.mysql.com> for further assistance.

23.1.7.8. Building Shared Libraries

On most platforms, MySQL doesn't build or support .so (shared) client libraries by default, be-
cause building with shared libraries has caused us problems in the past.

In cases like this, you have to download the MySQL distribution and configure it with these options:

--without-server --enable-shared

To build shared driver libraries, you must specify the --enable-shared option for configure.
By default, configure does not enable this option.

If you have configured with the --disable-shared option, you can build the .so file from the
static libraries using the following commands:

MySQL Connectors

1057

shell> cd MyODBC-3.51.01
shell> make
shell> cd driver
shell> CC=/usr/bin/gcc \

$CC -bundle -flat_namespace -undefined error \
-o .libs/libmyodbc3-3.51.01.so \
catalog.o connect.o cursor.o dll.o error.o execute.o \
handle.o info.o misc.o myodbc3.o options.o prepare.o \
results.o transact.o utility.o \
-L/usr/local/mysql/lib/mysql/ \
-L/usr/local/iodbc/lib/ \
-lz -lc -lmysqlclient -liodbcinst

Make sure to change -liodbcinst to -lodbcinst if you are using unixODBC instead of iOD-
BC, and configure the library paths accordingly.

This builds and places the libmyodbc3-3.51.01.so file in the .libs directory. Copy this
file to MyODBC library directory (/usr/local/lib (or the lib directory under the installation
directory that you supplied with the --prefix).

shell> cd .libs
shell> cp libmyodbc3-3.51.01.so /usr/local/lib
shell> cd /usr/local/lib
shell> ln -s libmyodbc3-3.51.01.so libmyodbc3.so

To build the thread-safe driver library:

shell> CC=/usr/bin/gcc \
$CC -bundle -flat_namespace -undefined error

-o .libs/libmyodbc3_r-3.51.01.so
catalog.o connect.o cursor.o dll.o error.o execute.o
handle.o info.o misc.o myodbc3.o options.o prepare.o
results.o transact.o utility.o
-L/usr/local/mysql/lib/mysql/
-L/usr/local/iodbc/lib/
-lz -lc -lmysqlclient_r -liodbcinst

23.1.7.9. Installing Driver Libraries

To install the driver libraries, execute the following command:

shell> make install

That command installs one of the following sets of libraries:

For MyODBC 3.51:

• libmyodbc3.so

• libmyodbc3-3.51.01.so, where 3.51.01 is the version of the driver

• libmyodbc3.a

For thread-safe MyODBC 3.51:

• libmyodbc3_r.so

• libmyodbc3-3_r.51.01.so

MySQL Connectors

1058

• libmyodbc3_r.a

For MyODBC 2.5.0:

• libmyodbc.so

• libmyodbc-2.50.39.so, where 2.50.39 is the version of the driver

• libmyodbc.a

For more information on build process, refer to the INSTALL file that comes with the source distri-
bution. Note that if you are trying to use the make from Sun, you may end up with errors. On the
other hand, GNU gmake should work fine on all platforms.

23.1.7.10. Testing MyODBC on Unix

To run the basic samples provided in the distribution with the libraries that you built, just execute:

shell> make test

Make sure the DSN 'myodbc3' is configured first in odbc.ini and environment variable ODB-
CINI is pointing to the right odbc.ini file; and MySQL server is running. You can find a sample
odbc.ini with the driver distribution.

You can even modify the samples/run-samples script to pass the desired DSN, UID, and
PASSWORD values as the command line arguments to each sample.

23.1.7.11. Mac OS X Notes

To build the driver on Mac OS X (Darwin), make use of the following configure example:

shell> ./configure --prefix=/usr/local
--with-unixODBC=/usr/local
--with-mysql-path=/usr/local/mysql
--disable-shared
--enable-gui=no
--host=powerpc-apple

The command assumes that the unixODBC and MySQL are installed in the default locations. If not,
configure accordingly.

On Mac OS X, --enable-shared builds .dylib files by default. You can build .so files like
this:

shell> make
shell> cd driver
shell> CC=/usr/bin/gcc \

$CC -bundle -flat_namespace -undefined error
-o .libs/libmyodbc3-3.51.01.so *.o
-L/usr/local/mysql/lib/
-L/usr/local/iodbc/lib
-liodbcinst -lmysqlclient -lz -lc

To build the thread-safe driver library:

shell> CC=/usr/bin/gcc \
$CC -bundle -flat_namespace -undefined error
-o .libs/libmyodbc3-3.51.01.so *.o
-L/usr/local/mysql/lib/

MySQL Connectors

1059

-L/usr/local/iodbc/lib
-liodbcinst -lmysqlclienti_r -lz -lc -lpthread

Make sure to change the -liodbcinst to -lodbcinst in case of using unixODBC instead of
iODBC and configure the libraries path accordingly.

In Apple's version of GCC, both cc and gcc are actually symbolic links to gcc3.

Copy this library to the $prefix/lib directory and symlink to libmyodbc3.so.

You can cross-check the output shared-library properties using this command:

shell> otool -LD .libs/libmyodbc3-3.51.01.so

23.1.7.12. HP-UX Notes

To build the driver on HP-UX 10.x or 11.x, make use of the following configure example:

If using cc:

shell> CC="cc" \
CFLAGS="+z" \
LDFLAGS="-Wl,+b:-Wl,+s" \
./configure --prefix=/usr/local

--with-unixodbc=/usr/local
--with-mysql-path=/usr/local/mysql/lib/mysql
--enable-shared
--enable-thread-safe

If using gcc:

shell> CC="gcc" \
LDFLAGS="-Wl,+b:-Wl,+s" \
./configure --prefix=/usr/local

--with-unixodbc=/usr/local
--with-mysql-path=/usr/local/mysql
--enable-shared
--enable-thread-safe

Once the driver is built, cross-check its attributes using chatr .libs/libmyodbc3.sl to see whether or
not you need to have the MySQL client libraries path using the SHLIB_PATH environment vari-
able. For static versions, ignore all shared-library options and run configure with the -
-disable-shared option.

23.1.7.13. AIX Notes:

To build the driver on AIX, make use of the following configure example:

shell> ./configure --prefix=/usr/local
--with-unixodbc=/usr/local
--with-mysql-path=/usr/local/mysql
--disable-shared
--enable-thread-safe

NOTE: For more information about how to build and set up the static and shared libraries across the
different platforms refer to ' Using static and shared libraries across platforms
[http://www.fortran-2000.com/ArnaudRecipes/sharedlib.html]'.

23.1.8. Installing MyODBC from the BitKeeper Develop-

MySQL Connectors

1060

http://www.fortran-2000.com/ArnaudRecipes/sharedlib.html

ment Source Tree
Note: You should read this section only if you are interested in helping us test our new code.

To obtain our most recent development source tree, use these instructions:

1. Download BitKeeper from http://www.bitmover.com/cgi-bin/download.cgi. You need Bit-
Keeper 3.0 or newer to access our repository.

2. Follow the instructions to install it.

3. After BitKeeper is installed, first go to the directory you want to work from, and then use this
command if you want to clone the MyODBC 3.51 branch:

shell> bk clone bk://mysql.bkbits.net/myodbc3 myodbc-3.51

In the preceding example, the source tree is set up in the myodbc-3.51/ or by default myo-
dbc3/ subdirectory of your current directory. If you are behind the firewall and can only initi-
ate HTTP connections, you can also use BitKeeper via HTTP. If you are required to use a
proxy server, simply set the environment variable http_proxy to point to your proxy:

shell> export http_proxy="http://your.proxy.server:8080/"

Replace the bk:// with http:// when doing a clone. Example:

shell> bk clone http://mysql.bkbits.net/myodbc3 myodbc-3.51

The initial download of the source tree may take a while, depending on the speed of your con-
nection; be patient.

4. You need GNU autoconf 2.52 (or newer), automake 1.4, libtool 1.4, and m4 to
run the next set of commands.

shell> cd myodbc-3.51
shell> bk -r edit
shell> aclocal; autoheader; autoconf; automake;
shell> ./configure # Add your favorite options here
shell> make

For more information on how to build, refer to INSTALL file located in the same directory. On
Windows, make use of Windows Makefiles WIN-Makefile and WIN-Makefile_debug
in building the driver, for more information, see Section 23.1.6, “Installing MyODBC from a
Source Distribution on Windows”.

5. When the build is done, run make install to install the MyODBC 3.51 driver on your system.

6. If you have gotten to the make stage and the distribution does not compile, please report it to
<myodbc@lists.mysql.com>.

7. After the initial bk clone operation to get the source tree, you should run bk pull periodically
to get the updates.

8. You can examine the change history for the tree with all the diffs by using bk sccstool. If you
see some funny diffs or code that you have a question about, do not hesitate to send e-mail to
<myodbc@lists.mysql.com>.

Also, if you think you have a better idea on how to do something, send an e-mail to the same
address with a patch. bk diffs produces a patch for you after you have made changes to the
source. If you do not have the time to code your idea, just send a description.

MySQL Connectors

1061

http://www.bitmover.com/cgi-bin/download.cgi

9. BitKeeper has a nice help utility that you can access via bk helptool.

You can also browse changesets, comments and source code online by browsing to ht-
tp://mysql.bkbits.net:8080/myodbc3.

23.1.9. MyODBC Configuration
This section describes how to configure MyODBC, including DSN creation and the different argu-
ments that the driver takes as an input arguments in the connection string. It also describes how to
create an ODBC trace file.

23.1.9.1. What is a Data Source Name?

A "data source" is a place where data comes from. The data source must have a persistent identifier,
the Data Source Name. Using the Data Source Name, MySQL can access initialization information.
With the initialization information, MySQL knows where to access the database and what settings to
use when the access starts.

In effect, the data source is the path to the data. In different contexts this might mean different
things, but typically it identifies a running MySQL server (for example via a network address or ser-
vice name), plus the default database for that server at connection time, plus necessary connection
information such as the port. The MySQL drivers (and, on Windows systems, the ODBC Driver
Manager) use the data source for connecting. An administrative utility called the Microsoft ODBC
Data Source Administrator may be useful for this purpose.

There are two places where the initialization information might be: in the Windows registry (on a
Windows system), or in a DSN file (on any system).

If the information is in the Windows registry, it is called a "Machine data source". It might be a
"User data source", in which case only one user can see it. Or it might be a "System data source" in
which case it is accessible to all users on the computer, or indeed to all users connected to the com-
puter, if the users are connected by Microsoft Windows NT services. When you run the ODBC Data
Administration program, you have a choice whether to use "User" or "System" -- there are separate
tabs.

If the information is in a DSN file, it is called a "File data source". This is a text file. Its advantages
are: (a) it is an option for any kind of computer, not just a computer with a Windows operating sys-
tem; (b) its contents can be transmitted or copied relatively easily.

23.1.9.2. Configuring a MyODBC DSN on Windows

To add and configure a new MyODBC data source on Windows, use the ODBC Data Source
Administrator. The ODBC Administrator updates your data source connection informa-
tion. As you add data sources, the ODBC Administrator updates the registry information for
you.

To open the ODBC Administrator from the Control Panel:

1. Click Start, point to Settings, and then click Control Panel.

2. On computers running Microsoft Windows 2000 or newer, double-click Administrative
Tools, and then double-click Data Sources (ODBC). On computers running older ver-
sions of Windows, double-click 32-bit ODBC or ODBC.

MySQL Connectors

1062

http://mysql.bkbits.net:8080/myodbc3
http://mysql.bkbits.net:8080/myodbc3

The ODBC Data Source Administrator dialog box appears, as shown here:

Click Help for detailed information about each tab of the ODBC Data Source Admin-
istrator dialog box.

To add a data source on Windows:

1. Open the ODBC Data Source Administrator.

2. In the ODBC Data Source Administrator dialog box, click Add. The Create New
Data Source dialog box appears.

3. Select MySQL ODBC 3.51 Driver, and then click Finish. The MySQL ODBC 3.51
Driver - DSN Configuration dialog box appears, as shown here:

MySQL Connectors

1063

4. In the Data Source Name box, enter the name of the data source you want to access. It can
be any valid name that you choose.

5. In the Description box, enter the description needed for the DSN.

6. For Host or Server Name (or IP) box, enter the name of the MySQL server host
that you want to access. By default, it is localhost.

7. In the Database Name box, enter the name of the MySQL database that you want to use as
the default database.

8. In the User box, enter your MySQL username (your database user ID).

9. In the Password box, enter your password.

10. In the Port box, enter the port number if it is not the default (3306).

11. In the SQL Command box, you can enter an optional SQL statement that you want to issue
automatically after the connection has been established.

The final dialog looks like this:

MySQL Connectors

1064

Click OK to add this data source.

Note: Upon clicking OK, the Data Sources dialog box appears, and the ODBC Adminis-
trator updates the registry information. The username and connect string that you entered be-
come the default connection values for this data source when you connect to it.

You can also test whether your settings are suitable for connecting to the server using the button
Test Data Source. This feature is available only for the MyODBC 3.51 driver. A successful
test results in the following window:

A failed test results in an error:

The DSN configuration dialog also has an Options button. If you select it, the following options
dialog appears displaying that control driver behavior. Refer to Section 23.1.9.4, “Connection Para-
meters” for information about the meaning of these options.

MySQL Connectors

1065

Note: The options listed under Driver Trace Options are disabled (grayed out) unless you
are using the debugging version of the driver DLL.

To modify a data source on Windows:

1. Open the ODBC Data Source Administrator. Click the appropriate DSN tab.

2. Select the MySQL data source that you want to modify and then click Configure. The
MySQL ODBC 3.51 Driver - DSN Configuration dialog box appears.

3. Modify the applicable data source fields, and then click OK.

When you have finished modifying the information in this dialog box, the ODBC Administrat-
or updates the registry information.

23.1.9.3. Configuring a MyODBC DSN on Unix

On Unix, you configure DSN entries directly in the odbc.ini file. Here is a typical odbc.ini
file that configures myodbc and myodbc3 as the DSN names for MyODBC 2.50 and MyODBC
3.51, respectively:

;
; odbc.ini configuration for MyODBC and MyODBC 3.51 drivers
;
[ODBC Data Sources]
myodbc = MyODBC 2.50 Driver DSN
myodbc3 = MyODBC 3.51 Driver DSN
[myodbc]
Driver = /usr/local/lib/libmyodbc.so
Description = MyODBC 2.50 Driver DSN
SERVER = localhost
PORT =
USER = root
Password =

MySQL Connectors

1066

Database = test
OPTION = 3
SOCKET =
[myodbc3]
Driver = /usr/local/lib/libmyodbc3.so
Description = MyODBC 3.51 Driver DSN
SERVER = localhost
PORT =
USER = root
Password =
Database = test
OPTION = 3
SOCKET =
[Default]
Driver = /usr/local/lib/libmyodbc3.so
Description = MyODBC 3.51 Driver DSN
SERVER = localhost
PORT =
USER = root
Password =
Database = test
OPTION = 3
SOCKET =

Refer to the Section 23.1.9.4, “Connection Parameters”, for the list of connection parameters that
can be supplied.

Note: If you are using unixODBC, you can use the following tools in order to set up the DSN:

• ODBCConfig GUI tool(HOWTO: ODBCConfig [http://www.unixodbc.org/config.html])

• odbcinst

In some cases when using unixODBC, you might get this error:

Data source name not found and no default driver specified

If this happens, make sure the ODBCINI and ODBCSYSINI environment variables are pointing to
the right odbc.ini file. For example, if your odbc.ini file is located in /usr/local/etc,
set the environment variables like this:

export ODBCINI=/usr/local/etc/odbc.ini
export ODBCSYSINI=/usr/local/etc

23.1.9.4. Connection Parameters

You can specify the following parameters for MyODBC in the [Data Source Name] section of
an ODBC.INI file or through the InConnectionString argument in the SQLDriverCon-
nect() call.

Parameter Default Value Comment

user ODBC (on Win-
dows)

The username used to connect to MySQL.

server localhost The hostname of the MySQL server.

database The default database.

option 0 Options that specify how MyODBC should work. See below.

port 3306 The TCP/IP port to use if server is not localhost.

stmt A statement to execute when connecting to MySQL.

MySQL Connectors

1067

http://www.unixodbc.org/config.html

password The password for the user account on server.

socket The Unix socket file or Windows named pipe to connect to if
server is localhost.

The option argument is used to tell MyODBC that the client isn't 100% ODBC compliant. On
Windows, you normally select options by toggling the checkboxes in the connection screen, but you
can also select them in the option argument. The following options are listed in the order in which
they appear in the MyODBC connect screen:

Value Description

1 The client can't handle that MyODBC returns the real width of a column.

2 The client can't handle that MySQL returns the true value of affected rows. If this flag is
set, MySQL returns ``found rows'' instead. You must have MySQL 3.21.14 or newer to
get this to work.

4 Make a debug log in c:\myodbc.log. This is the same as putting
MYSQL_DEBUG=d:t:O,c::\myodbc.log in AUTOEXEC.BAT. (On Unix, the file
is /tmp/myodbc.log.)

8 Don't set any packet limit for results and parameters.

16 Don't prompt for questions even if driver would like to prompt.

32 Enable or disable the dynamic cursor support. (Not allowed in MyODBC 2.50.)

64 Ignore use of database name in db_name.tbl_name.col_name.

128 Force use of ODBC manager cursors (experimental).

256 Disable the use of extended fetch (experimental).

512 Pad CHAR columns to full column length.

1024 SQLDescribeCol() returns fully qualified column names.

2048 Use the compressed client/server protocol.

4096 Tell server to ignore space after function name and before '(' (needed by PowerBuilder).
This makes all function names keywords.

8192 Connect with named pipes to a mysqld server running on NT.

16384 Change LONGLONG columns to INT columns (some applications can't handle LON-
GLONG).

32768 Return 'user' as Table_qualifier and Table_owner from SQLTables
(experimental).

65536 Read parameters from the [client] and [odbc] groups from my.cnf.

131072 Add some extra safety checks (should not be needed but...).

262144 Disable transactions.

524288 Enable query logging to c:\myodbc.sql(/tmp/myodbc.sql) file. (Enabled only
in debug mode.)

1048576 Do not cache the results locally in the driver, instead read from server
(mysql_use_result()). This works only for forward-only cursors. This option is
very important in dealing with large tables when you don't want the driver to cache the
entire result set.

2097152 Force the use of Forward-only cursor type. In case of applications setting the default
static/dynamic cursor type, and one wants the driver to use non-cache result sets, then
this option ensures the forward-only cursor behavior.

To select multiple options, add together their values. For example, setting option to 12 (4+8)
gives you debugging without packet limits.

The default myodbc3.dll is compiled for optimal performance. If you want to debug MyODBC
3.51 (for example, to enable tracing), you should instead use myodbc3d.dll. To install this file,

MySQL Connectors

1068

copy myodbc3d.dll over the installed myodbc3.dll file. Make sure to revert back to the re-
lease version of the driver DLL once you are done with the debugging because the debug version
may cause performance issues.

For MyODBC 2.50, myodbc.dll and myodbcd.dll are used instead.

The following table shows some recommended option values for various configurations:

Configuration Option Value

Microsoft Access 3

Microsoft Visual Basic 3

Large tables with too many rows 2049

Driver trace generation (Debug mode) 4

Query log generation (Debug mode) 524288

Generate driver trace as well as query log (Debug mode) 524292

Large tables with no-cache results 3145731

23.1.9.5. Connecting Without a Predefined DSN

Yes. You can connect to the MySQL server using SQLDriverConnect, by specifying the DRIVER
name field. Here are the connection strings for MyODBC using DSN-Less connection:

For MyODBC 2.50:

ConnectionString = "DRIVER={MySQL};\
SERVER=localhost;\
DATABASE=test;\
USER=venu;\
PASSWORD=venu;\
OPTION=3;"

For MyODBC 3.51:

ConnectionString = "DRIVER={MySQL ODBC 3.51 Driver};\
SERVER=localhost;\
DATABASE=test;\
USER=venu;\
PASSWORD=venu;\
OPTION=3;"

If your programming language converts backslash followed by whitespace to a space, it is preferable
to specify the connection string as a single long string, or to use a concatenation of multiple strings
that does not add spaces in between. For example:

ConnectionString = "DRIVER={MySQL ODBC 3.51 Driver};"
"SERVER=localhost;"
"DATABASE=test;"
"USER=venu;"
"PASSWORD=venu;"
"OPTION=3;"

Refer to the Section 23.1.9.4, “Connection Parameters”, for the list of connection parameters that
can be supplied.

23.1.9.6. Establishing a Remote Connection to System A from
System B

If you want to connect to system A from system B with a username and password of myuser and

MySQL Connectors

1069

mypassword, here is a simple procedure.

On system A, follow these steps:

1. Start the MySQL server.

2. Use GRANT to set up an account with a username of myuser that can connect from system B
using a password of myuser:

GRANT ALL ON *.* to 'myuser'@'B' IDENTIFIED BY 'mypassword';

3. The GRANT statement grants all privileges to user myuser for connecting from system B us-
ing the password mypassword. To execute this statement, you should be either root on sys-
tem A (or another user who has appropriate privileges). For more information about MySQL
privileges, refer to Section 5.6, “MySQL User Account Management”.

On system B, follow these steps:

1. Configure a MyODBC DSN using the following connection parameters:

DSN = remote_test
SERVER or HOST = A (or IP address of system A)
DATABASE = test (The default database or an appropriate one)
USER = myuser
PASSWORD = mypassword

To set up a DSN-less connection, refer to Section 23.1.9.5, “Connecting Without a Predefined
DSN”.

2. Check whether you are able to access system A from system B by using ping or other means. If
you are not able to reach system A, check your network or Internet connections or contact your
system administrator.

3. Try to connect using DSN=remote_test. If it fails, trace the MyODBC log, and take the
further steps based on the error message from the log. If you need further assistance, send a de-
tailed mail message to <myodbc@lists.mysql.com>.

You can also find a simple HOWTO at ht-
tp://www.phphelp.com/tutorial/using-myodbc-to-connect-to-a-remote-database.html.

23.1.9.7. Getting an ODBC Trace File

If you encounter difficulties or problems with MyODBC, you should start by making a log file from
the ODBC Manager (the log you get when requesting logs from ODBC ADMIN) and MyODBC.

To get an ODBC trace through Driver Manager, do the following:

• Open ODBC Data source administrator:

1. Click Start, point to Settings, and then click Control Panel.

2. On computers running Microsoft Windows 2000, XP, or 2003, double-click Adminis-
trative Tools, and then double-click Data Sources (ODBC), as shown below.

MySQL Connectors

1070

http://www.phphelp.com/tutorial/using-myodbc-to-connect-to-a-remote-database.html
http://www.phphelp.com/tutorial/using-myodbc-to-connect-to-a-remote-database.html

On computers running an earlier version of Microsoft Windows, double-click 32-bit
ODBC or ODBC in the Control Panel.

3. The ODBC Data Source Administrator dialog box appears, as shown below:

4. Click Help for detailed information about each tab of the ODBC Data Source Administrator
dialog box.

• Enable the trace option. The procedure for this differs for Windows and Unix.

To enable the trace option on Windows:

1. The Tracing tab of the ODBC Data Source Administrator dialog box enables you to con-
figure the way ODBC function calls are traced.

2. When you activate tracing from the Tracing tab, the Driver Manager logs all ODBC
function calls for all subsequently run applications.

3. ODBC function calls from applications running before tracing is activated are not logged.
ODBC function calls are recorded in a log file you specify.

4. Tracing ceases only after you click Stop Tracing Now. Remember that while tracing
is on, the log file continues to increase in size and that tracing affects the performance of all
your ODBC applications.

MySQL Connectors

1071

To enable the trace option on Unix:

1. On Unix, you need to explicitly set the Trace option in the ODBC.INI file.

Set the tracing ON or OFF by using TraceFile and Trace parameters in odbc.ini as
shown below:

TraceFile = /tmp/odbc.trace
Trace = 1

TraceFile specifies the name and full path of the trace file and Trace is set to ON or
OFF. You can also use 1 or YES for ON and 0 or NO for OFF. If you are using ODBCCon-
fig from unixODBC, then follow the instructions for tracing unixODBC calls at HOWTO-
ODBCConfig [http://www.unixodbc.org/config.html].

To generate a MyODBC log, do the following:

1. Ensure that you are using the driver debug DLL (that is, myodbc3d.dll and not myod-
bc3.dll for MyODBC 3.51, and myodbcd.dll for MyODBC 2.50).

The easiest way to do this is to get myodbc3d.dll (or myodbcd.dll) from the MyO-
DBC 3.51 distribution and copy it over the myodbc3.dll (or myodbc.dll), which is
probably in your C:\windows\system32 or C:\winnt\system32 directory. Note
that you probably want to restore the old myodbc.dll file when you have finished test-
ing, as this is a lot faster than myodbc3d.dll (or myodbcd.dll), so do keep a backup
copy of original DLLs.

2. Enable the Trace MyODBC option flag in the MyODBC connect/configure screen. The
log is written to file C:\myodbc.log. If the trace option is not remembered when you
are going back to the above screen, it means that you are not using the myodbcd.dll
driver (see above). On Linux or if you are using DSN-Less connection, then you need to
supply OPTION=4 in the connection string.

MySQL Connectors

1072

http://www.unixodbc.org/config.html
http://www.unixodbc.org/config.html

3. Start your application and try to get it to fail. Then check the MyODBC trace file to find
out what could be wrong.

If you find out something is wrong, please send a mail message to
<myodbc@lists.mysql.com> (or to <support@mysql.com> if you have a sup-
port contract from MySQL AB) with a brief description of the problem, with the following
additional information:

• MyODBC version

• ODBC Driver Manager type and version

• MySQL server version

• ODBC trace from Driver Manager

• MyODBC log file from MyODBC driver

• Simple reproducible sample

Remember that the more information you can supply to us, the more likely it is that we can fix
the problem!

Also, before posting the bug, check the MyODBC mailing list archive at http://lists.mysql.com/.

23.1.9.8. Applications Tested with MyODBC

MyODBC has been tested with the following applications:

• MS Access 95, 97, 2000, and 2002

• C++-Builder, Borland Builder 4

• Centura Team Developer (formerly Gupta SQL/Windows)

• ColdFusion (on Solaris and NT with service pack 5), How-to: MySQL and Coldfusion
[http://www.njwtech.net/addons/coldfusion/mysql.html]. Troubleshooting Data Sources and
Database Connectivity for UnixPlatforms
[http://www.macromedia.com/v1/handlers/index.cfm?ID=11328&Method=Full&PageCall=/sup
port/index.cfm].

• Crystal Reports

• DataJunction

• Delphi

• ERwin

• MS Excel

• iHTML

• FileMaker Pro

• FoxPro

• Notes 4.5/4.6

• MS Visio Enterprise 2000

MySQL Connectors

1073

http://lists.mysql.com/
http://www.njwtech.net/addons/coldfusion/mysql.html
http://www.macromedia.com/v1/handlers/index.cfm?ID=11328&Method=Full&PageCall=/support/index.cfm
http://www.macromedia.com/v1/handlers/index.cfm?ID=11328&Method=Full&PageCall=/support/index.cfm

• Vision

• Visual Objects

• Visual Interdev

• SBSS

• Perl DBD-ODBC

• Paradox

• Powerbuilder

• Powerdesigner 32-bit

• MS Visual C++

• Visual Basic

• ODBC.NET through CSharp(C#), VB and C++

• Data Architect(http://thekompany.com/products/dataarchitect/)

• SQLExpress for Xbase++(http://www.SQLExpress.net)

• Open Office (http://www.openoffice.org) How-to: MySQL + OpenOffice
[http://dba.openoffice.org/proposals/MySQL_OOo.html]. How-to: OpenOffice + MyODBC +
unixODBC [http://www.unixodbc.org/doc/OOoMySQL.pdf].

• Star Office (http://wwws.sun.com/software/star/staroffice/6.0/index.html)

• G2-ODBC bridge (http://www.gensym.com)

• Sambar Server (http://www.sambarserver.info) How-to: MyODBC + SambarServer + MySQL
[http://www.sambarserver.info/article.php?sid=66].

If you know of any other applications that work with MyODBC, please send mail to
<myodbc@lists.mysql.com> about them.

23.1.9.9. Programs Known to Work With MyODBC

Most programs should work with MyODBC, but for each of those listed here, we have tested it
ourselves or received confirmation from some user that it works. Many of the descriptions provide
workarounds for problems that you might encounter.

• Program

Comment

• Access

To make Access work:

• If you are using Access 2000, you should get and install the newest (version 2.6 or higher)
Microsoft MDAC (Microsoft Data Access Components) from ht-
tp://www.microsoft.com/data/. This fixes a bug in Access that when you export data to
MySQL, the table and column names aren't specified. Another way to work around this bug
is to upgrade to MyODBC 2.50.33 and MySQL 3.23.x, which together provide a work-
around for the problem.

You should also get and apply the Microsoft Jet 4.0 Service Pack 5 (SP5) which can be

MySQL Connectors

1074

http://thekompany.com/products/dataarchitect/
http://www.SQLExpress.net
http://www.openoffice.org
http://dba.openoffice.org/proposals/MySQL_OOo.html
http://wwws.sun.com/software/star/staroffice/6.0/index.html
http://www.gensym.com
http://www.sambarserver.info
http://www.sambarserver.info/article.php?sid=66
http://www.microsoft.com/data/
http://www.microsoft.com/data/

found at http://support.microsoft.com/default.aspx?scid=kb;EN-US;q239114. This fixes
some cases where columns are marked as #DELETED# in Access.

Note: If you are using MySQL 3.22, you must to apply the MDAC patch and use MyODBC
2.50.32 or 2.50.34 and up to work around this problem.

• For all versions of Access, you should enable the MyODBC Return matching rows
option. For Access 2.0, you should additionally enable the Simulate ODBC 1.0 option.

• You should have a timestamp in all tables that you want to be able to update. For maximum
portability, don't use a length specification in the column declaration. That is, use
TIMESTAMP, not TIMESTAMP(n), n < 14.

• You should have a primary key in the table. If not, new or updated rows may show up as
#DELETED#.

• Use only DOUBLE float fields. Access fails when comparing with single floats. The symp-
tom usually is that new or updated rows may show up as #DELETED# or that you can't find
or update rows.

• If you are using MyODBC to link to a table that has a BIGINT column, the results are dis-
played as #DELETED. The work around solution is:

• Have one more dummy column with TIMESTAMP as the data type.

• Select the Change BIGINT columns to INT option in the connection dialog in
ODBC DSN Administrator.

• Delete the table link from Access and re-create it.

Old records still display as #DELETED#, but newly added/updated records are displayed
properly.

• If you still get the error Another user has changed your data after adding a
TIMESTAMP column, the following trick may help you:

Don't use a table data sheet view. Instead, create a form with the fields you want, and use
that form data sheet view. You should set the DefaultValue property for the
TIMESTAMP column to NOW(). It may be a good idea to hide the TIMESTAMP column
from view so your users are not confused.

• In some cases, Access may generate illegal SQL statements that MySQL can't understand.
You can fix this by selecting "Query|SQLSpecific|Pass-Through" from the Ac-
cess menu.

• On NT, Access reports BLOB columns as OLE OBJECTS. If you want to have MEMO
columns instead, you should change BLOB columns to TEXT with ALTER TABLE.

• Access can't always handle DATE columns properly. If you have a problem with these,
change the columns to DATETIME.

• If you have in Access a column defined as BYTE, Access tries to export this as TINYINT in-
stead of TINYINT UNSIGNED. This gives you problems if you have values larger than 127
in the column.

• ADO

When you are coding with the ADO API and MyODBC, you need to pay attention to some de-
fault properties that aren't supported by the MySQL server. For example, using the Cursor-
Location Property as adUseServer returns a result of #1 for the RecordCount
Property. To have the right value, you need to set this property to adUseClient, as shown
in the VB code here:

MySQL Connectors

1075

http://support.microsoft.com/default.aspx?scid=kb;EN-US;q239114

Dim myconn As New ADODB.Connection
Dim myrs As New Recordset
Dim mySQL As String
Dim myrows As Long
myconn.Open "DSN=MyODBCsample"
mySQL = "SELECT * from user"
myrs.Source = mySQL
Set myrs.ActiveConnection = myconn
myrs.CursorLocation = adUseClient
myrs.Open
myrows = myrs.RecordCount
myrs.Close
myconn.Close

Another workaround is to use a SELECT COUNT(*) statement for a similar query to get the
correct row count.

• Active server pages (ASP)

You should select the Return matching rows option.

• BDE applications

To get these to work, you should select the Don't optimize column widths and Re-
turn matching rows options.

• Borland Builder 4

When you start a query, you can use the Active property or the Open method. Note that Act-
ive starts by automatically issuing a SELECT * FROM ... query. That may not be a good
thing if your tables are large.

• ColdFusion (On Unix)

The following information is taken from the ColdFusion documentation:

Use the following information to configure ColdFusion Server for Linux to use the unixODBC
driver with MyODBC for MySQL data sources. Allaire has verified that MyODBC 2.50.26
works with MySQL 3.22.27 and ColdFusion for Linux. (Any newer version should also work.)
You can download MyODBC at http://dev.mysql.com/downloads/connector/odbc/.

ColdFusion Version 4.5.1 allows you to us the ColdFusion Administrator to add the MySQL
data source. However, the driver is not included with ColdFusion Version 4.5.1. Before the
MySQL driver appears in the ODBC datasources drop-down list, you must build and copy the
MyODBC driver to /opt/coldfusion/lib/libmyodbc.so.

The Contrib directory contains the program mydsn-xxx.zip which allows you to build and
remove the DSN registry file for the MyODBC driver on Coldfusion applications.

• DataJunction

You have to change it to output VARCHAR rather than ENUM, as it exports the latter in a manner
that causes MySQL problems.

• Excel

Works. A few tips:

MySQL Connectors

1076

http://dev.mysql.com/downloads/connector/odbc/

• If you have problems with dates, try to select them as strings using the CONCAT() function.
For example:

SELECT CONCAT(rise_time), CONCAT(set_time)
FROM sunrise_sunset;

Values retrieved as strings this way should be correctly recognized as time values by Ex-
cel97.

The purpose of CONCAT() in this example is to fool ODBC into thinking the column is of
``string type.'' Without the CONCAT(), ODBC knows the column is of time type, and Excel
does not understand that.

Note that this is a bug in Excel, because it automatically converts a string to a time. This
would be great if the source was a text file, but is unfortunate when the source is an ODBC
connection that reports exact types for each column.

• Word

To retrieve data from MySQL to Word/Excel documents, you need to use the MyODBC driver
and the Add-in Microsoft Query help.

For example, create a database with a table containing two columns of text:

• Insert rows using the mysql client command-line tool.

• Create a DSN file using the ODBC manager, for example, my for the database that was just
created.

• Open the Word application.

• Create a blank new document.

• In the Database tool bar, press the Insert Database button.

• Press the Get Data button.

• At the right hand of the Get Data screen, press the Ms Query button.

• In Ms Query, create a new data source using the my DSN file.

• Select the new query.

• Select the columns that you want.

• Make a filter if you want.

• Make a Sort if you want.

• Select Return Data to Microsoft Word.

• Click Finish.

• Click Insert Data and select the records.

• Click OK and you see the rows in your Word document.

• odbcadmin

Test program for ODBC.

MySQL Connectors

1077

• Delphi

You must use BDE Version 3.2 or newer. Select the Don't optimize column width
option when connecting to MySQL.

Also, here is some potentially useful Delphi code that sets up both an ODBC entry and a BDE
entry for MyODBC. The BDE entry requires a BDE Alias Editor that is free at a Delphi Super
Page near you. (Thanks to Bryan Brunton <bryan@flesherfab.com> for this):

fReg:= TRegistry.Create;
fReg.OpenKey('\Software\ODBC\ODBC.INI\DocumentsFab', True);
fReg.WriteString('Database', 'Documents');
fReg.WriteString('Description', ' ');
fReg.WriteString('Driver', 'C:\WINNT\System32\myodbc.dll');
fReg.WriteString('Flag', '1');
fReg.WriteString('Password', '');
fReg.WriteString('Port', ' ');
fReg.WriteString('Server', 'xmark');
fReg.WriteString('User', 'winuser');
fReg.OpenKey('\Software\ODBC\ODBC.INI\ODBC Data Sources', True);
fReg.WriteString('DocumentsFab', 'MySQL');
fReg.CloseKey;
fReg.Free;
Memo1.Lines.Add('DATABASE NAME=');
Memo1.Lines.Add('USER NAME=');
Memo1.Lines.Add('ODBC DSN=DocumentsFab');
Memo1.Lines.Add('OPEN MODE=READ/WRITE');
Memo1.Lines.Add('BATCH COUNT=200');
Memo1.Lines.Add('LANGDRIVER=');
Memo1.Lines.Add('MAX ROWS=-1');
Memo1.Lines.Add('SCHEMA CACHE DIR=');
Memo1.Lines.Add('SCHEMA CACHE SIZE=8');
Memo1.Lines.Add('SCHEMA CACHE TIME=-1');
Memo1.Lines.Add('SQLPASSTHRU MODE=SHARED AUTOCOMMIT');
Memo1.Lines.Add('SQLQRYMODE=');
Memo1.Lines.Add('ENABLE SCHEMA CACHE=FALSE');
Memo1.Lines.Add('ENABLE BCD=FALSE');
Memo1.Lines.Add('ROWSET SIZE=20');
Memo1.Lines.Add('BLOBS TO CACHE=64');
Memo1.Lines.Add('BLOB SIZE=32');
AliasEditor.Add('DocumentsFab','MySQL',Memo1.Lines);

• C++ Builder

Tested with BDE Version 3.0. The only known problem is that when the table schema changes,
query fields are not updated. BDE, however, does not seem to recognize primary keys, only the
index named PRIMARY, though this has not been a problem.

• Vision

You should select the Return matching rows option.

• Visual Basic

To be able to update a table, you must define a primary key for the table.

Visual Basic with ADO can't handle big integers. This means that some queries like SHOW
PROCESSLIST do not work properly. The fix is to use OPTION=16384 in the ODBC connect
string or to select the Change BIGINT columns to INT option in the MyODBC connect
screen. You may also want to select the Return matching rows option.

MySQL Connectors

1078

• VisualInterDev

If you have a BIGINT in your result, you may get the error [Microsoft][ODBC Driver
Manager] Driver does not support this parameter Try selecting the
Change BIGINT columns to INT option in the MyODBC connect screen.

• Visual Objects

You should select the Don't optimize column widths option.

• MS Visio Enterprise 2000

We made database model diagram by connecting from MS Vision Enterprise 2000 to MySQL
via MyODBC (2.50.37 or greater) and using Visio's reverse engineer function to retrieve inform-
ation about the DB (Visio shows all the column definitions, primary keys, Indexes and so on).
Also we tested by designing new tables in Visio and exported them to MySQL via MyODBC.

23.1.10. MyODBC Connection-Related Issues
This section answers MyODBC connection-related questions.

23.1.10.1. While Configuring a MyODBC DSN, a Could Not Load
Translator or Setup Library Error Occurs

For more information, refer to MS KnowledgeBase Article(Q260558)
[http://support.microsoft.com/default.aspx?scid=kb;EN-US;q260558]. Also, make sure you have the
latest valid ctl3d32.dll in your system directory.

23.1.10.2. While Connecting, an Access denied Error Occurs

Refer to Section 5.5.8, “Causes of Access denied Errors”.

23.1.10.3. INFO: About ODBC Connection Pooling

Refer to this document about connection pooling: ht-
tp://support.microsoft.com/default.aspx?scid=kb;EN-US;q169470.

23.1.11. MyODBC and Microsoft Access
This section of the document answers questions related to MyODBC with Microsoft Access.

23.1.11.1. How to Set Up Microsoft Access to Work with MySQL
using MyODBC?

The following must be done on your client PC in order to make Microsoft Access work with MyO-
DBC.

1. If you are using Access 2000, you should get and install the newest (version 2.6 or higher) Mi-
crosoft MDAC (Microsoft Data Access Components) from ht-
tp://www.microsoft.com/data/. This fixes a bug in Access that when you export data to
MySQL, the table and column names aren't specified. Another way to work around this bug is
to upgrade to MyODBC 2.50.33 and MySQL 3.23.x, which together provide a workaround for
the problem.

You should also get and apply the Microsoft Jet 4.0 Service Pack 5 (SP5) which can be found
at http://support.microsoft.com/default.aspx?scid=kb;EN-US;q239114. This fixes some cases
where columns are marked as #DELETED# in Access.

MySQL Connectors

1079

http://support.microsoft.com/default.aspx?scid=kb;EN-US;q260558
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q169470
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q169470
http://www.microsoft.com/data/
http://www.microsoft.com/data/
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q239114

Note: If you are using MySQL 3.22, you must to apply the MDAC patch and use MyODBC
2.50.32 or 2.50.34 and up to work around this problem.

2. Install the latest version of MySQL from http://dev.mysql.com/downloads/.

3. Install the latest version of MyODBC 3.51 or 2.50 from ht-
tp://dev.mysql.com/downloads/connector/odbc/.

4. For all Access versions, you should enable the Return matching rows option.

5. Start working with Access as the front-end for MySQL Server through MyODBC.

23.1.11.2. How to Export a Table or Query from Access to
MySQL?

You cannot export a table or query to MySQL unless you have installed MyODBC.

To export a table from Access to MySQL, follow these instructions:

1. When you open an Access database or an Access project, a Database window appears. It dis-
plays shortcuts for creating new database objects and opening existing objects.

2. Click the name of the table or query you want to export, and then in the File menu, select
Export.

3. In the Export Object Type Object name To dialog box, in the Save As Type
box, select ODBC Databases () as shown here:

MySQL Connectors

1080

http://dev.mysql.com/downloads/
http://dev.mysql.com/downloads/connector/odbc/
http://dev.mysql.com/downloads/connector/odbc/

4. In the Export dialog box, enter a name for the file (or use the suggested name), and then se-
lect OK.

5. The Select Data Source dialog box is displayed; it lists the defined data sources for any ODBC
drivers installed on your computer. Click either the File Data Source or Machine Data Source
tab, and then double-click the MyODBC or MyODBC 3.51 data source that you want to export
to. To define a new data source for MyODBC, please Section 23.1.9.2, “Configuring a MyOD-
BC DSN on Windows”.

Microsoft Access connects to the MySQL Server through this data source and exports new tables
and or data.

23.1.11.3. How to Import or Link MySQL Database Tables to Ac-
cess?

You cannot export a table or query to MySQL database unless you have installed the MyODBC.

To import or link a table(s) from MySQL to Access, follow the instructions:

1. Open a database, or switch to the Database window for the open database.

2. To import tables, on the File menu, point to Get External Data, and then click Im-
port. To link tables, on the File menu, point to Get External Data, and then click
Link Tables.

3. In the Import (or Link) dialog box, in the Files Of Type box, select ODBC Databases
(). The Select Data Source dialog box lists the defined data sources The Select Data Source
dialog box is displayed; it lists the defined data sources for any ODBC drivers installed on your
computer. Click either the File Data Source or Machine Data Source tab, and then double-click
the MyODBC or MyODBC 3.51 data source that you want to export to. To define a new data
source for the MyODBC or MyODBC 3.51 driver, please Section 23.1.9.2, “Configuring a My-
ODBC DSN on Windows”.

4. If the ODBC data source that you selected requires you to log on, enter your login ID and pass-
word (additional information might also be required), and then click OK.

5. Microsoft Access connects to the MySQL server through ODBC data source and displays
the list of tables that you can import or link.

6. Click each table that you want to import or link, and then click OK. If you're linking a table
and it doesn't have an index that uniquely identifies each record, then Microsoft Access dis-
plays a list of the fields in the linked table. Click a field or a combination of fields that uniquely
identifies each record, and then click OK.

23.1.11.4. The Structure or Location of a Linked Table has been
Changed. Can I See Those Changes Locally in Linked Tables?

MySQL Connectors

1081

Yes. Use the following procedure to view or to refresh links when the structure or location of a
linked table has changed. The Linked Table Manager lists the paths to all currently linked tables.

To wiew or refresh links:

1. Open the database that contains links to tables.

2. On the Tools menu, point to Add-ins, and then click Linked Table Manager.

3. Select the check box for the tables whose links you want to refresh.

4. Click OK to refresh the links.

Microsoft Access confirms a successful refresh or, if the table wasn't found, displays the Select
New Location of <table name> dialog box in which you can specify its the table's new loca-
tion.If several selected tables have moved to the new location that you specify, the Linked Table
Manager searches that location for all selected tables, and updates all links in one step.

To vhange the path for a set of linked tables:

1. Open the database that contains links to tables.

2. On the Tools menu, point to Add-ins, and then click Linked Table Manager.

3. Select the Always Prompt For A New Location check box.

4. Select the check box for the tables whose links you want to change, and then click OK.

5. In the Select New Location of <table name> dialog box, specify the new location,
click Open, and then click OK.

23.1.11.5. When I Insert or Update a Record in Linked Tables, I
Get #DELETED#

If the inserted or updated records are shown as #DELETED# in the access, then:

• If you are using Access 2000, you should get and install the newest (version 2.6 or higher) Mi-
crosoft MDAC (Microsoft Data Access Components) from ht-
tp://www.microsoft.com/data/. This fixes a bug in Access that when you export data to MySQL,
the table and column names aren't specified. Another way to work around this bug is to upgrade
to MyODBC 2.50.33 and MySQL 3.23.x, which together provide a workaround for the problem.

You should also get and apply the Microsoft Jet 4.0 Service Pack 5 (SP5) which can be found at
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q239114. This fixes some cases
where columns are marked as #DELETED# in Access.

Note: If you are using MySQL 3.22, you must to apply the MDAC patch and use MyODBC
2.50.32 or 2.50.34 and up to work around this problem.

• For all versions of Access, you should enable the MyODBC Return matching rows op-
tion. For Access 2.0, you should additionally enable the Simulate ODBC 1.0 option.

• You should have a timestamp in all tables that you want to be able to update. For maximum
portability, don't use a length specification in the column declaration. That is, use TIMESTAMP,
not TIMESTAMP(n), n < 14.

• You should have a primary key in the table. If not, new or updated rows may show up as
#DELETED#.

MySQL Connectors

1082

http://www.microsoft.com/data/
http://www.microsoft.com/data/
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q239114

• Use only DOUBLE float fields. Access fails when comparing with single floats. The symptom
usually is that new or updated rows may show up as #DELETED# or that you can't find or up-
date rows.

• If you are using MyODBC to link to a table that has a BIGINT column, the results are displayed
as #DELETED. The work around solution is:

• Have one more dummy column with TIMESTAMP as the data type.

• Select the Change BIGINT columns to INT option in the connection dialog in
ODBC DSN Administrator.

• Delete the table link from Access and re-create it.

Old records still display as #DELETED#, but newly added/updated records are displayed prop-
erly.

23.1.11.6. How Do I Handle Write Conflicts or Row Location Er-
rors?

If you see the following errors, select the Return Matching Rows option in the DSN configur-
ation dialog, or specify OPTION=2, as the connection parameter:

Write Conflict. Another user has changed your data.
Row cannot be located for updating. Some values may have been changed
since it was last read.

23.1.11.7. Whenever I Export a Table from Access 97, a Strange
Syntax Error Occurs

This is a strange issue from Access 97, and doesn't appear with Access 2000 or 2002. You can over-
come this by upgrading the MyODBC driver to at least MyODBC 3.51.02.

23.1.11.8. Access Returns Another user has modified the
record that you have modified While Editing Records

With some programs, this error may occur: Another user has modified the record
that you have modified. In most cases, this can be solved by doing one of the following
things:

• Add a primary key for the table if one doesn't exist.

• Add a timestamp column if one doesn't exist.

• Only use double float fields. Some programs may fail when they compare single floats.

If these strategies don't help, you should start by making a log file from the ODBC manager (the log
you get when requesting logs from ODBCADMIN) and a MyODBC log to help you figure out why
things go wrong. For instructions, see Section 23.1.9.7, “Getting an ODBC Trace File”.

23.1.11.9. How to Trap ODBC Login Error Messages in Access?

Read ``How to Trap ODBC Login Error Messages in Access'' at ht-
tp://support.microsoft.com/support/kb/articles/Q124/9/01.asp?LN=EN-US&SD=gn&FR=0%3CP%
3E.

23.1.11.10. How Do I Optimize Access for Performance with MyO-

MySQL Connectors

1083

http://support.microsoft.com/support/kb/articles/Q124/9/01.asp?LN=EN-US&SD=gn&FR=0%3CP%3E
http://support.microsoft.com/support/kb/articles/Q124/9/01.asp?LN=EN-US&SD=gn&FR=0%3CP%3E
http://support.microsoft.com/support/kb/articles/Q124/9/01.asp?LN=EN-US&SD=gn&FR=0%3CP%3E

DBC?

• Optimizing for Client/Server Performance
[http://support.microsoft.com/default.aspx?scid=kb;en-us;128808]

• Tips for Converting Applications to Using ODBCDirect
[http://support.microsoft.com/default.aspx?scid=kb;en-us;164481]

• Tips for Optimizing Queries on Attached SQL Tables
[http://support.microsoft.com/default.aspx?scid=kb;EN-US;q99321]

23.1.11.11. I Have Very Long Tables. What is the Best Configura-
tion for MyODBC to Access These Tables?

If you have very large (long) tables in Access, it might take a very long time to open them. Or you
might run low on virtual memory and eventually get an ODBC Query Failed error and the table
cannot open. To deal with this, select the following options:

• Return Matching Rows (2)

• Allow BIG Results (8).

These add up to a value of 10 (OPTION=10).

23.1.11.12. How to Set the QueryTimeout Value for ODBC Con-
nections?

Read ``Set the QueryTimeout Value for ODBC Connections'' at ht-
tp://support.microsoft.com/default.aspx?scid=kb%3Ben-us%3B153756.

23.1.11.13. INFO: Tools to Export/Import from/to Access to/from
MySQL

Refer to converters [http://www.mysql.com/portal/software/convertors/] section for list of available
tools.

23.1.12. MyODBC and Microsoft VBA and ASP
This section answers questions related to using MyODBC with Microsoft Visual Basic(ADO, DAO
& RDO) and ASP.

23.1.12.1. Why Does SELECT COUNT(*) FROM tbl_name Return
an Error?

It's because the COUNT(*) expression is returning a BIGINT, and ADO can't make sense of a
number this big. Select the Change BIGINT columns to INT option (option value 16384).

23.1.12.2. Whenever I Use the AppendChunk() or GetChunk()
ADO Methods, I Get an Error Multiple-step operation gen-
erated errors. Check each status value.

The GetChunk() and AppendChunk() methods from ADO doesn't work as expected when the
cursor location is specified as adUseServer. On the other hand, you can overcome this error by using
adUseClient.

MySQL Connectors

1084

http://support.microsoft.com/default.aspx?scid=kb;en-us;128808
http://support.microsoft.com/default.aspx?scid=kb;en-us;164481
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q99321
http://support.microsoft.com/default.aspx?scid=kb%3Ben-us%3B153756
http://support.microsoft.com/default.aspx?scid=kb%3Ben-us%3B153756
http://www.mysql.com/portal/software/convertors/

A simple example can be found from, http://www.dwam.net/iishelp/ado/docs/adomth02_4.htm

23.1.12.3. How to Find the Total Number of Rows Affected by a
Particular SQL Statement in ADO?

You can make use of RecordsAffected property in the ADO execute method. For more inform-
ation on the usage of execute method, refer to ht-
tp://msdn.microsoft.com/library/default.asp?url=/library/en-us/ado270/htm/mdmthcnnexecute.asp.

23.1.12.4. How Do I Handle Blob Data in Visual Basic?

Here is an excellent article from Mike Hillyer (<m.hillyer@telusplanet.net>); explaining
how to insert and/or fetch data from blob columns through MyODBC from ADO: MySQL BLOB
columns and Visual Basic 6 [http://www.dynamergy.com/mike/articles/blobaccessvb.html].

23.1.12.5. How Do I Map Visual Basic Data Types to MySQL
Types?

Here is yet another good article from Mike Hillyer (<m.hillyer@telusplanet.net>): How
to map Visual basic data type to MySQL types
[http://www.dynamergy.com/mike/articles/vbmysqldatatypes.php].

23.1.12.6. SAMPLES: VB with ADO, DAO and RDO

A simple examples for the usage of ADO, DAO and RDO with VB can be found her:

• ADO sample: Section 23.1.19, “MyODBC With VB: ADO, DAO and RDO”

• DAO sample: Section 23.1.19, “MyODBC With VB: ADO, DAO and RDO”

• RDO sample: Section 23.1.19, “MyODBC With VB: ADO, DAO and RDO”

If you find any other good example or HOW-TO on ADO/DAO/RDO, then please send the details
to <myodbc@lists.mysql.com>

23.1.12.7. ASP and MySQL with MyODBC

For more information about how to access MySQL via ASP using MyODBC, refer to the following
articles:

• Using MyODBC To Access Your MySQL Database Via ASP
[http://www.devarticles.com/c/a/ASP/Using-MyODBC-To-Access-Your-MySQL-Database-Via
-ASP/]

• ASP and MySQL at DWAM.NT [http://www.dwam.net/mysql/asp_myodbc.asp]

A Frequently Asked Questions list for ASP can be found at ht-
tp://support.microsoft.com/default.aspx?scid=/Support/ActiveServer/faq/data/adofaq.asp.

23.1.12.8. INFO: Frequently Asked Questions on ActiveX Data Ob-
jects (ADO)

For information, see ActiveX Data Objects(ADO) Freqently Asked Questions
[http://support.microsoft.com/default.aspx?scid=kb;EN-US;q183606].

MySQL Connectors

1085

http://www.dwam.net/iishelp/ado/docs/adomth02_4.htm
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/ado270/htm/mdmthcnnexecute.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/ado270/htm/mdmthcnnexecute.asp
http://www.dynamergy.com/mike/articles/blobaccessvb.html
http://www.dynamergy.com/mike/articles/blobaccessvb.html
http://www.dynamergy.com/mike/articles/vbmysqldatatypes.php
http://www.dynamergy.com/mike/articles/vbmysqldatatypes.php
http://www.devarticles.com/c/a/ASP/Using-MyODBC-To-Access-Your-MySQL-Database-Via-ASP/
http://www.dwam.net/mysql/asp_myodbc.asp
http://support.microsoft.com/default.aspx?scid=/Support/ActiveServer/faq/data/adofaq.asp
http://support.microsoft.com/default.aspx?scid=/Support/ActiveServer/faq/data/adofaq.asp
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q183606

23.1.13. MyODBC and Third-Party ODBC Tools
This section answers questions related to MyODBC with various ODBC-related tools; such as Mi-
crosoft Word, Excel and ColdFusion.

23.1.13.1. How to Retrieve Data from MySQL into MS-Word/Excel
Documents?

To retrieve data from MySQL to Word/Excel documents, you need to use the MyODBC driver and
the Add-in Microsoft Query help.

For example, create a database with a table containing two columns of text:

• Insert rows using the mysql client command-line tool.

• Create a DSN file using the ODBC manager, for example, my for the database that was just cre-
ated.

• Open the Word application.

• Create a blank new document.

• In the Database tool bar, press the Insert Database button.

• Press the Get Data button.

• At the right hand of the Get Data screen, press the Ms Query button.

• In Ms Query, create a new data source using the my DSN file.

• Select the new query.

• Select the columns that you want.

• Make a filter if you want.

• Make a Sort if you want.

• Select Return Data to Microsoft Word.

• Click Finish.

• Click Insert Data and select the records.

• Click OK and you see the rows in your Word document.

23.1.13.2. Exporting Tables from MS DTS to MySQL Using MyOD-
BC Results in a Syntax Error

This is an issue similar to that of Access 97 when your table consists of TEXT or VARCHAR data
types. You can fix this error by upgrading your MyODBC driver to version 3.51.02 or higher.

23.1.13.3. HOWTO: Configure
MySQL+MyODBC+unixODBC+ColdFusion on Solaris

Refer to MySQL ColdFusion unixODBC MyODBC and Solaris - how to succeed
[http://dbforums.com/showthread.php?threadid=174934]

23.1.14. MyODBC General Functionality

MySQL Connectors

1086

http://dbforums.com/showthread.php?threadid=174934

This section of the document answers questions related to MyODBC general functionality.

23.1.14.1. How to Get the Value of an AUTO_INCREMENT Column in
ODBC

A common problem is how to get the value of an automatically generated ID from an INSERT
statement. With ODBC, you can do something like this (assuming that auto is an
AUTO_INCREMENT field):

INSERT INTO tbl (auto,text) VALUES(NULL,'text');
SELECT LAST_INSERT_ID();

Or, if you are just going to insert the ID into another table, you can do this:

INSERT INTO tbl (auto,text) VALUES(NULL,'text');
INSERT INTO tbl2 (id,text) VALUES(LAST_INSERT_ID(),'text');

See Section 22.2.13.3, “How to Get the Unique ID for the Last Inserted Row”.

For the benefit of some ODBC applications (at least Delphi and Access), the following query can be
used to find a newly inserted row:

SELECT * FROM tbl WHERE auto IS NULL;

23.1.14.2. Does MyODBC Support Dynamic Cursor Type?

Yes. MyODBC 3.51 supports Dynamic cursor type along with Forward-only and static.

Due to the performance issues, the driver does not support this feature by default. You can enable
this by specifying the connection option flag as OPTION=32 or by checking the Enable Dynam-
ic Cursor option from the DSN configuration.

23.1.14.3. What Causes Transactions are not enabled Er-
rors?

The driver returns this error when an application issues any transactional call but the underlying
MySQL server either does not support transactions or they are not enabled.

To avoid this problem, you must use a server that has either or both of the InnoDB or BDB storage
engines enabled, and use tables of those types. MySQL servers from version 4.0 and up support In-
noDB by default. MySQL-Max servers also support BDB on platforms where BDB is available.

Also, if your server supports transactional table types (InnoDB and BDB) make sure the disable
transactions option is not set from the DSN configuration.

23.1.14.4. What Causes Cursor not found Errors?

This is becuase the application is using old MyODBC 2.50 version, and it did not set the cursor
name explicitly through SQLSetCursorName. The fix is to upgrade to MyODBC 3.51 version.

23.1.14.5. Can I Use MyODBC 2.50 Applications with MyODBC
3.51?

Yes. If you find something is not working with MyODBC 3.51 that works with MyODBC 2.50,
then send a mail message to <myodbc@lists.mysql.com>

23.1.14.6. Can I Access MySQL from .NET Environment Using My-

MySQL Connectors

1087

ODBC?

Yes. You can make use of odbc.net to connect to MySQL through MyODBC. Here are the few ba-
sic samples to connect to MySQL from VC.NET and VB.NET.

• See Section 23.1.20.1, “ODBC.NET: CSHARP(C#)”

• See Section 23.1.20.2, “ODBC.NET: VB”

Here is yet another excellent article "Exploring MySQL on .NET environment
[http://www.mysql.com/newsletter/2002-07/a0000000035.html]" by Venu (MyODBC developer)
that covers about all MySQL .NET interfaces along with some useful examples.

Caution: Using ODBC.NET with MyODBC, while fetching empty string (0 length), it starts giving
the SQL_NO_DATA exception. You can get the patch for this from ht-
tp://support.microsoft.com/default.aspx?scid=kb;EN-US;q319243.

23.1.14.7. Why Does MyODBC Perform Poorly, and Also Make a
Lot of Disk Activity for Relatively Small Queries?

MyODBC is a lot faster than any other ODBC driver. Slowness might be due to not using the fol-
lowing options.

• The ODBC Tracing option is turned on. You can cross-check whether this option is not turned
on by following the instructions from here
[http://support.microsoft.com/default.aspx?scid=kb;EN-US;268591].

As shown in the above image, the 'When to trace' option from the ODBC Data Source Adminis-
trator 'Tracing' tab should always point to 'Start Tracing Now', instead of 'Stop Tracing Now'.

MySQL Connectors

1088

http://www.mysql.com/newsletter/2002-07/a0000000035.html
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q319243
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q319243
http://support.microsoft.com/default.aspx?scid=kb;EN-US;268591

• The Debug version of the driver is used. If you are using the debug version of the driver DLL, it
can also relatively slow down the query processing time. You can cross-check whether you are
using the debug or release version of the DLL from the 'Comments' section of the driver DLL
properties (from the system directory, right click on the driver DLL and click on properties) as
shown below:

• The Driver trace and query logs are enabled. Even if you intent to use the debug version of the
driver (you should always use the release version in the production environment), make sure the
driver trace and query log options(OPTION=4,524288 respectively) are not enabled as shown
below:

MySQL Connectors

1089

23.1.15. Basic MyODBC Application Steps
Interacting with a MySQL server from MyODBC applications involves the following operations:

• Configure the MyODBC DSN

• Connect to MySQL server

• Initialization operations

• Execute SQL statements

• Retrieve results

• Perform Transactions

• Disconnect from the server

Most applications use some variation of these steps. The basic application steps are shown in the
following diagram:

MySQL Connectors

1090

23.1.16. MyODBC API Reference
This section summarizes ODBC routines, categorized by functionality.

For the complete ODBC API reference, please refer to the ODBC Programer's Reference at ht-
tp://msdn.microsoft.com/library/en-us/odbc/htm/odbcabout_this_manual.asp.

An application can call SQLGetInfo function to obtain conformance information about MyOD-
BC. To obtain information about support for a specific function in the driver, an application can call
SQLGetFunctions.

Note: For backward compatibility, the MyODBC 3.51 driver supports all deprecated functions.

The following tables list MyODBC API calls grouped by task:

Connecting to a data source:

MySQL Connectors

1091

http://msdn.microsoft.com/library/en-us/odbc/htm/odbcabout_this_manual.asp
http://msdn.microsoft.com/library/en-us/odbc/htm/odbcabout_this_manual.asp

Function name MyODBC MyODBC Conformance Purpose

2.50 3.51

SQLAllocHandle No Yes ISO 92 Obtains an environment, connec-
tion, statement, or descriptor
handle.

SQLConnect Yes Yes ISO 92 Connects to a specific driver by
data source name, user ID, and
password.

SQLDriverCon-
nect

Yes Yes ODBC Connects to a specific driver by
connection string or requests that
the Driver Manager and driver
display connection dialog boxes
for the user.

SQLAllocEnv Yes Yes Deprecated Obtains an environment handle
allocated from driver.

SQLAllocCon-
nect

Yes Yes Deprecated Obtains a connection handle

Obtaining information about a driver and data source:

Function name MyODBC MyODBC Conformance Purpose

2.50 3.51

SQLDataSources No No ISO 92 Returns the list of available data
sources, handled by the Driver
Manager

SQLDrivers No No ODBC Returns the list of installed
drivers and their attributes,
handles by Driver Manager

SQLGetInfo Yes Yes ISO 92 Returns information about a spe-
cific driver and data source.

SQLGetFunc-
tions

Yes Yes ISO 92 Returns supported driver func-
tions.

SQLGetTypeInfo Yes Yes ISO 92 Returns information about sup-
ported data types.

Setting and retrieving driver attributes:

Function name MyODBC MyODBC Conformance Purpose

2.50 3.51

SQLSetCon-
nectAttr

No Yes ISO 92 Sets a connection attribute.

SQLGetCon-
nectAttr

No Yes ISO 92 Returns the value of a connection
attribute.

SQLSetConnect-
Option

Yes Yes Deprecated Sets a connection option

SQLGetConnect-
Option

Yes Yes Deprecated Returns the value of a connection
option

SQLSetEnvAttr No Yes ISO 92 Sets an environment attribute.

SQLGetEnvAttr No Yes ISO 92 Returns the value of an environ-
ment attribute.

SQLSetStmtAttr No Yes ISO 92 Sets a statement attribute.

MySQL Connectors

1092

SQLGetStmtAttr No Yes ISO 92 Returns the value of a statement
attribute.

SQLSetStmtOp-
tion

Yes Yes Deprecated Sets a statement option

SQLGetStmtOp-
tion

Yes Yes Deprecated Returns the value of a statement
option

Preparing SQL requests:

Function name MyODBC MyODBC Conformance Purpose

2.50 3.51

SQLAllocStmt Yes Yes Deprecated Allocates a statement handle

SQLPrepare Yes Yes ISO 92 Prepares an SQL statement for
later execution.

SQLBindPara-
meter

Yes Yes ODBC Assigns storage for a parameter in
an SQL statement.

SQLGetCursor-
Name

Yes Yes ISO 92 Returns the cursor name associ-
ated with a statement handle.

SQLSetCursor-
Name

Yes Yes ISO 92 Specifies a cursor name.

SQLSetScrol-
lOptions

Yes Yes ODBC Sets options that control cursor
behavior.

Submitting requests:

Function name MyODBC MyODBC Conformance Purpose

2.50 3.51

SQLExecute Yes Yes ISO 92 Executes a prepared statement.

SQLExecDirect Yes Yes ISO 92 Executes a statement

SQLNativeSql Yes Yes ODBC Returns the text of an SQL state-
ment as translated by the driver.

SQLDescribe-
Param

Yes Yes ODBC Returns the description for a spe-
cific parameter in a statement.

SQLNumParams Yes Yes ISO 92 Returns the number of parameters
in a statement.

SQLParamData Yes Yes ISO 92 Used in conjunction with
SQLPutData to supply para-
meter data at execution time.
(Useful for long data values.)

SQLPutData Yes Yes ISO 92 Sends part or all of a data value
for a parameter. (Useful for long
data values.)

Retrieving results and information about results:

Function name MyODBC MyODBC Conformance Purpose

2.50 3.51

SQLRowCount Yes Yes ISO 92 Returns the number of rows af-
fected by an insert, update, or de-
lete request.

SQLNumResult- Yes Yes ISO 92 Returns the number of columns in

MySQL Connectors

1093

Cols the result set.

SQLDescribeCol Yes Yes ISO 92 Describes a column in the result
set.

SQLColAttrib-
ute

No Yes ISO 92 Describes attributes of a column
in the result set.

SQLColAttrib-
utes

Yes Yes Deprecated Describes attributes of a column
in the result set.

SQLFetch Yes Yes ISO 92 Returns multiple result rows.

SQLFetchScroll No Yes ISO 92 Returns scrollable result rows.

SQLExtended-
Fetch

Yes Yes Deprecated Returns scrollable result rows.

SQLSetPos Yes Yes ODBC Positions a cursor within a
fetched block of data and allows
an application to refresh data in
the rowset or to update or delete
data in the result set.

SQLBulkOpera-
tions

No Yes ODBC Performs bulk insertions and bulk
bookmark operations, including
update, delete, and fetch by book-
mark.

Retrieving error or diagnostic information:

Function name MyODBC MyODBC Conformance Purpose

2.50 3.51

SQLError Yes Yes Deprecated Returns additional error or status
information

SQLGet-
DiagField

Yes Yes ISO 92 Returns additional diagnostic in-
formation (a single field of the
diagnostic data structure).

SQLGetDiagRec Yes Yes ISO 92 Returns additional diagnostic in-
formation (multiple fields of the
diagnostic data structure).

Obtaining information about the data source's system tables (catalog functions) item:

Function name MyODBC MyODBC Conformance Purpose

2.50 3.51

SQLColumnPriv-
ileges

Yes Yes ODBC Returns a list of columns and as-
sociated privileges for one or
more tables.

SQLColumns Yes Yes X/Open Returns the list of column names
in specified tables.

SQLForeignKeys Yes Yes ODBC Returns a list of column names
that make up foreign keys, if they
exist for a specified table.

SQLPrimaryKeys Yes Yes ODBC Returns the list of column names
that make up the primary key for
a table.

SQLSpecial-
Columns

Yes Yes X/Open Returns information about the op-
timal set of columns that uniquely
identifies a row in a specified ta-
ble, or the columns that are auto-

MySQL Connectors

1094

matically updated when any value
in the row is updated by a trans-
action.

SQLStatistics Yes Yes ISO 92 Returns statistics about a single
table and the list of indexes asso-
ciated with the table.

SQLTablePriv-
ileges

Yes Yes ODBC Returns a list of tables and the
privileges associated with each
table.

SQLTables Yes Yes X/Open Returns the list of table names
stored in a specific data source.

Performing transactions:

Function name MyODBC MyODBC Conformance Purpose

2.50 3.51

SQLTransact Yes Yes Deprecated Commits or rolls back a transac-
tion

SQLEndTran No Yes ISO 92 Commits or rolls back a transac-
tion.

Terminating a statement:

Function name MyODBC MyODBC Conformance Purpose

2.50 3.51

SQLFreeStmt Yes Yes ISO 92 Ends statement processing, dis-
cards pending results, and, op-
tionally, frees all resources asso-
ciated with the statement handle.

SQLCloseCursor Yes Yes ISO 92 Closes a cursor that has been
opened on a statement handle.

SQLCancel Yes Yes ISO 92 Cancels an SQL statement.

Terminating a connection:

Function name MyODBC MyODBC Conformance Purpose

2.50 3.51

SQLDisconnect Yes Yes ISO 92 Closes the connection.

SQLFreeHandle No Yes ISO 92 Releases an environment, connec-
tion, statement, or descriptor
handle.

SQLFreeConnect Yes Yes Deprecated Releases connection handle

SQLFreeEnv Yes Yes Deprecated Releases an environment handle

23.1.17. MyODBC Data Types
The following table illustrates how driver maps the server data types to default SQL and C data
types:

Native Value SQL Type C Type

MySQL Connectors

1095

bit SQL_BIT SQL_C_BIT

tinyint SQL_TINYINT SQL_C_STINYINT

tinyint unsigned SQL_TINYINT SQL_C_UTINYINT

bigint SQL_BIGINT SQL_C_SBIGINT

bigint unsigned SQL_BIGINT SQL_C_UBIGINT

long varbinary SQL_LONGVARBINARY SQL_C_BINARY

blob SQL_LONGVARBINARY SQL_C_BINARY

longblob SQL_LONGVARBINARY SQL_C_BINARY

tinyblob SQL_LONGVARBINARY SQL_C_BINARY

mediumblob SQL_LONGVARBINARY SQL_C_BINARY

long varchar SQL_LONGVARCHAR SQL_C_CHAR

text SQL_LONGVARCHAR SQL_C_CHAR

mediumtext SQL_LONGVARCHAR SQL_C_CHAR

char SQL_CHAR SQL_C_CHAR

numeric SQL_NUMERIC SQL_C_CHAR

decimal SQL_DECIMAL SQL_C_CHAR

integer SQL_INTEGER SQL_C_SLONG

integer unsigned SQL_INTEGER SQL_C_ULONG

int SQL_INTEGER SQL_C_SLONG

int unsigned SQL_INTEGER SQL_C_ULONG

mediumint SQL_INTEGER SQL_C_SLONG

mediumint unsigned SQL_INTEGER SQL_C_ULONG

smallint SQL_SMALLINT SQL_C_SSHORT

smallint unsigned SQL_SMALLINT SQL_C_USHORT

real SQL_FLOAT SQL_C_DOUBLE

double SQL_FLOAT SQL_C_DOUBLE

float SQL_REAL SQL_C_FLOAT

double precision SQL_DOUBLE SQL_C_DOUBLE

date SQL_DATE SQL_C_DATE

time SQL_TIME SQL_C_TIME

year SQL_SMALLINT SQL_C_SHORT

datetime SQL_TIMESTAMP SQL_C_TIMESTAMP

timestamp SQL_TIMESTAMP SQL_C_TIMESTAMP

text SQL_VARCHAR SQL_C_CHAR

varchar SQL_VARCHAR SQL_C_CHAR

enum SQL_VARCHAR SQL_C_CHAR

set SQL_VARCHAR SQL_C_CHAR

bit SQL_CHAR SQL_C_CHAR

bool SQL_CHAR SQL_C_CHAR

23.1.18. MyODBC Error Codes
The following tables lists the error codes returned by the driver apart from the server errors.

Native Code SQLSTATE 2 SQLSTATE 3 Error Message

MySQL Connectors

1096

500 01000 01000 General warning

501 01004 01004 String data, right truncated

502 01S02 01S02 Option value changed

503 01S03 01S03 No rows updated/deleted

504 01S04 01S04 More than one row updated/deleted

505 01S06 01S06 Attempt to fetch before the result set returned
the first row set

506 07001 07002 SQLBindParameter not used for all para-
meters

507 07005 07005 Prepared statement not a cursor-specification

508 07009 07009 Invalid descriptor index

509 08002 08002 Connection name in use

510 08003 08003 Connection does not exist

511 24000 24000 Invalid cursor state

512 25000 25000 Invalid transaction state

513 25S01 25S01 Transaction state unknown

514 34000 34000 Invalid cursor name

515 S1000 HY000 General driver defined error

516 S1001 HY001 Memory allocation error

517 S1002 HY002 Invalid column number

518 S1003 HY003 Invalid application buffer type

519 S1004 HY004 Invalid SQL data type

520 S1009 HY009 Invalid use of null pointer

521 S1010 HY010 Function sequence error

522 S1011 HY011 Attribute can not be set now

523 S1012 HY012 Invalid transaction operation code

524 S1013 HY013 Memory management error

525 S1015 HY015 No cursor name available

526 S1024 HY024 Invalid attribute value

527 S1090 HY090 Invalid string or buffer length

528 S1091 HY091 Invalid descriptor field identifier

529 S1092 HY092 Invalid attribute/option identifier

530 S1093 HY093 Invalid parameter number

531 S1095 HY095 Function type out of range

532 S1106 HY106 Fetch type out of range

533 S1117 HY117 Row value out of range

534 S1109 HY109 Invalid cursor position

535 S1C00 HYC00 Optional feature not implemented

0 21S01 21S01 Column count does not match value count

0 23000 23000 Integrity constraint violation

0 42000 42000 Syntax error or access violation

0 42S02 42S02 Base table or view not found

0 42S12 42S12 Index not found

0 42S21 42S21 Column already exists

0 42S22 42S22 Column not found

MySQL Connectors

1097

0 08S01 08S01 Communication link failure

23.1.19. MyODBC With VB: ADO, DAO and RDO
This section contains simple examples of the use of MySQL ODBC 3.51 Driver with ADO, DAO
and RDO.

23.1.19.1. ADO: rs.addNew, rs.delete, and rs.update

The following ADO (ActiveX Data Objects) example creates a table my_ado and demonstrates the
use of rs.addNew, rs.delete, and rs.update.

Private Sub myodbc_ado_Click()
Dim conn As ADODB.Connection
Dim rs As ADODB.Recordset
Dim fld As ADODB.Field
Dim sql As String
'connect to MySQL server using MySQL ODBC 3.51 Driver
Set conn = New ADODB.Connection
conn.ConnectionString = "DRIVER={MySQL ODBC 3.51 Driver};"_

& "SERVER=localhost;"_
& " DATABASE=test;"_
& "UID=venu;PWD=venu; OPTION=3"

conn.Open
'create table
conn.Execute "DROP TABLE IF EXISTS my_ado"
conn.Execute "CREATE TABLE my_ado(id int not null primary key, name varchar(20)," _

& "txt text, dt date, tm time, ts timestamp)"
'direct insert
conn.Execute "INSERT INTO my_ado(id,name,txt) values(1,100,'venu')"
conn.Execute "INSERT INTO my_ado(id,name,txt) values(2,200,'MySQL')"
conn.Execute "INSERT INTO my_ado(id,name,txt) values(3,300,'Delete')"
Set rs = New ADODB.Recordset
rs.CursorLocation = adUseServer
'fetch the initial table ..
rs.Open "SELECT * FROM my_ado", conn
Debug.Print rs.RecordCount
rs.MoveFirst
Debug.Print String(50, "-") & "Initial my_ado Result Set " & String(50, "-")
For Each fld In rs.Fields
Debug.Print fld.Name,
Next
Debug.Print
Do Until rs.EOF
For Each fld In rs.Fields
Debug.Print fld.Value,
Next
rs.MoveNext
Debug.Print

Loop
rs.Close
'rs insert
rs.Open "select * from my_ado", conn, adOpenDynamic, adLockOptimistic
rs.AddNew
rs!Name = "Monty"
rs!txt = "Insert row"
rs.Update
rs.Close
'rs update
rs.Open "SELECT * FROM my_ado"
rs!Name = "update"
rs!txt = "updated-row"
rs.Update
rs.Close
'rs update second time..

MySQL Connectors

1098

rs.Open "SELECT * FROM my_ado"
rs!Name = "update"
rs!txt = "updated-second-time"
rs.Update
rs.Close
'rs delete
rs.Open "SELECT * FROM my_ado"
rs.MoveNext
rs.MoveNext
rs.Delete
rs.Close
'fetch the updated table ..
rs.Open "SELECT * FROM my_ado", conn
Debug.Print rs.RecordCount
rs.MoveFirst
Debug.Print String(50, "-") & "Updated my_ado Result Set " & String(50, "-")
For Each fld In rs.Fields
Debug.Print fld.Name,
Next
Debug.Print
Do Until rs.EOF
For Each fld In rs.Fields
Debug.Print fld.Value,
Next
rs.MoveNext
Debug.Print

Loop
rs.Close
conn.Close

End Sub

23.1.19.2. DAO: rs.addNew, rs.update, and Scrolling

The following DAO (Data Access Objects) example creates a table my_dao and demonstrates the
use of rs.addNew, rs.update, and result set scrolling.

Private Sub myodbc_dao_Click()
Dim ws As Workspace
Dim conn As Connection
Dim queryDef As queryDef
Dim str As String
'connect to MySQL using MySQL ODBC 3.51 Driver
Set ws = DBEngine.CreateWorkspace("", "venu", "venu", dbUseODBC)
str = "odbc;DRIVER={MySQL ODBC 3.51 Driver};"_

& "SERVER=localhost;"_
& " DATABASE=test;"_
& "UID=venu;PWD=venu; OPTION=3"

Set conn = ws.OpenConnection("test", dbDriverNoPrompt, False, str)
'Create table my_dao
Set queryDef = conn.CreateQueryDef("", "drop table if exists my_dao")
queryDef.Execute
Set queryDef = conn.CreateQueryDef("", "create table my_dao(Id INT AUTO_INCREMENT PRIMARY KEY, " _

& "Ts TIMESTAMP(14) NOT NULL, Name varchar(20), Id2 INT)")
queryDef.Execute
'Insert new records using rs.addNew
Set rs = conn.OpenRecordset("my_dao")
Dim i As Integer
For i = 10 To 15
rs.AddNew
rs!Name = "insert record" & i
rs!Id2 = i
rs.Update
Next i

rs.Close
'rs update..
Set rs = conn.OpenRecordset("my_dao")
rs.Edit

MySQL Connectors

1099

rs!Name = "updated-string"
rs.Update
rs.Close
'fetch the table back...
Set rs = conn.OpenRecordset("my_dao", dbOpenDynamic)
str = "Results:"
rs.MoveFirst
While Not rs.EOF
str = " " & rs!Id & " , " & rs!Name & ", " & rs!Ts & ", " & rs!Id2
Debug.Print "DATA:" & str
rs.MoveNext
Wend
'rs Scrolling
rs.MoveFirst
str = " FIRST ROW: " & rs!Id & " , " & rs!Name & ", " & rs!Ts & ", " & rs!Id2
Debug.Print str
rs.MoveLast
str = " LAST ROW: " & rs!Id & " , " & rs!Name & ", " & rs!Ts & ", " & rs!Id2
Debug.Print str
rs.MovePrevious
str = " LAST-1 ROW: " & rs!Id & " , " & rs!Name & ", " & rs!Ts & ", " & rs!Id2
Debug.Print str
'free all resources
rs.Close
queryDef.Close
conn.Close
ws.Close

End Sub

23.1.19.3. RDO: rs.addNew and rs.update

The following RDO (Remote Data Objects) example creates a table my_rdo and demonstrates the
use of rs.addNew and rs.update.

Dim rs As rdoResultset
Dim cn As New rdoConnection
Dim cl As rdoColumn
Dim SQL As String
'cn.Connect = "DSN=test;"
cn.Connect = "DRIVER={MySQL ODBC 3.51 Driver};"_

& "SERVER=localhost;"_
& " DATABASE=test;"_
& "UID=venu;PWD=venu; OPTION=3"

cn.CursorDriver = rdUseOdbc
cn.EstablishConnection rdDriverPrompt
'drop table my_rdo
SQL = "drop table if exists my_rdo"
cn.Execute SQL, rdExecDirect
'create table my_rdo
SQL = "create table my_rdo(id int, name varchar(20))"
cn.Execute SQL, rdExecDirect
'insert - direct
SQL = "insert into my_rdo values (100,'venu')"
cn.Execute SQL, rdExecDirect
SQL = "insert into my_rdo values (200,'MySQL')"
cn.Execute SQL, rdExecDirect
'rs insert
SQL = "select * from my_rdo"
Set rs = cn.OpenResultset(SQL, rdOpenStatic, rdConcurRowVer, rdExecDirect)
rs.AddNew
rs!id = 300
rs!Name = "Insert1"
rs.Update
rs.Close
'rs insert
SQL = "select * from my_rdo"
Set rs = cn.OpenResultset(SQL, rdOpenStatic, rdConcurRowVer, rdExecDirect)

MySQL Connectors

1100

rs.AddNew
rs!id = 400
rs!Name = "Insert 2"
rs.Update
rs.Close
'rs update
SQL = "select * from my_rdo"
Set rs = cn.OpenResultset(SQL, rdOpenStatic, rdConcurRowVer, rdExecDirect)
rs.Edit
rs!id = 999
rs!Name = "updated"
rs.Update
rs.Close
'fetch back...
SQL = "select * from my_rdo"
Set rs = cn.OpenResultset(SQL, rdOpenStatic, rdConcurRowVer, rdExecDirect)
Do Until rs.EOF
For Each cl In rs.rdoColumns

Debug.Print cl.Value,
Next
rs.MoveNext
Debug.Print

Loop
Debug.Print "Row count="; rs.RowCount
'close
rs.Close
cn.Close

End Sub

23.1.20. MyODBC with Microsoft .NET
This section contains simple examples that demonstrate the use of MyODBC drivers with
ODBC.NET.

23.1.20.1. ODBC.NET: CSHARP(C#)

The following sample creates a table my_odbc_net and demonstrates the use in C#.

/**
* @sample : mycon.cs
* @purpose : Demo sample for ODBC.NET using MyODBC
* @author : Venu, <venu@mysql.com>
*
* (C) Copyright MySQL AB, 1995-2004
*
**/
/* build command
*
* csc /t:exe
* /out:mycon.exe mycon.cs
* /r:Microsoft.Data.Odbc.dll
*/
using Console = System.Console;
using Microsoft.Data.Odbc;
namespace myodbc3
{
class mycon
{
static void Main(string[] args)
{
try
{
//Connection string for MyODBC 2.50
/*string MyConString = "DRIVER={MySQL};" +

"SERVER=localhost;" +
"DATABASE=test;" +

MySQL Connectors

1101

"UID=venu;" +
"PASSWORD=venu;" +
"OPTION=3";

*/
//Connection string for MyODBC 3.51
string MyConString = "DRIVER={MySQL ODBC 3.51 Driver};" +

"SERVER=localhost;" +
"DATABASE=test;" +
"UID=venu;" +
"PASSWORD=venu;" +
"OPTION=3";

//Connect to MySQL using MyODBC
OdbcConnection MyConnection = new OdbcConnection(MyConString);
MyConnection.Open();
Console.WriteLine("\n !!! success, connected successfully !!!\n");
//Display connection information
Console.WriteLine("Connection Information:");
Console.WriteLine("\tConnection String:" + MyConnection.ConnectionString);
Console.WriteLine("\tConnection Timeout:" + MyConnection.ConnectionTimeout);
Console.WriteLine("\tDatabase:" + MyConnection.Database);
Console.WriteLine("\tDataSource:" + MyConnection.DataSource);
Console.WriteLine("\tDriver:" + MyConnection.Driver);
Console.WriteLine("\tServerVersion:" + MyConnection.ServerVersion);
//Create a sample table
OdbcCommand MyCommand = new OdbcCommand("DROP TABLE IF EXISTS my_odbc_net",MyConnection);
MyCommand.ExecuteNonQuery();
MyCommand.CommandText = "CREATE TABLE my_odbc_net(id int, name varchar(20), idb bigint)";
MyCommand.ExecuteNonQuery();
//Insert
MyCommand.CommandText = "INSERT INTO my_odbc_net VALUES(10,'venu', 300)";
Console.WriteLine("INSERT, Total rows affected:" + MyCommand.ExecuteNonQuery());;
//Insert
MyCommand.CommandText = "INSERT INTO my_odbc_net VALUES(20,'mysql',400)";
Console.WriteLine("INSERT, Total rows affected:" + MyCommand.ExecuteNonQuery());
//Insert
MyCommand.CommandText = "INSERT INTO my_odbc_net VALUES(20,'mysql',500)";
Console.WriteLine("INSERT, Total rows affected:" + MyCommand.ExecuteNonQuery());
//Update
MyCommand.CommandText = "UPDATE my_odbc_net SET id=999 WHERE id=20";
Console.WriteLine("Update, Total rows affected:" + MyCommand.ExecuteNonQuery());
//COUNT(*)
MyCommand.CommandText = "SELECT COUNT(*) as TRows FROM my_odbc_net";
Console.WriteLine("Total Rows:" + MyCommand.ExecuteScalar());
//Fetch
MyCommand.CommandText = "SELECT * FROM my_odbc_net";
OdbcDataReader MyDataReader;
MyDataReader = MyCommand.ExecuteReader();
while (MyDataReader.Read())
{
if(string.Compare(MyConnection.Driver,"myodbc3.dll") == 0) {
Console.WriteLine("Data:" + MyDataReader.GetInt32(0) + " " +

MyDataReader.GetString(1) + " " +
MyDataReader.GetInt64(2)); //Supported only by MyODBC 3.51

}
else {
Console.WriteLine("Data:" + MyDataReader.GetInt32(0) + " " +

MyDataReader.GetString(1) + " " +
MyDataReader.GetInt32(2)); //BIGINTs not supported by MyODBC

}
}
//Close all resources
MyDataReader.Close();
MyConnection.Close();

}
catch (OdbcException MyOdbcException)//Catch any ODBC exception ..
{
for (int i=0; i < MyOdbcException.Errors.Count; i++)
{
Console.Write("ERROR #" + i + "\n" +
"Message: " + MyOdbcException.Errors[i].Message + "\n" +

MySQL Connectors

1102

"Native: " + MyOdbcException.Errors[i].NativeError.ToString() + "\n" +
"Source: " + MyOdbcException.Errors[i].Source + "\n" +
"SQL: " + MyOdbcException.Errors[i].SQLState + "\n");

}
}

}
}
}

23.1.20.2. ODBC.NET: VB

The following sample creates a table my_vb_net and demonstrates the use in VB.

' @sample : myvb.vb
' @purpose : Demo sample for ODBC.NET using MyODBC
' @author : Venu, <venu@mysql.com>
'
' (C) Copyright MySQL AB, 1995-2004
'
'
'
' build command
'
' vbc /target:exe
' /out:myvb.exe
' /r:Microsoft.Data.Odbc.dll
' /r:System.dll
' /r:System.Data.dll
'
Imports Microsoft.Data.Odbc
Imports System
Module myvb

Sub Main()
Try

'MyODBC 3.51 connection string
Dim MyConString As String = "DRIVER={MySQL ODBC 3.51 Driver};" & _

"SERVER=localhost;" & _
"DATABASE=test;" & _
"UID=venu;" & _
"PASSWORD=venu;" & _
"OPTION=3;"

'Connection
Dim MyConnection As New OdbcConnection(MyConString)
MyConnection.Open()
Console.WriteLine ("Connection State::" & MyConnection.State.ToString)
'Drop
Console.WriteLine ("Dropping table")
Dim MyCommand As New OdbcCommand()
MyCommand.Connection = MyConnection
MyCommand.CommandText = "DROP TABLE IF EXISTS my_vb_net"
MyCommand.ExecuteNonQuery()
'Create
Console.WriteLine ("Creating....")
MyCommand.CommandText = "CREATE TABLE my_vb_net(id int, name varchar(30))"
MyCommand.ExecuteNonQuery()
'Insert
MyCommand.CommandText = "INSERT INTO my_vb_net VALUES(10,'venu')"
Console.WriteLine("INSERT, Total rows affected:" & MyCommand.ExecuteNonQuery())
'Insert
MyCommand.CommandText = "INSERT INTO my_vb_net VALUES(20,'mysql')"
Console.WriteLine("INSERT, Total rows affected:" & MyCommand.ExecuteNonQuery())
'Insert
MyCommand.CommandText = "INSERT INTO my_vb_net VALUES(20,'mysql')"
Console.WriteLine("INSERT, Total rows affected:" & MyCommand.ExecuteNonQuery())
'Insert
MyCommand.CommandText = "INSERT INTO my_vb_net(id) VALUES(30)"
Console.WriteLine("INSERT, Total rows affected:" & MyCommand.ExecuteNonQuery())
'Update

MySQL Connectors

1103

MyCommand.CommandText = "UPDATE my_vb_net SET id=999 WHERE id=20"
Console.WriteLine("Update, Total rows affected:" & MyCommand.ExecuteNonQuery())
'COUNT(*)
MyCommand.CommandText = "SELECT COUNT(*) as TRows FROM my_vb_net"
Console.WriteLine("Total Rows:" & MyCommand.ExecuteScalar())
'Select
Console.WriteLine ("Select * FROM my_vb_net")
MyCommand.CommandText = "SELECT * FROM my_vb_net"
Dim MyDataReader As OdbcDataReader
MyDataReader = MyCommand.ExecuteReader
While MyDataReader.Read

If MyDataReader("name") Is DBNull.Value Then
Console.WriteLine ("id = " & CStr(MyDataReader("id")) & " name = " & _
"NULL")

Else
Console.WriteLine ("id = " & CStr(MyDataReader("id")) & " name = " & _

CStr(MyDataReader("name")))
End If

End While
'Catch ODBC Exception
Catch MyOdbcException As OdbcException

Dim i As Integer
Console.WriteLine (MyOdbcException.ToString)

'Catch program exception
Catch MyException As Exception

Console.WriteLine (MyException.ToString)
End Try
End Sub

End Module

23.1.21. Credits
These are the developers that have worked on the MyODBC and MyODBC 3.51 Drivers from
MySQL AB.

• Micheal (Monty) Widenius

• Venu Anuganti

• Peter Harvey

23.2. MySQL Java Connectivity (JDBC)
There are two supported JDBC drivers for MySQL:

• MySQL Connector/J from MySQL AB, implemented in 100% native Java. This product
was formerly known as the mm.mysql driver. You can download MySQL Connector/J
from http://dev.mysql.com/downloads/connector/j/.

• The Resin JDBC driver, which can be found at ht-
tp://www.caucho.com/projects/jdbc-mysql/index.xtp.

For more information, consult any general JDBC documentation, plus each driver's own documenta-
tion for MySQL-specific features.

Documentation for MySQL Connector/J is available online at the MySQL AB Web site at ht-
tp://dev.mysql.com/doc/.

MySQL Connectors

1104

http://dev.mysql.com/downloads/connector/j/
http://www.caucho.com/projects/jdbc-mysql/index.xtp
http://www.caucho.com/projects/jdbc-mysql/index.xtp
http://dev.mysql.com/doc/
http://dev.mysql.com/doc/

Chapter 24. Error Handling in MySQL
This chapter lists the errors that may appear when you call MySQL from any host language. The
first list displays server error messages. The second list displays client program messages.

Server error information comes from the following files:

• The Error values and the symbols in parentheses correspond to definitions in the include/
mysqld_error.h MySQL source file.

• The SQLSTATE values correspond to definitions in the include/sql_state.h MySQL
source file.

SQLSTATE error codes are displayed only if you use MySQL version 4.1 and up. SQLSTATE
codes were added for compatibility with X/Open, ANSI, and ODBC behavior.

• The Message values correspond to the error messages that are listed in the sql/
share/english/errmsg.txt file. %d or %s represent numbers or strings that are substi-
tuted into the messages %when they are displayed.

Because updates are frequent, it is possible that these files contain additional error information not
listed here.

• Error: 1000 SQLSTATE: HY000 (ER_HASHCHK)

Message: hashchk

• Error: 1001 SQLSTATE: HY000 (ER_NISAMCHK)

Message: isamchk

• Error: 1002 SQLSTATE: HY000 (ER_NO)

Message: NO

• Error: 1003 SQLSTATE: HY000 (ER_YES)

Message: YES

• Error: 1004 SQLSTATE: HY000 (ER_CANT_CREATE_FILE)

Message: Can't create file '%s' (errno: %d)

• Error: 1005 SQLSTATE: HY000 (ER_CANT_CREATE_TABLE)

Message: Can't create table '%s' (errno: %d)

• Error: 1006 SQLSTATE: HY000 (ER_CANT_CREATE_DB)

Message: Can't create database '%s' (errno: %d)

• Error: 1007 SQLSTATE: HY000 (ER_DB_CREATE_EXISTS)

Message: Can't create database '%s'; database exists

• Error: 1008 SQLSTATE: HY000 (ER_DB_DROP_EXISTS)

Message: Can't drop database '%s'; database doesn't exist

• Error: 1009 SQLSTATE: HY000 (ER_DB_DROP_DELETE)

1105

Message: Error dropping database (can't delete '%s', errno: %d)

• Error: 1010 SQLSTATE: HY000 (ER_DB_DROP_RMDIR)

Message: Error dropping database (can't rmdir '%s', errno: %d)

• Error: 1011 SQLSTATE: HY000 (ER_CANT_DELETE_FILE)

Message: Error on delete of '%s' (errno: %d)

• Error: 1012 SQLSTATE: HY000 (ER_CANT_FIND_SYSTEM_REC)

Message: Can't read record in system table

• Error: 1013 SQLSTATE: HY000 (ER_CANT_GET_STAT)

Message: Can't get status of '%s' (errno: %d)

• Error: 1014 SQLSTATE: HY000 (ER_CANT_GET_WD)

Message: Can't get working directory (errno: %d)

• Error: 1015 SQLSTATE: HY000 (ER_CANT_LOCK)

Message: Can't lock file (errno: %d)

• Error: 1016 SQLSTATE: HY000 (ER_CANT_OPEN_FILE)

Message: Can't open file: '%s' (errno: %d)

• Error: 1017 SQLSTATE: HY000 (ER_FILE_NOT_FOUND)

Message: Can't find file: '%s' (errno: %d)

• Error: 1018 SQLSTATE: HY000 (ER_CANT_READ_DIR)

Message: Can't read dir of '%s' (errno: %d)

• Error: 1019 SQLSTATE: HY000 (ER_CANT_SET_WD)

Message: Can't change dir to '%s' (errno: %d)

• Error: 1020 SQLSTATE: HY000 (ER_CHECKREAD)

Message: Record has changed since last read in table '%s'

• Error: 1021 SQLSTATE: HY000 (ER_DISK_FULL)

Message: Disk full (%s); waiting for someone to free some space...

• Error: 1022 SQLSTATE: 23000 (ER_DUP_KEY)

Message: Can't write; duplicate key in table '%s'

• Error: 1023 SQLSTATE: HY000 (ER_ERROR_ON_CLOSE)

Message: Error on close of '%s' (errno: %d)

• Error: 1024 SQLSTATE: HY000 (ER_ERROR_ON_READ)

Message: Error reading file '%s' (errno: %d)

• Error: 1025 SQLSTATE: HY000 (ER_ERROR_ON_RENAME)

Error Handling in MySQL

1106

Message: Error on rename of '%s' to '%s' (errno: %d)

• Error: 1026 SQLSTATE: HY000 (ER_ERROR_ON_WRITE)

Message: Error writing file '%s' (errno: %d)

• Error: 1027 SQLSTATE: HY000 (ER_FILE_USED)

Message: '%s' is locked against change

• Error: 1028 SQLSTATE: HY000 (ER_FILSORT_ABORT)

Message: Sort aborted

• Error: 1029 SQLSTATE: HY000 (ER_FORM_NOT_FOUND)

Message: View '%s' doesn't exist for '%s'

• Error: 1030 SQLSTATE: HY000 (ER_GET_ERRNO)

Message: Got error %d from storage engine

• Error: 1031 SQLSTATE: HY000 (ER_ILLEGAL_HA)

Message: Table storage engine for '%s' doesn't have this option

• Error: 1032 SQLSTATE: HY000 (ER_KEY_NOT_FOUND)

Message: Can't find record in '%s'

• Error: 1033 SQLSTATE: HY000 (ER_NOT_FORM_FILE)

Message: Incorrect information in file: '%s'

• Error: 1034 SQLSTATE: HY000 (ER_NOT_KEYFILE)

Message: Incorrect key file for table '%s'; try to repair it

• Error: 1035 SQLSTATE: HY000 (ER_OLD_KEYFILE)

Message: Old key file for table '%s'; repair it!

• Error: 1036 SQLSTATE: HY000 (ER_OPEN_AS_READONLY)

Message: Table '%s' is read only

• Error: 1037 SQLSTATE: HY001 (ER_OUTOFMEMORY)

Message: Out of memory; restart server and try again (needed %d bytes)

• Error: 1038 SQLSTATE: HY001 (ER_OUT_OF_SORTMEMORY)

Message: Out of sort memory; increase server sort buffer size

• Error: 1039 SQLSTATE: HY000 (ER_UNEXPECTED_EOF)

Message: Unexpected EOF found when reading file '%s' (errno: %d)

• Error: 1040 SQLSTATE: 08004 (ER_CON_COUNT_ERROR)

Message: Too many connections

• Error: 1041 SQLSTATE: HY000 (ER_OUT_OF_RESOURCES)

Error Handling in MySQL

1107

Message: Out of memory; check if mysqld or some other process uses all available memory; if
not, you may have to use 'ulimit' to allow mysqld to use more memory or you can add more
swap space

• Error: 1042 SQLSTATE: 08S01 (ER_BAD_HOST_ERROR)

Message: Can't get hostname for your address

• Error: 1043 SQLSTATE: 08S01 (ER_HANDSHAKE_ERROR)

Message: Bad handshake

• Error: 1044 SQLSTATE: 42000 (ER_DBACCESS_DENIED_ERROR)

Message: Access denied for user '%s'@'%s' to database '%s'

• Error: 1045 SQLSTATE: 28000 (ER_ACCESS_DENIED_ERROR)

Message: Access denied for user '%s'@'%s' (using password: %s)

• Error: 1046 SQLSTATE: 3D000 (ER_NO_DB_ERROR)

Message: No database selected

• Error: 1047 SQLSTATE: 08S01 (ER_UNKNOWN_COM_ERROR)

Message: Unknown command

• Error: 1048 SQLSTATE: 23000 (ER_BAD_NULL_ERROR)

Message: Column '%s' cannot be null

• Error: 1049 SQLSTATE: 42000 (ER_BAD_DB_ERROR)

Message: Unknown database '%s'

• Error: 1050 SQLSTATE: 42S01 (ER_TABLE_EXISTS_ERROR)

Message: Table '%s' already exists

• Error: 1051 SQLSTATE: 42S02 (ER_BAD_TABLE_ERROR)

Message: Unknown table '%s'

• Error: 1052 SQLSTATE: 23000 (ER_NON_UNIQ_ERROR)

Message: Column '%s' in %s is ambiguous

• Error: 1053 SQLSTATE: 08S01 (ER_SERVER_SHUTDOWN)

Message: Server shutdown in progress

• Error: 1054 SQLSTATE: 42S22 (ER_BAD_FIELD_ERROR)

Message: Unknown column '%s' in '%s'

• Error: 1055 SQLSTATE: 42000 (ER_WRONG_FIELD_WITH_GROUP)

Message: '%s' isn't in GROUP BY

• Error: 1056 SQLSTATE: 42000 (ER_WRONG_GROUP_FIELD)

Message: Can't group on '%s'

Error Handling in MySQL

1108

• Error: 1057 SQLSTATE: 42000 (ER_WRONG_SUM_SELECT)

Message: Statement has sum functions and columns in same statement

• Error: 1058 SQLSTATE: 21S01 (ER_WRONG_VALUE_COUNT)

Message: Column count doesn't match value count

• Error: 1059 SQLSTATE: 42000 (ER_TOO_LONG_IDENT)

Message: Identifier name '%s' is too long

• Error: 1060 SQLSTATE: 42S21 (ER_DUP_FIELDNAME)

Message: Duplicate column name '%s'

• Error: 1061 SQLSTATE: 42000 (ER_DUP_KEYNAME)

Message: Duplicate key name '%s'

• Error: 1062 SQLSTATE: 23000 (ER_DUP_ENTRY)

Message: Duplicate entry '%s' for key %d

• Error: 1063 SQLSTATE: 42000 (ER_WRONG_FIELD_SPEC)

Message: Incorrect column specifier for column '%s'

• Error: 1064 SQLSTATE: 42000 (ER_PARSE_ERROR)

Message: %s near '%s' at line %d

• Error: 1065 SQLSTATE: 42000 (ER_EMPTY_QUERY)

Message: Query was empty

• Error: 1066 SQLSTATE: 42000 (ER_NONUNIQ_TABLE)

Message: Not unique table/alias: '%s'

• Error: 1067 SQLSTATE: 42000 (ER_INVALID_DEFAULT)

Message: Invalid default value for '%s'

• Error: 1068 SQLSTATE: 42000 (ER_MULTIPLE_PRI_KEY)

Message: Multiple primary key defined

• Error: 1069 SQLSTATE: 42000 (ER_TOO_MANY_KEYS)

Message: Too many keys specified; max %d keys allowed

• Error: 1070 SQLSTATE: 42000 (ER_TOO_MANY_KEY_PARTS)

Message: Too many key parts specified; max %d parts allowed

• Error: 1071 SQLSTATE: 42000 (ER_TOO_LONG_KEY)

Message: Specified key was too long; max key length is %d bytes

• Error: 1072 SQLSTATE: 42000 (ER_KEY_COLUMN_DOES_NOT_EXITS)

Message: Key column '%s' doesn't exist in table

• Error: 1073 SQLSTATE: 42000 (ER_BLOB_USED_AS_KEY)

Error Handling in MySQL

1109

Message: BLOB column '%s' can't be used in key specification with the used table type

• Error: 1074 SQLSTATE: 42000 (ER_TOO_BIG_FIELDLENGTH)

Message: Column length too big for column '%s' (max = %d); use BLOB instead

• Error: 1075 SQLSTATE: 42000 (ER_WRONG_AUTO_KEY)

Message: Incorrect table definition; there can be only one auto column and it must be defined as
a key

• Error: 1076 SQLSTATE: HY000 (ER_READY)

Message: %s: ready for connections. Version: '%s' socket: '%s' port: %d

• Error: 1077 SQLSTATE: HY000 (ER_NORMAL_SHUTDOWN)

Message: %s: Normal shutdown

• Error: 1078 SQLSTATE: HY000 (ER_GOT_SIGNAL)

Message: %s: Got signal %d. Aborting!

• Error: 1079 SQLSTATE: HY000 (ER_SHUTDOWN_COMPLETE)

Message: %s: Shutdown complete

• Error: 1080 SQLSTATE: 08S01 (ER_FORCING_CLOSE)

Message: %s: Forcing close of thread %ld user: '%s'

• Error: 1081 SQLSTATE: 08S01 (ER_IPSOCK_ERROR)

Message: Can't create IP socket

• Error: 1082 SQLSTATE: 42S12 (ER_NO_SUCH_INDEX)

Message: Table '%s' has no index like the one used in CREATE INDEX; recreate the table

• Error: 1083 SQLSTATE: 42000 (ER_WRONG_FIELD_TERMINATORS)

Message: Field separator argument is not what is expected; check the manual

• Error: 1084 SQLSTATE: 42000 (ER_BLOBS_AND_NO_TERMINATED)

Message: You can't use fixed rowlength with BLOBs; please use 'fields terminated by'

• Error: 1085 SQLSTATE: HY000 (ER_TEXTFILE_NOT_READABLE)

Message: The file '%s' must be in the database directory or be readable by all

• Error: 1086 SQLSTATE: HY000 (ER_FILE_EXISTS_ERROR)

Message: File '%s' already exists

• Error: 1087 SQLSTATE: HY000 (ER_LOAD_INFO)

Message: Records: %ld Deleted: %ld Skipped: %ld Warnings: %ld

• Error: 1088 SQLSTATE: HY000 (ER_ALTER_INFO)

Message: Records: %ld Duplicates: %ld

• Error: 1089 SQLSTATE: HY000 (ER_WRONG_SUB_KEY)

Error Handling in MySQL

1110

Message: Incorrect sub part key; the used key part isn't a string, the used length is longer than
the key part, or the storage engine doesn't support unique sub keys

• Error: 1090 SQLSTATE: 42000 (ER_CANT_REMOVE_ALL_FIELDS)

Message: You can't delete all columns with ALTER TABLE; use DROP TABLE instead

• Error: 1091 SQLSTATE: 42000 (ER_CANT_DROP_FIELD_OR_KEY)

Message: Can't DROP '%s'; check that column/key exists

• Error: 1092 SQLSTATE: HY000 (ER_INSERT_INFO)

Message: Records: %ld Duplicates: %ld Warnings: %ld

• Error: 1093 SQLSTATE: HY000 (ER_UPDATE_TABLE_USED)

Message: You can't specify target table '%s' for update in FROM clause

• Error: 1094 SQLSTATE: HY000 (ER_NO_SUCH_THREAD)

Message: Unknown thread id: %lu

• Error: 1095 SQLSTATE: HY000 (ER_KILL_DENIED_ERROR)

Message: You are not owner of thread %lu

• Error: 1096 SQLSTATE: HY000 (ER_NO_TABLES_USED)

Message: No tables used

• Error: 1097 SQLSTATE: HY000 (ER_TOO_BIG_SET)

Message: Too many strings for column %s and SET

• Error: 1098 SQLSTATE: HY000 (ER_NO_UNIQUE_LOGFILE)

Message: Can't generate a unique log-filename %s.(1-999)

• Error: 1099 SQLSTATE: HY000 (ER_TABLE_NOT_LOCKED_FOR_WRITE)

Message: Table '%s' was locked with a READ lock and can't be updated

• Error: 1100 SQLSTATE: HY000 (ER_TABLE_NOT_LOCKED)

Message: Table '%s' was not locked with LOCK TABLES

• Error: 1101 SQLSTATE: 42000 (ER_BLOB_CANT_HAVE_DEFAULT)

Message: BLOB/TEXT column '%s' can't have a default value

• Error: 1102 SQLSTATE: 42000 (ER_WRONG_DB_NAME)

Message: Incorrect database name '%s'

• Error: 1103 SQLSTATE: 42000 (ER_WRONG_TABLE_NAME)

Message: Incorrect table name '%s'

• Error: 1104 SQLSTATE: 42000 (ER_TOO_BIG_SELECT)

Message: The SELECT would examine more than MAX_JOIN_SIZE rows; check your
WHERE and use SET SQL_BIG_SELECTS=1 or SET SQL_MAX_JOIN_SIZE=# if the SE-
LECT is okay

Error Handling in MySQL

1111

• Error: 1105 SQLSTATE: HY000 (ER_UNKNOWN_ERROR)

Message: Unknown error

• Error: 1106 SQLSTATE: 42000 (ER_UNKNOWN_PROCEDURE)

Message: Unknown procedure '%s'

• Error: 1107 SQLSTATE: 42000 (ER_WRONG_PARAMCOUNT_TO_PROCEDURE)

Message: Incorrect parameter count to procedure '%s'

• Error: 1108 SQLSTATE: HY000 (ER_WRONG_PARAMETERS_TO_PROCEDURE)

Message: Incorrect parameters to procedure '%s'

• Error: 1109 SQLSTATE: 42S02 (ER_UNKNOWN_TABLE)

Message: Unknown table '%s' in %s

• Error: 1110 SQLSTATE: 42000 (ER_FIELD_SPECIFIED_TWICE)

Message: Column '%s' specified twice

• Error: 1111 SQLSTATE: HY000 (ER_INVALID_GROUP_FUNC_USE)

Message: Invalid use of group function

• Error: 1112 SQLSTATE: 42000 (ER_UNSUPPORTED_EXTENSION)

Message: Table '%s' uses an extension that doesn't exist in this MySQL version

• Error: 1113 SQLSTATE: 42000 (ER_TABLE_MUST_HAVE_COLUMNS)

Message: A table must have at least 1 column

• Error: 1114 SQLSTATE: HY000 (ER_RECORD_FILE_FULL)

Message: The table '%s' is full

• Error: 1115 SQLSTATE: 42000 (ER_UNKNOWN_CHARACTER_SET)

Message: Unknown character set: '%s'

• Error: 1116 SQLSTATE: HY000 (ER_TOO_MANY_TABLES)

Message: Too many tables; MySQL can only use %d tables in a join

• Error: 1117 SQLSTATE: HY000 (ER_TOO_MANY_FIELDS)

Message: Too many columns

• Error: 1118 SQLSTATE: 42000 (ER_TOO_BIG_ROWSIZE)

Message: Row size too large. The maximum row size for the used table type, not counting
BLOBs, is %ld. You have to change some columns to TEXT or BLOBs

• Error: 1119 SQLSTATE: HY000 (ER_STACK_OVERRUN)

Message: Thread stack overrun: Used: %ld of a %ld stack. Use 'mysqld -O thread_stack=#' to
specify a bigger stack if needed

• Error: 1120 SQLSTATE: 42000 (ER_WRONG_OUTER_JOIN)

Message: Cross dependency found in OUTER JOIN; examine your ON conditions

Error Handling in MySQL

1112

• Error: 1121 SQLSTATE: 42000 (ER_NULL_COLUMN_IN_INDEX)

Message: Column '%s' is used with UNIQUE or INDEX but is not defined as NOT NULL

• Error: 1122 SQLSTATE: HY000 (ER_CANT_FIND_UDF)

Message: Can't load function '%s'

• Error: 1123 SQLSTATE: HY000 (ER_CANT_INITIALIZE_UDF)

Message: Can't initialize function '%s'; %s

• Error: 1124 SQLSTATE: HY000 (ER_UDF_NO_PATHS)

Message: No paths allowed for shared library

• Error: 1125 SQLSTATE: HY000 (ER_UDF_EXISTS)

Message: Function '%s' already exists

• Error: 1126 SQLSTATE: HY000 (ER_CANT_OPEN_LIBRARY)

Message: Can't open shared library '%s' (errno: %d %s)

• Error: 1127 SQLSTATE: HY000 (ER_CANT_FIND_DL_ENTRY)

Message: Can't find function '%s' in library'

• Error: 1128 SQLSTATE: HY000 (ER_FUNCTION_NOT_DEFINED)

Message: Function '%s' is not defined

• Error: 1129 SQLSTATE: HY000 (ER_HOST_IS_BLOCKED)

Message: Host '%s' is blocked because of many connection errors; unblock with 'mysqladmin
flush-hosts'

• Error: 1130 SQLSTATE: HY000 (ER_HOST_NOT_PRIVILEGED)

Message: Host '%s' is not allowed to connect to this MySQL server

• Error: 1131 SQLSTATE: 42000 (ER_PASSWORD_ANONYMOUS_USER)

Message: You are using MySQL as an anonymous user and anonymous users are not allowed to
change passwords

• Error: 1132 SQLSTATE: 42000 (ER_PASSWORD_NOT_ALLOWED)

Message: You must have privileges to update tables in the mysql database to be able to change
passwords for others

• Error: 1133 SQLSTATE: 42000 (ER_PASSWORD_NO_MATCH)

Message: Can't find any matching row in the user table

• Error: 1134 SQLSTATE: HY000 (ER_UPDATE_INFO)

Message: Rows matched: %ld Changed: %ld Warnings: %ld

• Error: 1135 SQLSTATE: HY000 (ER_CANT_CREATE_THREAD)

Message: Can't create a new thread (errno %d); if you are not out of available memory, you can
consult the manual for a possible OS-dependent bug

• Error: 1136 SQLSTATE: 21S01 (ER_WRONG_VALUE_COUNT_ON_ROW)

Error Handling in MySQL

1113

Message: Column count doesn't match value count at row %ld

• Error: 1137 SQLSTATE: HY000 (ER_CANT_REOPEN_TABLE)

Message: Can't reopen table: '%s'

• Error: 1138 SQLSTATE: 22004 (ER_INVALID_USE_OF_NULL)

Message: Invalid use of NULL value

• Error: 1139 SQLSTATE: 42000 (ER_REGEXP_ERROR)

Message: Got error '%s' from regexp

• Error: 1140 SQLSTATE: 42000 (ER_MIX_OF_GROUP_FUNC_AND_FIELDS)

Message: Mixing of GROUP columns (MIN(),MAX(),COUNT(),...) with no GROUP columns
is illegal if there is no GROUP BY clause

• Error: 1141 SQLSTATE: 42000 (ER_NONEXISTING_GRANT)

Message: There is no such grant defined for user '%s' on host '%s'

• Error: 1142 SQLSTATE: 42000 (ER_TABLEACCESS_DENIED_ERROR)

Message: %s command denied to user '%s'@'%s' for table '%s'

• Error: 1143 SQLSTATE: 42000 (ER_COLUMNACCESS_DENIED_ERROR)

Message: %s command denied to user '%s'@'%s' for column '%s' in table '%s'

• Error: 1144 SQLSTATE: 42000 (ER_ILLEGAL_GRANT_FOR_TABLE)

Message: Illegal GRANT/REVOKE command; please consult the manual to see which priv-
ileges can be used

• Error: 1145 SQLSTATE: 42000 (ER_GRANT_WRONG_HOST_OR_USER)

Message: The host or user argument to GRANT is too long

• Error: 1146 SQLSTATE: 42S02 (ER_NO_SUCH_TABLE)

Message: Table '%s.%s' doesn't exist

• Error: 1147 SQLSTATE: 42000 (ER_NONEXISTING_TABLE_GRANT)

Message: There is no such grant defined for user '%s' on host '%s' on table '%s'

• Error: 1148 SQLSTATE: 42000 (ER_NOT_ALLOWED_COMMAND)

Message: The used command is not allowed with this MySQL version

• Error: 1149 SQLSTATE: 42000 (ER_SYNTAX_ERROR)

Message: You have an error in your SQL syntax; check the manual that corresponds to your
MySQL server version for the right syntax to use

• Error: 1150 SQLSTATE: HY000 (ER_DELAYED_CANT_CHANGE_LOCK)

Message: Delayed insert thread couldn't get requested lock for table %s

• Error: 1151 SQLSTATE: HY000 (ER_TOO_MANY_DELAYED_THREADS)

Message: Too many delayed threads in use

Error Handling in MySQL

1114

• Error: 1152 SQLSTATE: 08S01 (ER_ABORTING_CONNECTION)

Message: Aborted connection %ld to db: '%s' user: '%s' (%s)

• Error: 1153 SQLSTATE: 08S01 (ER_NET_PACKET_TOO_LARGE)

Message: Got a packet bigger than 'max_allowed_packet' bytes

• Error: 1154 SQLSTATE: 08S01 (ER_NET_READ_ERROR_FROM_PIPE)

Message: Got a read error from the connection pipe

• Error: 1155 SQLSTATE: 08S01 (ER_NET_FCNTL_ERROR)

Message: Got an error from fcntl()

• Error: 1156 SQLSTATE: 08S01 (ER_NET_PACKETS_OUT_OF_ORDER)

Message: Got packets out of order

• Error: 1157 SQLSTATE: 08S01 (ER_NET_UNCOMPRESS_ERROR)

Message: Couldn't uncompress communication packet

• Error: 1158 SQLSTATE: 08S01 (ER_NET_READ_ERROR)

Message: Got an error reading communication packets

• Error: 1159 SQLSTATE: 08S01 (ER_NET_READ_INTERRUPTED)

Message: Got timeout reading communication packets

• Error: 1160 SQLSTATE: 08S01 (ER_NET_ERROR_ON_WRITE)

Message: Got an error writing communication packets

• Error: 1161 SQLSTATE: 08S01 (ER_NET_WRITE_INTERRUPTED)

Message: Got timeout writing communication packets

• Error: 1162 SQLSTATE: 42000 (ER_TOO_LONG_STRING)

Message: Result string is longer than 'max_allowed_packet' bytes

• Error: 1163 SQLSTATE: 42000 (ER_TABLE_CANT_HANDLE_BLOB)

Message: The used table type doesn't support BLOB/TEXT columns

• Error: 1164 SQLSTATE: 42000 (ER_TABLE_CANT_HANDLE_AUTO_INCREMENT)

Message: The used table type doesn't support AUTO_INCREMENT columns

• Error: 1165 SQLSTATE: HY000 (ER_DELAYED_INSERT_TABLE_LOCKED)

Message: INSERT DELAYED can't be used with table '%s' because it is locked with LOCK
TABLES

• Error: 1166 SQLSTATE: 42000 (ER_WRONG_COLUMN_NAME)

Message: Incorrect column name '%s'

• Error: 1167 SQLSTATE: 42000 (ER_WRONG_KEY_COLUMN)

Message: The used storage engine can't index column '%s'

Error Handling in MySQL

1115

• Error: 1168 SQLSTATE: HY000 (ER_WRONG_MRG_TABLE)

Message: All tables in the MERGE table are not identically defined

• Error: 1169 SQLSTATE: 23000 (ER_DUP_UNIQUE)

Message: Can't write, because of unique constraint, to table '%s'

• Error: 1170 SQLSTATE: 42000 (ER_BLOB_KEY_WITHOUT_LENGTH)

Message: BLOB/TEXT column '%s' used in key specification without a key length

• Error: 1171 SQLSTATE: 42000 (ER_PRIMARY_CANT_HAVE_NULL)

Message: All parts of a PRIMARY KEY must be NOT NULL; if you need NULL in a key, use
UNIQUE instead

• Error: 1172 SQLSTATE: 42000 (ER_TOO_MANY_ROWS)

Message: Result consisted of more than one row

• Error: 1173 SQLSTATE: 42000 (ER_REQUIRES_PRIMARY_KEY)

Message: This table type requires a primary key

• Error: 1174 SQLSTATE: HY000 (ER_NO_RAID_COMPILED)

Message: This version of MySQL is not compiled with RAID support

• Error: 1175 SQLSTATE: HY000 (ER_UPDATE_WITHOUT_KEY_IN_SAFE_MODE)

Message: You are using safe update mode and you tried to update a table without a WHERE that
uses a KEY column

• Error: 1176 SQLSTATE: HY000 (ER_KEY_DOES_NOT_EXITS)

Message: Key '%s' doesn't exist in table '%s'

• Error: 1177 SQLSTATE: 42000 (ER_CHECK_NO_SUCH_TABLE)

Message: Can't open table

• Error: 1178 SQLSTATE: 42000 (ER_CHECK_NOT_IMPLEMENTED)

Message: The storage engine for the table doesn't support %s

• Error: 1179 SQLSTATE: 25000 (ER_CANT_DO_THIS_DURING_AN_TRANSACTION)

Message: You are not allowed to execute this command in a transaction

• Error: 1180 SQLSTATE: HY000 (ER_ERROR_DURING_COMMIT)

Message: Got error %d during COMMIT

• Error: 1181 SQLSTATE: HY000 (ER_ERROR_DURING_ROLLBACK)

Message: Got error %d during ROLLBACK

• Error: 1182 SQLSTATE: HY000 (ER_ERROR_DURING_FLUSH_LOGS)

Message: Got error %d during FLUSH_LOGS

• Error: 1183 SQLSTATE: HY000 (ER_ERROR_DURING_CHECKPOINT)

Message: Got error %d during CHECKPOINT

Error Handling in MySQL

1116

• Error: 1184 SQLSTATE: 08S01 (ER_NEW_ABORTING_CONNECTION)

Message: Aborted connection %ld to db: '%s' user: '%s' host: `%s' (%s)

• Error: 1185 SQLSTATE: HY000 (ER_DUMP_NOT_IMPLEMENTED)

Message: The storage engine for the table does not support binary table dump

• Error: 1186 SQLSTATE: HY000 (ER_FLUSH_MASTER_BINLOG_CLOSED)

Message: Binlog closed, cannot RESET MASTER

• Error: 1187 SQLSTATE: HY000 (ER_INDEX_REBUILD)

Message: Failed rebuilding the index of dumped table '%s'

• Error: 1188 SQLSTATE: HY000 (ER_MASTER)

Message: Error from master: '%s'

• Error: 1189 SQLSTATE: 08S01 (ER_MASTER_NET_READ)

Message: Net error reading from master

• Error: 1190 SQLSTATE: 08S01 (ER_MASTER_NET_WRITE)

Message: Net error writing to master

• Error: 1191 SQLSTATE: HY000 (ER_FT_MATCHING_KEY_NOT_FOUND)

Message: Can't find FULLTEXT index matching the column list

• Error: 1192 SQLSTATE: HY000 (ER_LOCK_OR_ACTIVE_TRANSACTION)

Message: Can't execute the given command because you have active locked tables or an active
transaction

• Error: 1193 SQLSTATE: HY000 (ER_UNKNOWN_SYSTEM_VARIABLE)

Message: Unknown system variable '%s'

• Error: 1194 SQLSTATE: HY000 (ER_CRASHED_ON_USAGE)

Message: Table '%s' is marked as crashed and should be repaired

• Error: 1195 SQLSTATE: HY000 (ER_CRASHED_ON_REPAIR)

Message: Table '%s' is marked as crashed and last (automatic?) repair failed

• Error: 1196 SQLSTATE: HY000 (ER_WARNING_NOT_COMPLETE_ROLLBACK)

Message: Some non-transactional changed tables couldn't be rolled back

• Error: 1197 SQLSTATE: HY000 (ER_TRANS_CACHE_FULL)

Message: Multi-statement transaction required more than 'max_binlog_cache_size' bytes of stor-
age; increase this mysqld variable and try again

• Error: 1198 SQLSTATE: HY000 (ER_SLAVE_MUST_STOP)

Message: This operation cannot be performed with a running slave; run STOP SLAVE first

• Error: 1199 SQLSTATE: HY000 (ER_SLAVE_NOT_RUNNING)

Message: This operation requires a running slave; configure slave and do START SLAVE

Error Handling in MySQL

1117

• Error: 1200 SQLSTATE: HY000 (ER_BAD_SLAVE)

Message: The server is not configured as slave; fix in config file or with CHANGE MASTER
TO

• Error: 1201 SQLSTATE: HY000 (ER_MASTER_INFO)

Message: Could not initialize master info structure; more error messages can be found in the
MySQL error log

• Error: 1202 SQLSTATE: HY000 (ER_SLAVE_THREAD)

Message: Could not create slave thread; check system resources

• Error: 1203 SQLSTATE: 42000 (ER_TOO_MANY_USER_CONNECTIONS)

Message: User %s already has more than 'max_user_connections' active connections

• Error: 1204 SQLSTATE: HY000 (ER_SET_CONSTANTS_ONLY)

Message: You may only use constant expressions with SET

• Error: 1205 SQLSTATE: HY000 (ER_LOCK_WAIT_TIMEOUT)

Message: Lock wait timeout exceeded; try restarting transaction

• Error: 1206 SQLSTATE: HY000 (ER_LOCK_TABLE_FULL)

Message: The total number of locks exceeds the lock table size

• Error: 1207 SQLSTATE: 25000 (ER_READ_ONLY_TRANSACTION)

Message: Update locks cannot be acquired during a READ UNCOMMITTED transaction

• Error: 1208 SQLSTATE: HY000 (ER_DROP_DB_WITH_READ_LOCK)

Message: DROP DATABASE not allowed while thread is holding global read lock

• Error: 1209 SQLSTATE: HY000 (ER_CREATE_DB_WITH_READ_LOCK)

Message: CREATE DATABASE not allowed while thread is holding global read lock

• Error: 1210 SQLSTATE: HY000 (ER_WRONG_ARGUMENTS)

Message: Incorrect arguments to %s

• Error: 1211 SQLSTATE: 42000 (ER_NO_PERMISSION_TO_CREATE_USER)

Message: '%s'@'%s' is not allowed to create new users

• Error: 1212 SQLSTATE: HY000 (ER_UNION_TABLES_IN_DIFFERENT_DIR)

Message: Incorrect table definition; all MERGE tables must be in the same database

• Error: 1213 SQLSTATE: 40001 (ER_LOCK_DEADLOCK)

Message: Deadlock found when trying to get lock; try restarting transaction

• Error: 1214 SQLSTATE: HY000 (ER_TABLE_CANT_HANDLE_FT)

Message: The used table type doesn't support FULLTEXT indexes

• Error: 1215 SQLSTATE: HY000 (ER_CANNOT_ADD_FOREIGN)

Message: Cannot add foreign key constraint

Error Handling in MySQL

1118

• Error: 1216 SQLSTATE: 23000 (ER_NO_REFERENCED_ROW)

Message: Cannot add or update a child row: a foreign key constraint fails

• Error: 1217 SQLSTATE: 23000 (ER_ROW_IS_REFERENCED)

Message: Cannot delete or update a parent row: a foreign key constraint fails

• Error: 1218 SQLSTATE: 08S01 (ER_CONNECT_TO_MASTER)

Message: Error connecting to master: %s

• Error: 1219 SQLSTATE: HY000 (ER_QUERY_ON_MASTER)

Message: Error running query on master: %s

• Error: 1220 SQLSTATE: HY000 (ER_ERROR_WHEN_EXECUTING_COMMAND)

Message: Error when executing command %s: %s

• Error: 1221 SQLSTATE: HY000 (ER_WRONG_USAGE)

Message: Incorrect usage of %s and %s

• Error: 1222 SQLSTATE: 21000 (ER_WRONG_NUMBER_OF_COLUMNS_IN_SELECT)

Message: The used SELECT statements have a different number of columns

• Error: 1223 SQLSTATE: HY000 (ER_CANT_UPDATE_WITH_READLOCK)

Message: Can't execute the query because you have a conflicting read lock

• Error: 1224 SQLSTATE: HY000 (ER_MIXING_NOT_ALLOWED)

Message: Mixing of transactional and non-transactional tables is disabled

• Error: 1225 SQLSTATE: HY000 (ER_DUP_ARGUMENT)

Message: Option '%s' used twice in statement

• Error: 1226 SQLSTATE: 42000 (ER_USER_LIMIT_REACHED)

Message: User '%s' has exceeded the '%s' resource (current value: %ld)

• Error: 1227 SQLSTATE: HY000 (ER_SPECIFIC_ACCESS_DENIED_ERROR)

Message: Access denied; you need the %s privilege for this operation

• Error: 1228 SQLSTATE: HY000 (ER_LOCAL_VARIABLE)

Message: Variable '%s' is a SESSION variable and can't be used with SET GLOBAL

• Error: 1229 SQLSTATE: HY000 (ER_GLOBAL_VARIABLE)

Message: Variable '%s' is a GLOBAL variable and should be set with SET GLOBAL

• Error: 1230 SQLSTATE: 42000 (ER_NO_DEFAULT)

Message: Variable '%s' doesn't have a default value

• Error: 1231 SQLSTATE: 42000 (ER_WRONG_VALUE_FOR_VAR)

Message: Variable '%s' can't be set to the value of '%s'

• Error: 1232 SQLSTATE: 42000 (ER_WRONG_TYPE_FOR_VAR)

Error Handling in MySQL

1119

Message: Incorrect argument type to variable '%s'

• Error: 1233 SQLSTATE: HY000 (ER_VAR_CANT_BE_READ)

Message: Variable '%s' can only be set, not read

• Error: 1234 SQLSTATE: 42000 (ER_CANT_USE_OPTION_HERE)

Message: Incorrect usage/placement of '%s'

• Error: 1235 SQLSTATE: 42000 (ER_NOT_SUPPORTED_YET)

Message: This version of MySQL doesn't yet support '%s'

• Error: 1236 SQLSTATE: HY000 (ER_MASTER_FATAL_ERROR_READING_BINLOG)

Message: Got fatal error %d: '%s' from master when reading data from binary log

• Error: 1237 SQLSTATE: HY000 (ER_SLAVE_IGNORED_TABLE)

Message: Slave SQL thread ignored the query because of replicate-*-table rules

• Error: 1238 SQLSTATE: HY000 (ER_INCORRECT_GLOBAL_LOCAL_VAR)

Message: Variable '%s' is a %s variable

• Error: 1239 SQLSTATE: 42000 (ER_WRONG_FK_DEF)

Message: Incorrect foreign key definition for '%s': %s

• Error: 1240 SQLSTATE: HY000 (ER_KEY_REF_DO_NOT_MATCH_TABLE_REF)

Message: Key reference and table reference don't match

• Error: 1241 SQLSTATE: 21000 (ER_OPERAND_COLUMNS)

Message: Operand should contain %d column(s)

• Error: 1242 SQLSTATE: 21000 (ER_SUBQUERY_NO_1_ROW)

Message: Subquery returns more than 1 row

• Error: 1243 SQLSTATE: HY000 (ER_UNKNOWN_STMT_HANDLER)

Message: Unknown prepared statement handler (%.*s) given to %s

• Error: 1244 SQLSTATE: HY000 (ER_CORRUPT_HELP_DB)

Message: Help database is corrupt or does not exist

• Error: 1245 SQLSTATE: HY000 (ER_CYCLIC_REFERENCE)

Message: Cyclic reference on subqueries

• Error: 1246 SQLSTATE: HY000 (ER_AUTO_CONVERT)

Message: Converting column '%s' from %s to %s

• Error: 1247 SQLSTATE: 42S22 (ER_ILLEGAL_REFERENCE)

Message: Reference '%s' not supported (%s)

• Error: 1248 SQLSTATE: 42000 (ER_DERIVED_MUST_HAVE_ALIAS)

Error Handling in MySQL

1120

Message: Every derived table must have its own alias

• Error: 1249 SQLSTATE: 01000 (ER_SELECT_REDUCED)

Message: Select %u was reduced during optimization

• Error: 1250 SQLSTATE: 42000 (ER_TABLENAME_NOT_ALLOWED_HERE)

Message: Table '%s' from one of the SELECTs cannot be used in %s

• Error: 1251 SQLSTATE: 08004 (ER_NOT_SUPPORTED_AUTH_MODE)

Message: Client does not support authentication protocol requested by server; consider upgrad-
ing MySQL client

• Error: 1252 SQLSTATE: 42000 (ER_SPATIAL_CANT_HAVE_NULL)

Message: All parts of a SPATIAL index must be NOT NULL

• Error: 1253 SQLSTATE: 42000 (ER_COLLATION_CHARSET_MISMATCH)

Message: COLLATION '%s' is not valid for CHARACTER SET '%s'

• Error: 1254 SQLSTATE: HY000 (ER_SLAVE_WAS_RUNNING)

Message: Slave is already running

• Error: 1255 SQLSTATE: HY000 (ER_SLAVE_WAS_NOT_RUNNING)

Message: Slave already has been stopped

• Error: 1256 SQLSTATE: HY000 (ER_TOO_BIG_FOR_UNCOMPRESS)

Message: Uncompressed data size too large; the maximum size is %d (probably, length of un-
compressed data was corrupted)

• Error: 1257 SQLSTATE: HY000 (ER_ZLIB_Z_MEM_ERROR)

Message: ZLIB: Not enough memory

• Error: 1258 SQLSTATE: HY000 (ER_ZLIB_Z_BUF_ERROR)

Message: ZLIB: Not enough room in the output buffer (probably, length of uncompressed data
was corrupted)

• Error: 1259 SQLSTATE: HY000 (ER_ZLIB_Z_DATA_ERROR)

Message: ZLIB: Input data corrupted

• Error: 1260 SQLSTATE: HY000 (ER_CUT_VALUE_GROUP_CONCAT)

Message: %d line(s) were cut by GROUP_CONCAT()

• Error: 1261 SQLSTATE: 01000 (ER_WARN_TOO_FEW_RECORDS)

Message: Row %ld doesn't contain data for all columns

• Error: 1262 SQLSTATE: 01000 (ER_WARN_TOO_MANY_RECORDS)

Message: Row %ld was truncated; it contained more data than there were input columns

• Error: 1263 SQLSTATE: 22004 (ER_WARN_NULL_TO_NOTNULL)

Message: Column set to default value; NULL supplied to NOT NULL column '%s' at row %ld

Error Handling in MySQL

1121

• Error: 1264 SQLSTATE: 22003 (ER_WARN_DATA_OUT_OF_RANGE)

Message: Out of range value adjusted for column '%s' at row %ld

• Error: 1265 SQLSTATE: 01000 (WARN_DATA_TRUNCATED)

Message: Data truncated for column '%s' at row %ld

• Error: 1266 SQLSTATE: HY000 (ER_WARN_USING_OTHER_HANDLER)

Message: Using storage engine %s for table '%s'

• Error: 1267 SQLSTATE: HY000 (ER_CANT_AGGREGATE_2COLLATIONS)

Message: Illegal mix of collations (%s,%s) and (%s,%s) for operation '%s'

• Error: 1268 SQLSTATE: HY000 (ER_DROP_USER)

Message: Cannot drop one or more of the requested users

• Error: 1269 SQLSTATE: HY000 (ER_REVOKE_GRANTS)

Message: Can't revoke all privileges, grant for one or more of the requested users

• Error: 1270 SQLSTATE: HY000 (ER_CANT_AGGREGATE_3COLLATIONS)

Message: Illegal mix of collations (%s,%s), (%s,%s), (%s,%s) for operation '%s'

• Error: 1271 SQLSTATE: HY000 (ER_CANT_AGGREGATE_NCOLLATIONS)

Message: Illegal mix of collations for operation '%s'

• Error: 1272 SQLSTATE: HY000 (ER_VARIABLE_IS_NOT_STRUCT)

Message: Variable '%s' is not a variable component (can't be used as XXXX.variable_name)

• Error: 1273 SQLSTATE: HY000 (ER_UNKNOWN_COLLATION)

Message: Unknown collation: '%s'

• Error: 1274 SQLSTATE: HY000 (ER_SLAVE_IGNORED_SSL_PARAMS)

Message: SSL parameters in CHANGE MASTER are ignored because this MySQL slave was
compiled without SSL support; they can be used later if MySQL slave with SSL is started

• Error: 1275 SQLSTATE: HY000 (ER_SERVER_IS_IN_SECURE_AUTH_MODE)

Message: Server is running in --secure-auth mode, but '%s'@'%s' has a password in the old
format; please change the password to the new format

• Error: 1276 SQLSTATE: HY000 (ER_WARN_FIELD_RESOLVED)

Message: Field or reference '%s%s%s%s%s' of SELECT #%d was resolved in SELECT #%d

• Error: 1277 SQLSTATE: HY000 (ER_BAD_SLAVE_UNTIL_COND)

Message: Incorrect parameter or combination of parameters for START SLAVE UNTIL

• Error: 1278 SQLSTATE: HY000 (ER_MISSING_SKIP_SLAVE)

Message: It is recommended to use --skip-slave-start when doing step-by-step replication with
START SLAVE UNTIL; otherwise, you will get problems if you get an unexpected slave's
mysqld restart

• Error: 1279 SQLSTATE: HY000 (ER_UNTIL_COND_IGNORED)

Error Handling in MySQL

1122

Message: SQL thread is not to be started so UNTIL options are ignored

• Error: 1280 SQLSTATE: 42000 (ER_WRONG_NAME_FOR_INDEX)

Message: Incorrect index name '%s'

• Error: 1281 SQLSTATE: 42000 (ER_WRONG_NAME_FOR_CATALOG)

Message: Incorrect catalog name '%s'

• Error: 1282 SQLSTATE: HY000 (ER_WARN_QC_RESIZE)

Message: Query cache failed to set size %lu; new query cache size is %lu

• Error: 1283 SQLSTATE: HY000 (ER_BAD_FT_COLUMN)

Message: Column '%s' cannot be part of FULLTEXT index

• Error: 1284 SQLSTATE: HY000 (ER_UNKNOWN_KEY_CACHE)

Message: Unknown key cache '%s'

• Error: 1285 SQLSTATE: HY000 (ER_WARN_HOSTNAME_WONT_WORK)

Message: MySQL is started in --skip-name-resolve mode; you must restart it without this switch
for this grant to work

• Error: 1286 SQLSTATE: 42000 (ER_UNKNOWN_STORAGE_ENGINE)

Message: Unknown table engine '%s'

• Error: 1287 SQLSTATE: HY000 (ER_WARN_DEPRECATED_SYNTAX)

Message: '%s' is deprecated; use '%s' instead

• Error: 1288 SQLSTATE: HY000 (ER_NON_UPDATABLE_TABLE)

Message: The target table %s of the %s is not updatable

• Error: 1289 SQLSTATE: HY000 (ER_FEATURE_DISABLED)

Message: The '%s' feature is disabled; you need MySQL built with '%s' to have it working

• Error: 1290 SQLSTATE: HY000 (ER_OPTION_PREVENTS_STATEMENT)

Message: The MySQL server is running with the %s option so it cannot execute this statement

• Error: 1291 SQLSTATE: HY000 (ER_DUPLICATED_VALUE_IN_TYPE)

Message: Column '%s' has duplicated value '%s' in %s

• Error: 1292 SQLSTATE: 22007 (ER_TRUNCATED_WRONG_VALUE)

Message: Truncated incorrect %s value: '%s'

• Error: 1293 SQLSTATE: HY000 (ER_TOO_MUCH_AUTO_TIMESTAMP_COLS)

Message: Incorrect table definition; there can be only one TIMESTAMP column with CUR-
RENT_TIMESTAMP in DEFAULT or ON UPDATE clause

• Error: 1294 SQLSTATE: HY000 (ER_INVALID_ON_UPDATE)

Message: Invalid ON UPDATE clause for '%s' column

Error Handling in MySQL

1123

• Error: 1295 SQLSTATE: HY000 (ER_UNSUPPORTED_PS)

Message: This command is not supported in the prepared statement protocol yet

• Error: 1296 SQLSTATE: HY000 (ER_GET_ERRMSG)

Message: Got error %d '%s' from %s

• Error: 1297 SQLSTATE: HY000 (ER_GET_TEMPORARY_ERRMSG)

Message: Got temporary error %d '%s' from %s

• Error: 1298 SQLSTATE: HY000 (ER_UNKNOWN_TIME_ZONE)

Message: Unknown or incorrect time zone: '%s'

• Error: 1299 SQLSTATE: HY000 (ER_WARN_INVALID_TIMESTAMP)

Message: Invalid TIMESTAMP value in column '%s' at row %ld

• Error: 1300 SQLSTATE: HY000 (ER_INVALID_CHARACTER_STRING)

Message: Invalid %s character string: '%s'

• Error: 1301 SQLSTATE: HY000 (ER_WARN_ALLOWED_PACKET_OVERFLOWED)

Message: Result of %s() was larger than max_allowed_packet (%ld) - truncated

• Error: 1302 SQLSTATE: HY000 (ER_CONFLICTING_DECLARATIONS)

Message: Conflicting declarations: '%s%s' and '%s%s'

• Error: 1303 SQLSTATE: 2F003 (ER_SP_NO_RECURSIVE_CREATE)

Message: Can't create a %s from within another stored routine

• Error: 1304 SQLSTATE: 42000 (ER_SP_ALREADY_EXISTS)

Message: %s %s already exists

• Error: 1305 SQLSTATE: 42000 (ER_SP_DOES_NOT_EXIST)

Message: %s %s does not exist

• Error: 1306 SQLSTATE: HY000 (ER_SP_DROP_FAILED)

Message: Failed to DROP %s %s

• Error: 1307 SQLSTATE: HY000 (ER_SP_STORE_FAILED)

Message: Failed to CREATE %s %s

• Error: 1308 SQLSTATE: 42000 (ER_SP_LILABEL_MISMATCH)

Message: %s with no matching label: %s

• Error: 1309 SQLSTATE: 42000 (ER_SP_LABEL_REDEFINE)

Message: Redefining label %s

• Error: 1310 SQLSTATE: 42000 (ER_SP_LABEL_MISMATCH)

Message: End-label %s without match

• Error: 1311 SQLSTATE: 01000 (ER_SP_UNINIT_VAR)

Error Handling in MySQL

1124

Message: Referring to uninitialized variable %s

• Error: 1312 SQLSTATE: 0A000 (ER_SP_BADSELECT)

Message: SELECT in a stored procedure must have INTO

• Error: 1313 SQLSTATE: 42000 (ER_SP_BADRETURN)

Message: RETURN is only allowed in a FUNCTION

• Error: 1314 SQLSTATE: 0A000 (ER_SP_BADSTATEMENT)

Message: Statements like SELECT, INSERT, UPDATE (and others) are not allowed in a
FUNCTION

• Error: 1315 SQLSTATE: 42000 (ER_UPDATE_LOG_DEPRECATED_IGNORED)

Message: The update log is deprecated and replaced by the binary log; SET
SQL_LOG_UPDATE has been ignored

• Error: 1316 SQLSTATE: 42000 (ER_UPDATE_LOG_DEPRECATED_TRANSLATED)

Message: The update log is deprecated and replaced by the binary log; SET
SQL_LOG_UPDATE has been translated to SET SQL_LOG_BIN

• Error: 1317 SQLSTATE: 70100 (ER_QUERY_INTERRUPTED)

Message: Query execution was interrupted

• Error: 1318 SQLSTATE: 42000 (ER_SP_WRONG_NO_OF_ARGS)

Message: Incorrect number of arguments for %s %s; expected %u, got %u

• Error: 1319 SQLSTATE: 42000 (ER_SP_COND_MISMATCH)

Message: Undefined CONDITION: %s

• Error: 1320 SQLSTATE: 42000 (ER_SP_NORETURN)

Message: No RETURN found in FUNCTION %s

• Error: 1321 SQLSTATE: 2F005 (ER_SP_NORETURNEND)

Message: FUNCTION %s ended without RETURN

• Error: 1322 SQLSTATE: 42000 (ER_SP_BAD_CURSOR_QUERY)

Message: Cursor statement must be a SELECT

• Error: 1323 SQLSTATE: 42000 (ER_SP_BAD_CURSOR_SELECT)

Message: Cursor SELECT must not have INTO

• Error: 1324 SQLSTATE: 42000 (ER_SP_CURSOR_MISMATCH)

Message: Undefined CURSOR: %s

• Error: 1325 SQLSTATE: 24000 (ER_SP_CURSOR_ALREADY_OPEN)

Message: Cursor is already open

• Error: 1326 SQLSTATE: 24000 (ER_SP_CURSOR_NOT_OPEN)

Message: Cursor is not open

Error Handling in MySQL

1125

• Error: 1327 SQLSTATE: 42000 (ER_SP_UNDECLARED_VAR)

Message: Undeclared variable: %s

• Error: 1328 SQLSTATE: HY000 (ER_SP_WRONG_NO_OF_FETCH_ARGS)

Message: Incorrect number of FETCH variables

• Error: 1329 SQLSTATE: 02000 (ER_SP_FETCH_NO_DATA)

Message: No data to FETCH

• Error: 1330 SQLSTATE: 42000 (ER_SP_DUP_PARAM)

Message: Duplicate parameter: %s

• Error: 1331 SQLSTATE: 42000 (ER_SP_DUP_VAR)

Message: Duplicate variable: %s

• Error: 1332 SQLSTATE: 42000 (ER_SP_DUP_COND)

Message: Duplicate condition: %s

• Error: 1333 SQLSTATE: 42000 (ER_SP_DUP_CURS)

Message: Duplicate cursor: %s

• Error: 1334 SQLSTATE: HY000 (ER_SP_CANT_ALTER)

Message: Failed to ALTER %s %s

• Error: 1335 SQLSTATE: 0A000 (ER_SP_SUBSELECT_NYI)

Message: Subselect value not supported

• Error: 1336 SQLSTATE: 42000 (ER_SP_NO_USE)

Message: USE is not allowed in a stored procedure

• Error: 1337 SQLSTATE: 42000 (ER_SP_VARCOND_AFTER_CURSHNDLR)

Message: Variable or condition declaration after cursor or handler declaration

• Error: 1338 SQLSTATE: 42000 (ER_SP_CURSOR_AFTER_HANDLER)

Message: Cursor declaration after handler declaration

• Error: 1339 SQLSTATE: 20000 (ER_SP_CASE_NOT_FOUND)

Message: Case not found for CASE statement

• Error: 1340 SQLSTATE: HY000 (ER_FPARSER_TOO_BIG_FILE)

Message: Configuration file '%s' is too big

• Error: 1341 SQLSTATE: HY000 (ER_FPARSER_BAD_HEADER)

Message: Malformed file type header in file '%s'

• Error: 1342 SQLSTATE: HY000 (ER_FPARSER_EOF_IN_COMMENT)

Message: Unexpected end of file while parsing comment '%s'

• Error: 1343 SQLSTATE: HY000 (ER_FPARSER_ERROR_IN_PARAMETER)

Error Handling in MySQL

1126

Message: Error while parsing parameter '%s' (line: '%s')

• Error: 1344 SQLSTATE: HY000 (ER_FPARSER_EOF_IN_UNKNOWN_PARAMETER)

Message: Unexpected end of file while skipping unknown parameter '%s'

• Error: 1345 SQLSTATE: HY000 (ER_VIEW_NO_EXPLAIN)

Message: EXPLAIN/SHOW can not be issued; lacking privileges for underlying table

• Error: 1346 SQLSTATE: HY000 (ER_FRM_UNKNOWN_TYPE)

Message: File '%s' has unknown type '%s' in its header

• Error: 1347 SQLSTATE: HY000 (ER_WRONG_OBJECT)

Message: '%s.%s' is not %s

• Error: 1348 SQLSTATE: HY000 (ER_NONUPDATEABLE_COLUMN)

Message: Column '%s' is not updatable

• Error: 1349 SQLSTATE: HY000 (ER_VIEW_SELECT_DERIVED)

Message: View's SELECT contains a subquery in the FROM clause

• Error: 1350 SQLSTATE: HY000 (ER_VIEW_SELECT_CLAUSE)

Message: View's SELECT contains a '%s' clause

• Error: 1351 SQLSTATE: HY000 (ER_VIEW_SELECT_VARIABLE)

Message: View's SELECT contains a variable or parameter

• Error: 1352 SQLSTATE: HY000 (ER_VIEW_SELECT_TMPTABLE)

Message: View's SELECT contains a temporary table '%s'

• Error: 1353 SQLSTATE: HY000 (ER_VIEW_WRONG_LIST)

Message: View's SELECT and view's field list have different column counts

• Error: 1354 SQLSTATE: HY000 (ER_WARN_VIEW_MERGE)

Message: View merge algorithm can't be used here for now (assumed undefined algorithm)

• Error: 1355 SQLSTATE: HY000 (ER_WARN_VIEW_WITHOUT_KEY)

Message: View being updated does not have complete key of underlying table in it

• Error: 1356 SQLSTATE: HY000 (ER_VIEW_INVALID)

Message: View '%s.%s' references invalid table(s) or column(s) or function(s)

• Error: 1357 SQLSTATE: HY000 (ER_SP_NO_DROP_SP)

Message: Can't drop a %s from within another stored routine

• Error: 1358 SQLSTATE: HY000 (ER_SP_GOTO_IN_HNDLR)

Message: GOTO is not allowed in a stored procedure handler

• Error: 1359 SQLSTATE: HY000 (ER_TRG_ALREADY_EXISTS)

Error Handling in MySQL

1127

Message: Trigger already exists

• Error: 1360 SQLSTATE: HY000 (ER_TRG_DOES_NOT_EXIST)

Message: Trigger does not exist

• Error: 1361 SQLSTATE: HY000 (ER_TRG_ON_VIEW_OR_TEMP_TABLE)

Message: Trigger's '%s' is view or temporary table

• Error: 1362 SQLSTATE: HY000 (ER_TRG_CANT_CHANGE_ROW)

Message: Updating of %s row is not allowed in %strigger

• Error: 1363 SQLSTATE: HY000 (ER_TRG_NO_SUCH_ROW_IN_TRG)

Message: There is no %s row in %s trigger

• Error: 1364 SQLSTATE: HY000 (ER_NO_DEFAULT_FOR_FIELD)

Message: Field '%s' doesn't have a default value

• Error: 1365 SQLSTATE: 22012 (ER_DIVISION_BY_ZERO)

Message: Division by 0

• Error: 1366 SQLSTATE: HY000 (ER_TRUNCATED_WRONG_VALUE_FOR_FIELD)

Message: Incorrect %s value: '%s' for column '%s' at row %ld

• Error: 1367 SQLSTATE: 22007 (ER_ILLEGAL_VALUE_FOR_TYPE)

Message: Illegal %s '%s' value found during parsing

• Error: 1368 SQLSTATE: HY000 (ER_VIEW_NONUPD_CHECK)

Message: CHECK OPTION on non-updatable view '%s.%s'

• Error: 1369 SQLSTATE: HY000 (ER_VIEW_CHECK_FAILED)

Message: CHECK OPTION failed '%s.%s'

• Error: 1370 SQLSTATE: 42000 (ER_PROCACCESS_DENIED_ERROR)

Message: %s command denied to user '%s'@'%s' for routine '%s'

• Error: 1371 SQLSTATE: HY000 (ER_RELAY_LOG_FAIL)

Message: Failed purging old relay logs: %s

• Error: 1372 SQLSTATE: HY000 (ER_PASSWD_LENGTH)

Message: Password hash should be a %d-digit hexadecimal number

• Error: 1373 SQLSTATE: HY000 (ER_UNKNOWN_TARGET_BINLOG)

Message: Target log not found in binlog index

• Error: 1374 SQLSTATE: HY000 (ER_IO_ERR_LOG_INDEX_READ)

Message: I/O error reading log index file

• Error: 1375 SQLSTATE: HY000 (ER_BINLOG_PURGE_PROHIBITED)

Error Handling in MySQL

1128

Message: Server configuration does not permit binlog purge

• Error: 1376 SQLSTATE: HY000 (ER_FSEEK_FAIL)

Message: Failed on fseek()

• Error: 1377 SQLSTATE: HY000 (ER_BINLOG_PURGE_FATAL_ERR)

Message: Fatal error during log purge

• Error: 1378 SQLSTATE: HY000 (ER_LOG_IN_USE)

Message: A purgeable log is in use, will not purge

• Error: 1379 SQLSTATE: HY000 (ER_LOG_PURGE_UNKNOWN_ERR)

Message: Unknown error during log purge

• Error: 1380 SQLSTATE: HY000 (ER_RELAY_LOG_INIT)

Message: Failed initializing relay log position: %s

• Error: 1381 SQLSTATE: HY000 (ER_NO_BINARY_LOGGING)

Message: You are not using binary logging

• Error: 1382 SQLSTATE: HY000 (ER_RESERVED_SYNTAX)

Message: The '%s' syntax is reserved for purposes internal to the MySQL server

• Error: 1383 SQLSTATE: HY000 (ER_WSAS_FAILED)

Message: WSAStartup Failed

• Error: 1384 SQLSTATE: HY000 (ER_DIFF_GROUPS_PROC)

Message: Can't handle procedures with differents groups yet

• Error: 1385 SQLSTATE: HY000 (ER_NO_GROUP_FOR_PROC)

Message: Select must have a group with this procedure

• Error: 1386 SQLSTATE: HY000 (ER_ORDER_WITH_PROC)

Message: Can't use ORDER clause with this procedure

• Error: 1387 SQLSTATE: HY000 (ER_LOGING_PROHIBIT_CHANGING_OF)

Message: Binary logging and replication forbid changing the global server %s

• Error: 1388 SQLSTATE: HY000 (ER_NO_FILE_MAPPING)

Message: Can't map file: %s, errno: %d

• Error: 1389 SQLSTATE: HY000 (ER_WRONG_MAGIC)

Message: Wrong magic in %s

• Error: 1390 SQLSTATE: HY000 (ER_PS_MANY_PARAM)

Message: Prepared statement contains too many placeholders

• Error: 1391 SQLSTATE: HY000 (ER_KEY_PART_0)

Error Handling in MySQL

1129

Message: Key part '%s' length cannot be 0

• Error: 1392 SQLSTATE: HY000 (ER_VIEW_CHECKSUM)

Message: View text checksum failed

• Error: 1393 SQLSTATE: HY000 (ER_VIEW_MULTIUPDATE)

Message: Can not modify more than one base table through a join view '%s.%s'

• Error: 1394 SQLSTATE: HY000 (ER_VIEW_NO_INSERT_FIELD_LIST)

Message: Can not insert into join view '%s.%s' without fields list

• Error: 1395 SQLSTATE: HY000 (ER_VIEW_DELETE_MERGE_VIEW)

Message: Can not delete from join view '%s.%s'

• Error: 1396 SQLSTATE: HY000 (ER_CANNOT_USER)

Message: Operation %s failed for %s

• Error: 1397 SQLSTATE: 42000 (ER_NONEXISTING_PROC_GRANT)

Message: There is no such grant defined for user '%s' on host '%s' on routine '%s'

• Error: 1398 SQLSTATE: HY000 (ER_PROC_AUTO_GRANT_FAIL)

Message: Failed to grant EXECUTE and ALTER ROUTINE privileges

• Error: 1399 SQLSTATE: HY000 (ER_PROC_AUTO_REVOKE_FAIL)

Message: Failed to revoke all privileges to dropped routine

• Error: 1400 SQLSTATE: 22001 (ER_DATA_TOO_LONG)

Message: Data too long for column '%s' at row %ld

Client error information comes from the following files:

• The Error values and the symbols in parentheses correspond to definitions in the include/er-
rmsg.h MySQL source file.

• The Message values correspond to the error messages that are listed in the libmysql/er-
rmsg.c file. %d or %s represent numbers or strings that are substituted into the messages
%when they are displayed.

Because updates are frequent, it is possible that these files contain additional error information not
listed here.

• Error: 2000 (CR_UNKNOWN_ERROR)

Message: Unknown MySQL error

• Error: 2001 (CR_SOCKET_CREATE_ERROR)

Message: Can't create UNIX socket (%d)

• Error: 2002 (CR_CONNECTION_ERROR)

Error Handling in MySQL

1130

Message: Can't connect to local MySQL server through socket '%s' (%d)

• Error: 2003 (CR_CONN_HOST_ERROR)

Message: Can't connect to MySQL server on '%s' (%d)

• Error: 2004 (CR_IPSOCK_ERROR)

Message: Can't create TCP/IP socket (%d)

• Error: 2005 (CR_UNKNOWN_HOST)

Message: Unknown MySQL server host '%s' (%d)

• Error: 2006 (CR_SERVER_GONE_ERROR)

Message: MySQL server has gone away

• Error: 2007 (CR_VERSION_ERROR)

Message: Protocol mismatch; server version = %d, client version = %d

• Error: 2008 (CR_OUT_OF_MEMORY)

Message: MySQL client ran out of memory

• Error: 2009 (CR_WRONG_HOST_INFO)

Message: Wrong host info

• Error: 2010 (CR_LOCALHOST_CONNECTION)

Message: Localhost via UNIX socket

• Error: 2011 (CR_TCP_CONNECTION)

Message: %s via TCP/IP

• Error: 2012 (CR_SERVER_HANDSHAKE_ERR)

Message: Error in server handshake

• Error: 2013 (CR_SERVER_LOST)

Message: Lost connection to MySQL server during query

• Error: 2014 (CR_COMMANDS_OUT_OF_SYNC)

Message: Commands out of sync; you can't run this command now

• Error: 2015 (CR_NAMEDPIPE_CONNECTION)

Message: Named pipe: %s

• Error: 2016 (CR_NAMEDPIPEWAIT_ERROR)

Message: Can't wait for named pipe to host: %s pipe: %s (%lu)

• Error: 2017 (CR_NAMEDPIPEOPEN_ERROR)

Message: Can't open named pipe to host: %s pipe: %s (%lu)

• Error: 2018 (CR_NAMEDPIPESETSTATE_ERROR)

Error Handling in MySQL

1131

Message: Can't set state of named pipe to host: %s pipe: %s (%lu)

• Error: 2019 (CR_CANT_READ_CHARSET)

Message: Can't initialize character set %s (path: %s)

• Error: 2020 (CR_NET_PACKET_TOO_LARGE)

Message: Got packet bigger than 'max_allowed_packet' bytes

• Error: 2021 (CR_EMBEDDED_CONNECTION)

Message: Embedded server

• Error: 2022 (CR_PROBE_SLAVE_STATUS)

Message: Error on SHOW SLAVE STATUS:

• Error: 2023 (CR_PROBE_SLAVE_HOSTS)

Message: Error on SHOW SLAVE HOSTS:

• Error: 2024 (CR_PROBE_SLAVE_CONNECT)

Message: Error connecting to slave:

• Error: 2025 (CR_PROBE_MASTER_CONNECT)

Message: Error connecting to master:

• Error: 2026 (CR_SSL_CONNECTION_ERROR)

Message: SSL connection error

• Error: 2027 (CR_MALFORMED_PACKET)

Message: Malformed packet

• Error: 2028 (CR_WRONG_LICENSE)

Message: This client library is licensed only for use with MySQL servers having '%s' license

• Error: 2029 (CR_NULL_POINTER)

Message: Invalid use of null pointer

• Error: 2030 (CR_NO_PREPARE_STMT)

Message: Statement not prepared

• Error: 2031 (CR_PARAMS_NOT_BOUND)

Message: No data supplied for parameters in prepared statement

• Error: 2032 (CR_DATA_TRUNCATED)

Message: Data truncated

• Error: 2033 (CR_NO_PARAMETERS_EXISTS)

Message: No parameters exist in the statement

• Error: 2034 (CR_INVALID_PARAMETER_NO)

Error Handling in MySQL

1132

Message: Invalid parameter number

• Error: 2035 (CR_INVALID_BUFFER_USE)

Message: Can't send long data for non-string/non-binary data types (parameter: %d)

• Error: 2036 (CR_UNSUPPORTED_PARAM_TYPE)

Message: Using unsupported buffer type: %d (parameter: %d)

• Error: 2037 (CR_SHARED_MEMORY_CONNECTION)

Message: Shared memory: %s

• Error: 2038 (CR_SHARED_MEMORY_CONNECT_REQUEST_ERROR)

Message: Can't open shared memory; client could not create request event (%lu)

• Error: 2039 (CR_SHARED_MEMORY_CONNECT_ANSWER_ERROR)

Message: Can't open shared memory; no answer event received from server (%lu)

• Error: 2040 (CR_SHARED_MEMORY_CONNECT_FILE_MAP_ERROR)

Message: Can't open shared memory; server could not allocate file mapping (%lu)

• Error: 2041 (CR_SHARED_MEMORY_CONNECT_MAP_ERROR)

Message: Can't open shared memory; server could not get pointer to file mapping (%lu)

• Error: 2042 (CR_SHARED_MEMORY_FILE_MAP_ERROR)

Message: Can't open shared memory; client could not allocate file mapping (%lu)

• Error: 2043 (CR_SHARED_MEMORY_MAP_ERROR)

Message: Can't open shared memory; client could not get pointer to file mapping (%lu)

• Error: 2044 (CR_SHARED_MEMORY_EVENT_ERROR)

Message: Can't open shared memory; client could not create %s event (%lu)

• Error: 2045 (CR_SHARED_MEMORY_CONNECT_ABANDONED_ERROR)

Message: Can't open shared memory; no answer from server (%lu)

• Error: 2046 (CR_SHARED_MEMORY_CONNECT_SET_ERROR)

Message: Can't open shared memory; cannot send request event to server (%lu)

• Error: 2047 (CR_CONN_UNKNOW_PROTOCOL)

Message: Wrong or unknown protocol

• Error: 2048 (CR_INVALID_CONN_HANDLE)

Message: Invalid connection handle

• Error: 2049 (CR_SECURE_AUTH)

Message: Connection using old (pre-4.1.1) authentication protocol refused (client option 'se-
cure_auth' enabled)

• Error: 2050 (CR_FETCH_CANCELED)

Error Handling in MySQL

1133

Message: Row retrieval was canceled by mysql_stmt_close() call

• Error: 2051 (CR_NO_DATA)

Message: Attempt to read column without prior row fetch

• Error: 2052 (CR_NO_STMT_METADATA)

Message: Prepared statement contains no metadata

Error Handling in MySQL

1134

Chapter 25. Extending MySQL
25.1. MySQL Internals

This chapter describes a lot of things that you need to know when working on the MySQL code. If
you plan to contribute to MySQL development, want to have access to the bleeding-edge in-between
versions code, or just want to keep track of development, follow the instructions in Section 2.8.3,
“Installing from the Development Source Tree”. If you are interested in MySQL internals, you
should also subscribe to our internals mailing list. This list is relatively low traffic. For details
on how to subscribe, please see Section 1.4.1.1, “The MySQL Mailing Lists”. All developers at
MySQL AB are on the internals list and we help other people who are working on the MySQL
code. Feel free to use this list both to ask questions about the code and to send patches that you
would like to contribute to the MySQL project!

25.1.1. MySQL Threads
The MySQL server creates the following threads:

• The TCP/IP connection thread handles all connection requests and creates a new dedicated
thread to handle the authentication and SQL query processing for each connection.

• On Windows NT there is a named pipe handler thread that does the same work as the TCP/IP
connection thread on named pipe connect requests.

• The signal thread handles all signals. This thread also normally handles alarms and calls pro-
cess_alarm() to force timeouts on connections that have been idle too long.

• If mysqld is compiled with -DUSE_ALARM_THREAD, a dedicated thread that handles alarms is
created. This is only used on some systems where there are problems with sigwait() or if
you want to use the thr_alarm() code in your application without a dedicated signal hand-
ling thread.

• If one uses the --flush_time=# option, a dedicated thread is created to flush all tables at the
given interval.

• Every connection has its own thread.

• Every different table on which one uses INSERT DELAYED gets its own thread.

• If you use --master-host, a slave replication thread is started to read and apply updates
from the master.

mysqladmin processlist only shows the connection, INSERT DELAYED, and replication threads.

25.1.2. MySQL Test Suite
Until recently, our main full-coverage test suite was based on proprietary customer data and for that
reason has not been publicly available. The only publicly available part of our testing process con-
sisted of the crash-me test, a Perl DBI/DBD benchmark found in the sql-bench directory, and
miscellaneous tests located in tests directory. The lack of a standardized publicly available test
suite has made it difficult for our users, as well developers, to do regression tests on the MySQL
code. To address this problem, we have created a new test system that is included in Unix source
distributions and binary distributions starting with Version 3.23.29. The tests can be run under Unix,
or on Windows in the Cygwin environment if the server has been compiled under Cygwin. They
cannot be run in a native Windows environment currently.

The current set of test cases doesn't test everything in MySQL, but it should catch most obvious

1135

bugs in the SQL processing code, OS/library issues, and is quite thorough in testing replication. Our
eventual goal is to have the tests cover 100% of the code. We welcome contributions to our test
suite. You may especially want to contribute tests that examine the functionality critical to your sys-
tem, because this ensures that all future MySQL releases work well with your applications.

25.1.2.1. Running the MySQL Test Suite

The test system consist of a test language interpreter (mysqltest), a shell script to run all
tests(mysql-test-run), the actual test cases written in a special test language, and their expected res-
ults. To run the test suite on your system after a build, type make test or mysql-
test/mysql-test-run from the source root. If you have installed a binary distribution, cd to
the install root (eg. /usr/local/mysql), and do scripts/mysql-test-run. All tests
should succeed. If not, you should try to find out why and report the problem if this is a bug in
MySQL. See Section 25.1.2.3, “Reporting Bugs in the MySQL Test Suite”.

From MySQL 4.1 on, if you have a copy of mysqld running on the machine where you want to run
the test suite you do not have to stop it, as long as it is not using ports 9306 and 9307. If one of
those ports is taken, you should edit mysql-test-run and change the values of the master and/or
slave port to one that is available.

Before MySQL 4.1, mysql-test-run does not try to run its own server by default but tries to use
your currently running server. To override this and cause mysql-test-run to start its own server, run
it with the --local option.

You can run one individual test case with mysql-test/mysql-test-run test_name.

If one test fails, you should test running mysql-test-run with the --force option to check whether
any other tests fail.

25.1.2.2. Extending the MySQL Test Suite

You can use the mysqltest language to write your own test cases. Unfortunately, we have not yet
written full documentation for it. You can, however, look at our current test cases and use them as
an example. The following points should help you get started:

• The tests are located in mysql-test/t/*.test

• A test case consists of ; terminated statements and is similar to the input of mysql command-
line client. A statement by default is a query to be sent to MySQL server, unless it is recognized
as internal command (eg. sleep).

• All queries that produce results---for example, SELECT, SHOW, EXPLAIN, etc., must be pre-
ceded with @/path/to/result/file. The file must contain the expected results. An easy
way to generate the result file is to run mysqltest -r < t/test-case-name.test from the mysql-
test directory, and then edit the generated result files, if needed, to adjust them to the expected
output. In that case, be very careful about not adding or deleting any invisible characters ---
make sure to only change the text and/or delete lines. If you have to insert a line, make sure that
the fields are separated by a hard tab, and that there is a hard tab at the end. You may want to use
od -c to make sure that your text editor has not messed anything up during edit. We hope that
you never have to edit the output of mysqltest -r as you only have to do it when you find a bug.

• To be consistent with our setup, you should put your result files in the mysql-test/r direct-
ory and name them test_name.result. If the test produces more than one result, you
should use test_name.a.result, test_name.b.result, etc.

• If a statement returns an error, you should specify it with --error error-number on the
line before the statement. The error number can be a list of possible error numbers separated by
','.

• If you are writing a replication test case, you should on the first line of the test file, put source
include/master-slave.inc;. To switch between master and slave, use connection

Extending MySQL

1136

master; and connection slave;. If you need to do something on an alternate connec-
tion, you can do connection master1; for the master, and connection slave1; for
the slave.

• If you need to do something in a loop, you can use something like this:

let $1=1000;
while ($1)
{
do your queries here
dec $1;
}

• To sleep between queries, use the sleep command. It supports fractions of a second, so you can
use sleep 1.3;, for example, to sleep 1.3 seconds.

• To run the slave with additional options for your test case, put them in the command-line format
in mysql-test/t/test_name-slave.opt. For the master, put them in mysql-
test/t/test_name-master.opt.

• If you have a question about the test suite, or have a test case to contribute, send an email mes-
sage to the MySQL internals mailing list. See Section 1.4.1.1, “The MySQL Mailing Lists”.
As this list does not accept attachments, you should ftp all the relevant files to:
ftp://ftp.mysql.com/pub/mysql/upload/

25.1.2.3. Reporting Bugs in the MySQL Test Suite

If your MySQL version doesn't pass the test suite you should do the following:

• Don't send a bug report before you have found out as much as possible of what when wrong!
When you do it, please use the mysqlbug script so that we can get information about your sys-
tem and MySQL version. See Section 1.4.1.3, “How to Report Bugs or Problems”.

• Make sure to include the output of mysql-test-run, as well as contents of all .reject files in
mysql-test/r directory.

• If a test in the test suite fails, check whether the test fails also when run by its own:

cd mysql-test
mysql-test-run --local test-name

If this fails, then you should configure MySQL with --with-debug and run mysql-test-run
with the --debug option. If this also fails send the trace file var/tmp/master.trace to
ftp://ftp.mysql.com/pub/mysql/upload/ so that we can examine it. Please remember to also in-
clude a full description of your system, the version of the mysqld binary and how you compiled
it.

• Try also to run mysql-test-run with the --force option to see whether there is any other test
that fails.

• If you have compiled MySQL yourself, check our manual for how to compile MySQL on your
platform or, preferable, use one of the binaries we have compiled for you at ht-
tp://dev.mysql.com/downloads/. All our standard binaries should pass the test suite !

• If you get an error, like Result length mismatch or Result content mismatch it
means that the output of the test didn't match exactly the expected output. This could be a bug in
MySQL or that your mysqld version produces slight different results under some circumstances.

Failed test results are put in a file with the same base name as the result file with the .reject
extension. If your test case is failing, you should do a diff on the two files. If you cannot see how

Extending MySQL

1137

ftp://ftp.mysql.com/pub/mysql/upload/
ftp://ftp.mysql.com/pub/mysql/upload/
http://dev.mysql.com/downloads/
http://dev.mysql.com/downloads/

they are different, examine both with od -c and also check their lengths.

• If a test fails totally, you should check the logs file in the mysql-test/var/log directory
for hints of what went wrong.

• If you have compiled MySQL with debugging you can try to debug this by running mysql-
test-run with the --gdb and/or --debug options. See Section E.1.2, “Creating Trace Files”.

If you have not compiled MySQL for debugging you should probably do that. Just specify the -
-with-debug options to configure! See Section 2.8, “MySQL Installation Using a Source
Distribution”.

25.2. Adding New Functions to MySQL
There are two ways to add new functions to MySQL:

• You can add the function through the user-defined function (UDF) interface. User-defined func-
tions are added and removed dynamically using the CREATE FUNCTION and DROP FUNC-
TION statements. See Section 25.2.1, “CREATE FUNCTION/DROP FUNCTION Syntax”.

• You can add the function as a native (built in) MySQL function. Native functions are compiled
into the mysqld server and become available on a permanent basis.

Each method has advantages and disadvantages:

• If you write a user-defined function, you must install the object file in addition to the server it-
self. If you compile your function into the server, you don't need to do that.

• You can add UDFs to a binary MySQL distribution. Native functions require you to modify a
source distribution.

• If you upgrade your MySQL distribution, you can continue to use your previously installed UD-
Fs. For native functions, you must repeat your modifications each time you upgrade.

Whichever method you use to add new functions, they may be used just like native functions such
as ABS() or SOUNDEX().

25.2.1. CREATE FUNCTION/DROP FUNCTION Syntax
CREATE [AGGREGATE] FUNCTION function_name RETURNS {STRING|REAL|INTEGER}

SONAME shared_library_name
DROP FUNCTION function_name

A user-defined function (UDF) is a way to extend MySQL with a new function that works like nat-
ive (built in) MySQL function such as ABS() and CONCAT().

AGGREGATE is a new option for MySQL 3.23. An AGGREGATE function works exactly like a nat-
ive MySQL GROUP function like SUM or COUNT().

CREATE FUNCTION saves the function's name, type, and shared library name in the
mysql.func system table. You must have the INSERT and DELETE privileges for the mysql
database to create and drop functions.

All active functions are reloaded each time the server starts, unless you start mysqld with the -
-skip-grant-tables option. In this case, UDF initialization is skipped and UDFs are unavail-
able. (An active function is one that has been loaded with CREATE FUNCTION and not removed
with DROP FUNCTION.)

Extending MySQL

1138

For instructions on writing user-defined functions, see Section 25.2.2, “Adding a New User-defined
Function”. For the UDF mechanism to work, functions must be written in C or C++, your operating
system must support dynamic loading and you must have compiled mysqld dynamically (not static-
ally).

Note that to make AGGREGATE work, you must have a mysql.func table that contains the
column type. If you do not have this table, you should run the script mysql_fix_privilege_tables
to create it.

25.2.2. Adding a New User-defined Function
For the UDF mechanism to work, functions must be written in C or C++ and your operating system
must support dynamic loading. The MySQL source distribution includes a file sql/
udf_example.cc that defines 5 new functions. Consult this file to see how UDF calling conven-
tions work.

For mysqld to be able to use UDF functions, you should configure MySQL with -
-with-mysqld-ldflags=-rdynamic The reason is that to on many platforms (including
Linux) you can load a dynamic library (with dlopen()) from a static linked program, which you
would get if you are using --with-mysqld-ldflags=-all-static If you want to use an
UDF that needs to access symbols from mysqld (like the metaphone example in sql/
udf_example.cc that uses default_charset_info), you must link the program with -
rdynamic (see man dlopen).

If you are using a precompiled version of the server, use MySQL-Max, which supports dynamic
loading.

For each function that you want to use in SQL statements, you should define corresponding C (or
C++) functions. In the following discussion, the name ``xxx'' is used for an example function name.
To distinguish between SQL and C/C++ usage, XXX() (uppercase) indicates an SQL function call,
and xxx() (lowercase) indicates a C/C++ function call.

The C/C++ functions that you write to implement the interface for XXX() are:

• xxx() (required)

The main function. This is where the function result is computed. The correspondence between
the SQL type and return type of your C/C++ function is shown here:

SQL Type C/C++ Type

STRING char *

INTEGER long long

REAL double

• xxx_init() (optional)

The initialization function for xxx(). It can be used to:

• Check the number of arguments to XXX().

• Check that the arguments are of a required type or, alternatively, tell MySQL to coerce argu-
ments to the types you want when the main function is called.

• Allocate any memory required by the main function.

• Specify the maximum length of the result.

• Specify (for REAL functions) the maximum number of decimals.

Extending MySQL

1139

• Specify whether the result can be NULL.

• xxx_deinit() (optional)

The deinitialization function for xxx(). It should deallocate any memory allocated by the ini-
tialization function.

When an SQL statement invokes XXX(), MySQL calls the initialization function xxx_init() to
let it perform any required setup, such as argument checking or memory allocation. If
xxx_init() returns an error, the SQL statement is aborted with an error message and the main
and deinitialization functions are not called. Otherwise, the main function xxx() is called once for
each row. After all rows have been processed, the deinitialization function xxx_deinit() is
called so it can perform any required cleanup.

For aggregate functions (like SUM()), you must also provide the following functions:

• xxx_reset() (required)

Reset sum and insert the argument as the initial value for a new group.

• xxx_add() (required)

Add the argument to the old sum.

When using aggregate UDFs, MySQL works the following way:

1. Call xxx_init() to let the aggregate function allocate the memory it needs to store results.

2. Sort the table according to the GROUP BY expression.

3. For the first row in a new group, call the xxx_reset() function.

4. For each new row that belongs in the same group, call the xxx_add() function.

5. When the group changes or after the last row has been processed, call xxx() to get the result
for the aggregate.

6. Repeat 3-5 until all rows has been processed

7. Call xxx_deinit() to let the UDF free any memory it has allocated.

All functions must be thread-safe (not just the main function, but the initialization and deinitializa-
tion functions as well). This means that you are not allowed to allocate any global or static variables
that change! If you need memory, you should allocate it in xxx_init() and free it in
xxx_deinit().

25.2.2.1. UDF Calling Sequences for simple functions

The main function should be declared as shown here. Note that the return type and parameters dif-
fer, depending on whether you declare the SQL function XXX() to return STRING, INTEGER, or
REAL in the CREATE FUNCTION statement:

For STRING functions:

char *xxx(UDF_INIT *initid, UDF_ARGS *args,
char *result, unsigned long *length,
char *is_null, char *error);

Extending MySQL

1140

For INTEGER functions:

long long xxx(UDF_INIT *initid, UDF_ARGS *args,
char *is_null, char *error);

For REAL functions:

double xxx(UDF_INIT *initid, UDF_ARGS *args,
char *is_null, char *error);

The initialization and deinitialization functions are declared like this:

my_bool xxx_init(UDF_INIT *initid, UDF_ARGS *args, char *message);
void xxx_deinit(UDF_INIT *initid);

The initid parameter is passed to all three functions. It points to a UDF_INIT structure that is
used to communicate information between functions. The UDF_INIT structure members follow.
The initialization function should fill in any members that it wishes to change. (To use the default
for a member, leave it unchanged.):

• my_bool maybe_null

xxx_init() should set maybe_null to 1 if xxx() can return NULL. The default value is 1
if any of the arguments are declared maybe_null.

• unsigned int decimals

The number of decimals. The default value is the maximum number of decimals in the argu-
ments passed to the main function. (For example, if the function is passed 1.34, 1.345, and
1.3, the default would be 3, because 1.345 has 3 decimals.

• unsigned int max_length

The maximum length of the string result. The default value differs depending on the result type
of the function. For string functions, the default is the length of the longest argument. For integer
functions, the default is 21 digits. For real functions, the default is 13 plus the number of decim-
als indicated by initid->decimals. (For numeric functions, the length includes any sign or
decimal point characters.)

If you want to return a blob, you can set this to 65KB or 16MB; this memory is not allocated but
used to decide which column type to use if there is a need to temporary store the data.

• char *ptr

A pointer that the function can use for its own purposes. For example, functions can use init-
id->ptr to communicate allocated memory between functions. In xxx_init(), allocate the
memory and assign it to this pointer:

initid->ptr = allocated_memory;

In xxx() and xxx_deinit(), refer to initid->ptr to use or deallocate the memory.

25.2.2.2. UDF Calling Sequences for aggregate functions

Here follows a description of the different functions you need to define when you want to create an
aggregate UDF function.

Note that the following function is NOT needed or used by MySQL 4.1.1. You can keep still have

Extending MySQL

1141

define this function if you want to have your code work with both MySQL 4.0 and MySQL 4.1.1

char *xxx_reset(UDF_INIT *initid, UDF_ARGS *args,
char *is_null, char *error);

This function is called when MySQL finds the first row in a new group. In the function you should
reset any internal summary variables and then set the given argument as the first argument in the
group.

In many cases this is implemented internally by reseting all variables (for example by calling
xxx_clear() and then calling xxx_add().

The following function is only required by MySQL 4.1.1 and above:

char *xxx_clear(UDF_INIT *initid, char *is_null, char *error);

This function is called when MySQL needs to reset the summary results. This is called at the begin-
ning for each new group but can also be called to reset the values for a query where there was no
matching rows. is_null is set to point to CHAR(0) before calling xxx_clear().

You can use the error pointer to store a byte if something went wrong .

char *xxx_add(UDF_INIT *initid, UDF_ARGS *args,
char *is_null, char *error);

This function is called for all rows that belongs to the same group, except for the first row. In this
you should add the value in UDF_ARGS to your internal summary variable.

The xxx() function should be declared identical as when you define a simple UDF function. See
Section 25.2.2.1, “UDF Calling Sequences for simple functions”.

This function is called when all rows in the group has been processed. You should normally never
access the args variable here but return your value based on your internal summary variables.

All argument processing in xxx_reset() and xxx_add() should be done identically as for nor-
mal UDFs. See Section 25.2.2.3, “Argument Processing”.

The return value handling in xxx() should be done identically as for a normal UDF. See Sec-
tion 25.2.2.4, “Return Values and Error Handling”.

The pointer argument to is_null and error is the same for all calls to xxx_reset(),
xxx_clear(), xxx_add() and xxx(). You can use this to remember that you got an error or if
the xxx() function should return NULL. Note that you should not store a string into *error! This
is just a 1 byte flag!

is_null is reset for each group (before calling xxx_clear()). error is never reset.

If is_null or error are set after xxx(), then MySQL returns NULL as the result for the group
function.

25.2.2.3. Argument Processing

The args parameter points to a UDF_ARGS structure that has the members listed here:

• unsigned int arg_count

The number of arguments. Check this value in the initialization function if you want your func-
tion to be called with a particular number of arguments. For example:

Extending MySQL

1142

if (args->arg_count != 2)
{

strcpy(message,"XXX() requires two arguments");
return 1;

}

• enum Item_result *arg_type

The types for each argument. The possible type values are STRING_RESULT, INT_RESULT,
and REAL_RESULT.

To make sure that arguments are of a given type and return an error if they are not, check the
arg_type array in the initialization function. For example:

if (args->arg_type[0] != STRING_RESULT ||
args->arg_type[1] != INT_RESULT)

{
strcpy(message,"XXX() requires a string and an integer");
return 1;

}

As an alternative to requiring your function's arguments to be of particular types, you can use the
initialization function to set the arg_type elements to the types you want. This causes MySQL
to coerce arguments to those types for each call to xxx(). For example, to specify coercion of
the first two arguments to string and integer, do this in xxx_init():

args->arg_type[0] = STRING_RESULT;
args->arg_type[1] = INT_RESULT;

• char **args

args->args communicates information to the initialization function about the general nature
of the arguments your function was called with. For a constant argument i, args->args[i]
points to the argument value. (See below for instructions on how to access the value properly.)
For a non-constant argument, args->args[i] is 0. A constant argument is an expression that
uses only constants, such as 3 or 4*7-2 or SIN(3.14). A non-constant argument is an ex-
pression that refers to values that may change from row to row, such as column names or func-
tions that are called with non-constant arguments.

For each invocation of the main function, args->args contains the actual arguments that are
passed for the row currently being processed.

Functions can refer to an argument i as follows:

• An argument of type STRING_RESULT is given as a string pointer plus a length, to allow
handling of binary data or data of arbitrary length. The string contents are available as
args->args[i] and the string length is args->lengths[i]. You should not assume
that strings are null-terminated.

• For an argument of type INT_RESULT, you must cast args->args[i] to a long
long value:

long long int_val;
int_val = *((long long*) args->args[i]);

• For an argument of type REAL_RESULT, you must cast args->args[i] to a double
value:

Extending MySQL

1143

double real_val;
real_val = *((double*) args->args[i]);

• unsigned long *lengths

For the initialization function, the lengths array indicates the maximum string length for each
argument. You should not change these. For each invocation of the main function, lengths
contains the actual lengths of any string arguments that are passed for the row currently being
processed. For arguments of types INT_RESULT or REAL_RESULT, lengths still contains
the maximum length of the argument (as for the initialization function).

25.2.2.4. Return Values and Error Handling

The initialization function should return 0 if no error occurred and 1 otherwise. If an error occurs,
xxx_init() should store a null-terminated error message in the message parameter. The mes-
sage is returned to the client. The message buffer is MYSQL_ERRMSG_SIZE characters long, but
you should try to keep the message to less than 80 characters so that it fits the width of a standard
terminal screen.

The return value of the main function xxx() is the function value, for long long and double
functions. A string functions should return a pointer to the result and store the length of the string in
the length arguments.

Set these to the contents and length of the return value. For example:

memcpy(result, "result string", 13);
*length = 13;

The result buffer that is passed to the calc function is 255 byte big. If your result fits in this, you
don't have to worry about memory allocation for results.

If your string function needs to return a string longer than 255 bytes, you must allocate the space for
it with malloc() in your xxx_init() function or your xxx() function and free it in your
xxx_deinit() function. You can store the allocated memory in the ptr slot in the UDF_INIT
structure for reuse by future xxx() calls. See Section 25.2.2.1, “UDF Calling Sequences for simple
functions”.

To indicate a return value of NULL in the main function, set is_null to 1:

*is_null = 1;

To indicate an error return in the main function, set the error parameter to 1:

*error = 1;

If xxx() sets *error to 1 for any row, the function value is NULL for the current row and for any
subsequent rows processed by the statement in which XXX() was invoked. (xxx() is not even
called for subsequent rows.) Note: In MySQL versions prior to 3.22.10, you should set both
*error and *is_null:

*error = 1;
*is_null = 1;

25.2.2.5. Compiling and Installing User-defined Functions

Files implementing UDFs must be compiled and installed on the host where the server runs. This

Extending MySQL

1144

process is described below for the example UDF file udf_example.cc that is included in the
MySQL source distribution.

The immediately following instructions are for Unix. Instructions for Windows are given later in
this section.

The udf_example.cc file contains the following functions:

• metaphon() returns a metaphon string of the string argument. This is something like a soun-
dex string, but it's more tuned for English.

• myfunc_double() returns the sum of the ASCII values of the characters in its arguments, di-
vided by the sum of the length of its arguments.

• myfunc_int() returns the sum of the length of its arguments.

• sequence([const int]) returns an sequence starting from the given number or 1 if no
number has been given.

• lookup() returns the IP number for a hostname.

• reverse_lookup() returns the hostname for an IP number. The function may be called with
a string 'xxx.xxx.xxx.xxx' or four numbers.

A dynamically loadable file should be compiled as a sharable object file, using a command
something like this:

shell> gcc -shared -o udf_example.so udf_example.cc

If you are using gcc, you should be able to create udf_example.so with a simpler command:

shell> make udf_example.so

You can easily find out the correct compiler options for your system by running this command in
the sql directory of your MySQL source tree:

shell> make udf_example.o

You should run a compile command similar to the one that make displays, except that you should
remove the -c option near the end of the line and add -o udf_example.so to the end of the
line. (On some systems, you may need to leave the -c on the command.)

Once you compile a shared object containing UDFs, you must install it and tell MySQL about it.
Compiling a shared object from udf_example.cc produces a file named something like
udf_example.so (the exact name may vary from platform to platform). Copy this file to some
directory searched by the dynamic linker ld, such as /usr/lib or add the directory in which you
placed the shared object to the linker configuration file (for example, /etc/ld.so.conf).

On many systems, you can also set the LD_LIBRARY or LD_LIBRARY_PATH environment vari-
able to point at the directory where you have your UDF function files. The dlopen manual page
tells you which variable you should use on your system. You should set this in mysql.server or
mysqld_safe startup scripts and restart mysqld.

On some systems, the ldconfig program that configures the dynamic linker does not recognize
shared objects unless their name begins with lib. In this case you should rename a file such as
udf_example.so to libudf_example.so.

On Windows, you can compile user-defined functions by using the following procedure:

Extending MySQL

1145

1. You need to obtain the BitKeeper source repository for MySQL 4.0 or higher. See Sec-
tion 2.8.3, “Installing from the Development Source Tree”.

2. In the source repository, look in the VC++Files/examples/udf_example directory.
There are files named udf_example.def, udf_example.dsp, and
udf_example.dsw there.

3. In the source repository, look in the sql directory. Copy the udf_example.cc from this
directory to the VC++Files/examples/udf_example directory and rename the file to
udf_example.cpp.

4. Open the udf_example.dsw file with Visual Studio VC++ and use it to compile the UDFs
as a normal project.

After the library is installed, notify mysqld about the new functions with these commands:

mysql> CREATE FUNCTION metaphon RETURNS STRING SONAME 'udf_example.so';
mysql> CREATE FUNCTION myfunc_double RETURNS REAL SONAME 'udf_example.so';
mysql> CREATE FUNCTION myfunc_int RETURNS INTEGER SONAME 'udf_example.so';
mysql> CREATE FUNCTION lookup RETURNS STRING SONAME 'udf_example.so';
mysql> CREATE FUNCTION reverse_lookup

-> RETURNS STRING SONAME 'udf_example.so';
mysql> CREATE AGGREGATE FUNCTION avgcost

-> RETURNS REAL SONAME 'udf_example.so';

Functions can be deleted using DROP FUNCTION:

mysql> DROP FUNCTION metaphon;
mysql> DROP FUNCTION myfunc_double;
mysql> DROP FUNCTION myfunc_int;
mysql> DROP FUNCTION lookup;
mysql> DROP FUNCTION reverse_lookup;
mysql> DROP FUNCTION avgcost;

The CREATE FUNCTION and DROP FUNCTION statements update the system table func in the
mysql database. The function's name, type and shared library name are saved in the table. You
must have the INSERT and DELETE privileges for the mysql database to create and drop func-
tions.

You should not use CREATE FUNCTION to add a function that has previously been created. If you
need to reinstall a function, you should remove it with DROP FUNCTION and then reinstall it with
CREATE FUNCTION. You would need to do this, for example, if you recompile a new version of
your function, so that mysqld gets the new version. Otherwise, the server continues to use the old
version.

Active functions are reloaded each time the server starts, unless you start mysqld with the -
-skip-grant-tables option. In this case, UDF initialization is skipped and UDFs are unavail-
able. (An active function is one that has been loaded with CREATE FUNCTION and not removed
with DROP FUNCTION.)

25.2.3. Adding a New Native Function
The procedure for adding a new native function is described here. Note that you cannot add native
functions to a binary distribution because the procedure involves modifying MySQL source code.
You must compile MySQL yourself from a source distribution. Also note that if you migrate to an-
other version of MySQL (for example, when a new version is released), you need to repeat the pro-
cedure with the new version.

To add a new native MySQL function, follow these steps:

Extending MySQL

1146

1. Add one line to lex.h that defines the function name in the sql_functions[] array.

2. If the function prototype is simple (just takes zero, one, two or three arguments), you should in
lex.h specify SYM(FUNC_ARG#) (where # is the number of arguments) as the second argu-
ment in the sql_functions[] array and add a function that creates a function object in
item_create.cc. Take a look at "ABS" and create_funcs_abs() for an example of
this.

If the function prototype is complicated (for example takes a variable number of arguments),
you should add two lines to sql_yacc.yy. One indicates the preprocessor symbol that yacc
should define (this should be added at the beginning of the file). Then define the function para-
meters and add an ``item'' with these parameters to the simple_expr parsing rule. For an ex-
ample, check all occurrences of ATAN in sql_yacc.yy to see how this is done.

3. In item_func.h, declare a class inheriting from Item_num_func or Item_str_func,
depending on whether your function returns a number or a string.

4. In item_func.cc, add one of the following declarations, depending on whether you are de-
fining a numeric or string function:

double Item_func_newname::val()
longlong Item_func_newname::val_int()
String *Item_func_newname::Str(String *str)

If you inherit your object from any of the standard items (like Item_num_func), you prob-
ably only have to define one of these functions and let the parent object take care of the other
functions. For example, the Item_str_func class defines a val() function that executes
atof() on the value returned by ::str().

5. You should probably also define the following object function:

void Item_func_newname::fix_length_and_dec()

This function should at least calculate max_length based on the given arguments.
max_length is the maximum number of characters the function may return. This function
should also set maybe_null = 0 if the main function can't return a NULL value. The func-
tion can check whether any of the function arguments can return NULL by checking the argu-
ments' maybe_null variable. You can take a look at
Item_func_mod::fix_length_and_dec for a typical example of how to do this.

All functions must be thread-safe (in other words, don't use any global or static variables in the
functions without protecting them with mutexes).

If you want to return NULL, from ::val(), ::val_int() or ::str() you should set
null_value to 1 and return 0.

For ::str() object functions, there are some additional considerations to be aware of:

• The String *str argument provides a string buffer that may be used to hold the result. (For
more information about the String type, take a look at the sql_string.h file.)

• The ::str() function should return the string that holds the result or (char*) 0 if the result
is NULL.

• All current string functions try to avoid allocating any memory unless absolutely necessary!

25.3. Adding New Procedures to MySQL
In MySQL, you can define a procedure in C++ that can access and modify the data in a query before

Extending MySQL

1147

it is sent to the client. The modification can be done on a row-by-row or GROUP BY level.

We have created an example procedure in MySQL 3.23 to show you what can be done.

Additionally we recommend you to take a look at mylua. With this you can use the LUA language
to load a procedure at runtime into mysqld.

25.3.1. Procedure Analyse
analyse([max elements,[max memory]])

This procedure is defined in the sql/sql_analyse.cc. This examines the result from your
query and returns an analysis of the results:

• max elements (default 256) is the maximum number of distinct values analyse does no-
tice per column. This is used by analyse to check whether the optimal column type should be
of type ENUM.

• max memory (default 8192) is the maximum memory analyse should allocate per column
while trying to find all distinct values.

SELECT ... FROM ... WHERE ... PROCEDURE ANALYSE([max elements,[max memory]])

25.3.2. Writing a Procedure
For the moment, the only documentation for this is the source.

You can find all information about procedures by examining the following files:

• sql/sql_analyse.cc

• sql/procedure.h

• sql/procedure.cc

• sql/sql_select.cc

Extending MySQL

1148

Appendix A. Problems and Common
Errors

This appendix lists some common problems and error messages that you may encounter. It describes
how to determine the causes of the problems and what to do to solve them.

A.1. How to Determine What Is Causing a
Problem

When you run into a problem, the first thing you should do is to find out which program or piece of
equipment is causing it:

• If you have one of the following symptoms, then it is probably a hardware problems (such as
memory, motherboard, CPU, or hard disk) or kernel problem:

• The keyboard doesn't work. This can normally be checked by pressing the Caps Lock key. If
the Caps Lock light doesn't change, you have to replace your keyboard. (Before doing this,
you should try to restart your computer and check all cables to the keyboard.)

• The mouse pointer doesn't move.

• The machine doesn't answer to a remote machine's pings.

• Other programs that are not related to MySQL don't behave correctly.

• Your system restarted unexpectedly. (A faulty user-level program should never be able to
take down your system.)

In this case, you should start by checking all your cables and run some diagnostic tool to check
your hardware! You should also check whether there are any patches, updates, or service packs
for your operating system that could likely solve your problem. Check also that all your libraries
(such as glibc) are up to date.

It's always good to use a machine with ECC memory to discover memory problems early.

• If your keyboard is locked up, you may be able to recover by logging in to your machine from
another machine and executing kbd_mode -a.

• Please examine your system log file (/var/log/messages or similar) for reasons for your
problem. If you think the problem is in MySQL, you should also examine MySQL's log files.
See Section 5.9, “The MySQL Log Files”.

• If you don't think you have hardware problems, you should try to find out which program is
causing problems. Try using top, ps, Task Manager, or some similar program, to check which
program is taking all CPU or is locking the machine.

• Use top, df, or a similar program to check whether you are out of memory, disk space, file
descriptors, or some other critical resource.

• If the problem is some runaway process, you can always try to kill it. If it doesn't want to die,
there is probably a bug in the operating system.

If after you have examined all other possibilities and you have concluded that the MySQL server or
a MySQL client is causing the problem, it's time to create a bug report for our mailing list or our
support team. In the bug report, try to give a very detailed description of how the system is behaving
and what you think is happening. You should also state why you think that MySQL is causing the

1149

problem. Take into consideration all the situations in this chapter. State any problems exactly how
they appear when you examine your system. Use the ``copy and paste'' method for any output and
error messages from programs and log files.

Try to describe in detail which program is not working and all symptoms you see. We have in the
past received many bug reports that state only ``the system doesn't work.'' This doesn't provide us
with any information about what could be the problem.

If a program fails, it's always useful to know the following information:

• Has the program in question made a segmentation fault (did it dump core)?

• Is the program taking up all available CPU time? Check with top. Let the program run for a
while, it may simply be evaluating something computationally intensive.

• If the mysqld server is causing problems, can you get any response from it with mysqladmin -u
root ping or mysqladmin -u root processlist?

• What does a client program say when you try to connect to the MySQL server? (Try with mysql,
for example.) Does the client jam? Do you get any output from the program?

When sending a bug report, you should follow the outline described in Section 1.4.1.2, “Asking
Questions or Reporting Bugs”.

A.2. Common Errors When Using MySQL
Programs

This section lists some errors that users frequently encounter when running MySQL programs. Al-
though the problems show up when you try to run client programs, the solutions to many of the
problems involves changing the configuration of the MySQL server.

A.2.1. Access denied

An Access denied error can have many causes. Often the problem is related to the MySQL ac-
counts that the server allows client programs to use when connecting. See Section 5.5.8, “Causes of
Access denied Errors”. See Section 5.5.2, “How the Privilege System Works”.

A.2.2. Can't connect to [local] MySQL server

A MySQL client on Unix can connect to the mysqld server in two different ways: By using a Unix
socket file to connect through a file in the filesystem (default /tmp/mysql.sock), or by using
TCP/IP, which connects through a port number. A Unix socket file connection is faster than TCP/IP,
but can be used only when connecting to a server on the same computer. A Unix socket file is used
if you don't specify a hostname or if you specify the special hostname localhost.

If the MySQL server is running on Windows 9x or Me, you can connect only via TCP/IP. If the
server is running on Windows NT, 2000, XP, or 2003 and is started with the -
-enable-named-pipe option, you can also connect with named pipes if you run the client on
the host where the server is running. The name of the named pipe is MySQL by default. If you don't
give a hostname when connecting to mysqld, a MySQL client first tries to connect to the named
pipe. If that doesn't work, it connects to the TCP/IP port. You can force the use of named pipes on
Windows by using . as the hostname.

The error (2002) Can't connect to ... normally means that there is no MySQL server run-
ning on the system or that you are using an incorrect Unix socket filename or TCP/IP port number
when trying to connect to the server.

Start by checking whether there is a process named mysqld running on your server host. (Use ps xa

Problems and Common Errors

1150

| grep mysqld on Unix or the Task Manager on Windows.) If there is no such process, you should
start the server. See Section 2.9.2.3, “Starting and Troubleshooting the MySQL Server”.

If a mysqld process is running, you can check it by trying the following commands. The port num-
ber or Unix socket filename might be different in your setup. host_ip represents the IP number of
the machine where the server is running.

shell> mysqladmin version
shell> mysqladmin variables
shell> mysqladmin -h `hostname` version variables
shell> mysqladmin -h `hostname` --port=3306 version
shell> mysqladmin -h host_ip version
shell> mysqladmin --protocol=socket --socket=/tmp/mysql.sock version

Note the use of backticks rather than forward quotes with the hostname command; these cause the
output of hostname (that is, the current hostname) to be substituted into the mysqladmin com-
mand. If you have no hostname command or are running on Windows, you can manually type the
hostname of your machine (without backticks) following the -h option. You can also try -h
127.0.0.1 to connect with TCP/IP to the local host.

Here are some reasons the Can't connect to local MySQL server error might occur:

• mysqld is not running. Check your operating system's process list to ensure the mysqld process
is present.

• You are running on a system that uses MIT-pthreads. If you are running on a system that doesn't
have native threads, mysqld uses the MIT-pthreads package. See Section 2.1.1, “Operating Sys-
tems Supported by MySQL”. However, not all MIT-pthreads versions support Unix socket files.
On a system without socket file support, you must always specify the hostname explicitly when
connecting to the server. Try using this command to check the connection to the server:

shell> mysqladmin -h `hostname` version

• Someone has removed the Unix socket file that mysqld uses (/tmp/mysql.sock by default).
For example, you might have a cron job that removes old files from the /tmp directory. You
can always run mysqladmin version to check whether the Unix socket file that mysqladmin is
trying to use really exists. The fix in this case is to change the cron job to not remove
mysql.sock or to place the socket file somewhere else. See Section A.4.5, “How to Protect or
Change the MySQL Socket File /tmp/mysql.sock”.

• You have started the mysqld server with the --socket=/path/to/socket option, but for-
gotten to tell client programs the new name of the socket file. If you change the socket pathname
for the server, you must also notify the MySQL clients. You can do this by providing the same -
-socket option when you run client programs. You also need to ensure that clients have per-
mission to access the mysql.sock file. To find out where the mysql server socket is, you can
do:

shell> netstat -l | grep mysql

See Section A.4.5, “How to Protect or Change the MySQL Socket File /tmp/mysql.sock”.

• You are using Linux and one server thread has died (dumped core). In this case, you must kill
the other mysqld threads (for example, with kill or with the mysql_zap script) before you
can restart the MySQL server. See Section A.4.2, “What to Do If MySQL Keeps Crashing”.

• The server or client program might not have the proper access privileges for the directory that
holds the Unix socket file or the socket file itself. In this case, you must either change the access
privileges for the directory or socket file so that the server and clients can access them, or restart
mysqld with a --socket option that specifies a socket filename in a directory where the serv-
er can create it and where client programs can access it.

Problems and Common Errors

1151

If you get the error message Can't connect to MySQL server on some_host, you can
try the following things to find out what the problem is:

• Check whether the server is running on that host by executing telnet some_host 3306
and pressing the Enter key a couple of times. (3306 is the default MySQL port number. Change
the value if your server is listening to a different port.) If there is a MySQL server running and
listening to the port, you should get a response that includes the server's version number. If you
get an error such as telnet: Unable to connect to remote host: Connec-
tion refused, then there is no server running on the given port.

• If the server is running on the local host, try using mysqladmin -h localhost variables to con-
nect using the Unix socket file. Verify the TCP/IP port number that the server is configured to
listen to (it is the value of the port variable.)

• Make sure that your mysqld server was not started with the --skip-networking option. If
it was, you cannot connect to it using TCP/IP.

• Check to make sure that there is no firewall blocking access to MySQL. Applications such as
ZoneAlarm and the Windows XP personal firewall may need to be configured to allow external
access to a MySQL server.

A.2.3. Client does not support authentication
protocol

MySQL 4.1 and up uses an authentication protocol based on a password hashing algorithm that is
incompatible with that used by older clients. If you upgrade the server to 4.1, attempts to connect to
it with an older client may fail with the following message:

shell> mysql
Client does not support authentication protocol requested
by server; consider upgrading MySQL client

To solve this problem, you should use one of the following approaches:

• Upgrade all client programs to use a 4.1.1 or newer client library.

• When connecting to the server with a pre-4.1 client program, use an account that still has a pre-
4.1-style password.

• Reset the password to pre-4.1 style for each user that needs to use a pre-4.1 client program. This
can be done using the SET PASSWORD statement and the OLD_PASSWORD() function:

mysql> SET PASSWORD FOR
-> 'some_user'@'some_host' = OLD_PASSWORD('newpwd');

Alternatively, use UPDATE and FLUSH PRIVILEGES:

mysql> UPDATE mysql.user SET Password = OLD_PASSWORD('newpwd')
-> WHERE Host = 'some_host' AND User = 'some_user';

mysql> FLUSH PRIVILEGES;

Substitute the password you want to use for ``newpwd'' in the preceding examples. MySQL can-
not tell you what the original password was, so you'll need to pick a new one.

• Tell the server to use the older password hashing algorithm:

1. Start mysqld with the --old-passwords option.

Problems and Common Errors

1152

2. Assign an old-format password to each account that has had its password updated to the
longer 4.1 format. You can identify these accounts with the following query:

mysql> SELECT Host, User, Password FROM mysql.user
-> WHERE LENGTH(Password) > 16;

For each account record displayed by the query, use the Host and User values and assign
a password using the OLD_PASSWORD() function and either SET PASSWORD or UP-
DATE, as described earlier.

For additional background on password hashing and authentication, see Section 5.5.9, “Password
Hashing in MySQL 4.1”.

A.2.4. Password Fails When Entered Interactively
MySQL client programs prompt for a password when invoked with a --password or -p option
that has no following password value:

shell> mysql -u user_name -p
Enter password:

On some systems, you may find that your password works when specified in an option file or on the
command line, but not when you enter it interactively at the Enter password: prompt. This oc-
curs when the library provided by the system to read passwords limits password values to a small
number of characters (typically eight). That is a problem with the system library, not with MySQL.
To work around it, change your MySQL password to a value that is eight or fewer characters long,
or put your password in an option file.

A.2.5. Host 'host_name' is blocked

If you get the following error, it means that mysqld has received many connect requests from the
host 'host_name' that have been interrupted in the middle:

Host 'host_name' is blocked because of many connection errors.
Unblock with 'mysqladmin flush-hosts'

The number of interrupted connect requests allowed is determined by the value of the
max_connect_errors system variable. After max_connect_errors failed requests,
mysqld assumes that something is wrong (for example, that someone is trying to break in), and
blocks the host from further connections until you execute a mysqladmin flush-hosts command or
issue a FLUSH HOSTS statement. See Section 5.2.3, “Server System Variables”.

By default, mysqld blocks a host after 10 connection errors. You can adjust the value by starting the
server like this:

shell> mysqld_safe --max_connect_errors=10000 &

If you get this error message for a given host, you should first verify that there isn't anything wrong
with TCP/IP connections from that host. If you are having network problems, it does you no good to
increase the value of the max_connect_errors variable.

A.2.6. Too many connections

If you get a Too many connections error when you try to connect to the mysqld server, this
means that all available connections are in use by other clients.

Problems and Common Errors

1153

The number of connections allowed is controlled by the max_connections system variable. Its
default value is 100. If you need to support more connections, you should restart mysqld with a lar-
ger value for this variable.

mysqld actually allows max_connections+1 clients to connect. The extra connection is re-
served for use by accounts that have the SUPER privilege. By granting the SUPER privilege to ad-
ministrators and not to normal users (who should not need it), an administrator can connect to the
server and use SHOW PROCESSLIST to diagnose problems even if the maximum number of un-
privileged clients are connected. See Section 13.5.4.15, “SHOW PROCESSLIST Syntax”.

The maximum number of connections MySQL can support depends on the quality of the thread lib-
rary on a given platform. Linux or Solaris should be able to support 500-1000 simultaneous connec-
tions, depending on how much RAM you have and what your clients are doing. Static Linux binar-
ies provided by MySQL AB can support up to 4000 connections.

A.2.7. Out of memory

If you issue a query using the mysql client program and receive an error like the following one, it
means that mysql does not have enough memory to store the entire query result:

mysql: Out of memory at line 42, 'malloc.c'
mysql: needed 8136 byte (8k), memory in use: 12481367 bytes (12189k)
ERROR 2008: MySQL client ran out of memory

To remedy the problem, first check whether your query is correct. Is it reasonable that it should re-
turn so many rows? If not, correct the query and try again. Otherwise, you can invoke mysql with
the --quick option. This causes it to use the mysql_use_result() C API function to retrieve
the result set, which places less of a load on the client (but more on the server).

A.2.8. MySQL server has gone away

This section also covers the related Lost connection to server during query error.

The most common reason for the MySQL server has gone away error is that the server
timed out and closed the connection. In this case, you normally get one of the following error codes
(which one you get is operating system-dependent):

Error Code Description

CR_SERVER_GONE_ERROR The client couldn't send a question to the server.

CR_SERVER_LOST The client didn't get an error when writing to the server, but it
didn't get a full answer (or any answer) to the question.

By default, the server closes the connection after eight hours if nothing has happened. You can
change the time limit by setting the wait_timeout variable when you start mysqld. See Sec-
tion 5.2.3, “Server System Variables”.

If you have a script, you just have to issue the query again for the client to do an automatic recon-
nection. This assumes that you have automatic reconnection in the client enabled (which is the de-
fault for the mysql command-line client).

Some other common reasons for the MySQL server has gone away error are:

• You (or the db administrator) has killed the running thread with a KILL statement or a mysql-
admin kill command.

• You tried to run a query after closing the connection to the server. This indicates a logic error in
the application that should be corrected.

Problems and Common Errors

1154

• You got a timeout from the TCP/IP connection on the client side. This may happens if you have
been using the commands: mysql_options(..., MYSQL_OPT_READ_TIMEOUT,...)
or mysql_options(..., MYSQL_OPT_WRITE_TIMEOUT,...). In this case increasing
the timeout may help solve the problem.

• You have encountered a timeout on the server side and the automatic reconnection in the client
is disabled (the reconnect flag in the MYSQL structure is equal to 0).

• You are using a windows client and the server had dropped the connection (probably because
wait_timeout expired) before the command was issued.

The problem on windows is that in some cases MySQL doesn't get an error from the OS when
writing to the TCP/IP connection to the server, but instead gets the error when trying to read the
answer from connection.

In this case, even if the reconnect flag in the MYSQL structure is equal to 1, MySQL does not
automatically reconnect and re-issue the query as it doesn't know if the server did get the origin-
al query or not.

The solution to this is to either do a mysql_ping on the connection if there has been a long
time since the last query (this is what MyODBC does) or set wait_timeout on the mysqld
server so high that it in practice never times out.

• You can also get these errors if you send a query to the server that is incorrect or too large. If
mysqld receives a packet that is too large or out of order, it assumes that something has gone
wrong with the client and closes the connection. If you need big queries (for example, if you are
working with big BLOB columns), you can increase the query limit by setting the server's
max_allowed_packet variable, which has a default value of 1MB. You may also need to
increase the maximum packet size on the client end. More information on setting the packet size
is given in Section A.2.9, “Packet too large”.

• You also get a lost connection if you are sending a packet 16MB or larger if your client is older
than 4.0.8 and your server is 4.0.8 and above, or the other way around.

• You may also see the MySQL server has gone away error if MySQL is started with the
--skip-networking option.

• You have encountered a bug where the server died while executing the query.

You can check whether the MySQL server died and restarted by executing mysqladmin version
and examining the server's uptime. If the client connection was broken because mysqld crashed and
restarted, you should concentrate on finding the reason for the crash. Start by checking whether issu-
ing the query again kills the server again. See Section A.4.2, “What to Do If MySQL Keeps Crash-
ing”.

You can get more information about the lost connections by starting mysqld with the -
-log-warnings=2 option. This logs some of the disconnected errors in the hostname.err
file. See Section 5.9.1, “The Error Log”.

If you want to create a bug report regarding this problem, be sure that you include the following in-
formation:

• Indicate whether or not the MySQL server died. You can find information about this in the serv-
er error log. See Section A.4.2, “What to Do If MySQL Keeps Crashing”.

• If a specific query kills mysqld and the tables involved were checked with CHECK TABLE be-
fore you ran the query, can you provide a reproducible test case? See Section E.1.6, “Making a
Test Case If You Experience Table Corruption”.

• What is the value of the wait_timeout system variable in the MySQL server? (mysqladmin
variables gives you the value of this variable.)

Problems and Common Errors

1155

• Have you tried to run mysqld with the --log option to determine whether the problem query
appears in the log?

See also See Section A.2.10, “Communication Errors and Aborted Connections”.

See Section 1.4.1.2, “Asking Questions or Reporting Bugs”.

A.2.9. Packet too large

A communication packet is a single SQL statement sent to the MySQL server or a single row that is
sent to the client.

In MySQL 3.23, the largest possible packet is 16MB, due to limits in the client/server protocol. In
MySQL 4.0.1 and up, the limit is 1GB.

When a MySQL client or the mysqld server receives a packet bigger than
max_allowed_packet bytes, it issues a Packet too large error and closes the connec-
tion. With some clients, you may also get a Lost connection to MySQL server during
query error if the communication packet is too large.

Both the client and the server have their own max_allowed_packet variable, so if you want to
handle big packets, you must increase this variable both in the client and in the server.

If you are using the mysql client program, its default max_allowed_packet variable is 16MB.
That is also the maximum value before MySQL 4.0. To set a larger value from 4.0 on, start mysql
like this:

mysql> mysql --max_allowed_packet=32M

That sets the packet size to 32MB.

The server's default max_allowed_packet value is 1MB. You can increase this if the server
needs to handle big queries (for example, if you are working with big BLOB columns). For example,
to set the variable to 16MB, start the server like this:

mysql> mysqld --max_allowed_packet=16M

Before MySQL 4.0, use this syntax instead:

mysql> mysqld --set-variable=max_allowed_packet=16M

You can also use an option file to set max_allowed_packet. For example, to set the size for the
server to 16MB, add the following lines in an option file:

[mysqld]
max_allowed_packet=16M

Before MySQL 4.0, use this syntax instead:

[mysqld]
set-variable = max_allowed_packet=16M

It's safe to increase the value of this variable because the extra memory is allocated only when
needed. For example, mysqld allocates more memory only when you issue a long query or when
mysqld must return a large result row. The small default value of the variable is a precaution to
catch incorrect packets between the client and server and also to ensure that you don't run out of
memory by using large packets accidentally.

Problems and Common Errors

1156

You can also get strange problems with large packets if you are using large BLOB values but have
not given mysqld access to enough memory to handle the query. If you suspect this is the case, try
adding ulimit -d 256000 to the beginning of the mysqld_safe script and restarting mysqld.

A.2.10. Communication Errors and Aborted Connec-
tions

The server error log can be a useful source of information about connection problems. See Sec-
tion 5.9.1, “The Error Log”. Starting with MySQL 3.23.40, if you start the server with the -
-warnings option (or --log-warnings from MySQL 4.0.3 on), you might find messages like
this in your error log:

010301 14:38:23 Aborted connection 854 to db: 'users' user: 'josh'

If Aborted connections messages appear in the error log, the cause can be any of the follow-
ing:

• The client program did not call mysql_close() before exiting.

• The client had been sleeping more than wait_timeout or interactive_timeout
seconds without issuing any requests to the server. See Section 5.2.3, “Server System
Variables”.

• The client program ended abruptly in the middle of a data transfer.

When any of these things happen, the server increments the Aborted_clients status variable.

The server increments the Aborted_connects status variable when the following things hap-
pen:

• A client doesn't have privileges to connect to a database.

• A client uses an incorrect password.

• A connection packet doesn't contain the right information.

• It takes more than connect_timeout seconds to get a connect packet. See Section 5.2.3,
“Server System Variables”.

If these kinds of things happen, it might indicate that someone is trying to break into your server!

Other reasons for problems with aborted clients or aborted connections:

• Use of Ethernet protocol with Linux, both half and full duplex. Many Linux Ethernet drivers
have this bug. You should test for this bug by transferring a huge file via FTP between the client
and server machines. If a transfer goes in burst-pause-burst-pause mode, you are experiencing a
Linux duplex syndrome. The only solution is switching the duplex mode for both your network
card and hub/switch to either full duplex or to half duplex and testing the results to determine the
best setting.

• Some problem with the thread library that causes interrupts on reads.

• Badly configured TCP/IP.

• Faulty Ethernets, hubs, switches, cables, and so forth. This can be diagnosed properly only by
replacing hardware.

Problems and Common Errors

1157

• The max_allowed_packet variable value is too small or queries require more memory than
you have allocated for mysqld. See Section A.2.9, “Packet too large”.

See also See Section A.2.8, “MySQL server has gone away”.

A.2.11. The table is full

There are several ways a full-table error can occur:

• You are using a MySQL server older than 3.23 and an in-memory temporary table becomes lar-
ger than tmp_table_size bytes. To avoid this problem, you can use the -O
tmp_table_size=# option to make mysqld increase the temporary table size or use the
SQL option SQL_BIG_TABLES before you issue the problematic query. See Section 13.5.3,
“SET Syntax”.

You can also start mysqld with the --big-tables option. This is exactly the same as using
SQL_BIG_TABLES for all queries.

As of MySQL 3.23, this problem should not occur. If an in-memory temporary table becomes
larger than tmp_table_size, the server automatically converts it to a disk-based MyISAM
table.

• You are using InnoDB tables and run out of room in the InnoDB tablespace. In this case, the
solution is to extend the InnoDB tablespace. See Section 15.8, “Adding and Removing In-
noDB Data and Log Files”.

• You are using ISAM or MyISAM tables on an operating system that supports files only up to
2GB in size and you have hit this limit for the data file or index file.

• You are using a MyISAM table and the space required for the table exceeds what is allowed by
the internal pointer size. (If you don't specify the MAX_ROWS table option when you create a ta-
ble, MySQL uses the myisam_data_pointer_size system variable. Its default value of 4
bytes is enough to allow only 4GB of data.) See Section 5.2.3, “Server System Variables”.

You can check the maximum data/index sizes by using this statement:

SHOW TABLE STATUS FROM database LIKE 'tbl_name';

You also can use myisamchk -dv /path/to/table-index-file.

If the pointer size is too small, you can fix the problem by using ALTER TABLE:

ALTER TABLE tbl_name MAX_ROWS=1000000000 AVG_ROW_LENGTH=nnn;

You have to specify AVG_ROW_LENGTH only for tables with BLOB or TEXT columns; in this
case, MySQL can't optimize the space required based only on the number of rows.

A.2.12. Can't create/write to file

If you get an error of the following type for some queries, it means that MySQL cannot create a tem-
porary file for the result set in the temporary directory:

Can't create/write to file '\\sqla3fe_0.ism'.

The preceding error is a typical message for Windows; the Unix message is similar.

One fix is to start mysqld with the --tmpdir option or to add the option to the [mysqld] sec-

Problems and Common Errors

1158

tion of your option file. For example, to specify a directory of C:\temp, use these lines:

[mysqld]
tmpdir=C:/temp

The C:\temp directory must exist and have sufficient space for the MySQL server to write to. See
Section 4.3.2, “Using Option Files”.

Another cause of this error can be permissions issues. Make sure that the MySQL server can write to
the tmpdir directory.

Check also the error code that you get with perror. One reason the server cannot write to a table is
that the filesystem is full:

shell> perror 28
Error code 28: No space left on device

A.2.13. Commands out of sync

If you get Commands out of sync; you can't run this command now in your cli-
ent code, you are calling client functions in the wrong order.

This can happen, for example, if you are using mysql_use_result() and try to execute a new
query before you have called mysql_free_result(). It can also happen if you try to execute
two queries that return data without calling mysql_use_result() or
mysql_store_result() in between.

A.2.14. Ignoring user

If you get the following error, it means that when mysqld was started or when it reloaded the grant
tables, it found an account in the user table that had an invalid password.

Found wrong password for user 'some_user'@'some_host'; ignoring
user

As a result, the account is simply ignored by the permission system.

The following list indicates possible causes of and fixes for this problem:

• You may be running a new version of mysqld with an old user table. You can check this by
executing mysqlshow mysql user to see whether the Password column is shorter than 16
characters. If so, you can correct this condition by running the scripts/
add_long_password script.

• The account has an old password (eight characters long) and you didn't start mysqld with the -
-old-protocol option. Update the account in the user table to have a new password or re-
start mysqld with the --old-protocol option.

•
You have specified a password in the user table without using the PASSWORD() function.
Use mysql to update the account in the user table with a new password, making sure to use the
PASSWORD() function:

mysql> UPDATE user SET Password=PASSWORD('newpwd')
-> WHERE User='some_user' AND Host='some_host';

A.2.15. Table 'tbl_name' doesn't exist

Problems and Common Errors

1159

If you get either of the following errors, it usually means that no table exists in the current database
with the given name:

Table 'tbl_name' doesn't exist
Can't find file: 'tbl_name' (errno: 2)

In some cases, it may be that the table does exist but that you are referring to it incorrectly:

• Because MySQL uses directories and files to store databases and tables, database and table
names are case sensitive if they are located on a filesystem that has case-sensitive filenames.

• Even for filesystems that are not case sensitive, such as on Windows, all references to a given ta-
ble within a query must use the same lettercase.

You can check which tables are in the current database with SHOW TABLES. See Section 13.5.4,
“SHOW Syntax”.

A.2.16. Can't initialize character set

You might see an error like this if you have character set problems:

MySQL Connection Failed: Can't initialize character set charset_name

This error can have any of the following causes:

• The character set is a multi-byte character set and you have no support for the character set in
the client. In this case, you need to recompile the client by running configure with the -
-with-charset=charset_name or --with-extra-charsets=charset_name
option. See Section 2.8.2, “Typical configure Options”.

All standard MySQL binaries are compiled with -
-with-extra-character-sets=complex, which enables support for all multi-byte
character sets. See Section 5.8.1, “The Character Set Used for Data and Sorting”.

• The character set is a simple character set that is not compiled into mysqld, and the character set
definition files are not in the place where the client expects to find them.

In this case, you need to use one of the following methods to solve the problem:

• Recompile the client with support for the character set. See Section 2.8.2, “Typical config-
ure Options”.

• Specify to the client the directory where the character set definition files are located. For
many clients, you can do this with the --character-sets-dir option.

• Copy the character definition files to the path where the client expects them to be.

A.2.17. File Not Found
If you get ERROR '...' not found (errno: 23), Can't open file: ...
(errno: 24), or any other error with errno 23 or errno 24 from MySQL, it means that
you haven't allocated enough file descriptors for the MySQL server. You can use the perror utility
to get a description of what the error number means:

shell> perror 23
Error code 23: File table overflow
shell> perror 24

Problems and Common Errors

1160

Error code 24: Too many open files
shell> perror 11
Error code 11: Resource temporarily unavailable

The problem here is that mysqld is trying to keep open too many files simultaneously. You can
either tell mysqld not to open so many files at once or increase the number of file descriptors avail-
able to mysqld.

To tell mysqld to keep open fewer files at a time, you can make the table cache smaller by reducing
the value of the table_cache system variable (the default value is 64). Reducing the value of
max_connections also reduces the number of open files (the default value is 100).

To change the number of file descriptors available to mysqld, you can use the -
-open-files-limit option to mysqld_safe or (as of MySQL 3.23.30) set the
open_files_limit system variable. See Section 5.2.3, “Server System Variables”. The easiest
way to set these values is to add an option to your option file. See Section 4.3.2, “Using Option
Files”. If you have an old version of mysqld that doesn't support setting the open files limit, you can
edit the mysqld_safe script. There is a commented-out line ulimit -n 256 in the script. You can re-
move the '#' character to uncomment this line, and change the number 256 to set the number of file
descriptors to be made available to mysqld.

--open-files-limit and ulimit can increase the number of file descriptors, but only up to the
limit imposed by the operating system. There is also a ``hard'' limit that can be overridden only if
you start mysqld_safe or mysqld as root (just remember that you also need to start the server with
the --user option in this case so that it does not continue to run as root after it starts up). If you
need to increase the operating system limit on the number of file descriptors available to each pro-
cess, consult the documentation for your system.

Note: If you run the tcsh shell, ulimit does not work! tcsh also reports incorrect values when you
ask for the current limits. In this case, you should start mysqld_safe using sh.

A.3. Installation-Related Issues
A.3.1. Problems Linking to the MySQL Client Library

When you are linking an application program to use the MySQL client library, you might get un-
defined reference errors for symbols that start with mysql_, such as those shown here:

/tmp/ccFKsdPa.o: In function `main':
/tmp/ccFKsdPa.o(.text+0xb): undefined reference to `mysql_init'
/tmp/ccFKsdPa.o(.text+0x31): undefined reference to `mysql_real_connect'
/tmp/ccFKsdPa.o(.text+0x57): undefined reference to `mysql_real_connect'
/tmp/ccFKsdPa.o(.text+0x69): undefined reference to `mysql_error'
/tmp/ccFKsdPa.o(.text+0x9a): undefined reference to `mysql_close'

You should be able to solve this problem by adding -Ldir_path -lmysqlclient at the end
of your link command, where dir_path represents the pathname of the directory where the client
library is located. To determine the correct directory, try this command:

shell> mysql_config --libs

The output from mysql_config might indicate other libraries that should be specified on the link
command as well.

If you get undefined reference errors for the uncompress or compress function, add -
lz to the end of your link command and try again.

If you get undefined reference errors for a function that should exist on your system, such
as connect, check the manual page for the function in question to determine which libraries you
should add to the link command.

Problems and Common Errors

1161

You might get undefined reference errors such as the following for functions that don't exist
on your system:

mf_format.o(.text+0x201): undefined reference to `__lxstat'

This usually means that your MySQL client library was compiled on a system that is not 100% com-
patible with yours. In this case, you should download the latest MySQL source distribution and
compile MySQL yourself. See Section 2.8, “MySQL Installation Using a Source Distribution”.

You might get undefined reference errors at runtime when you try to execute a MySQL program. If
these errors specify symbols that start with mysql_ or indicate that the mysqlclient library
can't be found, it means that your system can't find the shared libmysqlclient.so library. The
fix for this is to tell your system to search for shared libraries where the library is located. Use
whichever of the following methods is appropriate for your system:

• Add the path to the directory where libmysqlclient.so is located to the
LD_LIBRARY_PATH environment variable.

• Add the path to the directory where libmysqlclient.so is located to the LD_LIBRARY
environment variable.

• Copy libmysqlclient.so to some directory that is searched by your system, such as
/lib, and update the shared library information by executing ldconfig.

Another way to solve this problem is by linking your program statically with the -static option,
or by removing the dynamic MySQL libraries before linking your code. Before trying the second
method, you should be sure that no other programs are using the dynamic libraries.

A.3.2. How to Run MySQL as a Normal User
On Windows, you can run the server as a Windows service using normal user accounts beginning
with MySQL 4.0.17 and 4.1.2. (Older MySQL versions required you to have administrator rights.
This was a bug introduced in MySQL 3.23.54.)

On Unix, the MySQL server mysqld can be started and run by any user. However, you should avoid
running the server as the Unix root user for security reasons. In order to change mysqld to run as a
normal unprivileged Unix user user_name, you must do the following:

1. Stop the server if it's running (use mysqladmin shutdown).

2. Change the database directories and files so that user_name has privileges to read and write
files in them (you might need to do this as the Unix root user):

shell> chown -R user_name /path/to/mysql/datadir

If you do not do this, the server is not able to access databases or tables when it runs as
user_name.

If directories or files within the MySQL data directory are symbolic links, you'll also need to
follow those links and change the directories and files they point to. chown -R might not fol-
low symbolic links for you.

3. Start the server as user user_name. If you are using MySQL 3.22 or later, another alternative
is to start mysqld as the Unix root user and use the --user=user_name option. mysqld
starts up, then switches to run as the Unix user user_name before accepting any connections.

4. To start the server as the given user automatically at system startup time, specify the username
by adding a user option to the [mysqld] group of the /etc/my.cnf option file or the

Problems and Common Errors

1162

my.cnf option file in the server's data directory. For example:

[mysqld]
user=user_name

If your Unix machine itself isn't secured, you should assign passwords to the MySQL root ac-
counts in the grant tables. Otherwise, any user with a login account on that machine can run the
mysql client with a --user=root option and perform any operation. (It is a good idea to assign
passwords to MySQL accounts in any case, but especially so when other login accounts exist on the
server host.) See Section 2.9, “Post-Installation Setup and Testing”.

A.3.3. Problems with File Permissions
If you have problems with file permissions, the UMASK environment variable might be set incor-
rectly when mysqld starts. For example, MySQL might issue the following error message when you
create a table:

ERROR: Can't find file: 'path/with/filename.frm' (Errcode: 13)

The default UMASK value is 0660. You can change this behavior by starting mysqld_safe as fol-
lows:

shell> UMASK=384 # = 600 in octal
shell> export UMASK
shell> mysqld_safe &

By default, MySQL creates database and RAID directories with an access permission value of
0700. You can modify this behavior by setting the UMASK_DIR variable. If you set its value, new
directories are created with the combined UMASK and UMASK_DIR values. For example, if you
want to give group access to all new directories, you can do this:

shell> UMASK_DIR=504 # = 770 in octal
shell> export UMASK_DIR
shell> mysqld_safe &

In MySQL 3.23.25 and above, MySQL assumes that the value for UMASK and UMASK_DIR is in
octal if it starts with a zero.

See Appendix F, Environment Variables.

A.4. Administration-Related Issues
A.4.1. How to Reset the Root Password

If you have never set a root password for MySQL, the server does not require a password at all for
connecting as root. However, it is recommended to set a password for each account. See Sec-
tion 5.4.1, “General Security Guidelines”.

If you set a root password previously, but have forgotten what it was, you can set a new password.
The following procedure is for Windows systems. The procedure for Unix systems is given later in
this section.

The procedure under Windows:

1. Log on to your system as Administrator.

Problems and Common Errors

1163

2. Stop the MySQL server if it is running. For a server that is running as a Windows service, go to
the Services manager:

Start Menu -> Control Panel -> Administrative Tools -> Services

Then find the MySQL service in the list, and stop it.

If your server is not running as a service, you may need to use the Task Manager to force it to
stop.

3. Open a console window to get to the DOS command prompt:

Start Menu -> Run -> cmd

4. We are assuming that you installed MySQL to C:\mysql. If you installed MySQL to another
location, adjust the following commands accordingly.

At the DOS command prompt, execute this command:

C:\> C:\mysql\bin\mysqld-nt --skip-grant-tables

This starts the server in a special mode that does not check the grant tables to control access.

5. Keeping the first console window open, open a second console window and execute the follow-
ing commands (type each on a single line):

C:\> C:\mysql\bin\mysqladmin -u root
flush-privileges password "newpwd"

C:\> C:\mysql\bin\mysqladmin -u root -p shutdown

Replace ``newpwd'' with the actual root password that you want to use. The second com-
mand prompts you to enter the new password for access. Enter the password that you assigned
in the first command.

6. Stop the MySQL server, then restart it in normal mode again. If you run the server as a service,
start it from the Windows Services window. If you start the server manually, use whatever
command you normally use.

7. You should be able to connect using the new password.

In a Unix environment, the procedure for resetting the root password is as follows:

1. Log on to your system as either the Unix root user or as the same user that the mysqld server
runs as.

2. Locate the .pid file that contains the server's process ID. The exact location and name of this
file depend on your distribution, hostname, and configuration. Common locations are /
var/lib/mysql/, /var/run/mysqld/, and /usr/local/mysql/data/. Gener-
ally, the filename has the extension of .pid and begins with either mysqld or your system's
hostname.

You can stop the MySQL server by sending a normal kill (not kill -9) to the mysqld
process, using the pathname of the .pid file in the following command:

shell> kill `cat /mysql-data-directory/host_name.pid`

Note the use of backticks rather than forward quotes with the cat command; these cause the
output of cat to be substituted into the kill command.

3. Restart the MySQL server with the special --skip-grant-tables option:

shell> mysqld_safe --skip-grant-tables &

Problems and Common Errors

1164

4. Set a new password for the root@localhost MySQL account:

shell> mysqladmin -u root flush-privileges password "newpwd"

Replace ``newpwd'' with the actual root password that you want to use.

5. You should be able to connect using the new password.

Alternatively, on any platform, you can set the new password using the mysql client:

1. Stop mysqld and restart it with the --skip-grant-tables option as described earlier.

2. Connect to the mysqld server with this command:

shell> mysql -u root

3. Issue the following statements in the mysql client:

mysql> UPDATE mysql.user SET Password=PASSWORD('newpwd')
-> WHERE User='root';

mysql> FLUSH PRIVILEGES;

Replace ``newpwd'' with the actual root password that you want to use.

4. You should be able to connect using the new password.

A.4.2. What to Do If MySQL Keeps Crashing
Each MySQL version is tested on many platforms before it is released. This doesn't mean that there
are no bugs in MySQL, but if there are bugs, they should be very few and can be hard to find. If you
have a problem, it always helps if you try to find out exactly what crashes your system, because you
have a much better chance of getting the problem fixed quickly.

First, you should try to find out whether the problem is that the mysqld server dies or whether your
problem has to do with your client. You can check how long your mysqld server has been up by ex-
ecuting mysqladmin version. If mysqld has died and restarted, you may find the reason by looking
in the server's error log. See Section 5.9.1, “The Error Log”.

On some systems, you can find in the error log a stack trace of where mysqld died that you can re-
solve with the resolve_stack_dump program. See Section E.1.4, “Using a Stack Trace”. Note
that the variable values written in the error log may not always be 100% correct.

Many server crashes are caused by corrupted data files or index files. MySQL updates the files on
disk with the write() system call after every SQL statement and before the client is notified about
the result. (This is not true if you are running with --delay-key-write, in which case data files
are written but not index files.) This means that data file contents are safe even if mysqld crashes,
because the operating system ensures that the unflushed data is written to disk. You can force
MySQL to flush everything to disk after every SQL statement by starting mysqld with the -
-flush option.

The preceding means that normally you should not get corrupted tables unless one of the following
happens:

• The MySQL server or the server host was killed in the middle of an update.

Problems and Common Errors

1165

• You have found a bug in mysqld that caused it to die in the middle of an update.

• Some external program is manipulating data files or index files at the same time as mysqld
without locking the table properly.

• You are running many mysqld servers using the same data directory on a system that doesn't
support good filesystem locks (normally handled by the lockd lock manager), or you are run-
ning multiple servers with the --skip-external-locking option.

• You have a crashed data file or index file that contains very corrupt data that confused mysqld.

• You have found a bug in the data storage code. This isn't likely, but it's at least possible. In this
case, you can try to change the table type to another storage engine by using ALTER TABLE on
a repaired copy of the table.

Because it is very difficult to know why something is crashing, first try to check whether things that
work for others crash for you. Please try the following things:

• Stop the mysqld server with mysqladmin shutdown, run myisamchk --silent --force */*.MYI
from the data directory to check all MyISAM tables, and restart mysqld. This ensures that you
are running from a clean state. See Chapter 5, Database Administration.

• Start mysqld with the --log option and try to determine from the information written to the
log whether some specific query kills the server. About 95% of all bugs are related to a particu-
lar query. Normally, this is one of the last queries in the log file just before the server restarts.
See Section 5.9.2, “The General Query Log”. If you can repeatedly kill MySQL with a specific
query, even when you have checked all tables just before issuing it, then you have been able to
locate the bug and should submit a bug report for it. See Section 1.4.1.3, “How to Report Bugs
or Problems”.

• Try to make a test case that we can use to repeat the problem. See Section E.1.6, “Making a Test
Case If You Experience Table Corruption”.

• Try running the tests in the mysql-test directory and the MySQL benchmarks. See Sec-
tion 25.1.2, “MySQL Test Suite”. They should test MySQL rather well. You can also add code
to the benchmarks that simulates your application. The benchmarks can be found in the sql-
bench directory in a source distribution or, for a binary distribution, in the sql-bench direct-
ory under your MySQL installation directory.

• Try the fork_big.pl script. (It is located in the tests directory of source distributions.)

• If you configure MySQL for debugging, it is much easier to gather information about possible
errors if something goes wrong. Configuring MySQL for debugging causes a safe memory alloc-
ator to be included that can find some errors. It also provides a lot of output about what is hap-
pening. Reconfigure MySQL with the --with-debug or --with-debug=full option to
configure and then recompile. See Section E.1, “Debugging a MySQL Server”.

• Make sure that you have applied the latest patches for your operating system.

• Use the --skip-external-locking option to mysqld. On some systems, the lockd lock
manager does not work properly; the --skip-external-locking option tells mysqld not
to use external locking. (This means that you cannot run two mysqld servers on the same data
directory and that you must be careful if you use myisamchk. Nevertheless, it may be instruct-
ive to try the option as a test.)

• Have you tried mysqladmin -u root processlist when mysqld appears to be running but not re-
sponding? Sometimes mysqld is not comatose even though you might think so. The problem
may be that all connections are in use, or there may be some internal lock problem. mysqladmin
-u root processlist usually is able to make a connection even in these cases, and can provide
useful information about the current number of connections and their status.

Problems and Common Errors

1166

• Run the command mysqladmin -i 5 status or mysqladmin -i 5 -r status in a separate window
to produce statistics while you run your other queries.

• Try the following:

1. Start mysqld from gdb (or another debugger). See Section E.1.3, “Debugging mysqld un-
der gdb”.

2. Run your test scripts.

3. Print the backtrace and the local variables at the three lowest levels. In gdb, you can do this
with the following commands when mysqld has crashed inside gdb:

backtrace
info local
up
info local
up
info local

With gdb, you can also examine which threads exist with info threads and switch to a
specific thread with thread #, where # is the thread ID.

• Try to simulate your application with a Perl script to force MySQL to crash or misbehave.

• Send a normal bug report. See Section 1.4.1.3, “How to Report Bugs or Problems”. Be even
more detailed than usual. Because MySQL works for many people, it may be that the crash res-
ults from something that exists only on your computer (for example, an error that is related to
your particular system libraries).

• If you have a problem with tables containing dynamic-length rows and you are using only
VARCHAR columns (not BLOB or TEXT columns), you can try to change all VARCHAR to CHAR
with ALTER TABLE. This forces MySQL to use fixed-size rows. Fixed-size rows take a little
extra space, but are much more tolerant to corruption.

The current dynamic row code has been in use at MySQL AB for several years with very few
problems, but dynamic-length rows are by nature more prone to errors, so it may be a good idea
to try this strategy to see whether it helps.

• Do not rule out your server hardware when diagnosing problems. Defective hardware can be the
cause of data corruption. Particular attention should be paid to both RAMS and hard-drives
when troubleshooting hardware.

A.4.3. How MySQL Handles a Full Disk
This section describes how MySQL responds to disk-full errors (such as ``no space left on device''),
and, as of MySQL 4.0.22, to quota-exceeded errors (such as ``write failed'' or ``user block limit
reached").

This section is relevant for writes to MyISAM tables. As of MySQL 4.1.9, it also applies for writes
to binary log files and binary log index file, except that references to ``row'' and ``record'' should be
understood to mean ``event.''

When a disk-full condition occurs, MySQL does the following:

• It checks once every minute to see whether there is enough space to write the current row. If
there is enough space, it continues as if nothing had happened.

• Every 10 minutes it writes an entry to the log file, warning about the disk-full condition.

Problems and Common Errors

1167

To alleviate the problem, you can take the following actions:

• To continue, you only have to free enough disk space to insert all records.

• To abort the thread, you must use mysqladmin kill. The thread is aborted the next time it checks
the disk (in one minute).

• Other threads might be waiting for the table that caused the disk-full condition. If you have sev-
eral ``locked'' threads, killing the one thread that is waiting on the disk-full condition allows the
other threads to continue.

Exceptions to the preceding behavior are when you use REPAIR TABLE or OPTIMIZE TABLE
or when the indexes are created in a batch after LOAD DATA INFILE or after an ALTER TABLE
statement. All of these statements may create large temporary files that, if left to themselves, would
cause big problems for the rest of the system. If the disk becomes full while MySQL is doing any of
these operations, it removes the big temporary files and mark the table as crashed. The exception is
that for ALTER TABLE, the old table is left unchanged.

A.4.4. Where MySQL Stores Temporary Files
MySQL uses the value of the TMPDIR environment variable as the pathname of the directory in
which to store temporary files. If you don't have TMPDIR set, MySQL uses the system default,
which is normally /tmp, /var/tmp, or /usr/tmp. If the filesystem containing your temporary
file directory is too small, you can use the --tmpdir option to mysqld to specify a directory in a
filesystem where you have enough space.

Starting from MySQL 4.1, the --tmpdir option can be set to a list of several paths that are used in
round-robin fashion. Paths should be separated by colon characters (':') on Unix and semicolon
characters (';') on Windows, NetWare, and OS/2. Note: To spread the load effectively, these paths
should be located on different physical disks, not different partitions of the same disk.

If the MySQL server is acting as a replication slave, you should not set --tmpdir to point to a dir-
ectory on a memory-based filesystem or to a directory that is cleared when the server host restarts. A
replication slave needs some of its temporary files to survive a machine restart so that it can replic-
ate temporary tables or LOAD DATA INFILE operations. If files in the temporary file directory
are lost when the server restarts, replication fails.

MySQL creates all temporary files as hidden files. This ensures that the temporary files are removed
if mysqld is terminated. The disadvantage of using hidden files is that you do not see a big tempor-
ary file that fills up the filesystem in which the temporary file directory is located.

When sorting (ORDER BY or GROUP BY), MySQL normally uses one or two temporary files. The
maximum disk space required is determined by the following expression:

(length of what is sorted + sizeof(row pointer))
* number of matched rows
* 2

The row pointer size is usually four bytes, but may grow in the future for really big tables.

For some SELECT queries, MySQL also creates temporary SQL tables. These are not hidden and
have names of the form SQL_*.

ALTER TABLE creates a temporary table in the same directory as the original table.

A.4.5. How to Protect or Change the MySQL Socket
File /tmp/mysql.sock

The default location for the Unix socket file that the server uses for communication with local cli-

Problems and Common Errors

1168

ents is /tmp/mysql.sock. This might cause problems, because on some versions of Unix, any-
one can delete files in the /tmp directory.

On most versions of Unix, you can protect your /tmp directory so that files can be deleted only by
their owners or the superuser (root). To do this, set the sticky bit on the /tmp directory by log-
ging in as root and using the following command:

shell> chmod +t /tmp

You can check whether the sticky bit is set by executing ls -ld /tmp. If the last permission
character is t, the bit is set.

Another approach is to change the place where the server creates the Unix socket file. If you do this,
you should also let client programs know the new location of the file. You can specify the file loca-
tion in several ways:

• Specify the path in a global or local option file. For example, put the following lines in /
etc/my.cnf:

[mysqld]
socket=/path/to/socket
[client]
socket=/path/to/socket

See Section 4.3.2, “Using Option Files”.

• Specify a --socket option on the command line to mysqld_safe and when you run client pro-
grams.

• Set the MYSQL_UNIX_PORT environment variable to the path of the Unix socket file.

• Recompile MySQL from source to use a different default Unix socket file location. Define the
path to the file with the --with-unix-socket-path option when you run configure. See
Section 2.8.2, “Typical configure Options”.

You can test whether the new socket location works by attempting to connect to the server with this
command:

shell> mysqladmin --socket=/path/to/socket version

A.4.6. Time Zone Problems
If you have a problem with SELECT NOW() returning values in GMT and not your local time, you
have to tell the server your current time zone. The same applies if UNIX_TIMESTAMP() returns
the wrong value. This should be done for the environment in which the server runs; for example, in
mysqld_safe or mysql.server. See Appendix F, Environment Variables.

You can set the time zone for the server with the --timezone=timezone_name option to
mysqld_safe. You can also set it by setting the TZ environment variable before you start mysqld.

The allowable values for --timezone or TZ are system-dependent. Consult your operating sys-
tem documentation to see what values are acceptable.

A.5. Query-Related Issues
A.5.1. Case Sensitivity in Searches

Problems and Common Errors

1169

By default, MySQL searches are not case sensitive (although there are some character sets that are
never case insensitive, such as czech). This means that if you search with col_name LIKE
'a%', you get all column values that start with A or a. If you want to make this search case sensit-
ive, make sure that one of the operands is a binary string. You can do this with the BINARY operat-
or. Write the condition as either BINARY col_name LIKE 'a%' or col_name LIKE BIN-
ARY 'a%'.

If you want a column always to be treated in case-sensitive fashion, declare it as BINARY. See Sec-
tion 13.2.6, “CREATE TABLE Syntax”.

Simple comparison operations (>=, >, =, <, <=, sorting, and grouping) are based on each
character's ``sort value.'' Characters with the same sort value (such as 'E', 'e', and 'é') are treated as
the same character.

If you are using Chinese data in the so-called big5 encoding, you want to make all character
columns BINARY. This works because the sorting order of big5 encoding characters is based on
the order of ASCII codes. As of MySQL 4.1, you can explicitly declare that a column should use the
big5 character set:

CREATE TABLE t (name CHAR(40) CHARACTER SET big5);

A.5.2. Problems Using DATE Columns
The format of a DATE value is 'YYYY-MM-DD'. According to standard SQL, no other format is al-
lowed. You should use this format in UPDATE expressions and in the WHERE clause of SELECT
statements. For example:

mysql> SELECT * FROM tbl_name WHERE date >= '2003-05-05';

As a convenience, MySQL automatically converts a date to a number if the date is used in a numeric
context (and vice versa). It is also smart enough to allow a ``relaxed'' string form when updating and
in a WHERE clause that compares a date to a TIMESTAMP, DATE, or DATETIME column.
(``Relaxed form'' means that any punctuation character may be used as the separator between parts.
For example, '2004-08-15' and '2004#08#15' are equivalent.) MySQL can also convert a
string containing no separators (such as '20040815'), provided it makes sense as a date.

The special date '0000-00-00' can be stored and retrieved as '0000-00-00'. When using a
'0000-00-00' date through MyODBC, it is automatically converted to NULL in MyODBC
2.50.12 and above, because ODBC can't handle this kind of date.

Because MySQL performs the conversions described above, the following statements work:

mysql> INSERT INTO tbl_name (idate) VALUES (19970505);
mysql> INSERT INTO tbl_name (idate) VALUES ('19970505');
mysql> INSERT INTO tbl_name (idate) VALUES ('97-05-05');
mysql> INSERT INTO tbl_name (idate) VALUES ('1997.05.05');
mysql> INSERT INTO tbl_name (idate) VALUES ('1997 05 05');
mysql> INSERT INTO tbl_name (idate) VALUES ('0000-00-00');
mysql> SELECT idate FROM tbl_name WHERE idate >= '1997-05-05';
mysql> SELECT idate FROM tbl_name WHERE idate >= 19970505;
mysql> SELECT MOD(idate,100) FROM tbl_name WHERE idate >= 19970505;
mysql> SELECT idate FROM tbl_name WHERE idate >= '19970505';

However, the following does not work:

mysql> SELECT idate FROM tbl_name WHERE STRCMP(idate,'20030505')=0;

STRCMP() is a string function, so it converts idate to a string in 'YYYY-MM-DD' format and
performs a string comparison. It does not convert '20030505' to the date '2003-05-05' and
perform a date comparison.

Problems and Common Errors

1170

If you are using the ALLOW_INVALID_DATES SQL mode, MySQL allows you to store dates that
are given only limited checking: MySQL ensures only that the day is in the range from 1 to 31 and
the month is in the range from 1 to 12.

This makes MySQL very convenient for Web applications where you obtain year, month, and day in
three different fields and you want to store exactly what the user inserted (without date validation).

If you are not using the NO_ZERO_IN_DATE SQL mode, the day or month part can be zero. This is
convenient if you want to store a birthdate in a DATE column and you know only part of the date.

If you are not using the NO_ZERO_DATE SQL mode, MySQL also allows you to store
'0000-00-00' as a ``dummy date.'' This is in some cases more convenient than using NULL val-
ues.

If the date cannot be converted to any reasonable value, a 0 is stored in the DATE column, which is
retrieved as '0000-00-00'. This is both a speed and a convenience issue. We believe that the
database server's responsibility is to retrieve the same date you stored (even if the data was not lo-
gically correct in all cases). We think it is up to the application and not the server to check the dates.

If you want MySQL to check all dates and accept only legal dates (unless overriden by IGNORE),
you should set sql_mode to "NO_ZERO_IN_DATE,NO_ZERO_DATE".

Date handling in MySQL 5.0.1 and earlier works like MySQL 5.0.2 with the AL-
LOW_INVALID_DATES SQL mode enabled.

A.5.3. Problems with NULL Values
The concept of the NULL value is a common source of confusion for newcomers to SQL, who often
think that NULL is the same thing as an empty string ''. This is not the case. For example, the fol-
lowing statements are completely different:

mysql> INSERT INTO my_table (phone) VALUES (NULL);
mysql> INSERT INTO my_table (phone) VALUES ('');

Both statements insert a value into the phone column, but the first inserts a NULL value and the
second inserts an empty string. The meaning of the first can be regarded as ``phone number is not
known'' and the meaning of the second can be regarded as ``the person is known to have no phone,
and thus no phone number.''

To help with NULL handling, you can use the IS NULL and IS NOT NULL operators and the
IFNULL() function.

In SQL, the NULL value is never true in comparison to any other value, even NULL. An expression
that contains NULL always produces a NULL value unless otherwise indicated in the documentation
for the operators and functions involved in the expression. All columns in the following example re-
turn NULL:

mysql> SELECT NULL, 1+NULL, CONCAT('Invisible',NULL);

If you want to search for column values that are NULL, you cannot use an expr = NULL test. The
following statement returns no rows, because expr = NULL is never true for any expression:

mysql> SELECT * FROM my_table WHERE phone = NULL;

To look for NULL values, you must use the IS NULL test. The following statements show how to
find the NULL phone number and the empty phone number:

mysql> SELECT * FROM my_table WHERE phone IS NULL;
mysql> SELECT * FROM my_table WHERE phone = '';

Problems and Common Errors

1171

You can add an index on a column that can have NULL values if you are using MySQL 3.23.2 or
newer and are using the MyISAM, InnoDB, or BDB storage engine. As of MySQL 4.0.2, the
MEMORY storage engine also supports NULL values in indexes. Otherwise, you must declare an in-
dexed column NOT NULL and you cannot insert NULL into the column.

When reading data with LOAD DATA INFILE, empty or missing columns are updated with ''. If
you want a NULL value in a column, you should use \N in the data file. The literal word ``NULL''
may also be used under some circumstances. See Section 13.1.5, “LOAD DATA INFILE Syntax”.

When using DISTINCT, GROUP BY, or ORDER BY, all NULL values are regarded as equal.

When using ORDER BY, NULL values are presented first, or last if you specify DESC to sort in des-
cending order. Exception: In MySQL 4.0.2 through 4.0.10, NULL values sort first regardless of sort
order.

Aggregate (summary) functions such as COUNT(), MIN(), and SUM() ignore NULL values. The
exception to this is COUNT(*), which counts rows and not individual column values. For example,
the following statement produces two counts. The first is a count of the number of rows in the table,
and the second is a count of the number of non-NULL values in the age column:

mysql> SELECT COUNT(*), COUNT(age) FROM person;

For some column types, MySQL handles NULL values specially. If you insert NULL into a
TIMESTAMP column, the current date and time is inserted. If you insert NULL into an integer
column that has the AUTO_INCREMENT attribute, the next number in the sequence is inserted.

A.5.4. Problems with Column Aliases
You can use an alias to refer to a column in GROUP BY, ORDER BY, or HAVING clauses. Aliases
can also be used to give columns better names:

SELECT SQRT(a*b) AS root FROM tbl_name GROUP BY root HAVING root > 0;
SELECT id, COUNT(*) AS cnt FROM tbl_name GROUP BY id HAVING cnt > 0;
SELECT id AS 'Customer identity' FROM tbl_name;

Standard SQL doesn't allow you to refer to a column alias in a WHERE clause. This is because when
the WHERE code is executed, the column value may not yet be determined. For example, the follow-
ing query is illegal:

SELECT id, COUNT(*) AS cnt FROM tbl_name WHERE cnt > 0 GROUP BY id;

The WHERE statement is executed to determine which rows should be included in the GROUP BY
part, whereas HAVING is used to decide which rows from the result set should be used.

A.5.5. Rollback Failure for Non-Transactional Tables
If you receive the following message when trying to perform a ROLLBACK, it means that one or
more of the tables you used in the transaction do not support transactions:

Warning: Some non-transactional changed tables couldn't be rolled back

These non-transactional tables are not affected by the ROLLBACK statement.

If you were not deliberately mixing transactional and non-transactional tables within the transaction,
the most likely cause for this message is that a table you thought was transactional actually is not.
This can happen if you try to create a table using a transactional storage engine that is not supported
by your mysqld server (or that was disabled with a startup option). If mysqld doesn't support a stor-
age engine, it instead creates the table as a MyISAM table, which is non-transactional.

Problems and Common Errors

1172

You can check the table type for a table by using either of these statements:

SHOW TABLE STATUS LIKE 'tbl_name';
SHOW CREATE TABLE tbl_name;

See Section 13.5.4.17, “SHOW TABLE STATUS Syntax” and Section 13.5.4.5, “SHOW CREATE
TABLE Syntax”.

You can check which storage engines your mysqld server supports by using this statement:

SHOW ENGINES;

Before MySQL 4.1.2, SHOW ENGINES is unavailable. Use the following statement instead and
check the value of the variable that is associated with the storage engine in which you are interested:

SHOW VARIABLES LIKE 'have_%';

For example, to determine whether the InnoDB storage engine is available, check the value of the
have_innodb variable.

See Section 13.5.4.8, “SHOW ENGINES Syntax” and Section 13.5.4.19, “SHOW VARIABLES Syn-
tax”.

A.5.6. Deleting Rows from Related Tables
MySQL does not support subqueries prior to Version 4.1, or the use of more than one table in the
DELETE statement prior to Version 4.0. If your version of MySQL does not support subqueries or
multiple-table DELETE statements, you can use the following approach to delete rows from two re-
lated tables:

1. SELECT the rows based on some WHERE condition in the main table.

2. DELETE the rows in the main table based on the same condition.

3. DELETE FROM related_table WHERE related_column IN
(selected_rows).

If the total length of the DELETE statement for related_table is more than 1MB (the default
value of the max_allowed_packet system variable), you should split it into smaller parts and
execute multiple DELETE statements. You probably get the fastest DELETE by specifying only 100
to 1,000 related_column values per statement if the related_column is indexed. If the
related_column isn't indexed, the speed is independent of the number of arguments in the IN
clause.

A.5.7. Solving Problems with No Matching Rows
If you have a complicated query that uses many tables but that doesn't return any rows, you should
use the following procedure to find out what is wrong:

1. Test the query with EXPLAIN to check whether you can find something that is obviously
wrong. See Section 7.2.1, “EXPLAIN Syntax (Get Information About a SELECT)”.

2. Select only those columns that are used in the WHERE clause.

3. Remove one table at a time from the query until it returns some rows. If the tables are large, it's
a good idea to use LIMIT 10 with the query.

Problems and Common Errors

1173

4. Issue a SELECT for the column that should have matched a row against the table that was last
removed from the query.

5. If you are comparing FLOAT or DOUBLE columns with numbers that have decimals, you can't
use equality (=) comparisons. This problem is common in most computer languages because
not all floating-point values can be stored with exact precision. In some cases, changing the
FLOAT to a DOUBLE fixes this. See Section A.5.8, “Problems with Floating-Point Comparis-
ons”.

6. If you still can't figure out what's wrong, create a minimal test that can be run with mysql
test < query.sql that shows your problems. You can create a test file by dumping the
tables with mysqldump --quick db_name tbl_name_1 ... tbl_name_n > query.sql.
Open the file in an editor, remove some insert lines (if there are more than needed to demon-
strate the problem), and add your SELECT statement at the end of the file.

Verify that the test file demonstrates the problem by executing these commands:

shell> mysqladmin create test2
shell> mysql test2 < query.sql

Post the test file using mysqlbug to the general MySQL mailing list. See Section 1.4.1.1, “The
MySQL Mailing Lists”.

A.5.8. Problems with Floating-Point Comparisons
Floating-point numbers sometimes cause confusion because they are not stored as exact values in-
side computer architecture. What you can see on the screen usually is not the exact value of the
number. The column types FLOAT, DOUBLE, and DECIMAL are such. DECIMAL columns store
values with exact precision because they are represented as strings, but calculations on DECIMAL
values may be done using floating-point operations.

The following example demonstrate the problem. It shows that even for the DECIMAL column type,
calculations that are done using floating-point operations are subject to floating-point error.

mysql> CREATE TABLE t1 (i INT, d1 DECIMAL(9,2), d2 DECIMAL(9,2));
mysql> INSERT INTO t1 VALUES (1, 101.40, 21.40), (1, -80.00, 0.00),

-> (2, 0.00, 0.00), (2, -13.20, 0.00), (2, 59.60, 46.40),
-> (2, 30.40, 30.40), (3, 37.00, 7.40), (3, -29.60, 0.00),
-> (4, 60.00, 15.40), (4, -10.60, 0.00), (4, -34.00, 0.00),
-> (5, 33.00, 0.00), (5, -25.80, 0.00), (5, 0.00, 7.20),
-> (6, 0.00, 0.00), (6, -51.40, 0.00);

mysql> SELECT i, SUM(d1) AS a, SUM(d2) AS b
-> FROM t1 GROUP BY i HAVING a <> b;

+------+--------+-------+
| i | a | b |
+------+--------+-------+
1	21.40	21.40
2	76.80	76.80
3	7.40	7.40
4	15.40	15.40
5	7.20	7.20
6	-51.40	0.00
+------+--------+-------+

The result is correct. Although the first five records look like they shouldn't pass the comparison test
(the values of a and b do not appear to be different), they may do so because the difference between
the numbers shows up around the tenth decimal or so, depending on computer architecture.

The problem cannot be solved by using ROUND() or similar functions, because the result is still a
floating-point number:

mysql> SELECT i, ROUND(SUM(d1), 2) AS a, ROUND(SUM(d2), 2) AS b

Problems and Common Errors

1174

-> FROM t1 GROUP BY i HAVING a <> b;
+------+--------+-------+
| i | a | b |
+------+--------+-------+
1	21.40	21.40
2	76.80	76.80
3	7.40	7.40
4	15.40	15.40
5	7.20	7.20
6	-51.40	0.00
+------+--------+-------+

This is what the numbers in column a look like when displayed with more decimal places:

mysql> SELECT i, ROUND(SUM(d1), 2)*1.0000000000000000 AS a,
-> ROUND(SUM(d2), 2) AS b FROM t1 GROUP BY i HAVING a <> b;

+------+----------------------+-------+
| i | a | b |
+------+----------------------+-------+
1	21.3999999999999986	21.40
2	76.7999999999999972	76.80
3	7.4000000000000004	7.40
4	15.4000000000000004	15.40
5	7.2000000000000002	7.20
6	-51.3999999999999986	0.00
+------+----------------------+-------+

Depending on your computer architecture, you may or may not see similar results. Different CPUs
may evaluate floating-point numbers differently. For example, on some machines you may get the
``correct'' results by multiplying both arguments by 1, as the following example shows.

Warning: Never use this method in your applications. It is not an example of a trustworthy method!

mysql> SELECT i, ROUND(SUM(d1), 2)*1 AS a, ROUND(SUM(d2), 2)*1 AS b
-> FROM t1 GROUP BY i HAVING a <> b;

+------+--------+------+
| i | a | b |
+------+--------+------+
| 6 | -51.40 | 0.00 |
+------+--------+------+

The reason that the preceding example seems to work is that on the particular machine where the
test was done, CPU floating-point arithmetic happens to round the numbers to the same value.
However, there is no rule that any CPU should do so, so this method cannot be trusted.

The correct way to do floating-point number comparison is to first decide on an acceptable tolerance
for differences between the numbers and then do the comparison against the tolerance value. For ex-
ample, if we agree that floating-point numbers should be regarded the same if they are same within a
precision of one in ten thousand (0.0001), the comparison should be written to find differences lar-
ger than the tolerance value:

mysql> SELECT i, SUM(d1) AS a, SUM(d2) AS b FROM t1
-> GROUP BY i HAVING ABS(a - b) > 0.0001;

+------+--------+------+
| i | a | b |
+------+--------+------+
| 6 | -51.40 | 0.00 |
+------+--------+------+
1 row in set (0.00 sec)

Conversely, to get rows where the numbers are the same, the test should find differences within the
tolerance value:

Problems and Common Errors

1175

mysql> SELECT i, SUM(d1) AS a, SUM(d2) AS b FROM t1
-> GROUP BY i HAVING ABS(a - b) <= 0.0001;

+------+-------+-------+
| i | a | b |
+------+-------+-------+
1	21.40	21.40
2	76.80	76.80
3	7.40	7.40
4	15.40	15.40
5	7.20	7.20
+------+-------+-------+

A.6. Optimizer-Related Issues
MySQL uses a cost-based optimizer to determine the best way to resolve a query. In many cases,
MySQL can calculate the best possible query plan, but sometimes MySQL doesn't have enough in-
formation about the data at hand and has to make ``educated'' guesses about the data.

For the cases when MySQL does not do the "right" thing, tools that you have available to help
MySQL are:

• Use the EXPLAIN statement to get information about how MySQL processes a query. To use it,
just add the keyword EXPLAIN to the front of your SELECT statement:

mysql> EXPLAIN SELECT * FROM t1, t2 WHERE t1.i = t2.i;

EXPLAIN is discussed in more detail in Section 7.2.1, “EXPLAIN Syntax (Get Information
About a SELECT)”.

• Use ANALYZE TABLE tbl_name to update the key distributions for the scanned table. See
Section 13.5.2.1, “ANALYZE TABLE Syntax”.

•
Use FORCE INDEX for the scanned table to tell MySQL that table scans are very expensive
compared to using the given index. See Section 13.1.7, “SELECT Syntax”.

SELECT * FROM t1, t2 FORCE INDEX (index_for_column)
WHERE t1.col_name=t2.col_name;

USE INDEX and IGNORE INDEX may also be useful.

• Global and table-level STRAIGHT_JOIN. See Section 13.1.7, “SELECT Syntax”.

• You can tune global or thread-specific system variables. For example, Start mysqld with the -
-max-seeks-for-key=1000 option or use SET max_seeks_for_key=1000 to tell
the optimizer to assume that no key scan causes more than 1,000 key seeks. See Section 5.2.3,
“Server System Variables”.

A.7. Table Definition-Related Issues
A.7.1. Problems with ALTER TABLE

ALTER TABLE changes a table to the current character set. If you get a duplicate-key error during
ALTER TABLE, the cause is either that the new character sets maps two keys to the same value or
that the table is corrupted. In the latter case, you should run REPAIR TABLE on the table.

If ALTER TABLE dies with the following error, the problem may be that MySQL crashed during an

Problems and Common Errors

1176

earlier ALTER TABLE operation and there is an old table named A-xxx or B-xxx lying around:

Error on rename of './database/name.frm'
to './database/B-xxx.frm' (Errcode: 17)

In this case, go to the MySQL data directory and delete all files that have names starting with A- or
B-. (You may want to move them elsewhere instead of deleting them.)

ALTER TABLE works in the following way:

• Create a new table named A-xxx with the requested structural changes.

• Copy all rows from the original table to A-xxx.

• Rename the original table to B-xxx.

• Rename A-xxx to your original table name.

• Delete B-xxx.

If something goes wrong with the renaming operation, MySQL tries to undo the changes. If
something goes seriously wrong (although this shouldn't happen), MySQL may leave the old table
as B-xxx. A simple rename of the table files at the system level should get your data back.

If you use ALTER TABLE on a transactional table or if you are using Windows or OS/2, ALTER
TABLE unlocks the table if you had done a LOCK TABLE on it. This is because InnoDB and these
operating systems cannot drop a table that is in use.

A.7.2. How to Change the Order of Columns in a Table
First, consider whether you really need to change the column order in a table. The whole point of
SQL is to abstract the application from the data storage format. You should always specify the order
in which you wish to retrieve your data. The first of the following statements returns columns in the
order col_name1, col_name2, col_name3, whereas the second returns them in the order
col_name1, col_name3, col_name2:

mysql> SELECT col_name1, col_name2, col_name3 FROM tbl_name;
mysql> SELECT col_name1, col_name3, col_name2 FROM tbl_name;

If you decide to change the order of table columns anyway, you can do so as follows:

1. Create a new table with the columns in the new order.

2. Execute this statement:

mysql> INSERT INTO new_table
-> SELECT columns-in-new-order FROM old_table;

3. Drop or rename old_table.

4. Rename the new table to the original name:

mysql> ALTER TABLE new_table RENAME old_table;

SELECT * is quite suitable for testing queries. However, in an application, you should never rely
on using SELECT * and retrieving the columns based on their position. The order and position in
which columns are returned does not remain the same if you add, move, or delete columns. A simple

Problems and Common Errors

1177

change to your table structure could cause your application to fail.

A.7.3. TEMPORARY TABLE Problems
The following list indicates limitations on the use of TEMPORARY tables:

• A TEMPORARY table can only be of type HEAP, ISAM, MyISAM, MERGE, or InnoDB.

• You cannot refer to a TEMPORARY table more than once in the same query. For example, the
following does not work:

mysql> SELECT * FROM temp_table, temp_table AS t2;
ERROR 1137: Can't reopen table: 'temp_table'

• The SHOW TABLES statement does not list TEMPORARY tables.

• You cannot use RENAME to rename a TEMPORARY table. However, you can use ALTER TA-
BLE instead:

mysql> ALTER TABLE orig_name RENAME new_name;

Problems and Common Errors

1178

Appendix B. Credits
This appendix lists the developers, contributors, and supporters that have helped to make MySQL
what it is today.

B.1. Developers at MySQL AB
These are the developers that are or have been employed by MySQL AB to work on the MySQL
database software, roughly in the order they started to work with us. Following each developer is a
small list of the tasks that the developer is responsible for, or the accomplishments they have made.
All developers are involved in support.

• Michael (Monty) Widenius

• Lead developer and main author of the MySQL server (mysqld).

• New functions for the string library.

• Most of the mysys library.

• The ISAM and MyISAM libraries (B-tree index file handlers with index compression and dif-
ferent record formats).

• The HEAP library. A memory table system with our superior full dynamic hashing. In use
since 1981 and published around 1984.

• The replace program (take a look at it, it's COOL!).

• Connector/ODBC (MyODBC), the ODBC driver for Windows.

• Fixing bugs in MIT-pthreads to get it to work for MySQL Server. And also Unireg, a curses-
based application tool with many utilities.

• Porting of mSQL tools like msqlperl, DBD/DBI, and DB2mysql.

• Most of crash-me and the foundation for the MySQL benchmarks.

• David Axmark

• Initial main writer of the Reference Manual, including enhancements to texi2html.

• Automatic Web site updating from the manual.

• Initial Autoconf, Automake, and Libtool support.

• Licensing.

• Parts of all the text files. (Nowadays only the README is left. The rest ended up in the
manual.)

• Lots of testing of new features.

• Our in-house Free Software legal expert.

• Mailing list maintainer (who never has the time to do it right...).

• Our original portability code (now more than 10 years old). Nowadays only some parts of
mysys are left.

• Someone for Monty to call in the middle of the night when he just got that new feature to
work.

1179

• Chief "Open Sourcerer" (MySQL community relations).

• Jani Tolonen

• mysqlimport

• A lot of extensions to the command-line clients.

• PROCEDURE ANALYSE()

• Sinisa Milivojevic

• Compression (with zlib) in the client/server protocol.

• Perfect hashing for the lexical analyzer phase.

• Multi-row INSERT

• mysqldump -e option

• LOAD DATA LOCAL INFILE

• SQL_CALC_FOUND_ROWS SELECT option

• --max-user-connections=... option

• net_read and net_write_timeout

• GRANT/REVOKE and SHOW GRANTS FOR

• New client/server protocol for 4.0

• UNION in 4.0

• Multiple-table DELETE/UPDATE

• Derived tables in 4.1

• User resources management

• Initial developer of the MySQL++ C++ API and the MySQLGUI client.

• Tonu Samuel (past developer)

• VIO interface (the foundation for the encrypted client/server protocol).

• MySQL Filesystem (a way to use MySQL databases as files and directories).

• The CASE expression.

• The MD5() and COALESCE() functions.

• RAID support for MyISAM tables.

• Sasha Pachev

• Initial implementation of replication (up to version 4.0).

• SHOW CREATE TABLE.

• mysql-bench

• Matt Wagner

Credits

1180

• MySQL test suite.

• Webmaster (until 2002).

• Coordinator of development.

• Miguel Solorzano

• Win32 development and release builds.

• Windows NT server code.

• WinMySQLAdmin

• Timothy Smith (past developer)

• Dynamic character sets support.

• configure, RPMs and other parts of the build system.

• Initial developer of libmysqld, the embedded server.

• Sergei Golubchik

• Full-text search.

• Added keys to the MERGE library.

• Jeremy Cole

• Proofreading and editing this fine manual.

• ALTER TABLE ... ORDER BY

• UPDATE ... ORDER BY

• DELETE ... ORDER BY

• Indrek Siitan

• Designing/programming of our Web interface.

• Author of our newsletter management system.

• Jorge del Conde

• MySQLCC (MySQL Control Center)

• Win32 development

• Initial implementation of the Web site portals.

• Venu Anuganti

• MyODBC 3.51

• New client/server protocol for 4.1 (for prepared statements).

• Arjen Lentz

• Maintainer of the MySQL Reference Manual.

• Preparing the O'Reilly printed edition of the manual.

Credits

1181

• Alexander (Bar) Barkov, Alexey (Holyfoot) Botchkov, and Ramil Kalimullin

• Spatial data (GIS) and R-Trees implementation for 4.1

• Unicode and character sets for 4.1; documentation for same

• Oleksandr (Sanja) Byelkin

• Query cache in 4.0

• Implementation of subqueries (4.1).

• Aleksey (Walrus) Kishkin and Alexey (Ranger) Stroganov

• Benchmarks design and analysis.

• Maintenance of the MySQL test suite.

• Zak Greant

• Open Source advocate, MySQL community relations.

• Carsten Pedersen

• The MySQL Certification program.

• Lenz Grimmer

• Production (build and release) engineering.

• Peter Zaitsev

• SHA1(), AES_ENCRYPT() and AES_DECRYPT() functions.

• Debugging, cleaning up various features.

• Alexander (Salle) Keremidarski

• Support.

• Debugging.

• Per-Erik Martin

• Lead developer for stored procedures (5.0) and triggers.

• Jim Winstead

• Lead Web developer.

• Mark Matthews

• Connector/J driver (Java).

• Peter Gulutzan

• SQL standards compliance.

• Documentation of existing MySQL code/algorithms.

• Character set documentation.

• Guilhem Bichot

• Replication, from MySQL version 4.0.

Credits

1182

• Fixed handling of exponents for DECIMAL.

• Author of mysql_tableinfo.

• Antony T. Curtis

• Porting of the MySQL Database software to OS/2.

• Mikael Ronstrom

• Much of the initial work on NDB Cluster until 2000. Roughly half the code base at that time.
Transaction protocol, node recovery, system restart and restart code and parts of the API
functionality.

• Lead Architect, developer, debugger of NDB Cluster 1994-2004

• Lots of optimizations

• Jonas Oreland

• On-line Backup

• The automatic test environment of MySQL Cluster

• Portability Library for NDB Cluster

• Lots of other things

• Pekka Nouisiainen

• Ordered index implementation of MySQL Cluster

• BLOB support in MySQL Cluster

• Charset support in MySQL Cluster

• Martin Skold

• Unique index implementation of MySQL Cluster

• Integration of NDB Cluster into MySQL

• Magnus Svensson

• The test framework for MySQL Cluster

• Integration of NDB Cluster into MySQL

• Tomas Ulin

• Lots of work on configuration changes for simple installation and use of MySQL Cluster

B.2. Contributors to MySQL
While MySQL AB owns all copyrights in the MySQL server and the MySQL manual, we wish
to recognize those who have made contributions of one kind or another to the MySQL distribu-
tion. Contributors are listed here, in somewhat random order:

• Gianmassimo Vigazzola <qwerg@mbox.vol.it> or <qwerg@tin.it>

The initial port to Win32/NT.

Credits

1183

• Per Eric Olsson

For more or less constructive criticism and real testing of the dynamic record format.

• Irena Pancirov <irena@mail.yacc.it>

Win32 port with Borland compiler. mysqlshutdown.exe and mysqlwatch.exe

• David J. Hughes

For the effort to make a shareware SQL database. At TcX, the predecessor of MySQL AB, we
started with mSQL, but found that it couldn't satisfy our purposes so instead we wrote an SQL in-
terface to our application builder Unireg. mysqladmin and mysql client are programs that were
largely influenced by their mSQL counterparts. We have put a lot of effort into making the
MySQL syntax a superset of mSQL. Many of the API's ideas are borrowed from mSQL to make
it easy to port free mSQL programs to the MySQL API. The MySQL software doesn't contain
any code from mSQL. Two files in the distribution (client/insert_test.c and client/
select_test.c) are based on the corresponding (non-copyrighted) files in the mSQL distri-
bution, but are modified as examples showing the changes necessary to convert code from mSQL
to MySQL Server. (mSQL is copyrighted David J. Hughes.)

• Patrick Lynch

For helping us acquire http://www.mysql.com/.

• Fred Lindberg

For setting up qmail to handle the MySQL mailing list and for the incredible help we got in
managing the MySQL mailing lists.

• Igor Romanenko <igor@frog.kiev.ua>

mysqldump (previously msqldump, but ported and enhanced by Monty).

• Yuri Dario

For keeping up and extending the MySQL OS/2 port.

• Tim Bunce

Author of mysqlhotcopy.

• Zarko Mocnik <zarko.mocnik@dem.si>

Sorting for Slovenian language.

• "TAMITO" <tommy@valley.ne.jp>

The _MB character set macros and the ujis and sjis character sets.

• Joshua Chamas <joshua@chamas.com>

Base for concurrent insert, extended date syntax, debugging on NT, and answering on the
MySQL mailing list.

• Yves Carlier <Yves.Carlier@rug.ac.be>

mysqlaccess, a program to show the access rights for a user.

• Rhys Jones <rhys@wales.com> (And GWE Technologies Limited)

For one of the early JDBC drivers.

• Dr Xiaokun Kelvin ZHU <X.Zhu@brad.ac.uk>

Credits

1184

http://www.mysql.com/

Further development of one of the early JDBC drivers and other MySQL-related Java tools.

• James Cooper <pixel@organic.com>

For setting up a searchable mailing list archive at his site.

• Rick Mehalick <Rick_Mehalick@i-o.com>

For xmysql, a graphical X client for MySQL Server.

• Doug Sisk <sisk@wix.com>

For providing RPM packages of MySQL for Red Hat Linux.

• Diemand Alexander V. <axeld@vial.ethz.ch>

For providing RPM packages of MySQL for Red Hat Linux-Alpha.

• Antoni Pamies Olive <toni@readysoft.es>

For providing RPM versions of a lot of MySQL clients for Intel and SPARC.

• Jay Bloodworth <jay@pathways.sde.state.sc.us>

For providing RPM versions for MySQL 3.21.

• David Sacerdote <davids@secnet.com>

Ideas for secure checking of DNS hostnames.

• Wei-Jou Chen <jou@nematic.ieo.nctu.edu.tw>

Some support for Chinese(BIG5) characters.

• Wei He <hewei@mail.ied.ac.cn>

A lot of functionality for the Chinese(GBK) character set.

• Jan Pazdziora <adelton@fi.muni.cz>

Czech sorting order.

• Zeev Suraski <bourbon@netvision.net.il>

FROM_UNIXTIME() time formatting, ENCRYPT() functions, and bison advisor. Active mail-
ing list member.

• Luuk de Boer <luuk@wxs.nl>

Ported (and extended) the benchmark suite to DBI/DBD. Have been of great help with crash-
me and running benchmarks. Some new date functions. The mysql_setpermission script.

• Alexis Mikhailov <root@medinf.chuvashia.su>

User-defined functions (UDFs); CREATE FUNCTION and DROP FUNCTION.

• Andreas F. Bobak <bobak@relog.ch>

The AGGREGATE extension to UDF functions.

• Ross Wakelin <R.Wakelin@march.co.uk>

Help to set up InstallShield for MySQL-Win32.

Credits

1185

• Jethro Wright III <jetman@li.net>

The libmysql.dll library.

• James Pereria <jpereira@iafrica.com>

Mysqlmanager, a Win32 GUI tool for administering MySQL Servers.

• Curt Sampson <cjs@portal.ca>

Porting of MIT-pthreads to NetBSD/Alpha and NetBSD 1.3/i386.

• Martin Ramsch <m.ramsch@computer.org>

Examples in the MySQL Tutorial.

• Steve Harvey

For making mysqlaccess more secure.

• Konark IA-64 Centre of Persistent Systems Private Limited

http://www.pspl.co.in/konark/. Help with the Win64 port of the MySQL server.

• Albert Chin-A-Young.

Configure updates for Tru64, large file support and better TCP wrappers support.

• John Birrell

Emulation of pthread_mutex() for OS/2.

• Benjamin Pflugmann

Extended MERGE tables to handle INSERTS. Active member on the MySQL mailing lists.

• Jocelyn Fournier

Excellent spotting and reporting innumerable bugs (especially in the MySQL 4.1 subquery
code).

• Marc Liyanage

Maintaining the Mac OS X packages and providing invaluable feedback on how to create Mac
OS X PKGs.

• Robert Rutherford

Providing invaluable information and feedback about the QNX port.

• Previous developers of NDB Cluster

Lots of people were involved in various ways summer students, master thesis students, employ-
ees. In total more than 100 people so too many to mention here. Notable name is Ataullah
Dabaghi who up until 1999 contributed around a third of the code base. A special thanks also to
developers of the AXE system which provided much of the architecturial foundations for NDB
Cluster with blocks, signals and crash tracing functionality. Also credit should be given to those
who believed in the ideas enough to allocate of their budgets for its development from 1992 to
present time.

Other contributors, bugfinders, and testers: James H. Thompson, Maurizio Menghini, Wojciech
Tryc, Luca Berra, Zarko Mocnik, Wim Bonis, Elmar Haneke, <jehamby@lightside>,
<psmith@BayNetworks.com>, <duane@connect.com.au>, Ted Deppner

Credits

1186

http://www.pspl.co.in/konark/

<ted@psyber.com>, Mike Simons, Jaakko Hyvatti.

And lots of bug report/patches from the folks on the mailing list.

A big tribute goes to those that help us answer questions on the MySQL mailing lists:

• Daniel Koch <dkoch@amcity.com>

Irix setup.

• Luuk de Boer <luuk@wxs.nl>

Benchmark questions.

• Tim Sailer <tps@users.buoy.com>

DBD::mysql questions.

• Boyd Lynn Gerber <gerberb@zenez.com>

SCO-related questions.

• Richard Mehalick <RM186061@shellus.com>

xmysql-related questions and basic installation questions.

• Zeev Suraski <bourbon@netvision.net.il>

Apache module configuration questions (log & auth), PHP-related questions, SQL syntax-re-
lated questions and other general questions.

• Francesc Guasch <frankie@citel.upc.es>

General questions.

• Jonathan J Smith <jsmith@wtp.net>

Questions pertaining to OS-specifics with Linux, SQL syntax, and other things that might need
some work.

• David Sklar <sklar@student.net>

Using MySQL from PHP and Perl.

• Alistair MacDonald <A.MacDonald@uel.ac.uk>

Not yet specified, but is flexible and can handle Linux and maybe HP-UX. tries to get user to
use mysqlbug.

• John Lyon <jlyon@imag.net>

Questions about installing MySQL on Linux systems, using either .rpm files or compiling from
source.

• Lorvid Ltd. <lorvid@WOLFENET.com>

Simple billing/license/support/copyright issues.

• Patrick Sherrill <patrick@coconet.com>

ODBC and VisualC++ interface questions.

• Randy Harmon <rjharmon@uptimecomputers.com>

DBD, Linux, some SQL syntax questions.

Credits

1187

B.3. Documenters and translators
The following people has helped us with writing the MySQL documentation and translating the doc-
umentation or error messages in MySQL.

• Paul DuBois

Ongoing help with making this manual correct and understandable. That includes rewriting
Monty's and David's attempts at English into English as other people know it.

• Kim Aldale

Helped to rewrite Monty's and David's early attempts at English into English.

• Michael J. Miller Jr. <mke@terrapin.turbolift.com>

For the first MySQL manual. And a lot of spelling/language fixes for the FAQ (that turned into
the MySQL manual a long time ago).

• Yan Cailin

First translator of the MySQL Reference Manual into simplified Chinese in early 2000 on which
the Big5 and HK coded (http://mysql.hitstar.com/) versions were based. Personal home page at
linuxdb.yeah.net [http://linuxdb.yeah.net].

• Jay Flaherty <fty@mediapulse.com>

Big parts of the Perl DBI/DBD section in the manual.

• Paul Southworth <pauls@etext.org>, Ray Loyzaga <yar@cs.su.oz.au>

Proof-reading of the Reference Manual.

• Therrien Gilbert <gilbert@ican.net>, Jean-Marc Pouyot <jmp@scalaire.fr>

French error messages.

• Petr Snajdr, <snajdr@pvt.net>

Czech error messages.

• Jaroslaw Lewandowski <jotel@itnet.com.pl>

Polish error messages.

• Miguel Angel Fernandez Roiz

Spanish error messages.

• Roy-Magne Mo <rmo@www.hivolda.no>

Norwegian error messages and testing of MySQL 3.21.xx.

• Timur I. Bakeyev <root@timur.tatarstan.ru>

Russian error messages.

• <brenno@dewinter.com> & Filippo Grassilli <phil@hyppo.com>

Italian error messages.

• Dirk Munzinger <dirk@trinity.saar.de>

Credits

1188

http://mysql.hitstar.com/
http://linuxdb.yeah.net
http://linuxdb.yeah.net

German error messages.

• Billik Stefan <billik@sun.uniag.sk>

Slovak error messages.

• Stefan Saroiu <tzoompy@cs.washington.edu>

Romanian error messages.

• Peter Feher

Hungarian error messages.

• Roberto M. Serqueira

Portuguese error messages.

• Carsten H. Pedersen

Danish error messages.

• Arjen G. Lentz

Dutch error messages, completing earlier partial translation (also work on consistency and
spelling).

B.4. Libraries used by and included with
MySQL

The following is a list of the creators of the libraries we have included with the MySQL server
source to make it easy to compile and install MySQL. We are very thankfully to all individuals that
have created these and it has made our life much easier.

• Fred Fish

For his excellent C debugging and trace library. Monty has made a number of smaller improve-
ments to the library (speed and additional options).

• Richard A. O'Keefe

For his public domain string library.

• Henry Spencer

For his regex library, used in WHERE column REGEXP regexp.

• Chris Provenzano

Portable user level pthreads. From the copyright: This product includes software developed by
Chris Provenzano, the University of California, Berkeley, and contributors. We are currently us-
ing version 1_60_beta6 patched by Monty (see mit-pthreads/Changes-mysql).

• Jean-loup Gailly and Mark Adler

For the zlib library (used on MySQL on Windows).

• Bjorn Benson

Credits

1189

For his safe_malloc (memory checker) package which is used in when you configure MySQL
with --debug.

• Free Software Foundation

The readline library (used by the mysql command-line client).

• The NetBSD foundation

The libedit package (optionally used by the mysql command-line client).

B.5. Packages that support MySQL
The following is a list of creators/maintainers of some of the most important API/pack-
ages/applications that a lot of people use with MySQL.

We can't list every possible package here because the list would then be way to hard to maintain.
For other packages, please refer to the software portal at http://solutions.mysql.com/software/.

• Tim Bunce, Alligator Descartes

For the DBD (Perl) interface.

• Andreas Koenig <a.koenig@mind.de>

For the Perl interface for MySQL Server.

• Jochen Wiedmann <wiedmann@neckar-alb.de>

For maintaining the Perl DBD::mysql module.

• Eugene Chan <eugene@acenet.com.sg>

For porting PHP for MySQL Server.

• Georg Richter

MySQL 4.1 testing and bug hunting. New PHP 5.0 mysqli extension (API) for use with
MySQL 4.1 and up.

• Giovanni Maruzzelli <maruzz@matrice.it>

For porting iODBC (Unix ODBC).

• Xavier Leroy <Xavier.Leroy@inria.fr>

The author of LinuxThreads (used by the MySQL Server on Linux).

B.6. Tools that were used to create MySQL
The following is a list of some of the tools we have used to create MySQL. We use this to express
our thanks to those that has created them as without these we could not have made MySQL what it
is today.

• Free Software Foundation

From whom we got an excellent compiler (gcc), an excellent debugger (gdb and the libc lib-

Credits

1190

http://solutions.mysql.com/software/

rary (from which we have borrowed strto.c to get some code working in Linux).

• Free Software Foundation & The XEmacs development team

For a really great editor/environment used by almost everybody at MySQL AB.

• Julian Seward

Author of valgrind, an excellent memory checker tool that has helped us find a lot of other-
wise hard to find bugs in MySQL.

• Dorothea Lütkehaus and Andreas Zeller

For DDD (The Data Display Debugger) which is an excellent graphical frontend to gdb).

B.7. Supporters of MySQL
While MySQL AB owns all copyrights in the MySQL server and the MySQL manual, we wish
to recognize the following companies, which helped us finance the development of the MySQL
server, such as by paying us for developing a new feature or giving us hardware for development
of the MySQL server.

• VA Linux / Andover.net

Funded replication.

• NuSphere

Editing of the MySQL manual.

• Stork Design studio

The MySQL Web site in use between 1998-2000.

• Intel

Contributed to development on Windows and Linux platforms.

• Compaq

Contributed to Development on Linux/Alpha.

• SWSoft

Development on the embedded mysqld version.

• FutureQuest

--skip-show-database

Credits

1191

Appendix C. MySQL and the Future
(the TODO)

This section summarizes the features that we plan to implement in MySQL Server. The items are
ordered by release series. Within a list, items are shown in approximately the order they will be
done.

Note: If you are an enterprise-level user with an urgent need for a particular feature, please contact
<sales@mysql.com> to discuss sponsoring options. Targeted financing by sponsor companies
allows us to allocate additional resources for specific purposes. One example of a feature sponsored
in the past is replication.

C.1. New Features Planned for 5.0
The following features are planned for inclusion into MySQL 5.0. Some of the features such as
stored procedures are complete and are included in MySQL 5.0 alpha. Others such as cursors are
only partially available. Expect these and other features to mature and be fully supported in upcom-
ing releases.

Note that because we have many developers that are working on different projects, there will also be
many additional features. There is also a small chance that some of these features will be added to
MySQL 4.1. For a list what is done in MySQL 4.1, see Section 1.3.2.1, “Features Available in
MySQL 4.1”.

For those wishing to take a look at the bleeding edge of MySQL development, we make our Bit-
Keeper repository for MySQL version 5.0 publicly available. See Section 2.8.3, “Installing from the
Development Source Tree”.

• Views

• Views, implemented in stepwise fashion up to full functionality. See Section 1.5.5.6,
“Views”. See Section 13.2.7, “CREATE VIEW Syntax”.

• Stored Procedures

• Stored procedures currently are implemented, based on the SQL:2003 standard. See
Chapter 19, Stored Procedures and Functions.

• New functionality

• Elementary cursor support. See Section 19.1.8, “Cursors”.

• The ability to specify explicitly for MyISAM tables that an index should be created as an
RTREE index. (In MySQL 4.1, RTREE indexes are used internally for geometrical data that
use GIS data types, but cannot be created on request.)

• Dynamic length rows for MEMORY tables.

• Standards compliance, portability and migration

• Support for Data Dictionary / INFORMATION_SCHEMA. See Chapter 21, The INFORMA-
TION_SCHEMA Information Database.

• Add true VARCHAR support (column lengths longer than 255, and no stripping of trailing
whitespace). There is support for this in the MyISAM storage engine, but it is not available at
the user level.

• Speed enhancements

1192

• SHOW COLUMNS FROM tbl_name (used by the mysql client to allow expansions of
column names) should not open the table, only the definition file. This requires less memory
and will be much faster.

• Allow DELETE on MyISAM tables to use the record cache. To do this, we need to update the
threads record cache when we update the .MYD file.

• Better support for MEMORY tables:

• Dynamic length rows.

• Faster row handling (less copying).

• Usability enhancements

• Resolving the issue of RENAME TABLE on a table used in an active MERGE table possibly
corrupting the table.

The news section of this manual includes a more in-depth list of features. See Section D.1,
“Changes in release 5.0.x (Development)”.

C.2. New Features Planned for 5.1

• New functionality

• FOREIGN KEY support for all table types, not just InnoDB.

• Column-level constraints. See Section 1.5.6, “How MySQL Deals with Constraints”.

• Online backup with very low performance penalty. The online backup will make it easy to
add a new replication slave without taking down the master.

• Speed enhancements

• New text based table definition file format (.frm files) and a table cache for table defini-
tions. This enables us to do faster queries of table structures and do more efficient foreign
key support.

• Optimize the BIT type to take one bit. (BIT takes one byte; it is treated as a synonym for
TINYINT.)

• Usability enhancements

• Add options to the client/server protocol to get progress notes for long running commands.

• Implement RENAME DATABASE. To make this safe for all storage engines, it should work
as follows:

1. Create the new database.

2. For every table, do a rename of the table to another database, as we do with the RE-
NAME command.

3. Drop the old database.

MySQL and the Future (the TODO)

1193

• New internal file interface change. This makes all file handling much more general and
makes it easier to add extensions like RAID.

C.3. New Features Planned for the Near Fu-
ture

• New functionality

• Oracle-like CONNECT BY PRIOR to search tree-like (hierarchical) structures.

• Add all missing standard SQL and ODBC 3.0 types.

• Add SUM(DISTINCT).

• INSERT SQL_CONCURRENT and mysqld --concurrent-insert to do a concurrent insert at
the end of a table if the table is read-locked.

• Allow variables to be updated in UPDATE statements. For example: UPDATE foo SET
@a:=a+b,a=@a, b=@a+c.

• Change when user variables are updated so that you can use them with GROUP BY, as in the
following statement: SELECT id, @a:=COUNT(*), SUM(sum_col)/@a FROM
tbl_name GROUP BY id.

• Add an IMAGE option to LOAD DATA INFILE to not update TIMESTAMP and
AUTO_INCREMENT columns.

• Add LOAD DATA INFILE ... UPDATE syntax that works like this:

• For tables with primary keys, if an input record contains a primary key value, existing
rows matching that primary key value are updated from the remainder of the input
columns. However, columns corresponding to columns that are missing from the input
record are not touched.

• For tables with primary keys, if an input record does not contain the primary key value or
is missing some part of the key, the record is treated as LOAD DATA INFILE ...
REPLACE INTO.

• Make LOAD DATA INFILE understand syntax like this:

LOAD DATA INFILE 'file_name.txt' INTO TABLE tbl_name
TEXT_FIELDS (text_col1, text_col2, text_col3)
SET table_col1=CONCAT(text_col1, text_col2),

table_col3=23
IGNORE text_col3

This can be used to skip over extra columns in the text file, or update columns based on ex-
pressions of the read data.

• New functions for working with SET type columns:

• ADD_TO_SET(value,set)

• REMOVE_FROM_SET(value,set)

• If you abort mysql in the middle of a query, you should open another connection and kill the
old running query. Alternatively, an attempt should be made to detect this in the server.

• Add a storage engine interface for table information so that you can use it as a system table.

MySQL and the Future (the TODO)

1194

This would be a bit slow if you requested information about all tables, but very flexible.
SHOW INFO FROM tbl_name for basic table information should be implemented.

• Allow SELECT a FROM tbl_name1 LEFT JOIN tbl_name2 USING (a); in
this case a is assumed to come from tbl_name1.

• DELETE and REPLACE options to the UPDATE statement (this deletes rows when a duplic-
ate-key error occurs while updating).

• Change the format of DATETIME to store fractions of seconds.

• Make it possible to use the new GNU regexp library instead of the current one (the new
library should be much faster than the current one).

• Standards compliance, portability and migration

• Add ANY(), EVERY(), and SOME() group functions. In standard SQL, these work only on
boolean columns, but we can extend these to work on any columns or expressions by treat-
ing a value of zero as FALSE and non-zero values as TRUE.

• Fix the type of MAX(column) to be the same as the column type:

mysql> CREATE TABLE t1 (a DATE);
mysql> INSERT INTO t1 VALUES (NOW());
mysql> CREATE TABLE t2 SELECT MAX(a) FROM t1;
mysql> SHOW COLUMNS FROM t2;

• Speed enhancements

• Don't allow more than a defined number of threads to run MyISAM recovery at the same
time.

• Change INSERT INTO ... SELECT to optionally use concurrent inserts.

• Add an option to periodically flush key pages for tables with delayed keys if they haven't
been used in a while.

• Allow join on key parts (optimization issue).

• Add a log file analyzer that can extract information about which tables are hit most often,
how often multiple-table joins are executed, and so on. This should help users identify areas
of table design that could be optimized to execute much more efficient queries.

• Usability enhancements

• Return the original column types when doing SELECT MIN(column) ... GROUP BY.

• Make it possible to specify long_query_time with a granularity in microseconds.

• Link the myisampack code into the server so that it can perform PACK or COMPRESS oper-
ations.

• Add a temporary key buffer cache during INSERT/DELETE/UPDATE so that we can
gracefully recover if the index file gets full.

• If you perform an ALTER TABLE on a table that is symlinked to another disk, create tem-
porary tables on that disk.

MySQL and the Future (the TODO)

1195

• Implement a DATE/DATETIME type that handles time zone information properly, to make
dealing with dates in different time zones easier.

• Fix configure so that all libraries (like MyISAM) can be compiled without threads.

• Allow user variables as LIMIT arguments; for example, LIMIT @a,@b.

• Automatic output from mysql to a Web browser.

• LOCK DATABASES (with various options).

• Many more variables for SHOW STATUS. Record reads and updates. Selects on a single ta-
ble and selects with joins. Mean number of tables in selects. Number of ORDER BY and
GROUP BY queries.

• mysqladmin copy database new-database; this requires a COPY operation to be added to
mysqld.

• Processlist output should indicate the number of queries/threads.

• SHOW HOSTS for printing information about the hostname cache.

• Change table names from empty strings to NULL for calculated columns.

• Don't use Item_copy_string on numerical values to avoid number-to-string-to-number
conversion in case of SELECT COUNT(*)*(id+0) FROM tbl_name GROUP BY
id.

• Change so that ALTER TABLE doesn't abort clients that execute INSERT DELAYED.

• Fix so that when columns are referenced in an UPDATE clause, they contain the old values
from before the update started.

• New operating systems

• Port the MySQL clients to LynxOS.

C.4. New Features Planned for the Mid-Term
Future

• Implement function: get_changed_tables(timeout,table1,table2,...).

• Change reading through tables to use mmap() when possible. Only compressed tables use
mmap().

• Make the automatic timestamp code nicer. Add timestamps to the update log with SET
TIMESTAMP=val;.

• Use read/write mutex in some places to get more speed.

• Automatically close some tables if a table, temporary table, or temporary file gets error 23 (too
many open files).

• Better constant propagation. When an occurrence of col_name=n is found in an expression,
for some constant n, replace other occurrences of col_name within the expression with n. Cur-
rently, this is done only for some simple cases.

• Change all const expressions with calculated expressions if possible.

MySQL and the Future (the TODO)

1196

• Optimize key = expr comparisons. At the moment, only key = column or key = con-
stant comparisons are optimized.

• Join some of the copy functions for nicer code.

• Change sql_yacc.yy to an inline parser to reduce its size and get better error messages.

• Change the parser to use only one rule per different number of arguments in function.

• Use of full calculation names in the order part (for Access97).

• MINUS, INTERSECT, and FULL OUTER JOIN. (Currently UNION and LEFT|RIGHT
OUTER JOIN are supported.)

• Allow SQL_OPTION MAX_SELECT_TIME=val, for placing a time limit on a query.

• Allow updates to be logged to a database.

• Enhance LIMIT to allow retrieval of data from the end of a result set.

• Alarm around client connect/read/write functions.

• Please note the changes to mysqld_safe: According to FSSTND (which Debian tries to follow),
PID files should go into /var/run/<progname>.pid and log files into /var/log. It
would be nice if you could put the "DATADIR" in the first declaration of "pidfile" and "log" so
that the placement of these files can be changed with a single statement.

• Allow a client to request logging.

• Allow the LOAD DATA INFILE statement to read files that have been compressed with gzip.

• Fix sorting and grouping of BLOB columns (partly solved).

• Change to use semaphores when counting threads. One should first implement a semaphore lib-
rary for MIT-pthreads.

• Add full support for JOIN with parentheses.

• As an alternative to the one-thread-per-connection model, manage a pool of threads to handle
queries.

• Allow GET_LOCK() to obtain more than one lock. When doing this, it is also necessary to
handle the possible deadlocks this change will introduce.

C.5. New Features We Don't Plan to Imple-
ment

We aim toward full compliance with ANSI/ISO SQL. There are no features we plan not to imple-
ment.

MySQL and the Future (the TODO)

1197

Appendix D. MySQL Change History
This appendix lists the changes from version to version in the MySQL source code.

We are working actively on MySQL 4.1 and 5.0, and provide only critical bugfixes for MySQL 4.0
and MySQL 3.23. We update this section as we add new features, so that everybody can follow the
development.

Our TODO section contains what further plans we have for MySQL 4.1 and 5.0. See Appendix C,
MySQL and the Future (the TODO).

Note that we tend to update the manual at the same time we make changes to MySQL. If you find a
recent version of MySQL listed here that you can't find on our download page (ht-
tp://dev.mysql.com/downloads/), it means that the version has not yet been released.

The date mentioned with a release version is the date of the last BitKeeper ChangeSet on which the
release was based, not the date when the packages were made available. The binaries are usually
made available a few days after the date of the tagged ChangeSet, because building and testing all
packages takes some time.

D.1. Changes in release 5.0.x (Development)
The following changelog shows what has been done in the 5.0 tree:

• Basic support for read-only server side cursors.

• Basic support for (updatable) views. See, for example, Section 13.2.7, “CREATE VIEW
Syntax”.

• Basic support for stored procedures (SQL:2003 style). See Chapter 19, Stored Procedures and
Functions.

• Initial support for rudimentary triggers.

• Added SELECT INTO list_of_vars, which can be of mixed (that is, global and local)
types. See Section 19.1.6.3, “SELECT ... INTO Statement”.

• Removed the update log. It is fully replaced by the binary log. If the MySQL server is started
with --log-update, it is translated to --log-bin (or ignored if the server is explicitly star-
ted with --log-bin), and a warning message is written to the error log. Setting
SQL_LOG_UPDATE silently sets SQL_LOG_BIN instead (or do nothing if the server is expli-
citly started with --log-bin).

• User variable names are now case insensitive: If you do SET @a=10; then SELECT @A; now
returns 10. Case sensitivity of a variable's value depends on the collation of the value.

• Strict mode, which in essence means that you get an error instead of a warning when inserting an
incorrect value into a column. See Section 5.2.2, “The Server SQL Mode”.

• VARCHAR fields remembers end space. A VARCHAR() field can contain up to 65535 bytes.

• MEMORY (HEAP) tables can have VARCHAR() fields.

• When using a constant string or a function that generate a string result in CREATE ... SE-
LECT, MySQL creates the result field based on the max_length of the string/expression:

max_length Column type

= 0 CHAR(0)

< 512 VARCHAR(max_length)

1198

http://dev.mysql.com/downloads/
http://dev.mysql.com/downloads/

>= 512 TEXT

For a full list of changes, please refer to the changelog sections for each individual 5.0.x release.

D.1.1. Changes in release 5.0.3 (not released yet)
Functionality added or changed:

• From the Windows distribution, predefined accounts without passwords for remote users
("root@%", "@%") were removed (other distributions never had them).

• Added mysql_library_init() and mysql_library_end() as synonyms for the
mysql_server_init() and mysql_server_end() C API functions.
mysql_library_init() and mysql_library_end() are #define symbols, but the
names more clearly indicate that they should be called when beginning and ending use of a
MySQL C API library no matter whether the application uses libmysqlclient or
libmysqld. (Bug #6149)

• SHOW COLUMNS now displays NO rather than blank in the Null output column if the corres-
ponding table column cannot be NULL.

• Changed XML format for mysql from <col_name>col_value</col_name> to <field
name="col_name">col_value</field> to allow for proper encoding of column names
that are not legal as element names. (Bug #7811)

• Added --innodb-checksums and --innodb-doublewrite options for mysqld.

• Added --large-pages option for mysqld.

• Added multi_read_range system variable.

• SHOW DATABASES, SHOW TABLES, SHOW COLUMNS, and so forth display information
about the INFORMATION_SCHEMA database. Also, several SHOW statements now accept a
WHERE clause specifying which output rows to display. See Chapter 21, The INFORMA-
TION_SCHEMA Information Database.

• Added the CREATE ROUTINE and ALTER ROUTINE privileges, and made the EXECUTE
privilege operational.

• InnoDB: Corrected a bug in the crash recovery of ROW_FORMAT=COMPACT tables that caused
corruption. (Bug #7973) There may still be bugs in the crash recovery, especially in COMPACT
tables.

• When the MyISAM storage engine detects corruption of a MyISAM table, a message describing
the problem now is written to the error log.

• InnoDB: When MySQL/InnoDB is compiled on Mac OS X 10.2 or earlier, detect the operating
system version at run time and use the fcntl() file flush method on Mac OS X versions 10.3
and later. Apple had disabled fsync() in Mac OS X for internal disk drives, which caused cor-
ruption at power outages.

• InnoDB: Implemented fast TRUNCATE TABLE. The old approach (deleting rows one by one)
may be used if the table is being referenced by foreign keys. (Bug #7150)

• Added cp932 (SJIS for Windows Japanese) and eucjpms (UJIS for Windows Japanese) char-
acter sets.

• Added several InnoDB status variables. See Section 5.2.4, “Server Status Variables”.

MySQL Change History

1199

• Added the FEDERATED storage engine. See Section 14.6, “The FEDERATED Storage Engine”.

• SHOW CREATE TABLE now uses USING index_type rather than TYPE index_type to
specify an index type. (Bug #7233)

• InnoDB now supports a fast TRUNCATE TABLE. One visible change from this is that auto-
increment values for this table are reset on TRUNCATE.

• Added an error member to the MYSQL_BIND data structure that is used in the C API for pre-
pared statements. This member is used for reporting data truncation errors. Truncation reporting
is enabled via the new MYSQL_REPORT_DATA_TRUNCATION option for the
mysql_options() C API function.

• API change: the reconnect flag in the MYSQL structure is now set to 0 by
mysql_real_connect(). Only those client programs which didn't explicitely set this flag
to 0 or 1 after mysql_real_connect() experience a change. Having automatic reconnec-
tion enabled by default was considered too dangerous (after reconnection, table locks, temporary
tables, user and session variables are lost).

• FLUSH TABLES WITH READ LOCK is now killable while it's waiting for running COMMIT
statements to finish.

• MEMORY (HEAP) can have VARCHAR() fields.

• VARCHAR columns now remember end space. A VARCHAR() column can now contain up to
65535 bytes. For more details, see Section D.1, “Changes in release 5.0.x (Development)”. If the
table handler doesn't support the new VARCHAR type, then it's converted to a CHAR column.
Currently this happens for NDB and InnoDB tables.

• InnoDB: Introduced a compact record format that does not store the number of columns or the
lengths of fixed-size columns. The old format can be requested by specifying
ROW_FORMAT=REDUNDANT. The new format (ROW_FORMAT=COMPACT) is the default.

• InnoDB: Setting the initial AUTO_INCREMENT value for the table using CREATE TA-
BLE...AUTO_INCREMENT = works now also for the InnoDB table.

• Seconds_Behind_Master is NULL (which means ``unknown'') if the slave SQL thread is
not running, or if the slave I/O thread is not running or not connected to master. It is zero if the
SQL thread has caught up to the I/O thread. It no longer grows indefinitely if the master is idle.

• The MySQL server aborts immediately instead of simply issuing a warning if it is started with
the --log-bin option but cannot initialize the binary log at startup (that is, an error occurs
when writing to the binary log file or binary log index file).

• The binary log file and binary log index file now are handled the same way as MyISAM tables
when there is a ``disk full'' or ``quota exceeded'' error. See Section A.4.3, “How MySQL
Handles a Full Disk”.

• The MySQL server now aborts when started with option --log-bin-index and without -
-log-bin, and when started with --log-slave-updates and without --log-bin.

• If the MySQL server is started without an argument to --log-bin and without -
-log-bin-index, thus not providing a name for the binary log index file, a warning is issued
because MySQL falls back to using the hostname for that name, and this is prone to replication
issues if the server's hostname's gets changed later. See Section 1.5.7.3, “Open Bugs and Design
Deficiencies in MySQL”.

• Added account-specific MAX_USER_CONNECTIONS limit, which allows you to specify the
maximum number of concurrent connections for the account. Also, all limited resources now are
counted per account (instead of being counted per user + host pair as it was before). Use the -
-old-style-user-limits option to get the old behavior.

• InnoDB: A shared record lock (LOCK_REC_NOT_GAP) is now taken for a matching record in

MySQL Change History

1200

the foreign key check because inserts can be allowed into gaps.

• InnoDB: Relaxed locking in INSERT...SELECT, single table UPDATE...SELECT and single ta-
ble DELETE...SELECT clauses when innobase_locks_unsafe_for_binlog is used and isolation
level of the transaction is not serializable. InnoDB uses consistent read in these cases for a se-
lected table.

Bugs fixed:

• Fixed LOAD INDEX statement to actually load index in memory. (Bug #8452)

• Fixed a failure of multiple-table updates to replicate properly on slave servers when -
-replicate-*-table options had been specified. (Bug #7011)

• Fixed failure of CREATE TABLE ... LIKE Windows when the source or destination table
was located in a symlinked database directory. (Bug #6607)

• With lower_case_table_names set to 1, mysqldump on Windows could write the same
table name in different lettercase for different SQL statements. Fixed so that consistent lettercase
is used. (Bug #5185)

• mysqld_safe now understands the --help option. Previously, it ignored the option and attemp-
ted to start the server anyway. (Bug #7931)

• Fixed problem in NO_BACKSLASH_ESCAPES SQL mode for strings that contained both the
string quoting character and backslash. (Bug #6368)

• Fixed some portability issues with overflow in floating point values.

• Prepared statements now gives warnings on prepare.

• Fixed bug in prepares statements with SUM(DISTINCT...).

• Fixed bug in prepares statements with OUTER JOIN.

• Fixed a bug in CONV() function returning unsigned BIGINT number (third argument is posit-
ive, and return value does not fit in 32 bits). (Bug #7751)

• Fixed a failure of the IN() operator to return correct result if all values in the list were con-
stants and some of them were using substring functions, for example, LEFT(), RIGHT(), or
MID(). (Bug #7716)

• Fixed a crash in CONVERT_TZ() function when its second or third argument was from a
const table (see Section 7.2.1, “EXPLAIN Syntax (Get Information About a SELECT)”). (Bug
#7705)

• Fixed a problem with calculation of number of columns in row comparison against subquery.
(Bug #8020)

• Fixed erroneous output resulting from SELECT DISTINCT combined with a subquery and
GROUP BY. (Bug #7946)

• Fixed server crash in comparing a nested row expression (for example row(1,(2,3))) with a
subquery. (Bug #8022)

• Fixed server crash resulting from certain correlated subqueries with forward references
(references to an alias defined later in the outer query). (Bug #8025)

• Fixed server crash resulting from re-execution of prepared statements containing subqueries.
(Bug #8125)

• Fixed a bug where ALTER TABLE improperly would accept an index on a TIMESTAMP

MySQL Change History

1201

column that CREATE TABLE would reject. (Bug #7884)

• SHOW CREATE TABLE now reports ENGINE=MEMORY rather than ENGINE=HEAP for a
MEMORY table (unless the MYSQL323 SQL mode is enabled). (Bug #6659)

• Fixed a bug where the use of GROUP_CONCAT() with HAVING caused a server crash. (Bug
#7769)

• Fixed a bug where comparing the result of a subquery to a non-existent column caused a server
crash on Windows. (Bug #7885)

• Fixed a bug in a combination of -not and trunc* operators of full-text search. Using more
than one truncated negative search term, was causing empty result set.

• InnoDB: Corrected the handling of trailing spaces in the ucs2 character set. (Bug #7350)

• InnoDB: Use native tmpfile() function on Netware. All InnoDB temporary files are created
under sys:\tmp. Previously, InnoDB temporary files were never deleted on Netware.

• Fixed a bug in max_heap_table_size handling, that resulted in Table is full error
when the table was still smaller than the limit. (Bug #7791).

• Fixed a symlink vulnerability in the mysqlaccess script. Reported by Javier Fernandez-Sanguino
Pena and Debian Security Audit Team [http://www.debian.org/security/audit]. (CAN-2005-0004
[http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2005-0004])

• Fixed a bug that caused server crash if some error occured during filling of temporary table cre-
ated for derived table or view handling. (Bug #7413)

• Fixed a bug which caused server crash if query containing CONVERT_TZ() function with con-
stant arguments was prepared. (Bug #6849)

• Prevent adding CREATE TABLE .. SELECT query to the binary log when the insertion of
new records partially failed. (Bug #6682)

• Fixed a bug which caused a crash when only the slave I/O thread was stopped and started. (Bug
#6148)

• Giving mysqld a SIGHUP caused it to crash.

• Changed semantics of CREATE/ALTER/DROP DATABASE statements so that replication of
CREATE DATABASE is possible when using --binlog-do-db and -
-binlog-ignore-db. (Bug #6391)

• A sequence of BEGIN (or SET AUTOCOMMIT=0), FLUSH TABLES WITH READ LOCK,
transactional update, COMMIT, FLUSH TABLES WITH READ LOCK could hang the connec-
tion forever and possibly the MySQL server itself. This happened for example when running the
innobackup script several times. (Bug #6732)

• mysqlbinlog did not print SET PSEUDO_THREAD_ID statements in front of LOAD DATA
INFILE statements inserting into temporary tables, thus causing potential problems when
rolling forward these statements after restoring a backup. (Bug #6671)

• InnoDB: Fixed a bug no error message for ALTER with InnoDB and AUTO_INCREMENT
(Bug #7061). InnoDB now supports ALTER TABLE...AUTO_INCREMENT = x query to
set auto increment value for a table.

• Made the MySQL server accept executing SHOW CREATE DATABASE even if the connection
has an open transaction or locked tables; refusing it made mysqldump --single-transaction
sometimes fail to print a complete CREATE DATABASE statement for some dumped databases.
(Bug #7358)

• Fixed that, when encountering a ``disk full'' or ``quota exceeded'' write error, MyISAM some-
times didn't sleep and retry the write, thus resulting in a corrupted table. (Bug #7714)

MySQL Change History

1202

http://www.debian.org/security/audit
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2005-0004

• Fixed that --expire-log-days was not honored if using only transactions. (Bug #7236)

• Fixed that a slave could crash after replicating many ANALYZE TABLE, OPTIMIZE TABLE,
or REPAIR TABLE statements from the master. (Bug #6461, Bug #7658)

• mysqlbinlog forgot to add backquotes around the collation of user variables (causing later pars-
ing problems as BINARY is a reserved word). (Bug #7793)

• Ensured that mysqldump --single-transaction sets its transaction isolation level to REPEAT-
ABLE READ before proceeding (otherwise if the MySQL server was configured to run with a
default isolation level lower than REPEATABLE READ it could give an inconsistent dump).
(Bug #7850)

• Fixed that when using the RPAD() function (or any function adding spaces to the right) in a
query that had to be resolved by using a temporary table, all resulting strings had rightmost
spaces removed (i.e. RPAD() did not work) (Bug #4048)

• Fixed that a 5.0.3 slave can connect to a master < 3.23.50 without hanging (the reason for the
hang is a bug in these quite old masters -- SELECT @@unknown_var hangs them -- which
was fixed in MySQL 3.23.50). (Bug #7965)

• InnoDB: Fixed a deadlock without any locking, simple select and update (Bug #7975). InnoDB
now takes an exclusive lock when INSERT ON DUPLICATE KEY UPDATE is checking du-
plicate keys.

D.1.2. Changes in release 5.0.2 (01 Dec 2004)
Functionality added or changed:

• Added support for the INFORMATION_SCHEMA ``information database'' that provides database
metadata. See Chapter 21, The INFORMATION_SCHEMA Information Database.

• A HAVING clause in a SELECT statement now can refer to columns in the GROUP BY clause,
as required by standard SQL.

• Added the CREATE USER and RENAME USER statements.

• Modify DROP USER so that it drops the account, including all its privileges. Formerly, it re-
moved the account record only for an account that had had all privileges revoked.

• Warning: Incompatible change! The precedence of NOT operator has changed so that expres-
sions such as NOT a BETWEEN b AND c are parsed correctly as NOT (a BETWEEN b
AND c) rather than as (NOT a) BETWEEN b AND c. The pre-5.0 higher-precedence beha-
vior can be obtained by enabling the new HIGH_NOT_PRECEDENCE SQL mode.

• Added IS [NOT] boolean_value syntax, where boolean_value is TRUE, FALSE, or
UNKNOWN.

• Added several InnoDB status variables. See Section 5.2.4, “Server Status Variables”.

• Implemented the WITH CHECK OPTION clause for CREATE VIEW.

• CHECK TABLE now works for views.

• The SCHEMA and SCHEMAS keywords are now accepted as synonyms for DATABASE and
DATABASES.

• Added initial support for rudimentary triggers (the CREATE TRIGGER and DROP TRIGGER
statements).

• Added basic support for read-only server side cursors.

MySQL Change History

1203

• mysqldump --single-transaction --master-data is now able to take an online (non-blocking)
dump of InnoDB and report the corresponding binary log coordinates, which makes a backup
suitable for point-in-time recovery, roll-forward or replication slave creation. See Section 8.8,
“The mysqldump Database Backup Program”.

• Added --start-datetime, --stop-datetime, --start-position, -
-stop-position options to mysqlbinlog (makes point-in-time recovery easier).

• Made the MySQL server not react to signals SIGHUP and SIGQUIT on Mac OS X 10.3. This is
needed because under this OS, the MySQL server receives lots of these signals (reported as Bug
#2030).

• New --auto-increment-increment and --auto-increment-offset startup op-
tions. These allow you to set up a server to generate auto-increment values that don't conflict
with another server.

• MySQL now by default checks dates and in strict mode allows only fully correct dates. If you
want MySQL to behave as before, you should enable the new ALLOW_INVALID_DATES SQL
mode.

• Added STRICT_TRANS_TABLES, STRICT_ALL_TABLES, NO_ZERO_IN_DATE,
NO_ZERO_DATE, ERROR_FOR_DIVISION_BY_ZERO, and TRADITIONAL SQL modes.
The TRADITIONAL mode is shorthand for all the preceding modes. When using mode TRADI-
TIONAL, MySQL generates an error if you try to insert a wrong value in a column. It does not
adjust the value to the closest possible legal value.

• MySQL now remembers which columns were declared to have default values. In
STRICT_TRANS_TABLES/STRICT_ALL_TABLES mode, you now get an error if you do an
INSERT without specifying all columns that don't have a default value. A side effect of this is
that when you do SHOW CREATE for a new table, you no longer see a DEFAULT value for a
column for which you didn't specify a default value.

• The compilation flag DONT_USE_DEFAULT_FIELDS was removed because you can get the
same behavior by setting the sql_mode system variable to STRICT_TRANS_TABLES.

• Added NO_AUTO_CREATE_USER SQL mode to prevent GRANT from automatically creating
new users if it would otherwise do so, unless a password also is specified.

• We now detect too-large floating point numbers during statement parsing and generate an error
messages for them.

• Renamed the sql_updatable_view_key system variable to updat-
able_views_with_limit. This variable now can have only two values:

• 1 or YES: Don't issue an error message (warning only) if a VIEW without presence of a key
in the underlying table is used in queries with a LIMIT clause for updating. (This is the de-
fault value.)

• 0 or NO: Prohibit update of a VIEW, which does not contain a key in the underlying table
and the query uses a LIMIT clause (usually get from GUI tools).

• Reverted output format of SHOW TABLES to old pre-5.0.1 format that did not include a table
type column. To get the additional column that lists the table type, use SHOW FULL TABLES
now.

• The mysql_fix_privilege_tables script now initializes the global CREATE VIEW and SHOW
VIEW privileges in the user table to the value of the CREATE privilege in that table.

• If the server finds that the user table has not been upgraded to include the view-related priv-
ilege columns, it treats each account as having view privileges that are the same as its CREATE
privilege.

• InnoDB: If you specify the option innodb_locks_unsafe_for_binlog in my.cnf, In-

MySQL Change History

1204

noDB in an UPDATE or a DELETE only locks the rows that it updates or deletes. This greatly re-
duces the probability of deadlocks.

• A connection doing a rollback now displays "Rolling back" in the State column of SHOW
PROCESSLIST.

• mysqlbinlog now prints an informative commented line (thread id, timestamp, server id, etc) be-
fore each LOAD DATA INFILE, like it does for other queries; unless --short-form is
used.

Bugs fixed:

• Fixed that mysqlbinlog --read-from-remote-server sometimes couldn't accept two binary log-
files on the command line. (Bug #4507)

• Fixed that mysqlbinlog --position --read-from-remote-server had incorrect # at lines. (Bug
#4506)

• Fixed that CREATE TABLE ... TYPE=HEAP ... AS SELECT... caused replication
slave to stop. (Bug #4971)

• Fixed that mysql_options(...,MYSQL_OPT_LOCAL_INFILE,...) failed to disable
LOAD DATA LOCAL INFILE. (Bug #5038)

• Fixed that disable-local-infile option had no effect if client read it from a configura-
tion file using mysql_options(...,MYSQL_READ_DEFAULT,...). (Bug #5073)

• Fixed that SET GLOBAL SYNC_BINLOG did not work on some platforms (Mac OS X). (Bug
#5064)

• Fixed that mysql-test-run failed on the rpl_trunc_binlog test if running test from the in-
stalled (the target of 'make install') directory. (Bug #5050)

• Fixed that mysql-test-run failed on the grant_cache test when run as Unix user 'root'. (Bug
#4678)

• Fixed an unlikely deadlock which could happen when using KILL. (Bug #4810)

• Fixed a crash when one connection got KILLed while it was doing START SLAVE. (Bug
#4827)

• Made FLUSH TABLES WITH READ LOCK block COMMIT if server is running with binary
logging; this ensures that the binary log position can be trusted when doing a full backup of
tables and the binary log. (Bug #4953)

• Fixed that the counter of an auto_increment column was not reset by TRUNCATE TABLE
is the table was a temporary one. (Bug #5033)

• Fixed slave SQL thread so that the SET COLLATION_SERVER... statements it replicates
don't advance its position (so that if it gets interrupted before the actual update query, it later re-
does the SET). (Bug #5705)

• Fixed that if the slave SQL thread found a syntax error in a query (which should be rare, as the
master parsed it successfully), it stops. (Bug #5711)

• Fixed that if a write to a MyISAM table fails because of a full disk or an exceeded disk quota, it
prints a message to the error log every 10 minutes, and waits until disk becomes free. (Bug
#3248)

• Fixed problem introduced in 4.0.21 where a connection starting a transaction, doing updates,
then FLUSH TABLES WITH READ LOCK, then COMMIT, would cause replication slaves to
stop (complaining about error 1223). Bug surfaced when using the InnoDB innobackup

MySQL Change History

1205

script. (Bug #5949)

• OPTIMIZE TABLE, REPAIR TABLE, and ANALYZE TABLE are now replicated without any
error code in the binary log. (Bug #5551)

• If a connection had an open transaction but had done no updates to transactional tables (for ex-
ample if had just done a SELECT FOR UPDATE then executed a non-transactional update, that
update automatically committed the transaction (thus releasing InnoDB's row-level locks etc).
(Bug #5714)

• If a connection was interrupted by a network error and did a rollback, the network error code got
stored into the BEGIN and ROLLBACK binary log events; that caused superfluous slave stops.
(Bug #6522)

• Fixed a bug which prevented mysqlbinlog from being able to read from stdin, for example,
when piping the output from zcat to mysqlbinlog. (Bug #7853)

D.1.3. Changes in release 5.0.1 (27 Jul 2004)
Note: This build passes our test suite and fixes a lot of reported bugs found in the previous 5.0.0 re-
lease. However, please be aware that this is not a ``standard MYSQL build'' in the sense that there
are still some open critical bugs in our bugs database at http://bugs.mysql.com/ that affect this re-
lease as well. We are actively fixing these and will make a new release where these are fixed as soon
as possible. However, this binary should be a good candidate for testing new MySQL 5.0 features
for future products.

Functionality added or changed:

• Added support for read-only and updatable views based on a single table or other updatable
views. View use requires that you upgrade your grant tables to add the view-related privileges.
See Section 2.10.7, “Upgrading the Grant Tables”.

• Implemented a new ``greedy search'' optimizer that can significantly reduce the time spent on
query optimization for some many-table joins. (You are affected if not only some particular SE-
LECT is slow, but even using EXPLAIN for it takes a noticeable amount of time.) Two new sys-
tem variables, optimizer_search_depth and optimizer_prune_level, can be used
to fine-tune optimizer behavior.

• Warning: Incompatible change! C API change: mysql_shutdown() now requires a second
argument. This is a source-level incompatibility that affects how you compile client programs; it
does not affect the ability of compiled clients to communicate with older servers. See Sec-
tion 22.2.3.54, “mysql_shutdown()”.

• A stored procedure is no longer ``global.'' That is, it now belongs to a specific database:

• When a database is dropped, all routines belonging to that database are also dropped.

• Procedure names may be qualified, for example, db.p()

• When executed from another database, an implicit USE db_name is in effect.

• Explicit USE db_name statements no longer are allowed in a stored procedure.

See Chapter 19, Stored Procedures and Functions.

• Fixed SHOW TABLES output field name and values according to standard. Field name changed
from Type to table_type, values are BASE TABLE, VIEW and ERROR. (Bug #4603)

• Added the sql_updatable_view_key system variable.

• Added the --replicate-same-server-id server option.

MySQL Change History

1206

http://bugs.mysql.com/

• Added Last_query_cost status variable that reports optimizer cost for last compiled query.

• Added the --to-last-log option to mysqlbinlog, for use in conjunction with -
-read-from-remote-server.

• Added the --innodb-safe-binlog server option, which adds consistency guarantees
between the content of InnoDB tables and the binary log. See Section 5.9.4, “The Binary Log”.

• OPTIMIZE TABLE for InnoDB tables is now mapped to ALTER TABLE instead of ANA-
LYZE TABLE.

• sync_frm is now a settable global variable (not only a startup option).

• For replication of MEMORY (HEAP) tables: Made the master automatically write a DELETE
FROM statement to its binary log when a MEMORY table is opened for the first time since master's
startup. This is for the case where the slave has replicated a non-empty MEMORY table, then the
master is shut down and restarted: the table is now empty on master; the DELETE FROM emp-
ties it on slave too. Note that even with this fix, between the master's restart and the first use of
the table on master, the slave still has out-of-date data in the table. But if you use the -
-init-file option to populate the MEMORY table on the master at startup, it ensures that the
failing time interval is zero. (Bug #2477)

• When a session having open temporary tables terminates, the statement automatically written to
the binary log is now DROP TEMPORARY TABLE IF EXISTS instead of DROP TEMPOR-
ARY TABLE, for more robustness.

• The MySQL server now returns an error if SET SQL_LOG_BIN is issued by a user without the
SUPER privilege (in previous versions it just silently ignored the statement in this case).

• Changed that when the MySQL server has binary logging disabled (that is, no --log-bin op-
tion was used), then no transaction binary log cache is allocated for connections. This should
save binlog_cache_size bytes of memory (32KB by default) for every connection.

• Added the sync_binlog=N global variable and startup option, which makes the MySQL
server synchronize its binary log to disk (fdatasync()) after every Nth write to the binary
log.

• Changed the slave SQL thread to print less useless error messages (no more message duplica-
tion; no more messages when an error is skipped because of slave-skip-errors).

• DROP DATABASE IF EXISTS, DROP TABLE IF EXISTS, single-table DELETE, and
single-table UPDATE now are written to the binary log even if they changed nothing on the mas-
ter (for example, even if a DELETE matched no rows). The old behavior sometimes caused bad
surprises in replication setups.

• Replication and mysqlbinlog now have better support for the case that the session character set
and collation variables are changed within a given session. See Section 6.7, “Replication Fea-
tures and Known Problems”.

• Killing a CHECK TABLE statement does not result in the table being marked as ``corrupted''
any more; the table remains as if CHECK TABLE had not even started. See Section 13.5.5.3,
“KILL Syntax”.

Bugs fixed:

• Strange results with index (x, y) ... WHERE x=val_1 AND y>=val_2 ORDER BY pk; (Bug
#3155)

• Subquery and order by (Bug #3118)

• ALTER DATABASE caused the client to hang if the database did not exist. (Bug #2333)

MySQL Change History

1207

• SLAVE START (which is a deprecated syntax, START SLAVE should be used instead) could
crash the slave. (Bug #2516)

• Multiple-table DELETE statements were never replicated by the slave if there were any -
-replicate-*-table options. (Bug #2527)

• The MySQL server did not report any error if a statement (submitted through
mysql_real_query() or mysql_stmt_prepare()) was terminated by garbage charac-
ters. This can happen if you pass a wrong length parameter to these functions. The result was
that the garbage characters were written into the binary log. (Bug #2703)

• Replication: If a client connects to a slave server and issues an administrative statement for a ta-
ble (for example, OPTIMIZE TABLE or REPAIR TABLE), this could sometimes stop the
slave SQL thread. This does not lead to any corruption, but you must use START SLAVE to get
replication going again. (Bug #1858)

• Made clearer the error message that one gets when an update is refused because of the -
-read-only option. (Bug #2757)

• Fixed that --replicate-wild-*-table rules apply to ALTER DATABASE when the ta-
ble pattern is %, as is the case for CREATE DATABASE and DROP DATABASE. (Bug #3000)

• Fixed that when a Rotate event is found by the slave SQL thread in the middle of a transac-
tion, the value of Relay_Log_Pos in SHOW SLAVE STATUS remains correct. (Bug #3017)

• Corrected the master's binary log position that InnoDB reports when it is doing a crash recovery
on a slave server. (Bug #3015)

• Changed the column Seconds_Behind_Master in SHOW SLAVE STATUS to never show
a value of #1. (Bug #2826)

• Changed that when a DROP TEMPORARY TABLE statement is automatically written to the bin-
ary log when a session ends, the statement is recorded with an error code of value zero (this en-
sures that killing a SELECT on the master does not result in a superfluous error on the slave).
(Bug #3063)

• Changed that when a thread handling INSERT DELAYED (also known as a
delayed_insert thread) is killed, its statements are recorded with an error code of value
zero (killing such a thread does not endanger replication, so we thus avoid a superfluous error on
the slave). (Bug #3081)

• Fixed deadlock when two START SLAVE commands were run at the same time. (Bug #2921)

• Fixed that a statement never triggers a superfluous error on the slave, if it must be excluded giv-
en the --replicate-* options. The bug was that if the statement had been killed on the mas-
ter, the slave would stop. (Bug #2983)

• The --local-load option of mysqlbinlog now requires an argument.

• Fixed a segmentation fault when running LOAD DATA FROM MASTER after RESET SLAVE.
(Bug #2922)

• mysqlbinlog --read-from-remote-server read all binary logs following the one that was re-
quested. It now stops at the end of the requested file, the same as it does when reading a local
binary log. There is an option --to-last-log to get the old behavior. (Bug #3204)

• Fixed mysqlbinlog --read-from-remote-server to print the exact positions of events in the "at
#" lines. (Bug #3214)

• Fixed a rare error condition that caused the slave SQL thread spuriously to print the message
Binlog has bad magic number and stop when it was not necessary to do so. (Bug
#3401)

• Fixed mysqlbinlog not to forget to print a USE statement under rare circumstances where the

MySQL Change History

1208

binary log contained a LOAD DATA INFILE statement. (Bug #3415)

• Fixed a memory corruption when replicating a LOAD DATA INFILE when the master had ver-
sion 3.23. (Bug #3422)

• Multiple-table DELETE statements were always replicated by the slave if there were some -
-replicate-*-ignore-table options and no --replicate-*-do-table options.
(Bug #3461)

• Fixed a crash of the MySQL slave server when it was built with --with-debug and replicat-
ing itself. (Bug #3568)

• Fixed that in some replication error messages, a very long query caused the rest of the message
to be invisible (truncated), by putting the query last in the message. (Bug #3357)

• If server-id was not set using startup options but with SET GLOBAL, the replication slave
still complained that it was not set. (Bug #3829)

• mysql_fix_privilege_tables didn't correctly handle the argument of its --password=# op-
tion. (Bug #4240)

• Fixed potential memory overrun in mysql_real_connect() (which required a comprom-
ised DNS server and certain operating systems). (Bug #4017)

• During the installation process of the server RPM on Linux, mysqld was run as the root sys-
tem user, and if you had --log-bin=<somewhere_out_of_var_lib_mysql> it cre-
ated binary log files owned by root in this directory, which remained owned by root after the
installation. This is now fixed by starting mysqld as the mysql system user instead. (Bug
#4038)

• Made DROP DATABASE honor the value of lower_case_table_names. (Bug #4066)

• The slave SQL thread refused to replicate INSERT ... SELECT if it examined more than 4
billion rows. (Bug #3871)

• mysqlbinlog didn't escape the string content of user variables, and did not deal well when these
variables were in non-ASCII character sets; this is now fixed by always printing the string con-
tent of user variables in hexadecimal. The character set and collation of the string is now also
printed. (Bug #3875)

• Fixed incorrect destruction of expression that led to a server crash on complex AND/OR expres-
sions if query was ignored (either by a replication server because of --replicate-*-table
rules, or by any MySQL server because of a syntax error). (Bug #3969, Bug #4494)

• If CREATE TEMPORARY TABLE t SELECT failed while loading the data, the temporary ta-
ble was not dropped. (Bug #4551)

• Fixed that when a multiple-table DROP TABLE failed to drop a table on the master server, the
error code was not written to the binary log. (Bug #4553)

• When the slave SQL thread was replicating a LOAD DATA INFILE statement, it didn't show
the statement in the output of SHOW PROCESSLIST. (Bug #4326)

D.1.4. Changes in release 5.0.0 (22 Dec 2003: Alpha)
Functionality added or changed:

• The KILL statement now takes CONNECTION and QUERY modifiers. The first is the same as
KILL with no modifier (it kills a given connection thread). The second kills only the statement
currently being executed by the connection.

MySQL Change History

1209

• Added TIMESTAMPADD() and TIMESTAMPDIFF() functions.

• Added WEEK and QUARTER values as INTERVAL arguments for the DATE_ADD() and
DATE_SUB() functions.

• New binary log format that enables replication of these session variables: sql_mode,
SQL_AUTO_IS_NULL, FOREIGN_KEY_CHECKS (which was replicated since 4.0.14, but here
it's done more efficiently and takes less space in the binary logs), UNIQUE_CHECKS. Other
variables (like character sets, SQL_SELECT_LIMIT, ...) will be replicated in upcoming 5.0.x
releases.

• Implemented Index Merge optimization for OR clauses. See Section 7.2.6, “Index Merge Optim-
ization”.

• Basic support for stored procedures (SQL:2003 style). See Chapter 19, Stored Procedures and
Functions.

• Added SELECT INTO list_of_vars, which can be of mixed (that is, global and local)
types. See Section 19.1.6.3, “SELECT ... INTO Statement”.

• Easier replication upgrade (5.0.0 masters can read older binary logs and 5.0.0 slaves can read
older relay logs). See Section 6.5, “Replication Compatibility Between MySQL Versions” for
more details). The format of the binary log and relay log is changed compared to that of MySQL
4.1 and older.

• Important note: If you upgrade to MySQL 4.1.1 or higher, it is difficult to downgrade back to
4.0 or 4.1.0! That is because, for earlier versions, InnoDB is not aware of multiple tablespaces.

Bugs fixed:

D.2. Changes in release 4.1.x (Production)
Version 4.1 of the MySQL server includes many enhancements and new features. Binaries for this
version are available for download at http://dev.mysql.com/downloads/mysql-4.1.html.

• Subqueries and derived tables (unnamed views). See Section 13.1.8, “Subquery Syntax”.

• INSERT ... ON DUPLICATE KEY UPDATE ... syntax. This allows you to UPDATE an
existing row if the insert would cause a duplicate value in a PRIMARY or UNIQUE key. (RE-
PLACE allows you to overwrite an existing row, which is something entirely different.) See Sec-
tion 13.1.4, “INSERT Syntax”.

• A newly designed GROUP_CONCAT() aggregate function. See Section 12.9, “Functions and
Modifiers for Use with GROUP BY Clauses”.

• Extensive Unicode (UTF8) support.

• Table names and column names now are stored in UTF8. This makes MySQL more flexible, but
might cause some problems upgrading if you have table or column names that use characters
outside of the standard 7-bit US-ASCII range. See Section 2.10.2, “Upgrading from Version 4.0
to 4.1”.

• Character sets can be defined per column, table, and database.

• New key cache for MyISAM tables with many tunable parameters. You can have multiple key
caches, preload index into caches for batches...

• BTREE index on HEAP tables.

• Support for OpenGIS spatial types (geographical data). See Chapter 18, Spatial Extensions in
MySQL.

MySQL Change History

1210

http://dev.mysql.com/downloads/mysql-4.1.html

• SHOW WARNINGS shows warnings for the last command. See Section 13.5.4.20, “SHOW
WARNINGS Syntax”.

• Faster binary protocol with prepared statements and parameter binding. See Section 22.2.4, “C
API Prepared Statements”.

• You can now issue multiple statements with a single C API call and then read the results in one
go. See Section 22.2.9, “C API Handling of Multiple Query Execution”.

• Create Table: CREATE [TEMPORARY] TABLE [IF NOT EXISTS] table2 LIKE
table1.

• Server based HELP command that can be used in the mysql command-line client (and other cli-
ents) to get help for SQL statements.

For a full list of changes, please refer to the changelog sections for each individual 4.1.x release.

D.2.1. Changes in release 4.1.10 (not released yet)

D.2.2. Changes in release 4.1.10 (to be released soon)
Functionality added or changed:

• From the Windows distribution, predefined accounts without passwords for remote users
("root@%", "@%") were removed (other distributions never had them).

• Added mysql_library_init() and mysql_library_end() as synonyms for the
mysql_server_init() and mysql_server_end() C API functions.
mysql_library_init() and mysql_library_end() are #define symbols, but the
names more clearly indicate that they should be called when beginning and ending use of a
MySQL C API library no matter whether the application uses libmysqlclient or
libmysqld. (Bug #6149)

• The server now issues a warning when lower_case_table_names=2 and the data direct-
ory is on a case-sensitive filesystem, just as when lower_case_table_names=0 on a case-
insensitive filesystem. (Bug #7887)

• The server now issues a warning to the error log when it encounters older tables that contain
character columns that might be interpreted by newer servers to have a different column length.
(Bug #6913) See Section 2.10.2, “Upgrading from Version 4.0 to 4.1” for a discussion of this
problem and what to do about it.

• InnoDB: When MySQL/InnoDB is compiled on Mac OS X 10.2 or earlier, detect the operating
system version at run time and use the fcntl() file flush method on Mac OS X versions 10.3
and later. Apple had disabled fsync() in Mac OS X for internal disk drives, which caused cor-
ruption at power outages.

• InnoDB: A shared record lock (LOCK_REC_NOT_GAP) is now taken for a matching record in
the foreign key check because inserts can be allowed into gaps.

• InnoDB: Relaxed locking in INSERT...SELECT, single table UPDATE...SELECT and single ta-
ble DELETE...SELECT clauses when innobase_locks_unsafe_for_binlog is used and isolation
level of the transaction is not serializable. InnoDB uses consistent read in these cases for a se-
lected table.

Bugs fixed:

• Fixed LOAD INDEX statement to actually load index in memory. (Bug #8452)

MySQL Change History

1211

• If multiple prepared statements were executed without retrieving their results, executing one of
them again would cause the client program to crash. (Bug #8330)

• Non-numeric values inserted into a YEAR column were being stored as 2000 rather than as
0000. (Bug #6067)

• Fixed a failure of multiple-table updates to replicate properly on slave servers when -
-replicate-*-table options had been specified. (Bug #7011)

• mysql_stmt_close() C API function was not clearing an error indicator when a previous
prepare call failed, causing subsequent invocations of error-retrieving calls to indicate spurious
error values. (Bug #7990)

• Fixed failure of CREATE TABLE ... LIKE Windows when the source or destination table
was located in a symlinked database directory. (Bug #6607)

• With lower_case_table_names set to 1, mysqldump on Windows could write the same
table name in different lettercase for different SQL statements. Fixed so that consistent lettercase
is used. (Bug #5185) HAVING that referred to RAND() or a user-defined function in the SE-
LECT part through an alias could cause a crash or wrong value. (Bug #8216)

• If one used CONVERT_TZ() function in SELECT, which in its turn was used in CREATE TA-
BLE statements, then system time zone tables were added to list of tables joined in SELECT and
thus erroneous result was produced. (Bug #7899)

• Fixed a bug in CONV() function returning unsigned BIGINT number (third argument is posit-
ive, and return value does not fit in 32 bits). (Bug #7751)

• Fixed a failure of the IN() operator to return correct result if all values in the list were con-
stants and some of them were using substring functions, for example, LEFT(), RIGHT(), or
MID().

• Fixed problem with SHOW INDEX reporting Sub_part values in bytes rather than characters
for columns with a multi-byte character set. (Bug #7943)

• Fixed a crash in CONVERT_TZ() function when its second or third argument was from a
const table (see Section 7.2.1, “EXPLAIN Syntax (Get Information About a SELECT)”). (Bug
#7705)

• Correct a problem with mysql_config, which was failing to produce proper zlib option for
linking under some circumstances. (Bug #6273)

• Fixed a problem with calculation of number of columns in row comparison against a subquery.
(Bug #8020)

• Fixed erroneous output resulting from SELECT DISTINCT combined with a subquery and
GROUP BY. (Bug #7946)

• Fixed server crash in comparing a nested row expression (for example row(1,(2,3))) with a
subquery. (Bug #8022)

• Fixed server crash resulting from certain correlated subqueries with forward references
(referring to an alias defined later in the outer query). (Bug #8025)

• Fixed server crash resulting from re-execution of prepared statements containing subqueries.
(Bug #8125)

• Removed a dependence of boolean full-text search on --default-character-set option.
(Bug #8159)

• Fixed a crash in a boolean full-text search in certain joins. (Bug #8234)

• Fixed erroneous comparison where strings that began with CHAR(31) were considered equal to
the empty string. (Bug #8134)

MySQL Change History

1212

• Add description of debug command to mysqladmin help output. (Bug #8207)

• perror.exe was always returning ``Unknown error'' on Windows. See Section 8.12, “perror,
Explaining Error Codes”. (Bug #7390)

• Modify SET statements produced by mysqldump to write quoted strings using single quotes
rather than double quotes. This avoids problems if the dump file is reloaded while the AN-
SI_QUOTES SQL mode is in effect. (Bug #8148)

• Fixed a bug where ALTER TABLE improperly would accept an index on a TIMESTAMP
column that CREATE TABLE would reject. (Bug #7884)

• Fixed a bug in multiple-table UPDATE statements that could cause spurious Table
'#sql_....' is full errors if the number of rows to update is big enough. (Bug #7788)

• Fixed a problem where SHOW INDEX on a MERGE table could crash a debugging version of the
server. (Bug #7377)

• Fixed a problem where adding an ORDER BY clause for an indexed column would cause a SE-
LECT to return an empty result. (Bug #7311)

• Fixed a problem where ALTER TABLE on a TEMPORARY table with a mixed-lettercase name
could cause the table to disappear when lower_case_table_names was set to 2. (Bug
#7261)

• Fixed a problem with key cache statistics being reported incorrectly by the server after receipt of
a SIGHUP signal. (Bug #4285)

• Fixed a problem that caused mysql_stmt_prepare() to be very slow when used in client
programs on Windows. (Bug #5787)

• For indexes, SHOW CREATE TABLE now displays the index type even if it is the default, for
storage engines that support multiple index types. (Bug #7235)

• Fixed a bug where the use of GROUP_CONCAT() with HAVING caused a server crash. (Bug
#7769)

• Fixed a bug where comparing the result of a subquery to a non-existent column caused a server
crash on Windows. (Bug #7885)

• Fixed a bug which caused TIMEDIFF() function to return wrong results if one of its arguments
had non-zero microsecond part (Bug #7586).

• Fixed a bug which caused TIMESTAMP columns with display width specified to be not identical
to DATETIME columns when server was run in MAXDB mode (Bug #7418).

• Fixed a bug in UNION statements that resulted in the wrong number of the examined rows re-
ported in the slow query log.

• Fixed a bug in a combination of -not and trunc* operators of full-text search. Using more
than one truncated negative search term, was causing empty result set.

• InnoDB: Fixed a bug introduced in 4.1.9 to the Windows version if you used in-
nodb_file_per_table. mysqld would stop and complain about Windows error number 87
in a file operation. (See the Bugs database or the 4.1.9 change notes about a workaround for that
bug in 4.1.9). (Bug #8021)

• InnoDB: Corrected the handling of trailing spaces in the ucs2 character set. (Bug #7350)

• InnoDB: Use native tmpfile() function on Netware. All InnoDB temporary files are created
under sys:\tmp. Previously, InnoDB temporary files were never deleted on Netware.

• Fixed a bug in max_heap_table_size handling, that resulted in Table is full error
when the table was still smaller than the limit. (Bug #7791).

MySQL Change History

1213

• Fixed a symlink vulnerability in the mysqlaccess script. Reported by Javier Fernandez-Sanguino
Pena and Debian Security Audit Team [http://www.debian.org/security/audit]. (CAN-2005-0004
[http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2005-0004])

• mysqlbinlog forgot to add backquotes around the collation of user variables (causing later pars-
ing problems as BINARY is a reserved word). (Bug #7793)

• Ensured that mysqldump --single-transaction sets its transaction isolation level to REPEAT-
ABLE READ before proceeding (otherwise if the MySQL server was configured to run with a
default isolation level lower than REPEATABLE READ it could give an inconsistent dump).
(Bug #7850)

• Changed mysql client so that including \p as part of a prompt command uses the name of the
shared memory connection when the connection is using shared memory. (Bug #7922)

• Fixed a problem in the server where executing a multi-statement query more than once with the
query cache active could yield incorrect result sets. (Bug #7966)

• Fixed that a 4.1.10 slave can connect to a master < 3.23.50 without hanging (the reason for the
hang is a bug in these quite old masters -- SELECT @@unknown_var hangs them -- which
was fixed in MySQL 3.23.50). (Bug #7965)

D.2.3. Changes in release 4.1.9 (11 Jan 2005)
Functionality added or changed:

• mysqld_safe no longer tests for the presence of the data directory when using a relatively-loc-
ated server binary. It just assumes the directory is there, and fails to start up if it is not. This al-
lows the data directory location to be specified on the command line, and avoids running a serv-
er binary that was not intended. (Bug #7249)

• The naming scheme of the Windows installation packages has changed slightly:

• The platform suffix was changed from -win to -win32

• The product descriptions -noinstall and -essential have been moved in front of the
version number

Examples: mysql-essential-4.1.9-win32.msi, mysql-noin-
stall-4.1.9-win32.zip See Section 2.3, “Installing MySQL on Windows”.

• The Mac OS X 10.3 installation disk images now include a MySQL Preference Pane for the Mac
OS X Control Panel that enables the user to start and stop the MySQL server via the GUI and
activate and deactivate the automatic MySQL server startup on bootup.

• The MySQL-shared-compat Linux RPM now includes the 3.23 as well as the 4.0
libysqlclient.so shared libraries. (Bug #6342)

• Seconds_Behind_Master is NULL (which means ``unknown'') if the slave SQL thread is
not running, or if the slave I/O thread is not running or not connected to master. It is zero if the
SQL thread has caught up with the I/O thread. It no longer grows indefinitely if the master is
idle.

• InnoDB: Do not acquire an internal InnoDB table lock in LOCK TABLES if AUTOCOMMIT=1.
This helps in porting old MyISAM applications to InnoDB. InnoDB table locks in that case
caused deadlocks very easily.

• InnoDB: Print a more descriptive error and refuse to start InnoDB if the size of ibdata files is
smaller than what is stored in the tablespace header; innodb_force_recovery overrides
this.

MySQL Change History

1214

http://www.debian.org/security/audit
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2005-0004

• The MySQL server aborts immediately instead of simply issuing a warning if it is started with
the --log-bin option but cannot initialize the binary log at startup (that is, an error occurs
when writing to the binary log file or binary log index file).

• The binary log file and binary log index file now behave like MyISAM when there is a "disk
full" or "quota exceeded" error. See Section A.4.3, “How MySQL Handles a Full Disk”.

Bugs fixed:

• Fixed problem where running mysql_fix_privilege_tables could result in grant table columns
with too-short lengths if the server character set had been set to a multi-byte character set first.
(Bug #7539)

• InnoDB: Fixed the critical bug if you enabled innodb_file_per_table in my.cnf. If
you shut down mysqld, records could disappear from the secondary indexes of a table. Unfortu-
nately, on Windows a new Bug #8021 was introduced. Windows users of in-
nodb_file_per_table should put a line innodb_flush_method=unbuffered to
their my.cnf or my.ini to work around 8021. (Bug #7496)

• InnoDB: Fixed a bug: 32-bit mysqld binaries built on HP-UX-11 did not work with InnoDB
files greater than 2 GB in size. (Bug #6189)

• InnoDB: Return a sensible error code from DISCARD TABLESPACE if it fails because the ta-
ble is referenced by a FOREIGN KEY.

• InnoDB: Fixed a bug: InnoDB failed to drop a table in the background drop queue if the table
was referenced by a FOREIGN KEY constraint.

• InnoDB: Fixed a bug: if we dropped a table where an INSERT was waiting for a lock to check a
FOREIGN KEY constraint, then an assertion would fail in
lock_reset_all_on_table().

• InnoDB: Fix a little bug: we looked at the physical size of a stored SQL NULL value from a
wrong field in the index; this has probably caused no bugs visible to the user. It caused only
some extra space to be used in some rare cases.

• InnoDB: Use the fcntl() file flush method on Mac OS X versions 10.3 and up. Apple had
disabled fsync() in Mac OS X for internal disk drives, which caused corruption at power out-
ages.

• mysqladmin password now checks whether the server has --old-passwords turned on or
predates 4.1 and uses the old-format password if so. (Bug #7451)

• Added a --default-character-set option to mysqladmin to avoid problems when the
default character set is not latin1. (Bug #7524)

• Fix a problem with truncation of FLOAT values. (Bug #7361)

• Fixed a bug in PROCEDURE ANALYSE(), which did not quote some ENUM values properly.
(Bug #2813)

• Fixed a bug that caused incorrect results for complex datetime expressions containing casts of
datetime values to TIME or DATE values. (Bug #6914)

• Include compression library flags in the output from mysql_config --lib_r. (Bug #7021)

• Corrected a problem with mysql_config not producing all relevant flags from CFLAGS. (Bug
#6964)

• Corrected a problem with mysqld_safe not properly capturing output from ps. (Bug #5878)

• Fixed a bug that caused a linking failure when linking both the MySQL client library and IMAP

MySQL Change History

1215

library. (Bug #7428)

• Fixed table corruption bug when using INSERT DELAYED with prepared statements.

• Fixed a bug that caused microseconds to be gobbled from the string result of the
STR_TO_DATE function, if there is some other specifier in the format string following %f.
(Bug #7458)

• Made the MySQL server accept executing SHOW CREATE DATABASE even if the connection
has an open transaction or locked tables. Refusing it made mysqldump --single-transaction
sometimes fail to print a complete CREATE DATABASE statement for some dumped databases.
(Bug #7358)

• Fixed that, when encountering a ``disk full'' or ``quota exceeded'' write error, MyISAM some-
times didn't sleep and retry the write, thus resulting in a corrupted table. (Bug #7714)

• Fixed that --expire-log-days was not honored if using only transactions. (Bug #7236)

• Fixed that a slave could crash after replicating many ANALYZE TABLE, OPTIMIZE TABLE,
or REPAIR TABLE statements from the master. (Bug #6461, Bug #7658)

D.2.4. Changes in release 4.1.8 (14 Dec 2004)
Note: Due to a libtool-related bug in the source distribution, the creation of shared libmysql-
client libraries was not possible (the resulting files were missing the .so file name extension).
The file ltmain.sh was updated to fix this problem and the resulting source distribution was re-
leased as mysql-4.1.8a.tar.gz. This modification did not affect the binary packages. (Bug
#7401)

Functionality added or changed:

• For ALTER DATABASE, the database name now can be omitted to apply the change to the de-
fault database.

• Added WITH CONSISTENT SNAPSHOT clause to START TRANSACTION to begin a trans-
action with a consistent read.

• Added --order-by-primary to mysqldump, to sort each table's data in a dump file. This
may be useful when dumping a MyISAM table which will be loaded into an InnoDB table.
Dumping a MyISAM table with this option is considerably slower than without.

• InnoDB: Do not periodically write SHOW INNODB STATUS information to a temporary file
unless the configuration option innodb_status_file=1 is set.

• InnoDB: Commit after every 10,000 copied rows when executing ALTER TABLE. This makes
it much faster to recover from an aborted ALTER TABLE or OPTIMIZE TABLE.

• FULLTEXT index block size is changed to be 1024 instead of 2048.

• Added --disable-log-bin option to mysqlbinlog. Using this option you can disable bin-
ary logging for the statements produced by mysqlbinlog. That is, mysqlbinlog -
-disable-log-bin <file_name> | mysql won't write any statements to the MySQL
server binary log.

• The --master-data option for mysqldump now takes an optional argument of 1 or 2 to pro-
duce a non-commented or commented CHANGE MASTER TO statement. The default is 1 for
backward compatibility.

• mysqldump --single-transaction --master-data now is able to take an online
(non-blocking) dump of InnoDB and report the corresponding binary log coordinates. This
makes a backup suitable for point-in-time recovery, roll-forward or replication slave creation.

MySQL Change History

1216

See Section 8.8, “The mysqldump Database Backup Program”.

• Added --lock-all-tables to mysqldump to lock all tables by acquiring a global read
lock.

• Added --hex-blob option to mysqldump for dumping binary string columns using hexa-
decimal notation.

• Added mysql_hex_string() C API function that hex-encodes a string.

• In the normal log MySQL now prints the logposition for Binlog Dump requests.

• Added [mysql_cluster] section to my.cnf file for configuration settings specific to
MySQL Cluster. ndb-connectstring variable moved here.

• A connection doing a rollback now displays "Rolling back" in the State column of SHOW
PROCESSLIST.

• mysqlbinlog now prints an informative commented line (thread id, timestamp, server id, etc)
before each LOAD DATA INFILE, like it does for other queries; unless --short-form is
used.

Bugs fixed:

• Fixed incorrect referencing to column by name from subquery to outer query in case of using
temporary table by outer query and placing subquery in the WHERE clause. (Bug #7079)

• Fixed a bug in authentication code that allowed a malicious user to crash the server with spe-
cially crafted packets (using a modified client library). (Bug #7187)

• Fixed a crashing bug in a string function LEFT, when this function is part of the expression
which is used as GROUP BY field. (Bug #7101)

• Fixed bug which caused MySQL to require privileges on system time zone description tables for
implicit access to them (i.e. if one set time_zone variable or used CONVERT_TZ() function)
in case when some table-level or column-level privileges existed. (Bug #6765)

• mysql_stmt_data_seek(stmt,0) now rewinds a counter and enables buffered rows to
be re-fetched on the client side. (Bug #6996)

• Fixed an insufficient privilege check in SHOW CREATE TABLE command. (Bug #7043)

• Fixed a rare memory corruption (that resulted in a crash) in MATCH ... AGAINST on
columns that use multi-byte character sets. (Bug #6269)

• Fixed NULL processing in ALL/SOME subqueries. (Bug #6247)

• Fixed execution complex queries with subqueries. (Bug #6406, Bug #6841)

• Fixed initialization of some internal structures for first execution. (Bug #6517)

• Backported a fix for the fulltext interface from MySQL 5.0. (Bug #6523)

• Fixed NULL value handling in case of empty results in subqueries. (Bug #6806)

• Prevent adding CREATE TABLE .. SELECT query to the binary log when the insertion of
new records partially failed. (Bug #6682)

• INSERT ... SELECT no longer reports spurious "column truncated" warnings (Bug #6284)

• Fixed a bug that could cause "Record has changed since last read in table" error message in
some queires on HEAP tables that contain only one row. (Bug #6748)

MySQL Change History

1217

• mysqld_safe was in many cases ignoring any --no-defaults, --defaults-file, or -
-defaults-extra-file arguments. Those arguments are now honored, and this may
change what options are passed to mysqld in some installations.

• The server was interpreting CHAR BINARY and VARCHAR BINARY columns from 4.0 tables
as having the BINARY and VARBINARY data types. Now they are interpreted as CHAR and
VARCHAR columns that have the binary collation of the column's character set. (This is the same
way that CHAR BINARY and VARCHAR BINARY are handled for new tables created in 4.1.)

• Fixed spurious "duplicate key" error from REPLACE or INSERT ... ON DUPLICATE KEY
UPDATE statements performing multiple-row insert in the table that had unique and fulltext in-
dexes. (Bug #6784)

• Fixed a bug in execution of subqueries in SET and DO statements which caused wrong results to
be returned from subsequent queries. (Bug #6462)

• Fixed a bug which allowed server to accept datetime values with wrong year part. Also now
server performs same checks for datetime values passed through MYSQL_TIME structure as for
datetime values passed as strings. (Bug #6266)

• Fixed a bug with INSERT for a table with FULLTEXT indexes. Under rare circumstances, this
could result in a corrupted table if words of different lengths may be considered equal. This is
possible in some collations, for example, in utf8_general_ci or latin1_german2_ci.
(Bug #6265)

• InnoDB: Do not intentionally crash mysqld if the buffer pool is exhausted by the lock table; re-
turn error 1206 instead. Do not intentionally crash mysqld if we cannot allocate the memory
for the InnoDB buffer pool. (Bug #6817) (Bug #6827)

• InnoDB: Let InnoDB's FOREIGN KEY parser to remove the latin1 character 0xA0 from the
end of an unquoted identifier. The EMS MySQL Manager in ALTER TABLE adds that charac-
ter after a table name, which caused error 121 when we tried to add a new constraint.

• InnoDB: Refuse to open new-style tables created with MySQL 5.0.3 or later. (Bug #7089)

• InnoDB: Do not call rewind() when displaying SHOW INNODB STATUS information on
stderr.

• InnoDB: Made the foreign key parser better aware of quotes. (Bug #6340)

• InnoDB: If one used INSERT IGNORE to insert several rows at a time, and the first inserts
were ignored because of a duplicate key collision, then InnoDB in a replication slave assigned
AUTO_INCREMENT values 1 bigger than in the master. This broke the MySQL replication.
(Bug #6287)

• InnoDB: Fixed a bug: InnoDB ignored in innodb_data_file_path the max specification
in :autoextend:max:2000M. This bug was introduced in 4.1.1.

• InnoDB: Fixed a bug: innodb_locks_unsafe_for_binlog still uses next-key locking
(Bug #6747). InnoDB used next-key locking when record matched completely to search tuple.
This unnecessary next-key locking is now removed when in-
nodb_locks_unsafe_for_binlog option is used.

• InnoDB: Fix two hangs: FOREIGN KEY constraints treated table and database names as case-
insensitive. RENAME TABLE t TO T would hang in an endless loop if t had a foreign key
constraint defined on it. Fix also a hang over the dictionary mutex that would occur if one tried
in ALTER TABLE or RENAME TABLE to create a foreign key constraint name that collided
with another existing name. (Bug #3478)

• If STMT_ATTR_UPDATE_MAX_LENGTH is set for a prepared statement,
mysql_stmt_store_result() updates field->max_length for numeric columns as
well. (Bug#6096)

MySQL Change History

1218

• Prepared statements now handle ZEROFILL when converting integer to string.

• Fixed crash when a call to mysql_stmt_store_result() occurred without a preceding
call to mysql_stmt_bind_result().

• Fixed crash in prepared statements when using SELECT * FROM t1 NATURAL JOIN
t2....

• Fixed crash in prepared statements when using SELECT ... PROCEDURE.

• Fixed crash in prepared statements when using subqueries.

• GROUP_CONCAT(...ORDER BY) when used with prepared statements gave wrong sorting
order.

• CREATE TABLE created_table didn't signal when table was created. This could cause a
DROP TABLE created_table in another thread to wait "forever".

• Server warnings now are reset when you execute a prepared statement.

• Improved performance of identifier comparisons (if many tables or columns are specified).

• OPTIMIZE TABLE, REPAIR TABLE, and ANALYZE TABLE are now replicated without any
error code in the binary log. (Bug #5551)

• LOAD DATA INFILE now works with option replicate-rewrite-db. (Bug #6353)

• Fixed a bug which caused a crash when only the slave I/O thread was stopped and started. (Bug
#6148)

• Changed semantics of CREATE/ALTER/DROP DATABASE statements so that replication of
CREATE DATABASE is possible when using --binlog-do-db and -
-binlog-ignore-db. (Bug #6391)

• If a connection had an open transaction but had done no updates to transactional tables (for ex-
ample if had just done a SELECT FOR UPDATE then executed a non-transactional update, that
update automatically committed the transaction (thus releasing InnoDB's row-level locks etc).
(Bug #5714)

• If a connection was interrupted by a network error and did a rollback, the network error code got
stored into the BEGIN and ROLLBACK binary log events; that caused superfluous slave stops.
(Bug #6522)

• A sequence of BEGIN (or SET AUTOCOMMIT=0), FLUSH TABLES WITH READ LOCK,
transactional update, COMMIT, FLUSH TABLES WITH READ LOCK could hang the connec-
tion forever and possibly the MySQL server itself. This happened for example when running the
innobackup script several times. (Bug #6732)

• mysqlbinlog did not print SET PSEUDO_THREAD_ID statements in front of LOAD DATA
INFILE statements inserting into temporary tables, thus causing potential problems when
rolling forward these statements after restoring a backup. (Bug #6671)

D.2.5. Changes in release 4.1.7 (23 Oct 2004: Produc-
tion)

Functionality added or changed:

• MOD() no longer rounds arguments with a fractional part to integers. Now it returns exact re-
mainder after division. (Bug #6138)

MySQL Change History

1219

• InnoDB: Added a startup option and settable system variable innodb_table_locks for
making LOCK TABLE acquire also InnoDB locks. The default value is 1, which means that
LOCK TABLES causes also InnoDB internally to take a table lock. In applications using AUTO-
COMMIT=1 and LOCK TABLES, InnoDB's internal table locks that were added in 4.0.20 and
4.1.2 can cause deadlocks. You can set innodb_table_locks=0 in my.cnf to remove that
problem. (Bug #3299, Bug #5998)

• See Section 15.17, “Restrictions on InnoDB Tables”. (Bug #3299, Bug #5998) InnoDB: SHOW
TABLE STATUS now shows the creation time of the table for InnoDB. Note that this
timestamp might not be the correct time because, e.g., ALTER TABLE changes this timestamp.

• InnoDB: If innodb_thread_concurrency would be exceeded, let a thread sleep 10 ms
before entering the FIFO queue; previously, the value was 50 ms.

Bugs fixed:

• Fixed a bug with FOUND_ROWS() used together with LIMIT clause in prepared statements.
(Bug#6088)

• Fixed a bug with NATURAL JOIN in prepared statements. (Bug#6046).

• Fixed a bug in join of tables from different databases having columns with identical names
(prepared statements). (Bug#6050)

• Now implicit access to system time zone description tables (which happens when you set
time_zone variable or use CONVERT_TZ() function) does not require any privileges. (Bug
#6116)

• Fixed a bug which caused the server to crash when the deprecated libmysqlclient function
mysql_create_db() was called. (Bug #6081)

• Fixed REVOKE ALL PRIVILEGES, GRANT OPTION FROM user so that all privileges
are revoked correctly. (Bug #5831). This corrects a case that the fix in 4.1.6 could miss.

• Fixed crash when selecting from a HEAP table with key_column IS NOT NULL. This could
also cause a crash if not all index parts where used. (Bug #6082)

• Fixed a bug that could cause MyISAM index corruption when key values start with character
codes below BLANK. This was caused by the new key sort order in 4.1. (Bug #6151)

• InnoDB: Fixed a bug in LOAD DATA INFILE…REPLACE printing duplicate key error when
executing the same load query several times. (Bug #5835)

• Fixed a bug in the prepared statements protocol when wrong metadata was sent for SELECT
statements not returning a result set (such as SELECT ... INTO OUTFILE). (Bug #6059)

• Fixed bug which allowed one to circumvent missing UPDATE privilege if one had INSERT and
SELECT privileges for table with primary key. (Bug #6173)

• Fixed a bug in libmysqlclient with wrong conversion of negative time values to strings.
(Bug #6049).

• Fixed a bug in libmysqlclient with wrong conversion of zero date values (0000-00-00)
to strings. (Bug #6058)

• Fixed a bug that caused the server to crash on attempt to prepare a statement with RAND(?).
(Bug #5985)

• Fixed a bug with handling of DATE, TIME, and DATETIME columns in the binary protocol. The
problem is compiler-specific and could have been observed on HP-UX, AIX, Solaris9, when
compiling with native compiler. (Bug #6025)

MySQL Change History

1220

• Fixed a bug with handling of TINYINT columns in the binary protocol. The problem is specific
to platforms where the C compiler has the char data type unsigned by default. (Bug #6024)

• InnoDB: Fixed problem introduced in MySQL 4.0.21 where a connection starting a transaction,
doing updates, then FLUSH TABLES WITH READ LOCK, then COMMIT, would cause replic-
ation slaves to stop (complaining about error 1223). Bug surfaced when using the InnoDB in-
nobackup script. (Bug #5949)

• InnoDB: Release the dictionary latch during a long cascaded FOREIGN KEY operation, so that
we do not starve other users doing CREATE TABLE or other DDL operation. This caused a no-
torious 'Long semaphore wait' message to be printed to the .err log. (Bug #5961)

D.2.6. Changes in release 4.1.6 (10 Oct 2004)
Functionality added or changed:

• Added option --sigint-ignore to the mysql command line client to make it ignore
SIGINT signals (typically the result of the user pressing Control-C).

• InnoDB: Added the startup option and settable global variable innodb_max_purge_lag for
delaying INSERT, UPDATE and DELETE operations when the purge operations are lagging.
The default value of this parameter is zero, meaning that there are no delays. See Section 15.13,
“Implementation of Multi-Versioning”.

• InnoDB: The innodb_autoextend_increment startup option that was introduced in re-
lease 4.1.5 was made a settable global variable. (Bug #5736)

• InnoDB: If DROP TABLE is invoked on an InnoDB table for which the .ibd file is missing,
print to error log that the table was removed from the InnoDB data dictionary, and allow
MySQL to delete the .frm file. Maybe DROP TABLE should issue a warning in this case.

• TIMESTAMP columns now can store NULL values. To create such a column, you must explicitly
specify the NULL attribute in the column specification. (Unlike all other column types,
TIMESTAMP columns are NOT NULL by default.)

• Now if ALTER TABLE converts one AUTO_INCREMENT column to another
AUTO_INCREMENT column it preserves zero values (this includes the case that we don't change
such column at all).

• Now if ALTER TABLE converts some column to TIMESTAMP NOT NULL column it converts
NULL values to current timestamp value (One can still get old behavior by setting system
TIMESTAMP variable to zero).

• On Windows, the MySQL configuration files included in the package now use .ini instead of
.cnf as the file name suffix.

Bugs fixed:

• Fixed a bug that caused the server to crash on attempt to execute a prepared statement with a
subselect inside a boolean expression. (Bug #5987)

• Fixed a bug that caused the server to sometimes choose non-optimal execution plan for a pre-
pared statement executed with changed placeholder values. (Bug #6042)

• InnoDB: Make the check for excessive semaphore waits tolerate glitches in the system clock (do
not crash the server if the system time is adjusted while InnoDB is under load.). (Bug #5898)

• InnoDB: Fixed a bug in the InnoDB FOREIGN KEY parser that prevented ALTER TABLE of
tables containing '#' in their names. (Bug #5856)

MySQL Change History

1221

• InnoDB: Fixed a bug that prevented ALTER TABLE t DISCARD TABLESPACE from work-
ing. (Bug #5851)

• InnoDB: SHOW CREATE TABLE now obeys the SET SQL_MODE=ANSI and SET
SQL_QUOTE_SHOW_CREATE=0 settings. (Bug #5292)

• InnoDB: Fixed a bug that caused CREATE TEMPORARY TABLE ... ENGINE=InnoDB to
terminate mysqld when running in innodb_file_per_table mode. Per-table tablespaces
for temporary tables from now on are created in the temporary directory of mysqld. (Bug
#5137)

• InnoDB: Fixed some (not all) UTF-8 bugs in column prefix indexes. (Bug #5975)

• InnoDB: If one updated a column so that its size changed, or updated it to an externally stored
(TEXT or BLOB) value, then ANOTHER externally stored column would show up as 512 bytes
of good data + 20 bytes of garbage in a consistent read that fetched the old version of the row.
(Bug #5960)

• InnoDB: Change error code to HA_ERR_ROW_IS_REFERENCED if we cannot DROP a parent
table referenced by a FOREIGN KEY constraint; this error number is less misleading than the
previous number HA_ERR_CANNOT_ADD_FOREIGN, but misleading still.

• Fixed REVOKE ALL PRIVILEGES, GRANT OPTION FROM user so that all privileges
are revoked correctly. (Bug #5831)

• Fixed a bug that caused the server to crash when character set conversion was implicitly used in
prepared mode; for example, as in 'abc' LIKE CONVERT('abc' as utf8). (Bug
#5688)

• The mysql_change_user() C API function now frees all prepared statements associated
with the connection. (Bug #5315)

• Fixed a bug when inserting NULL into an AUTO_INCREMENT column failed, when using pre-
pared statements. (Bug #5510)

• Fixed slave SQL thread so that the SET COLLATION_SERVER... statements it replicates
don't advance its position (so that if it gets interrupted before the actual update query, it later re-
does the SET). (Bug #5705)

• Fixed that if the slave SQL thread found a syntax error in a query (which should be rare, as the
master parsed it successfully), it stops. (Bug #5711)

• Fixed that if a write to a MyISAM table fails because of a full disk or an exceeded disk quota, it
prints a message to the error log every 10 minutes, and waits until disk space becomes available.
(Bug #3248)

• Now MySQL does not prefer columns, which are mentioned in select list but are renamed, over
columns from other tables participating in FROM clause when it resolves GROUP BY clause (e.g.
SELECT t1.a AS c FROM t1, t2 ORDER BY a produces an error if both t1 and t2
tables contain a column). (Bug #4302)

• Behavior of ALTER TABLE converting column containing NULL values to
AUTO_INCREMENT column is no longer affected by NO_AUTO_VALUE_ON_ZERO mode.
(Bug #5915).

D.2.7. Changes in release 4.1.5 (16 Sep 2004)
Functionality added or changed:

• InnoDB: Added configuration option innodb_autoextend_increment for setting the
size in megabytes by which InnoDB tablespaces are extended when they become full. The de-

MySQL Change History

1222

fault value is 8, corresponding to the fixed increment of 8MB in previous versions of MySQL.

• InnoDB: The new Windows installation wizard of MySQL makes InnoDB as the MySQL de-
fault table type on Windows, unless explicitly specified otherwise. Note that it places the
my.ini file in the installation directory of the MySQL server.

Bugs fixed:

• Fixed a bug which caused the server to crash on attempt to execute a prepared statement with
BETWEEN ? AND ? and a datetime column. (Bug #5748)

• Fixed name resolving of external fields of subqueries if subquery placed in select list of query
with grouping. (Bug #5326)

• Fixed detection of using same table for updating and selecting in multi-update queries. (Bug
#5455)

• The values of the max_sort_length, sql_mode, and group_concat_max_len system
variables now are stored in the query cache with other query information to avoid returning an
incorrect result from the query cache. (Bug #5394) (Bug #5515)

• Fixed syntax analyzer with sql_mode=IGNORE_SPACE. It happened to take phrases like
default .07 as identifier.identifier. (Bug #5318)

• Fixed illegal internal field length of user variables of integer type. This showed up when creating
a table as SELECT @var_name. (Bug #4788)

• Fixed a buffer overflow in prepared statements API (libmysqlclient) when a statement contain-
ing thousands of placeholders was executed. (Bug #5194)

• Fixed a bug in the server when after reaching a certain limit of prepared statements per connec-
tion (97), statement ids began to overlap, so occasionally wrong statements were chosen for exe-
cution. (Bug #5399)

• Fixed a bug in prepared statements when LIKE used with arguments in different character sets
crashed server on first execute. (Bug #4368)

• Fixed a bug in prepared statements when providing '0000-00-00' date to a parameter lead to
server crash. (Bug #4231, Bug #4562)

• Fixed a bug in OPTIMIZE TABLE that could cause table corruption on FULLTEXT indexes.
(Bug #5327)

• InnoDB: Fixed a bug that InnoDB only allowed a maximum of 1000 connections inside InnoDB
at the same time. A higher number could cause an assertion failure in sync0arr.c, line 384. Now
we allow 1000, 10000, or 50000, depending on the buffer pool size. (Bug #5414)

D.2.8. Changes in release 4.1.4 (26 Aug 2004: Gamma)
Note: To fix a compile problem on systems that do not have automake 1.7 installed, an updated
4.1.4a source tarball has been published. In addition to resolving this automake dependency (Bug
#5319), it also fixes some reported libedit compile errors when using a non-gcc compiler (Bug
#5353).

Functionality added or changed:

• Added the CSV storage engine.

• Made internal representation of TIMESTAMP values in InnoDB in 4.1 to be the same as in 4.0.

MySQL Change History

1223

This difference resulted in incorrect datetime values in TIMESTAMP columns in InnoDB tables
after an upgrade from 4.0 to 4.1. (Bug #4492) Warning: extra steps during upgrade required!
Unfortunately this means that if you are upgrading from 4.1.x, where x <= 3, to 4.1.4 you should
use mysqldump for saving and then restoring your InnoDB tables with TIMESTAMP columns.

• The mysqld-opt Windows server was renamed to mysqld. This completes the Windows server
renaming begun in MySQL 4.1.2. See Section 2.3.9, “Selecting a MySQL Server type”.

• Added Latin language collations for the ucs2 and utf8 Unicode character sets. These are
called ucs2_roman_ci and utf8_roman_ci.

• Corrected the name of the Mac OS X StartupItem script (it must match the name of the subdir-
ectory, which was renamed to MySQLCOM in MySQL 4.1.2). Thanks to Bryan McCormack for
reporting this.

• Added --start-datetime, --stop-datetime, --start-position, and -
-stop-position options to mysqlbinlog. These make point-in-time recovery easier.

• Killing a CHECK TABLE statement does not result in the table being marked as ``corrupted''
any more; the table remains as if CHECK TABLE had not even started. See Section 13.5.5.3,
“KILL Syntax”.

• Made the MySQL server ignore SIGHUP and SIGQUIT on Mac OS X 10.3. This is needed be-
cause under this OS, the MySQL server receives lots of these signals (reported as Bug #2030).

• Support of usage of column aliases qualified by table name or alias in ORDER BY and GROUP
BY was dropped. For example the following query SELECT a AS b FROM t1 ORDER BY
t1.b is not allowed. One should use SELECT a AS b FROM t1 ORDER BY t1.a or
SELECT a AS b FROM t1 ORDER BY b instead. This was non-standard (since aliases
are defined on query level not on table level) and caused problems with some queries.

Bugs fixed:

• Fixed a bug that caused libmysql to crash when attempting to fetch a value of MEDIUMINT
column. (Bug #5126)

• Fixed a bug that caused the MySQL server to crash when attempting to execute a prepared state-
ment with SELECT ... INTO @var for a second time. (Bug #5034)

• Fixed execution of optimized IN subqueries that use compound indexes. (Bug #4435)

• Prohibited resolving of table fields in inner queries if fields do not take part in grouping for
queries with grouping (inside aggregate function arguments, all table fields are still allowed).
(Bug #4814)

• Fixed a crash after SLAVE STOP if the IO thread was in a special state. (Bug #4629)

• Fixed an old bug in concurrent accesses to MERGE tables (even one MERGE table and MyISAM
tables), that could have resulted in a crash or hang of the server. (Bug #2408)

• Fixed a bug that caused server crash on attempt to execute for a second time a prepared state-
ment with NOT in WHERE or ON clauses. (Bug #4912)

• MATCH ... AGAINST now works in a subquery. (Bug #4769)

• Fixed a bug that omitted the .err extension of the error log file (--log-error) when the
hostname contained a domain name. The domain name is now replaced by the extension. (Bug
#4997)

• Fixed a crash in myisamchk. (Bug #4901)

• Fixed a bug which caused server crash if one used the CONVERT_TZ() function with time zone

MySQL Change History

1224

described in database as parameter and this time zone was not used before. (Bug #4508)

• Support for %T, %r, %V, %v and %X, %x format specifiers was added to
STR_TO_DATE() function. (Bug #4756)

• Fixed a bug (hang) in NATURAL JOIN where joined table had no common column. (Bug
#4807)

• Fixed a crash caused by UNHEX(NULL). (Bug #4441)

• mysql_fix_privilege_tables didn't correctly handle the argument of its --password=# op-
tion. (Bug #4240, Bug #4543)

• Fixed that mysqlbinlog --read-from-remote-server sometimes couldn't accept 2 binary logs on
command line. (Bug #4507)

• Fixed that mysqlbinlog --position --read-from-remote-server had wrong # at lines. (Bug
#4506)

• If CREATE TEMPORARY TABLE t SELECT failed while loading the data, the temporary ta-
ble was not dropped. (Bug #4551)

• Fixed that when a multiple-table DROP TABLE failed to drop a table on the master server, the
error code was not written to the binary log. (Bug #4553)

• When the slave SQL thread was replicating a LOAD DATA INFILE statement, it didn't show
the statement in the output of SHOW PROCESSLIST. (Bug #4326)

• Fixed an assertion failure when reading the grant tables (Bug #4407)

• Fixed that CREATE TABLE ... TYPE=HEAP ... AS SELECT... caused replication
slave to stop. (Bug #4971)

• Fixed that mysql_options(...,MYSQL_OPT_LOCAL_INFILE,...) failed to disable
LOAD DATA LOCAL INFILE. (Bug #5038)

• Fixed that disable-local-infile option had no effect if client read it from a configura-
tion file using mysql_options(...,MYSQL_READ_DEFAULT,...). (Bug #5073)

• Fixed that SET GLOBAL SYNC_BINLOG did not work on some platforms (Mac OS X). (Bug
#5064)

• Fixed that mysql-test-run failed on the rpl_trunc_binlog test if running test from the in-
stalled (the target of 'make install') directory. (Bug #5050)

• Fixed that mysql-test-run failed on the grant_cache test when run as Unix user 'root'. (Bug
#4678)

• Fixed an unlikely deadlock which could happen when using KILL. (Bug #4810)

• Fixed a crash when one connection got KILLed while it was doing START SLAVE. (Bug
#4827)

• Made FLUSH TABLES WITH READ LOCK block COMMIT if server is running with binary
logging; this ensures that the binary log position is trustable when doing a full backup of tables
and the binary log. (Bug #4953)

• Fixed that the counter of an auto_increment column was not reset by TRUNCATE TABLE
if the table was a temporary table. (Bug #5033)

• Fixed bug which caused error to be reported when column from ORDER BY clause was present
in two tables participating in SELECT even if the second instance of column in select list was
renamed. (Bug #4302)

MySQL Change History

1225

D.2.9. Changes in release 4.1.3 (28 Jun 2004: Beta)
Note: The initial release of MySQL 4.1.3 for Windows accidentally was not compiled with support
for the Spatial Extensions (OpenGIS). This was fixed by rebuilding from the same 4.1 code snap-
shot with the missing option and releasing those packages as version 4.1.3a.

To enable compiling the newly released PHP 5 against MySQL 4.1.3 on Windows, the Windows
packages had to be rebuilt once more to add a few missing symbols to the MySQL client library.
These packages were released as MySQL 4.1.3b.

Functionality added or changed:

• Added the ARCHIVE storage engine.

• Added SQL syntax for prepared statements. See Section 13.7, “SQL Syntax for Prepared State-
ments”.

• Language-specific collations were added for the ucs2 and utf8 Unicode character sets:
Icelandic, Latvian, Romanian, Slovenian, Polish, Estonian, Swedish, Turkish, Czech, Danish,
Lithuanian, Slovak, Spanish, Traditional Spanish.

• Support for per-connection time zones was added. Now you can set the current time zone for a
connection by setting the @@time_zone system variable to a value such as '+10:00' or
'Europe/Moscow' (where 'Europe/Moscow' is the name of one of the time zones de-
scribed in the system tables). Functions like CURRENT_TIMESTAMP, UNIX_TIMESTAMP, and
so forth honor this time zone. Values of TIMESTAMP type are also interpreted as values in this
time zone. So now our TIMESTAMP type behaves similar to Oracle's TIMESTAMP WITH
LOCAL TIME ZONE. That is, values stored in such a column are normalized toward UTC and
converted back to the current connection time zone when they are retrieved from such a column.
To set up the tables that store time zone information, see Section 2.9, “Post-Installation Setup
and Testing”.

• Warning: Incompatible change! The timezone system variable has been removed and re-
placed by system_time_zone. See Section 5.2.3, “Server System Variables”.

• Basic time zone conversion function CONVERT_TZ() was added. It assumes that its first argu-
ment is a datetime value in the time zone specified by its second argument and returns the equi-
valent datetime value in the time zone specified by its third argument.

• CHECK TABLE now can be killed. It then marks the table as corrupted. See Section 13.5.5.3,
“KILL Syntax”.

• Warning: Incompatible change! C API change: mysql_shutdown() now requires a second
argument. This is a source-level incompatibility that affects how you compile client programs; it
does not affect the ability of compiled clients to communicate with older servers. See Sec-
tion 22.2.3.54, “mysql_shutdown()”.

• OPTIMIZE TABLE for InnoDB tables is now mapped to ALTER TABLE instead of ANA-
LYZE TABLE.

• sync_frm is now a settable global variable (not only a startup option).

• Added the sync_binlog=N global variable and startup option, which makes the MySQL
server synchronize its binary log to disk (fdatasync()) after every Nth write to the binary
log.

• Changed the slave SQL thread to print fewer useless error messages (no more message duplica-
tion; no more messages when an error is skipped (because of slave-skip-errors).

• DROP DATABASE IF EXISTS, DROP TABLE IF EXISTS, single-table DELETE and
single-table UPDATE are now written to the binary log even if they changed nothing on the mas-
ter (for example, even if the DELETE matched no row). The old behavior sometimes caused bad
surprises in replication setups.

MySQL Change History

1226

• Replication and mysqlbinlog now have better support for the case that the session character set
and collation variables are changed within a given session. See Section 6.7, “Replication Fea-
tures and Known Problems”.

• Added --innodb-safe-binlog server option, which adds consistency guarantees between
the content of InnoDB tables and the binary log. See Section 5.9.4, “The Binary Log”.

• LIKE now supports the use of a prepared statement parameter or delimited constant expression
as the argument to ESCAPE (Bug #4200).

Bugs fixed:

• Fixed CREATE DATABASE IF NOT EXISTS for Win32 which caused an error if database
existed. (Bug #4378)

• Added missing root account to Windows version of mysqld. (Bug #4242)

• Fixed bug in prepared EXPLAIN statement which led to server crash. (Bug #4271)

• Fixed a bug of using parameters in some prepared statements via SQL syntax. (Bug #4280)

• Fixed a bug in MERGE tables created with INSERT_METHOD=LAST, that were not able to re-
port a key number that caused ``Duplicate entry'' error for UNIQUE key in INSERT. As a result,
error message was not precise enough (error 1022 instead of error 1062) and INSERT ... ON
DUPLICATE KEY UPDATE did not work. (Bug #4008)

• Fixed a bug in DELETE from a table with FULLTEXT indexes which under rare circumstances
could result in a corrupted table, if words of different lengths may be considered equal (which is
possible in some collations, for example, in utf8_general_ci or latin1_german2_ci.)
(Bug #3808)

• Fixed too-early unlocking of tables if we have subquery in HAVING clause. (Bug #3984)

• Fixed a bug in mysqldump when it didn't return an error if the output device was filled (Bug
#1851)

• Fixed a bug in client-side conversion of string column to MYSQL_TIME application buffer
(prepared statements API). (Bug #4030)

• Fixed a bug with server crash on attempt to execute a non-prepared statement. (Bug #4236)

• Fixed a bug with server crash on attempt to prepare a statement with character set introducer.
(Bug #4105)

• Fixed bug which caused different number of warnings to be generated when bad datetime as
string or as number was inserted into DATETIME or TIMESTAMP column. (Bug #2336)

• Fixed some byte order bugs with prepared statements on machines with high-byte-first. (Bug
#4173)

• Fixed unlikely bug in the range optimizer when using many IN() queries on different key parts.
(Bug #4157)

• Fixed problem with NULL and derived tables. (Bug #4097)

• Fixed wrong UNION results if display length of fields for numeric types was set less then real
length of values in them. (Bug #4067)

• Fixed a bug in mysql_stmt_close(), which hung up when attempting to close statement
after failed mysql_stmt_fetch(). (Bug #4079)

• Fixed bug of re-execution optimized COUNT(*), MAX() and MIN() functions in prepared

MySQL Change History

1227

statements. (Bug #2687)

• Fixed a bug with COUNT(DISTINCT) performance degradation in cases like
COUNT(DISTINCT a TEXT, b CHAR(1)) (no index used). (Bug #3904)

• Fixed a bug in MATCH ... AGAINST(... IN BOOLEAN MODE) that under rare circum-
stances could cause wrong results if in the data's collation one byte could match many (like in
utf8_general_ci or latin1_german2_ci.) (Bug #3964)

• Fixed a bug in prepared statements protocol, when microseconds part of
MYSQL_TYPE_TIME/MYSQL_TYPE_DATETIME columns was not sent to the client. (Bug
#4026)

• Fixed a bug that using --with-charset with configure didn't affect the MySQL client lib-
rary. (Bug #3990)

• Fixed a bug in authentication code that allowed a malicious user to bypass password verification
with specially crafted packets (using a modified client library).

• Fixed bug with wrong result of CONCAT(?, col_name) in prepared statements. (Bug
#3796)

• Fixed potential memory overrun in mysql_real_connect() (which required a comprom-
ised DNS server and certain operating systems). (Bug #4017)

• During the installation process of the server RPM on Linux, mysqld was run as the root sys-
tem user, and if you had --log-bin=file_name, where the file was located somewhere
outside of the data directory, it created binary log files owned by root in this directory that re-
mained owned by root after the installation. This is now fixed by starting mysqld as the
mysql system user instead. (Bug #4038)

• Made DROP DATABASE honor the value of lower_case_table_names. (Bug #4066)

• The slave SQL thread refused to replicate INSERT ... SELECT if it examined more than 4
billion rows. (Bug #3871)

• mysqlbinlog didn't escape the string content of user variables, and did not deal well when these
variables were in non-ASCII character sets; this is now fixed by always printing the string con-
tent of user variables in hexadecimal. The character set and collation of the string is now also
printed. (Bug #3875)

• Fixed incorrect destruction of expression which led to crash of server on complex AND/OR ex-
pressions if query was ignored (either by a replication server because of -
-replicate-*-table rules, or by any MySQL server because of a syntax error). (Bug
#3969, Bug #4494)

D.2.10. Changes in release 4.1.2 (28 May 2004)
Functionality added or changed:

• Added the EXAMPLE storage engine.

• The mysqld Windows server was renamed to mysqld-debug. See Section 2.3.9, “Selecting a
MySQL Server type”.

• Added Handler_discover status variable.

• Added support for character set conversion and MYSQL_TYPE_BLOB type code in prepared
statement protocol.

• Added explanation of hidden SELECT of UNION in output of EXPLAIN SELECT statement.

MySQL Change History

1228

• mysql command-line client now supports multiple -e options. (Bug #591)

• New myisam_data_pointer_size system variable. See Section 5.2.3, “Server System
Variables”.

• The --log-warnings server option now is enabled by default. Disable with -
-skip-log-warnings.

• The --defaults-file=file_name option now requires that the filename must exist
(safety fix). (Bug #3413)

• mysqld_multi now creates the log in the directory named by datadir (from the [mysqld]
section in my.cnf or compiled in), not in /tmp (vulnerability ID CAN-2004-0388). Thanks to
Christian Hammers from Debian Security Team for reporting this.

• Warning: Incompatible change! String comparison now works according to the SQL standard.
Because we have that 'a' = 'a ' then from it must follow that 'a' > 'a\t'. (The latter
was not the case before MySQL 4.1.2.) To implement it, we had to change how storage engines
compare strings internally. As a side effect, if you have a table where a CHAR or VARCHAR
column in some row has a value with the last character less than ASCII(32), you have to re-
pair this table. CHECK TABLES tells you if this problem exists. (Bug #3152)

• Added support for DEFAULT CURRENT_TIMESTAMP and for ON UPDATE CUR-
RENT_TIMESTAMP specifications for TIMESTAMP columns. Now you can explicitly say that a
TIMESTAMP column should be set automatically to the current timestamp for INSERT and/or
UPDATE statements, or even prevent the column from updating automatically. Only one column
with such an auto-set feature per table is supported. TIMESTAMP columns created with earlier
versions of MySQL behave as before. Behavior of TIMESTAMP columns that were created
without explicit specification of default/on as earlier depends on its position in table: If it is the
first TIMESTAMP column, it be treated as having been specified as TIMESTAMP DEFAULT
CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP. In other cases, it would be
treated as a TIMESTAMP DEFAULT 0 column. NOW is supported as an alias for CUR-
RENT_TIMESTAMP. Warning: Incompatible change! Unlike in previous versions, explicit
specification of default values for TIMESTAMP column is never ignored and turns off the auto-
set feature (unless you have CURRENT_TIMESTAMP as the default).

• Warning: Incompatible change! Renamed prepared statements C API functions:

Old Name New Name

mysql_bind_param
()

mysql_stmt_bind_param()

mysql_bind_resul
t()

mysql_stmt_bind_result()

mysql_prepare() mysql_stmt_prepare()

mysql_execute() mysql_stmt_execute()

mysql_fetch() mysql_stmt_fetch()

mysql_fetch_colu
mn()

mysql_stmt_fetch_column()

mysql_param_coun
t()

mysql_stmt_param_count()

mysql_param_resu
lt()

mysql_stmt_param_metadata()

mysql_get_metada
ta()

mysql_stmt_result_metadata()

mysql_send_long_
data()

mysql_stmt_send_long_data()

Now all functions that operate with a MYSQL_STMT structure begin with the prefix

MySQL Change History

1229

mysql_stmt_.

• Warning: Incompatible change! The signature of the mysql_stmt_prepare() function
was changed to int mysql_stmt_prepare(MYSQL_STMT *stmt, const char
*query, unsigned long length). To create a MYSQL_STMT handle, you should use
the mysql_stmt_init() function, not mysql_stmt_prepare().

• SHOW GRANTS with no FOR clause or with FOR CURRENT_USER() shows the privileges for
the current session.

• The improved character set support introduced in MySQL 4.1.0 for the MyISAM and HEAP stor-
age engines is now available for InnoDB as well.

• A name of ``Primary'' no longer can be specified as an index name. (That name is reserved for
the PRIMARY KEY if the table has one.) (Bug #856)

• MySQL now issues a warning when a SET or ENUM column with duplicate values in the list is
created. (Bug #1427)

• Now SQL_SELECT_LIMIT variable has no influence on subqueries. (Bug #2600)

• UNHEX() function implemented. See Section 12.3, “String Functions”.

• The mysql command-line client no longer stores in the history file multiple copies of identical
queries that are run consecutively.

• Multi-line statements in the mysql command-line client now are stored in the history file as a
single line.

• UUID() function implemented. Note that it does not work with replication yet. See Sec-
tion 12.8.4, “Miscellaneous Functions”.

• Prepared statements with all types of subqueries fixed.

• MySQL now supports up to 64 indexes per table.

• MyISAM tables now support keys up to 1000 bytes long.

• MyISAM and InnoDB tables now support index prefix lengths up to 1000 bytes long.

• If you try to create a key with a key part that is too long, and it is safe to auto-truncate it to a
smaller length, MySQL now does so. A warning is generated, rather than an error.

• The ft_boolean_syntax variable now can be changed while the server is running. See Sec-
tion 5.2.3, “Server System Variables”.

• REVOKE ALL PRIVILEGES, GRANT FROM user_list is changed to a more consistent
REVOKE ALL PRIVILEGES, GRANT OPTION FROM user_list. (Bug #2642)

• Internal string-to-number conversion now supports only SQL:2003 compatible syntax for num-
bers. In particular, '0x10'+0 does not work anymore. (Actually, it worked only on some sys-
tems before, such as Linux. It did not work on others, such as FreeBSD or Solaris. Making these
queries OS-independent was the goal of this change.) Use CONV() to convert hexadecimal
numbers to decimal. E.g. CONV(MID('0x10',3),16,10)+0.

• mysqlhotcopy now works on NetWare.

• ALTER TABLE DROP PRIMARY KEY no longer drops the first UNIQUE index if there is no
primary index. (Bug #2361)

• Added latin1_spanish_ci (Modern Spanish) collation for the latin1 character set.

• Added the ENGINE table option as a synonym for the TYPE option for CREATE TABLE and
ALTER TABLE.

MySQL Change History

1230

• Added the --default-storage-engine server option as a synonym for -
-default-table-type.

• Added the storage_engine system variable as a synonym for table_type.

• Warning: Incompatible change! The Type output column for SHOW TABLE STATUS now
is labeled Engine.

• Added init_connect and init_slave system variables. The values should be SQL state-
ments to be executed when each client connects or each time a slave's SQL thread starts, respect-
ively.

• C API enhancement: SERVER_QUERY_NO_INDEX_USED and SERV-
ER_QUERY_NO_GOOD_INDEX_USED flags are now set in the server_status field of the
MYSQL structure. It is these flags that make the query to be logged as slow if mysqld was started
with --log-slow-queries --log-queries-not-using-indexes.

• For replication of MEMORY (HEAP) tables: Made the master automatically write a DELETE
FROM statement to its binary log when a MEMORY table is opened for the first time since master's
startup. This is for the case where the slave has replicated a non-empty MEMORY table, then the
master is shut down and restarted: the table is now empty on master; the DELETE FROM emp-
ties it on slave too. Note that even with this fix, between the master's restart and the first use of
the table on master, the slave still has out-of-date data in the table. But if you use the init-
file option to populate the MEMORY table on the master at startup, it ensures that the failing
time interval is zero. (Bug #2477)

• When a session having open temporary tables terminates, the statement automatically written to
the binary log is now DROP TEMPORARY TABLE IF EXISTS instead of DROP TEMPOR-
ARY TABLE, for more robustness.

• The MySQL server now returns an error if SET SQL_LOG_BIN or SET SQL_LOG_UPDATE
is issued by a user without the SUPER privilege (in previous versions it just silently ignored the
statement in this case).

• Changed that when the MySQL server has binary logging disabled (that is, no --log-bin op-
tion was used), then no transaction binary log cache is allocated for connections. This should
save binlog_cache_size bytes of memory (32KB by default) for every connection.

• Added Binlog_cache_use and Binlog_cache_disk_use status variables that count
the number of transactions that used transaction binary log and that had to flush this temporary
binary log to disk instead of using only the in-memory buffer. They can be used for tuning the
binlog_cache_size system variable.

• Added option --replicate-same-server-id.

• The Mac OS X Startup Item has been moved from the directory /Lib-
rary/StartupItems/MySQL to /Library/StartupItems/MySQLCOM to avoid a
file name collision with the MySQL Startup Item installed with Mac OS X Server. See Sec-
tion 2.12.2, “Mac OS X Notes”.

• Added option --to-last-log to mysqlbinlog, for use in conjunction with -
-read-from-remote-server.

Bugs fixed:

• Fixed check of EXPLAIN of UNION. (Bug #3639)

• Fixed a bug in a query that used DISTINCT and ORDER BY by column's real name, while the
column had an alias, specified in SELECT clause. (Bug #3681)

• mysqld could crash when a table was altered and used at the same time. This was a
4.1.2-specific bug. (Bug #3643).

MySQL Change History

1231

• Fixed bug when using impossible WHERE with PROCEDURE ANALYSE(). (Bug #2238).

• Fixed security problem in new authentication where password was not checked for changed
GRANT accounts until FLUSH PRIVILEGES was executed. (Bug #3404)

• Fixed crash of GROUP_CONCAT() on expression with ORDER BY and external ORDER BY in
a query. (Bug #3752)

• Fixed a bug in ALL/SOME subqueries in case of optimization (key field present in subquery).
(Bug #3646)

• Fixed a bug in SHOW GRANTS and EXPLAIN SELECT character set conversion. (Bug #3403)

• Prepare statements parameter do not cause error message as fields used in select list but not in-
cluded in ORDER BY list.

• UNION statements did not consult SQL_SELECT_LIMIT value when set. This is now fixed
properly, which means that this limit is applied to the top level query, unless LIMIT for entire
UNION is used.

• Fixed a bug in multiple-table UPDATE statements that resulted in an error when one of the tables
was not updated but was used in the nested query, contained therein.

• Fixed mysql_stmt_send_long_data() behavior on second execution of prepared state-
ment and in case when long data had zero length. (Bug #1664)

• Fixed crash on second execution of prepared statement with UNION. (Bug #3577)

• Fixed incorrect results of aggregate functions in subquery with empty result set. (Bug #3505)

• You can now call mysql_stmt_attr_set(...,
STMT_ATTR_UPDATE_MAX_LENGTH) to tell the client library to update
MYSQL_FIELD->max_length when doing mysql_stmt_store_result(). (Bug
#1647).

• Added support for unsigned integer types to prepared statement API (Bug #3035).

• Fixed crash in prepared statements when subquery in the FROM clause with parameter used.
(Bug #3020)

• Fixed unknown error when negative value bind to unsigned. (Bug #3223)

• Fixed aggregate function in prepared statements. (Bug #3360)

• Incorrect error message when wrong table used in multiple-table DELETE statement in prepared
statements. (Bug #3411)

• Requiring UPDATE privilege for tables which are not updated in multiple-table UPDATE state-
ment in prepared statements.

• Fixed prepared statement support for INSERT, REPLACE, CREATE, DELETE, SELECT, DO,
SET and SHOW. All other commands are prohibited via prepared statement interface. (Bug
#3398, Bug #3406, Bug #2811)

• Fixed a lot of bugs in GROUP_CONCAT(). (Bug #2695, Bug #3381, Bug #3319)

• Added optimization that allows for prepared statements using a large number of tables or tables
with a large number of columns to be re-executed significantly faster. (Bug #2050)

• Fixed bug that caused execution of prepared statements to fail then table that this statement were
using left table cache. This bug showed up as if this prepared statement used random garbage as
column names or as server crashes. (Bug #3307)

• Fixed a problem resulting from setting the character_set_results variable to NULL.

MySQL Change History

1232

(Bug #3296)

• Fixed query cache statistics.

• Fixed bug in ANALYZE TABLE on a BDB table inside a transaction that hangs server thread.
(Bug #2342)

• Fixed a symlink vulnerability in the mysqlbug script. (Bug #3284)

• Fixed a bug in parallel repair (myisamchk -p, myisam_repair_threads); sometimes the
repair process failed to repair a table. (Bug #1334)

• A query that uses both UNION [DISTINCT] and UNION ALL now works correctly. (Bug
#1428)

• Table default character set affects LONGBLOB columns. (Bug #2821)

• CONCAT_WS() makes the server die in case of illegal mix of collations. (Bug #3087)

• UTF8 charset breaks joins with mixed column/string constant. (Bug #2959)

• Fixed DROP DATABASE to report number of tables deleted.

• Fixed memory leak in the client library when statement handle was freed on closed connection
(call to mysql_stmt_close after mysql_close). (Bug #3073)

• Fixed server segfaults when processing malformed prepared statements commands. (Bug #2795,
Bug #2274)

• Fixed using subqueries with OR and AND functions. (Bug #2838)

• Fixed comparison of tables/database names with --lower_case_table_names option.
(Bug #2880)

• Removed try to check NULL if index built on column where NULL is impossible in IN subquery
optimization. (Bug #2393)

• Fixed incorrect parsing of subqueries in the FROM clause. (Bug #2421)

• Fixed processing of RAND() in subqueries with static tables. (bug #2645)

• Fixed bug with quoting of table names in mysqldump for various values of sql_mode of serv-
er. (Bug #2591)

• Fixed bug with storing values that are out of range for DOUBLE and FLOAT columns. (Bug
#2082)

• Fixed bug with compiling --with-pstack with binutils 2.13.90. (Bug #1661)

• Fixed a bug in the GRANT system. When a password was assigned to an account at the global
level and then privileges were granted at the database level (without specifying any password),
the existing password was replaced temporarily in memory until the next FLUSH PRIV-
ILEGES operation or the server was restarted. (Bug #2953)

• Fixed a bug in full-text search on multi-byte character set (such as UTF8) that appeared when a
search word was shorter than a matching word from the index (for example, searching for
``Uppsala'' when table data contain ``Uppsa*la''). (Bug #3011)

• Fixed a bug that made Max_used_connections to be less than the actual maximum number
of connections in use simultaneously.

• Fixed calculation of Index_length in HEAP table status for BTREE indexes. (Bug #2719)

• Fixed mysql_stmt_affected_rows() call to always return number of rows affected by

MySQL Change History

1233

given statement. (Bug #2247)

• Fixed crash in MATCH ... AGAINST() on a phrase search operator with a missing closing
double quote. (Bug #2708)

• Fixed output of mysqldump --tab. (Bug #2705)

• Fix for a bug in UNION operations that prevented proper handling of NULL columns. This
happened only if a column in the first SELECT node was NOT NULL. (Bug #2508)

• Fix for a bug in UNION operations with InnoDB storage engine, when some columns from one
table were used in one SELECT statement and some were used in another SELECT statement.
(Bug #2552)

• Fixed a few years old bug in the range optimizer that caused a segmentation fault on some very
rare queries. (Bug #2698)

• Fixed bug with SHOW CREATE TABLE ... which didn't properly double quotes. (Bug
#2593)

• Queries with subqueries in FROM clause locks all tables at once for now. This also fixed bugs in
EXPLAIN of subqueries in FROM output. (Bug #2120)

• Fixed bug with mysqldump not quoting ``tricky'' names correctly. (Bug #2592)

• Fix for a bug that prevented table / column privileges from being loaded on startup. (Bug #2546)

• Fixed bug in replication with CREATE TABLE ... LIKE ... that resulted in a statement
not being written to the binary log. (Bug #2557)

• Fixed memory leak in INSERT ... ON DUPLICATE KEY UPDATE (Bug #2438)

• Fixed bug in the parser, making the syntax CONVERT(expr,type) legal again.

• Fixed parsing of short-form IP addresses in INET_ATON(). (Bug #2310)

• Fixed a bug in CREATE ... SELECT that sometimes caused a string column with a multi-
byte character set (such as utf8) to have insufficient length to hold the data.

• Fixed a rare table corruption on adding data (INSERT, REPLACE, UPDATE, etc. but not DE-
LETE) to a FULLTEXT index. (Bug #2417)

• Compile the MySQL-client RPM package against libreadline instead of libedit.
(Bug #2289)

• Fix for a crashing bug that was caused by not setting vio_timeout() virtual function for all
protocols. This bug occurred on Windows. (Bug #2025)

• Fix for a bug that caused mysql client program to erroneously cache the value of the current
database. (Bug #2025)

• Fix for a bug that caused client/server communication to be broken when
mysql_set_server_option() or mysql_get_server_option() were invoked.
(Bug #2207)

• Fix for a bug that caused wong results when CAST() was applied on NULL to signed or un-
signed integer column. (Bug #2219)

• Fix for a crashing bug that occurred in the mysql client program when database name was
longer then expected. (Bug #2221)

• Fixed a bug in CHECK TABLE that sometimes resulted in a spurious error Found key at
page ... that points to record outside datafile for a table with a FULL-
TEXT index. (Bug #2190)

MySQL Change History

1234

• Fixed bug in GRANT with table-level privilege handling. (Bug #2178)

• Fixed bug in ORDER BY on a small column. (Bug #2147)

• Fixed a bug with the INTERVAL() function when 8 or more comparison arguments are
provided. (Bug #1561)

• Packaging: Fixed a bug in the Mac OS PKG postinstall script (mysql_install_db was
called with an obsolete argument).

• Packaging: Added missing file mysql_create_system_tables to the server RPM pack-
age. This bug was fixed for the 4.1.1 RPMs by updating the MySQL-server RPM from MySQL-
server-4.1.1-0 to MySQL-server-4.1.1-1. The other RPMs were not affected by
this change.

• Fixed a bug in myisamchk and CHECK TABLE that sometimes resulted in a spurious error
Found key at page ... that points to record outside datafile for a
table with a FULLTEXT index. (Bug #1977)

• Fixed a hang in full-text indexing of strings in multi-byte (all besides utf8) charsets. (Bug
#2065)

• Fixed a crash in full-text indexing of UTF8 data. (Bug #2033)

• Replication: a rare race condition in the slave SQL thread that could lead to an incorrect com-
plaint that the relay log is corrupted. (Bug #2011)

• Replication: If a client connects to a slave server and issues an administrative statement for a ta-
ble (for example, OPTIMIZE TABLE or REPAIR TABLE), this could sometimes stop the
slave SQL thread. This does not lead to any corruption, but you must use START SLAVE to get
replication going again. (Bug #1858)

• Replication: in the slave SQL thread, a multiple-table UPDATE could produce an incorrect com-
plaint that some record was not found in one table, if the UPDATE was preceded by a INSERT
... SELECT. (Bug #1701)

• Replication: sometimes the master gets a non-fatal error during the execution of a statement but
finally the statements succeeds (for example, a write to a MyISAM table first receives "no space
left on device" but is able to finally complete, see Section A.4.3, “How MySQL Handles a Full
Disk”); the bug was that the master forgot to reset the error code to 0 after success, so the error
code got into its binary log, thus making the slave giving false alarms like "did not get the same
error as on master". (Bug #2083)

• Removed a misleading "check permissions on master.info" from a replication error message, be-
cause the cause of the problem could be different from permissions. (Bug #2121)

• Fixed a crash when the replication slave was unable to create the first relay log. (Bug #2145)

• ALTER DATABASE caused the client to hang if the database did not exist. (Bug #2333)

• Multiple-table DELETE statements were never replicated by the slave if there were any -
-replicate-*-table options. (Bug #2527)

• Fixed bug in ALTER TABLE RENAME, when rename to the table with the same name in anoth-
er database silently dropped destination table if it existed. (Bug #2628)

• The MySQL server did not report any error if a statement (submitted through
mysql_real_query() or mysql_stmt_prepare()) was terminated by garbage charac-
ters. This can happen if you pass a wrong length parameter to these functions. The result was
that the garbage characters were written into the binary log. (Bug #2703)

• Fixed bug in client library that caused mysql_stmt_fetch and
mysql_stmt_store_result() to hang if they were called without prior call of
mysql_stmt_execute(). Now they give an error instead. (Bug #2248)

MySQL Change History

1235

• Made clearer the error message that one gets when an update is refused because of the -
-read-only option. (Bug #2757)

• Fixed that --replicate-wild-*-table rules apply to ALTER DATABASE when the ta-
ble pattern is %, as is the case for CREATE DATABASE and DROP DATABASE. (Bug #3000)

• Fixed that when a Rotate event is found by the slave SQL thread in the middle of a transac-
tion, the value of Relay_Log_Pos in SHOW SLAVE STATUS remains correct. (Bug #3017)

• Corrected the master's binary log position that InnoDB reports when it is doing a crash recovery
on a slave server. (Bug #3015)

• Changed the column Seconds_Behind_Master in SHOW SLAVE STATUS to never show
a value of #1. (Bug #2826)

• Changed that when a DROP TEMPORARY TABLE statement is automatically written to the bin-
ary log when a session ends, the statement is recorded with an error code of value zero (this en-
sures that killing a SELECT on the master does not result in a superfluous error on the slave).
(Bug #3063)

• Changed that when a thread handling INSERT DELAYED (also known as a
delayed_insert thread) is killed, its statements are recorded with an error code of value
zero (killing such a thread does not endanger replication, so we thus avoid a superfluous error on
the slave). (Bug #3081)

• Fixed deadlock when two START SLAVE commands were run at the same time. (Bug #2921)

• Fixed that a statement never triggers a superfluous error on the slave, if it must be excluded giv-
en the --replicate-* options. The bug was that if the statement had been killed on the mas-
ter, the slave would stop. (Bug #2983)

• The --local-load option of mysqlbinlog now requires an argument.

• Fixed a segmentation fault when running LOAD DATA FROM MASTER after RESET SLAVE.
(Bug #2922)

• mysqlbinlog --read-from-remote-server read all binary logs following the one that was re-
quested. It now stops at the end of the requested file, the same as it does when reading a local
binary log. There is an option --to-last-log to get the old behavior. (Bug #3204)

• Fixed mysqlbinlog --read-from-remote-server to print the exact positions of events in the "at
#" lines. (Bug #3214)

• Fixed a rare error condition that caused the slave SQL thread spuriously to print the message
Binlog has bad magic number and stop when it was not necessary to do so. (Bug
#3401)

• Fixed the Exec_master_log_pos column and its disk image in the relay-log.info
file to be correct if the master had version 3.23. (The value was too big by six bytes.) This bug
does not exist in MySQL 5.0. (Bug #3400)

• Fixed mysqlbinlog not to forget to print a USE statement under rare circumstances where the
binary log contained a LOAD DATA INFILE statement. (Bug #3415)

• Fixed a memory corruption when replicating a LOAD DATA INFILE when the master had ver-
sion 3.23. Some smaller problems remain in this setup, See Section 6.7, “Replication Features
and Known Problems”. (Bug #3422)

• Multiple-table DELETE statements were always replicated by the slave if there were some -
-replicate-*-ignore-table options and no --replicate-*-do-table options.
(Bug #3461)

• Fixed a crash of the MySQL slave server when it was built with --with-debug and replicat-
ing itself. (Bug #3568)

MySQL Change History

1236

• Fixed that in some replication error messages, a very long query caused the rest of the message
to be invisible (truncated), by putting the query last in the message. (Bug #3357)

• Fixed a bug in REPAIR TABLE that resulted sometimes in a corrupted table, if the table con-
tained FULLTEXT indexes and many words of different lengths that are considered equal (which
is possible in certain collations, such as latin1_german2_ci or utf8_general_ci).
(Bug #3835)

• Fixed a crash of mysqld that was started with binary logging disabled, but with a non-zero value
for the expire_logs_days system variable. (Bug #3807)

• If server-id was not set using startup options but with SET GLOBAL, the replication slave
still complained that it was not set. (Bug #3829)

D.2.11. Changes in release 4.1.1 (01 Dec 2003)
This release includes all fixes in MySQL 4.0.16 and most of the fixes in MySQL 4.0.17.

Functionality added or changed:

• Table aliases are not case sensitive if lower_case_table_names is non-zero.

• The --old-protocol option for mysqld is no longer supported and has been removed.

• Renamed bdb_version system variable to version_bdb.

• New CHECKSUM TABLE statement for reporting table checksum values.

• Added character_set_client, character_set_connection, charac-
ter_set_database, character_set_results, character_set_server, char-
acter_set_system, collation_connection, collation_database, and col-
lation_server system variables to provide information about character sets and collations.

• It is now possible to create multiple key caches, assign table indexes to particular caches, and to
preload indexes into caches. See Section 13.5.5.1, “CACHE INDEX Syntax”. See Sec-
tion 13.5.5.4, “LOAD INDEX INTO CACHE Syntax”. Structured system variables are intro-
duced as a means of grouping related key cache parameters. See Section 9.4.1, “Structured Sys-
tem Variables”.

• Added preload_buffer_size system variable.

• New COERCIBILITY() function to return the collation coercibility of a string.

• The --quote-names option for mysqldump now is enabled by default.

• mysqldump now includes a statement in the dump output to set FOREIGN_KEY_CHECKS to 0
to avoid problems with tables having to be reloaded in a particular order when the dump is re-
loaded. The existing FOREIGN_KEY_CHECKS value is saved and restored.

• Important note: If you upgrade to InnoDB-4.1.1 or higher, you cannot downgrade to a version
lower than 4.1.1 any more! That is because earlier versions of InnoDB are not aware of mul-
tiple tablespaces.

• One can revoke all privileges from a user with REVOKE ALL PRIVILEGES, GRANT FROM
user_list.

• Added IGNORE option for DELETE statement.

• The MySQL source distribution now also includes the MySQL Internals Manual intern-
als.texi.

MySQL Change History

1237

• Added mysql_set_server_option() C API client function to allow multiple statement
handling in the server to be enabled or disabled.

• The mysql_next_result() C API function now returns -1 if there are no more result sets.

• Renamed CLIENT_MULTI_QUERIES connect option flag to CLI-
ENT_MULTI_STATEMENTS. To allow for a transition period, the old option continues to be re-
cognized for a while.

• Require DEFAULT before table and database default character set. This enables us to use AL-
TER TABLE tbl_name ... CHARACTER SET=... to change the character set for all
CHAR, VARCHAR, and TEXT columns in a table.

• Added MATCH ... AGAINST(... WITH QUERY EXPANSION) and the
ft_query_expansion_limit system variable.

• Removed unused ft_max_word_len_for_sort system variable.

• Removed unused ft_max_word_len_for_sort variable from myisamchk.

• Full-text search now supports multi-byte character sets and the Unicode utf8 character set.
(The Unicode ucs2 character set is not yet supported.)

• Phrase search in MATCH ... AGAINST (... IN BOOLEAN MODE) no longer matches
partial words.

• Added aggregate function BIT_XOR() for bitwise XOR operations.

• Replication over SSL now works.

• The START SLAVE statement now supports an UNTIL clause for specifying that the slave SQL
thread should be started but run only until it reaches a given position in the master's binary logs
or in the slave's relay logs.

• Produce warnings even for single-row INSERT statements, not just for multiple-row INSERT
statements. Previously, it was necessary to set SQL_WARNINGS=1 to generate warnings for
single-row statements.

• Added delimiter (\d) command to the mysql command-line client for changing the state-
ment delimiter (terminator). The default delimiter is semicolon.

• CHAR, VARCHAR, and TEXT columns now have lengths measured in characters rather than in
bytes. The character size depends on the column's character set. This means, for example, that a
CHAR(n) column for a multi-byte character set takes more storage than before. Similarly, index
values on such columns are measured in characters, not bytes.

• LIMIT no longer accepts negative arguments (they used to be treated as very big positive num-
bers before).

• The DATABASE() function now returns NULL rather than the empty string if there is no data-
base selected.

• Added --sql-mode=NO_AUTO_VALUE_ON_ZERO option to suppress the usual behavior of
generating the next sequence number when zero is stored in an AUTO_INCREMENT column.
With this mode enabled, zero is stored as zero; only storing NULL generates a sequence number.

• Warning: Incompatible change! Client authentication now is based on 41-byte passwords in
the user table, not 45-byte passwords as in 4.1.0. Any 45-byte passwords created for 4.1.0
must be reset after running the mysql_fix_privilege_tables script.

• Added secure_auth global server system variable and --secure-auth server option that
disallow authentication for accounts that have old (pre-4.1.1) passwords.

• Added --secure-auth option to mysql command-line client. If this option is set, the client

MySQL Change History

1238

refuses to send passwords in old (pre-4.1.1) format.

• Warning: Incompatible change! Renamed the C API mysql_prepare_result() func-
tion to mysql_get_metadata() as the old name was confusing.

• Added DROP USER 'user_name'@'host_name' statement to drop an account that has
no privileges.

• The interface to aggregated UDF functions has changed a bit. You must now declare a
xxx_clear() function for each aggregate function XXX().

• Added new ADDTIME(), DATE(), DATEDIFF(), LAST_DAY(), MAKEDATE(), MAKE-
TIME(), MICROSECOND(), SUBTIME(), TIME(), TIMEDIFF(), TIMESTAMP(),
UTC_DATE(), UTC_TIME(), UTC_TIMESTAMP(), and WEEKOFYEAR() functions.

• Added new syntax for ADDDATE() and SUBDATE(). The second argument now may be a
number representing the number of days to be added to or subtracted from the first date argu-
ment.

• Added new type values DAY_MICROSECOND, HOUR_MICROSECOND,
MINUTE_MICROSECOND, SECOND_MICROSECOND, and MICROSECOND for DATE_ADD(),
DATE_SUB(), and EXTRACT().

• Added new %f microseconds format specifier for DATE_FORMAT() and TIME_FORMAT().

• All queries in which at least one SELECT does not use indexes properly now are written to the
slow query log when long log format is used.

• It is now possible to create a MERGE table from MyISAM tables in different databases. Formerly,
all the MyISAM tables had to be in the same database, and the MERGE table had to be created in
that database as well.

• Added new COMPRESS(), UNCOMPRESS(), and UNCOMPRESSED_LENGTH() functions.

• When using SET sql_mode='mode' for a complex mode (like ANSI), we now update the
sql_mode variable to include all the individual options implied by the complex mode.

• Added the OLAP (On-Line Analytical Processing) function ROLLUP, which provides summary
rows for each GROUP BY level.

• Added SQLSTATE codes for all server errors.

• Added mysql_sqlstate() and mysql_stmt_sqlstate() C API client functions that
return the SQLSTATE error code for the last error.

• TIME columns with hour values greater than 24 were returned incorrectly to the client.

• ANALYZE TABLE, OPTIMIZE TABLE, REPAIR TABLE, and FLUSH statements are now
stored in the binary log and thus replicated to slaves. This logging does not occur if the optional
NO_WRITE_TO_BINLOG keyword (or its alias LOCAL) is given. Exceptions are that FLUSH
LOGS, FLUSH MASTER, FLUSH SLAVE, and FLUSH TABLES WITH READ LOCK are not
logged in any case. For a syntax example, see Section 13.5.5.2, “FLUSH Syntax”.

• New global system variable relay_log_purge to enable or disable automatic relay log pur-
ging.

• LOAD DATA now produces warnings that can be fetched with SHOW WARNINGS.

• Added support for syntax CREATE TABLE table2 (LIKE table1) that creates an
empty table table2 with a definition that is exactly the same as table1, including any in-
dexes.

• CREATE TABLE tbl_name (...) TYPE=storage_engine now generates a warning
if the named storage engine is not available. The table is still created as a MyISAM table, as be-

MySQL Change History

1239

fore.

• Most subqueries are now much faster than before.

• Added PURGE BINARY LOGS as an alias for PURGE MASTER LOGS.

• Disabled the PURGE LOGS statement that was added in version 4.1.0. The statement now
should be issued as PURGE MASTER LOGS or PURGE BINARY LOGS.

• Added SHOW BDB LOGS as an alias for SHOW LOGS.

• Added SHOW MASTER LOGS as an alias for SHOW BINARY LOGS. (In 4.1.0, SHOW MAS-
TER LOGS was renamed to SHOW BINARY LOGS. Now you can use either one.)

• Added Slave_IO_State and Seconds_Behind_Master columns to the output of SHOW
SLAVE STATUS. Slave_IO_State indicates the state of the slave I/O thread, and
Seconds_Behind_Master indicates the number of seconds by which the slave is late com-
pared to the master.

• The --lower-case-table-names=1 server option now also makes aliases case insensit-
ive. (Bug #534)

• Changed that the relay log is flushed to disk by the slave I/O thread every time it reads a relay
log event. This reduces the risk of losing some part of the relay log in case of brutal crash.

Bugs fixed:

• Fixed mysql parser not to erroneously interpret ';' character within /* ... */ comment as
statement terminator.

• Fixed merging types and length of result set columns for UNION operations. The types and
lengths now are determined taking into account values for all SELECT statements in the UNION,
not just the first SELECT.

• Fixed a bug in privilege handling that caused connections from certain IP addresses to be as-
signed incorrect database-level privileges. A connection could be assigned the database priv-
ileges of the previous successful authentication from one of those IP addresses, even if the IP ad-
dress username and database name were different. (Bug #1636)

• Error-handling functions were not called properly when an error resulted from [CREATE |
REPLACE| INSERT] ... SELECT statements.

• HASH, BTREE, RTREE, ERRORS, and WARNINGS no longer are reserved words. (Bug #724)

• Fix for bug in ROLLUP when all tables were const tables. (Bug #714)

• Fixed a bug in UNION that prohibited NULL values from being inserted into result set columns
where the first SELECT of the UNION retrieved NOT NULL columns. The type and max_length
of the result column is now defined based on all UNION parts.

• Fixed name resolution of columns of reduced subqueries in unions. (Bug #745)

• Fixed memory overrun in subqueries in select list with WHERE clause bigger than outer query
WHERE clause. (Bug #726)

• Fixed a bug that caused MyISAM tables with FULLTEXT indexes created in 4.0.x to be unread-
able in 4.1.x.

• Fixed a data loss bug in REPAIR TABLE ... USE_FRM when used with tables that con-
tained TIMESTAMP columns and were created in 4.0.x.

• Fixed reduced subquery processing in ORDER BY/GROUP BY clauses. (Bug #442)

MySQL Change History

1240

• Fixed name resolution of outer columns of subquery in INSERT/REPLACE statements. (Bug
#446)

• Fixed bug in marking columns of reduced subqueries. (Bug #679)

• Fixed a bug that made CREATE FULLTEXT INDEX syntax illegal.

• Fixed a crash when a SELECT that required a temporary table (marked by Using tempor-
ary in EXPLAIN output) was used as a derived table in EXPLAIN command. (Bug #251)

• Fixed a rare table corruption bug in DELETE from a big table with a new (created by MySQL-
4.1) full-text index.

• LAST_INSERT_ID() now returns 0 if the last INSERT statement didn't insert any rows.

• Fixed missing last character in function output. (Bug #447)

• Fixed a rare replication bug when a transaction spanned two or more relay logs, and the slave
was stopped while executing the part of the transaction that was in the second or later relay log.
Then replication would resume at the beginning of the second or later relay log, which was in-
correct. (It should resume at BEGIN, in the first relay log.) (Bug #53)

• CONNECTION_ID() now is properly replicated. (Bug #177)

• The new PASSWORD() function in 4.1 is now properly replicated. (Bug #344)

• Fixed a bug with double freed memory.

• Fixed a crashing bug in UNION operations that involved temporary tables.

• Fixed a crashing bug in DERIVED TABLES when EXPLAIN is used on a DERIVED TABLES
with a join.

• Fixed a crashing bug in DELETE with ORDER BY and LIMIT caused by an uninitialized array
of reference pointers.

• Fixed a bug in the USER() function caused by an error in the size of the allocated string.

• Fixed a crashing bug when attempting to create a table containing a spatial (GIS) column with a
storage engine that does not support spatial types.

• Fixed a crashing bug in UNION caused by the empty select list and a non-existent column being
used in some of the individual SELECT statements.

• Fixed a replication bug with a 3.23 master and a 4.0 slave: The slave lost the replicated tempor-
ary tables if FLUSH LOGS was issued on the master. (Bug #254)

• Fixed a security bug: A server compiled without SSL support still allowed connections by users
who had the REQUIRE SSL option specified for their accounts.

• When an undefined user variable was used in a updating query on the master (such as INSERT
INTO t VALUES(@a), where @a had never been set by this connection before), the slave
could replicate the query incorrectly if a previous transaction on the master used a user variable
of the same name. (Bug #1331)

• Fixed bug with prepared statements: Using the ? prepared statement parameter as the argument
to certain functions or statement clauses caused a server crash when mysql_prepare() was
invoked. (Bug #1500)

• Fixed bug with prepared statements: after call to mysql_prepare placeholders became allowed in
all consequent statements, even if they are not prepared (Bug #1946)

• SLAVE START (which is a deprecated syntax, START SLAVE should be used instead) could
crash the slave. (Bug #2516)

MySQL Change History

1241

• Fixed bug in ALTER TABLE RENAME, when rename to the table with the same name in anoth-
er database silently dropped destination table if it existed. (Bug #2628)

• When not specify hostname in SET PASSWORD FOR user it's now defaulted to % instead of
the current host.

D.2.12. Changes in release 4.1.0 (03 Apr 2003: Alpha)
Functionality added or changed:

• Renamed SHOW MASTER LOGS statement to SHOW BINARY LOGS.

• Allow DEFAULT(col_name) in expressions; it produces the column's default value.

• Added --compatible option to mysqldump for producing output that is compatible with
other database systems or with older MySQL servers.

• The --opt option for mysqldump now is enabled by default, as are all the options implied by
--opt.

• New CHARSET() and COLLATION() functions to return the character set and collation of a
string.

• Allow index type to be specified explicitly for some storage engines via USING type_name
syntax in index definition.

• New function IS_USED_LOCK() for determining the connection identifier of the client that
holds a given advisory lock.

• New more secure client authentication based on 45-byte passwords in the user table.

• Added old-password command to mysqladmin for changing password but storing it using
the old password-hashing format.

• New CRC32() function to compute cyclic redundancy check value.

• On Windows, we are now using shared memory to communicate between server and client when
they are running on the same machine and you are connecting to localhost.

• REPAIR TABLE of MyISAM tables now uses less temporary disk space when sorting char
columns.

• DATE/DATETIME checking is now a bit stricter to support the ability to automatically distin-
guish between date, datetime, and time with microseconds. For example, dates of type YYYYM-
MDD HHMMDD are no longer supported; you must either have separators between each
DATE/TIME part or not at all.

• Server side help for all MySQL functions. One can now type help week in the mysql client
and get help for the week() function.

• Added new mysql_get_server_version() C API client function.

• Fixed bug in libmysqlclient that fetched column defaults.

• Fixed bug in mysql command-line client in interpreting quotes within comments. (Bug #539)

• Added record_in_range() method to MERGE tables to be able to choose the right index
when there are many to choose from.

• Replication now works with RAND() and user variables @var.

MySQL Change History

1242

• Allow one to change mode for ANSI_QUOTES on the fly.

• EXPLAIN SELECT now can be killed. See Section 13.5.5.3, “KILL Syntax”.

• REPAIR TABLE and OPTIMIZE TABLE now can be killed. See Section 13.5.5.3, “KILL
Syntax”.

• Allow empty index lists to be specified for USE INDEX, IGNORE INDEX, and FORCE IN-
DEX.

• DROP TEMPORARY TABLE now drops only temporary tables and doesn't end transactions.

• Added support for UNION in derived tables.

• Warning: Incompatible change! TIMESTAMP is now returned as a string of type 'YYYY-
MM-DD HH:MM:SS' and different timestamp lengths are not supported.

This change was necessary for SQL standards compliance. In a future version, a further change
will be made (backward compatible with this change), allowing the timestamp length to indicate
the desired number of digits of fractions of a second.

• New faster client/server protocol that supports prepared statements, bound parameters, and
bound result columns, binary transfer of data, warnings.

• Added database and real table name (in case of alias) to the MYSQL_FIELD structure.

• Multi-line queries: You can now issue several queries at once and then read the results in one go.

• In CREATE TABLE foo (a INT not null primary key) the PRIMARY word is
now optional.

• In CREATE TABLE the attribute SERIAL is now an alias for BIGINT UNSIGNED NOT
NULL AUTO_INCREMENT UNIQUE.

• SELECT ... FROM DUAL is an alias for SELECT (To be compatible with some other
databases).

• If one creates a too long CHAR/VARCHAR it's now automatically changed to TEXT or BLOB;
One get a warning in this case.

• One can specify the different BLOB/TEXT types with the syntax BLOB(length) and
TEXT(length). MySQL automatically changes it to one of the internal BLOB/TEXT types.

• CHAR BYTE is an alias for CHAR BINARY.

• VARCHARACTER is an alias for VARCHAR.

• New operators integer MOD integer and integer DIV integer. DIV is now a re-
served word.

• SERIAL DEFAULT VALUE added as an alias for AUTO_INCREMENT.

• TRUE and FALSE added as alias for 1 and 0, respectively.

• Aliases are now forced in derived tables, as per standard SQL.

• Fixed SELECT .. LIMIT 0 to return proper row count for SQL_CALC_FOUND_ROWS.

• One can specify many temporary directories to be used in a round-robin fashion with: -
-tmpdir=dirname1:dirname2:dirname3.

• Subqueries: SELECT * from t1 where t1.a=(SELECT t2.b FROM t2).

• Derived tables:

MySQL Change History

1243

SELECT a.col1, b.col2
FROM (SELECT MAX(col1) AS col1 FROM root_table) a,
other_table b
WHERE a.col1=b.col1;

• Character sets to be defined per column, table and database.

• Unicode (UTF8) support.

• New CONVERT(... USING ...) syntax for converting string values between character
sets.

• BTREE index on MEMORY (HEAP) tables.

• Faster embedded server (new internal communication protocol).

• One can add a comment per column in CREATE TABLE.

• SHOW FULL COLUMNS FROM tbl_name shows column comments.

• ALTER DATABASE.

• Support for GIS (Geometrical data). See Chapter 18, Spatial Extensions in MySQL.

• SHOW [COUNT(*)] WARNINGS shows warnings from the last command.

• One can specify a column type for a column in CREATE TABLE ... SELECT by defining
the column in the CREATE part.

CREATE TABLE foo (a TINYINT NOT NULL) SELECT b+1 AS a FROM bar;

• expr SOUNDS LIKE expr same as SOUNDEX(expr)=SOUNDEX(expr).

• Added new VARIANCE(expr) function returns the variance of expr

• One can create a table from the existing table using CREATE [TEMPORARY] TABLE [IF
NOT EXISTS] table (LIKE table). The table can be either normal or temporary.

• New options --reconnect and --skip-reconnect for the mysql client, to reconnect
automatically or not if the connection is lost.

• START SLAVE (STOP SLAVE) no longer returns an error if the slave is started (stopped); it
returns a warning instead.

• SLAVE START and SLAVE STOP are no longer accepted by the query parser; use START
SLAVE and STOP SLAVE instead.

D.3. Changes in release 4.0.x (Production)
Version 4.0 of the MySQL server includes many enhancements and new features:

• The InnoDB storage engine is now included in the standard binaries, adding transactions, row-
level locking, and foreign keys. See Chapter 15, The InnoDB Storage Engine.

• A query cache, offering vastly increased performance for many applications. By caching com-
plete result sets, later identical queries can return instantly. See Section 5.11, “The MySQL
Query Cache”.

• Improved full-text indexing with boolean mode, truncation, and phrase searching. See Sec-

MySQL Change History

1244

tion 12.6, “Full-Text Search Functions”.

• Enhanced MERGE tables, now supporting INSERT statements and AUTO_INCREMENT. See
Section 14.2, “The MERGE Storage Engine”.

• UNION syntax in SELECT. See Section 13.1.7.2, “UNION Syntax”.

• Multiple-table DELETE statements. See Section 13.1.1, “DELETE Syntax”.

• libmysqld, the embedded server library. See Section 22.2.16, “libmysqld, the Embedded
MySQL Server Library”.

• Additional GRANT privilege options for even tighter control and security. See Section 13.5.1.3,
“GRANT and REVOKE Syntax”.

• Management of user resources in the GRANT system, particularly useful for ISPs and other host-
ing providers. See Section 5.6.4, “Limiting Account Resources”.

• Dynamic server variables, allowing configuration changes to be made without having to stop
and restart the server. See Section 13.5.3, “SET Syntax”.

• Improved replication code and features. See Chapter 6, Replication in MySQL.

• Numerous new functions and options.

• Changes to existing code for enhanced performance and reliability.

For a full list of changes, please refer to the changelog sections for each individual 4.0.x release.

D.3.1. Changes in release 4.0.24 (not released yet)
Functionality added or changed:

• InnoDB: Added configuration option and settable global variable in-
nodb_autoextend_increment for setting the size in megabytes by which InnoDB ta-
blespaces are extended when they become full. The default value is 8, corresponding to the fixed
increment of 8MB in previous versions of MySQL.

• InnoDB: Do not acquire an internal InnoDB table lock in LOCK TABLES if AUTOCOMMIT=1.
This helps in porting old MyISAM applications to InnoDB. InnoDB table locks in that case
caused deadlocks very easily.

Bugs fixed:

• Fixed a failure of multiple-table updates to replicate properly on slave servers when -
-replicate-*-table options had been specified. (Bug #7011)

• Renamed set_bit() and clear_bit() functions in source code to avoid a conflict with
functions of the same names in Linux kernel header files. (Bug #7971)

• Part of the information being used to cache access-permission lookups was not always reinitial-
ized properly, particularly for connections from localhost on Windows. The result was connec-
tion failures that appeared to occur randomly. (Bug #5569)

• Corrected a problem with the QUOTE() function returning bad results. (Bug #8248)

• Fixed a problem where INSERT INTO ...SELECT failed when the source and target table
were the same. (Bug #6034)

• Fixed a problem where RPM installation on Linux as a non-privileged user would result in in-

MySQL Change History

1245

complete installation. (Bug #7347)

• Change thread stack size used for building Linx RPM distributions to avoid warnings about
stack size during server startup. (Bug #6226)

• InnoDB: Use native tmpfile() function on Netware. All InnoDB temporary files are created
under sys:\tmp. Previously, InnoDB temporary files were never deleted on Netware.

• Fixed a symlink vulnerability in the mysqlaccess script. Reported by Javier Fernandez-Sanguino
Pena and Debian Security Audit Team [http://www.debian.org/security/audit]. (CAN-2005-0004
[http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2005-0004])

• Fixed support for C API function mysql_list_fields(), which was accidentally broken
in 4.0.22 (Bug#6761)

• Make query_cache_wlock_invalidate system variable visible in SHOW VARIABLES
output. (Bug #7594)

• Fixed a bug which caused FROM_UNIXTIME() function to return NULL for zero argument in-
stead of the Epoch. (Bug #7515)

• Now in datetime values two digit year is interpreted as year in 20th or 21st century even with
zero month and day. (Bug #7297)

• Fixed a bug in QUOTE function when used in conjunction with some other string functions. This
lead to severe buffer overflow and server crashing. (Bug #7495)

• InnoDB: Fixed a bug: 32-bit mysqld binaries built on HP-UX-11 did not work with InnoDB
files greater than 2 GB in size. (Bug #6189)

• Fixed that, when encountering a ``disk full'' or ``quota exceeded'' write error, MyISAM some-
times didn't sleep and retry the write, thus resulting in a corrupted table. (Bug #7714)

• Fixed that a slave could crash after replicating many ANALYZE TABLE, OPTIMIZE TABLE,
or REPAIR TABLE statements from the master. (Bug #6461, Bug #7658)

D.3.2. Changes in release 4.0.23 (18 Dec 2004)
Note: Due to a libtool-related bug in the source distribution, the creation of shared libmysql-
client libraries was not possible (the resulting files were missing the .so file name extension).
The file ltmain.sh was updated to fix this problem and the resulting source distribution was re-
leased as mysql-4.0.23a.tar.gz. This modification did not affect the binary packages. (Bug
#7401)

Functionality added or changed:

• Added --hex-blob option to mysqldump for dumping binary string columns using hexa-
decimal notation.

• Added mysql_hex_string() C API function that hex-encodes a string.

• InnoDB: Do not periodically write SHOW INNODB STATUS information to a temporary file
unless the configuration option innodb_status_file=1 is set.

• InnoDB: Made the foreign key parser better aware of quotes. (Bug #6340)

• mysqlbinlog now prints an informative commented line (thread id, timestamp, server id, etc)
before each LOAD DATA INFILE, like it does for other queries; unless --short-form is
used.

MySQL Change History

1246

http://www.debian.org/security/audit
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2005-0004

Bugs fixed:

• Corrected accounts in the mysql.user table in Windows distributions that had been created
with a Host value of build rather than %. (Bug #6000)

• Prevent adding CREATE TABLE .. SELECT query to the binary log when the insertion of
new records partially failed. (Bug #6682)

• Fixed bug which caused FROM_UNIXTIME() function to return wrong result if the argument
was too big. (Bug #6439)

• Fixed bug which caused MySQL server to store wrong values in TIMESTAMP columns and give
wrong results for UNIX_TIMESTAMP() function if it was run in time zone with leap seconds.
(Bug #6387)

• InnoDB: Fixed a bug in LOAD DATA INFILE…REPLACE printing duplicate key error when
executing the same load query several times. (Bug #5835)

• InnoDB: Refuse to open new-style tables created with MySQL 5.0.3 or later. (Bug #7089)

• InnoDB: Do not call rewind() when displaying SHOW INNODB STATUS information on
stderr.

• InnoDB: If one used INSERT IGNORE to insert several rows at a time, and the first inserts
were ignored because of a duplicate key collision, then InnoDB in a replication slave assigned
AUTO_INCREMENT values 1 bigger than in the master. This broke the MySQL replication.
(Bug #6287)

• InnoDB: Fix two hangs: FOREIGN KEY constraints treated table and database names as case-
insensitive. RENAME TABLE t TO T would hang in an endless loop if t had a foreign key
constraint defined on it. Fix also a hang over the dictionary mutex that would occur if one tried
in ALTER TABLE or RENAME TABLE to create a foreign key constraint name that collided
with another existing name. (Bug #3478)

• InnoDB: Treat character 0xA0 as space in InnoDB's FOREIGN KEY parser if MySQL treats it
as space in the default charset. EMS MySQL Manager inserts character 0xA0 after the table
name in an ALTER, which confused InnoDB's parser.

• Fixed a bug which caused a crash when only the slave I/O thread was stopped and restarted.
(Bug #6148)

• If a connection had an open transaction but had done no updates to transactional tables (for ex-
ample if had just done a SELECT FOR UPDATE then executed a non-transactional update, that
update automatically committed the transaction (thus releasing InnoDB's row-level locks etc).
(Bug #5714)

• If a connection was interrupted by a network error and did a rollback, the network error code got
stored into the BEGIN and ROLLBACK binary log events; that caused superfluous slave stops.
(Bug #6522)

• A sequence of BEGIN (or SET AUTOCOMMIT=0), FLUSH TABLES WITH READ LOCK,
transactional update, COMMIT, FLUSH TABLES WITH READ LOCK could hang the connec-
tion forever and possibly the MySQL server itself. This happened for example when running the
innobackup script several times. (Bug #6732)

D.3.3. Changes in release 4.0.22 (27 Oct 2004)
Functionality added or changed:

• The --with-openssl option for configure now accepts a path prefix as an argument. -

MySQL Change History

1247

-with-openssl-includes and --with-openssl-libs are still supported, but are
needed only to override the default values. (Bug #5494)

• Added new --without-man option to configure to suppress building/installing the manual
pages. (Bug #5379)

• InnoDB: New mysqld option --innodb-table-locks and session variable in-
nodb_table_locks (on by default). In applications using AUTOCOMMIT=1 and MySQL's
LOCK TABLES command, InnoDB's internal table locks that were added in 4.0.20 can cause
deadlocks. You can set innodb_table_locks=0 in my.cnf to remove that problem. See
Section 15.17, “Restrictions on InnoDB Tables”. (Bug #3299, Bug #5998)

• InnoDB: Added the startup option and settable global variable innodb_max_purge_lag for
delaying INSERT, UPDATE and DELETE operations when the purge operations are lagging.
The default value of this parameter is zero, meaning that there are no delays. See Section 15.13,
“Implementation of Multi-Versioning”.

• InnoDB: Change error code to HA_ERR_ROW_IS_REFERENCED if we cannot DROP a parent
table because it is referenced by a FOREIGN KEY constraint.

Bugs fixed:

• Fixed bug in server which caused connection stall when one of deprecated libmysqlclient
functions mysql_create_db(), mysql_rm_db() were called and were going to return
error. (Bug #6081)

• Fixed returning wrong query result from query cache if a temporary table was hiding a real table
after putting results to query cache. (Bug #6084)

• Fixed ENABLE KEYS, which failed if tmpdir ran out of space. Now, a full repair is done in
this case. (Bug #5625)

• Fixed an improper error message when trying to drop a table which is referenced by a FOREIGN
KEY constraint. (Bug #5784)

• Fixed a bug that allowed FLUSH TABLE(S) to close HANDLER tables. HANDLER tables are
now reopened after a FLUSH TABLE(S) the next time they are used. However, they lose their
file position if this happens. (Bug #4286)

• Fixed a bug that allowed HANDLER tables with the same alias to be opened multiple times.
HANDLER aliases must now be unique, even though it is syntactically correct in versions below
4.1, to qualify them with their base table's database name (e.g. test_db.handler_tbl, but this now
conflicts with e.g. another_db.handler_tbl). (Bug #4335)

• Fixed crash when using MySQL 4.0 with privilege tables from MySQL 5.0.

• mysqlimport now reads input files locally from the client host only if the --local option is
given. Previously, it assumed incorrectly in some cases that files were local even without -
-local. (Bug #5829)

• InnoDB: Make the check for excessive semaphore waits to tolerate glitches in the system clock
(do not crash the server if the system time is adjusted while InnoDB is under load.). (Bug #5898)

• InnoDB: Fixed a bug in the InnoDB FOREIGN KEY parser that prevented ALTER TABLE of
tables containing '#' in their names. (Bug #5856)

• InnoDB: Fixed problem introduced in 4.0.21 where a connection starting a transaction, doing
updates, then FLUSH TABLES WITH READ LOCK, then COMMIT, would cause replication
slaves to stop (complaining about error 1223). Bug surfaced when using the InnoDB inno-
backup script. (Bug #5949)

• InnoDB: If one updated a column so that its size changed, or updated it to an externally stored

MySQL Change History

1248

TEXT or BLOB) value, then ANOTHER externally stored column would show up as 512 bytes
of good data + 20 bytes of garbage in a consistent read that fetched the old version of the row.
(Bug #5960)

• InnoDB: Release the dictionary latch during a long cascaded FOREIGN KEY operation, so that
we do not starve other users doing CREATE TABLE or other DDL operations. This caused a no-
torious 'Long semaphore wait' message to be printed to the .err log. (Bug #5961)

• InnoDB: Let InnoDB remember row locking type (X or S) inside LOCK TABLES, also over
plain consistent read SELECTs.

• InnoDB: Fixed a bug introduced in 4.0.21. An assertion failed if one used mysqldump with the
option -l or --opt, or if one used LOCK TABLES ... LOCAL. (Workaround in 4.0.21: use
--quick and --single-transaction. (Bug #5538)

• InnoDB: Having a column prefix index in the primary key, and the same column fully in a sec-
ondary key could cause an assertion failure in row_build_row_ref(). (Bug #5180)

• Fixed a bug which resulted in an erroneously calculated number of examined rows in UNIONs.
This value is printed in the slow query log. (Bug #5879)

• Fixed bug with crash of server on some values of read_rnd_buffer_size (Bug #5492)

• Fixed bug which caused truncation of values read from or into TIMESTAMP fields if --new
mode was enabled. (Bug #4131)

• mysqladmin now returns a status of 0 even when the server denies access; such an error means
the server is running. (Bug #3120)

• Fixed that if the slave SQL thread found a syntax error in a query (which should be rare, as the
master parsed it successfully), it stops. (Bug #5711)

• Fixed that if a write to a MyISAM table fails because of a full disk or an exceeded disk quota, it
prints a message to the error log every 10 minutes, and waits until disk becomes free. (Bug
#3248)

• Fixed problem with symlinked databases on Windows being shown with SHOW DATABASES
even if the database name doesn't match the given wildcard (Bug #5539)

D.3.4. Changes in release 4.0.21 (06 Sep 2004)
Functionality added or changed:

• Print version_comment (from ./configure --comment during compilation) when
starting the server. E.g.: Version: '4.0.21-debug' socket: '/
tmp/mysql.sock' port: 0 Official MySQL Binary

• Made the MySQL server not react to signals SIGHUP and SIGQUIT on Mac OS X 10.3. This is
needed because under this OS, the MySQL server receives lots of these signals (reported as Bug
#2030).

• On Windows, the mysqld-nt and mysqld-max-nt servers now write error messages to the Win-
dows event log in addition to the MySQL error log.

Bugs fixed:

• Fixed an old bug in concurrent accesses to MERGE tables (even one MERGE table and MyISAM
tables), that could've resulted in a crash or hang of the server. (Bug #2408)

MySQL Change History

1249

• Fixed a bug that caused incorrect results from GROUP BY queries with expression in HAVING
clause that refers to a BLOB (TEXT, TINYBLOB, etc) fields. (Bug #4358)

• Fixed a bug when memory was not released when HEAP table is dropped. It could only happen
on Windows when a symlink file (.sym) is used and if that symlink file contained double back-
slashes (\\). (Bug #4973)

• Fixed a bug which prevented TIMESTAMP(19) fields from being created. (Bug #4491)

• Fixed a bug that caused wrong results in queries that were using index to search for NULL values
in BLOB (TINYBLOB, TEXT, TINYTEXT, etc) columns of MyISAM tables. (Bug #4816)

• Fixed a bug in the function ROUND() reporting incorrect metadata (number of digits after the
decimal point). It can be seen, for example, in CREATE TABLE t1 SELECT ROUND(1,
34). (Bug #4393)

• Fixed precision loss bug in some mathematical functions such as SQRT() and LOG(). (Bug
#4356)

• Fixed a long-standing problem with LOAD DATA with the LOCAL option. The problem occurs
when an error happens during the LOAD DATA operation. Previously, the connection was
broken. Now the error message is returned and connection stays open.

• Optimizer now treats col IN (val) the same way it does for col = val.

• Fixed a problem with net_buffer_length when building the DBD::mysql Perl module.
(Bug #4206)

• lower_case_table_names=2 (keep case for table names) was not honored with ALTER
TABLE and CREATE/DROP INDEX. (Bug #3109)

• Fixed a crash on declaration of DECIMAL(0,...) column. (Bug #4046)

• Fixed a bug in IF() function incorrectly determining the result type if aggregate functions were
involved. (Bug #3987)

• Fixed bug in privilege checking where, under some conditions, one was able to grant privileges
on the database, he has no privileges on. (Bug #3933)

• Fixed crash in MATCH ... AGAINST() on a phrase search operator with a missing closing
double quote. (Bug #3870)

• Fixed a bug with truncation of big values (> 4294967295) of 64-bit system variables. (Bug
#3754)

• If server-id was not set using startup options but with SET GLOBAL, the replication slave
still complained that it was not set. (Bug #3829)

• Fixed potential memory overrun in mysql_real_connect() (which required a comprom-
ised DNS server and certain operating systems). (Bug #4017)

• During the installation process of the server RPM on Linux, mysqld was run as the root sys-
tem user, and if you had --log-bin=<somewhere_out_of_var_lib_mysql> it cre-
ated binary log files owned by root in this directory, which remained owned by root after the
installation. This is now fixed by starting mysqld as the mysql system user instead. (Bug
#4038)

• Made DROP DATABASE honor the value of lower_case_table_names. (Bug #4066)

• The slave SQL thread refused to replicate INSERT ... SELECT if it examined more than 4
billion rows. (Bug #3871)

• Fixed incorrect destruction of expression which led to crash of server on complex AND/OR ex-
pressions if query was ignored (either by a replication server because of -

MySQL Change History

1250

-replicate-*-table rules, or by any MySQL server because of a syntax error). (Bug
#3969, Bug #4494)

• Fixed that mysqlbinlog --position --read-from-remote-server had wrong # at lines. (Bug
#4506)

• If CREATE TEMPORARY TABLE t SELECT failed while loading the data, the temporary ta-
ble was not dropped. (Bug #4551)

• Fixed that when a multiple-table DROP TABLE failed to drop a table on the master server, the
error code was not written to the binary log. (Bug #4553)

• When the slave SQL thread was replicating a LOAD DATA INFILE statement, it didn't show
the statement in the output of SHOW PROCESSLIST. (Bug #4326)

• Fixed that CREATE TABLE ... TYPE=HEAP ... AS SELECT... caused replication
slave to stop. (Bug #4971)

• Fixed that disable-local-infile option had no effect if client read it from a configura-
tion file using mysql_options(...,MYSQL_READ_DEFAULT,...). (Bug #5073)

• Fixed that mysql-test-run failed on the rpl_trunc_binlog test if running test from the in-
stalled (the target of 'make install') directory. (Bug #5050)

• Fixed an unlikely deadlock which could happen when using KILL. (Bug #4810)

• Fixed a crash when one connection got KILLed while it was doing START SLAVE. (Bug
#4827)

• Made FLUSH TABLES WITH READ LOCK block COMMIT if server is running with binary
logging; this ensures that the binary log position is trustable when doing a full backup of tables
and the binary log. (Bug #4953)

• Fixed that the counter of an auto_increment column was not reset by TRUNCATE TABLE
is the table was a temporary one. (Bug #5033)

• Made database names to compare case-insensitively in fully qualified column names (data-
base.table.column) when lower_case_table_names=1. (Bug #4792)

• Fixed that SET CHARACTER SET was not replicated correctly. MySQL 4.1 does not have that
bug. (Bug #4500)

D.3.5. Changes in release 4.0.20 (17 May 2004)
Note: The windows packages had to be repackaged and re-released several times to resolve pack-
aging issues (such as missing files). This did not affect the binaries included (they have not been re-
compiled), therefore the installation packages are of version 4.0.20d, while the binaries included still
identify themselves as version 4.0.20b.

Functionality added or changed:

• From the Windows distribution, predefined accounts without passwords for remote users
("root@%", "@%") were removed (other distributions never had them).

• Phrase search in MATCH ... AGAINST (... IN BOOLEAN MODE) no longer matches
partial words.

Bugs fixed:

MySQL Change History

1251

• A crashing bug (race condition) was fixed in InnoDB diagnostic logging. It was introduced in
4.0.19. (Bug #3596)

• Fixed a bug in division / reporting incorrect metadata (number of digits after the decimal point).
It can be seen, for example, in CREATE TABLE t1 SELECT "0.01"/"3". (Bug #3612)

• Fixed a problem with non-working DROP DATABASE on some configurations (in particular,
Linux 2.6.5 with ext3 are known to expose this bug). (Bug #3594)

• Fixed that in some replication error messages, a very long query caused the rest of the message
to be invisible (truncated), by putting the query last in the message. (Bug #3357)

D.3.6. Changes in release 4.0.19 (04 May 2004)
Note: The MySQL 4.0.19 binaries were uploaded to the download mirrors on May, 10th. However,
a potential crashing bug was found just before the 4.0.19 release was publicly announced and pub-
lished from the 4.0 download pages at http://dev.mysql.com/.

A fix for the bug was pushed into the MySQL source tree shortly after it could be reproduced and is
included in MySQL 4.0.20. Users upgrading from MySQL 4.0.18 should upgrade directly to
MySQL 4.0.20 or later.

See (Bug #3596) for details (it was reported against MySQL-4.1, but was confirmed to affect 4.0.19
as well).

Functionality added or changed:

• If length of a timestamp field is defined as 19, the timestamp is displayed as "YYYY-MM-DD
HH:MM:SS. This is done to make it easier to use tables created in MySQL 4.1 to be used in
MySQL 4.0.

• If you use RAID_CHUNKS with a value > 255 it is set to 255. This was made to ensure that all
raid directories are always 2 hex bytes. (Bug #3182)

• Changed that the optimizer now considers the index specified in FORCE INDEX clause as a
candidate to resolve ORDER BY as well.

• The --log-warnings server option now is enabled by default. Disable with -
-skip-log-warnings.

• Until now, in SELECT ... UNION SELECT ... ORDER BY ..., it was possible to
qualify a column name in the ORDER BY clause with a table name. This is no longer possible.
Column names in ORDER BY should refer to names established in the first SELECT of the
UNION. (Bug #3064)

• Added max_insert_delayed_threads system variable as a synonym for
max_delayed_threads.

• Added query_cache_wlock_invalidate system variable. It allows emulation of MyIS-
AM table write-locking behavior, even for queries in the query cache. (Bug #2693)

• The keyword MASTER_SERVER_ID is not reserved anymore.

• The following is relevant mainly for Mac OS X users who use a case-insensitive filesystem.
This is not relevant for Windows users as InnoDB in this case always stores filenames in lower
case:

You can now force lower_case_table_names to 0 from the command line or a configura-
tion file. This is useful with case-insensitive filesystems when you have previously not used
lower_case_table_names=1 or lower_case_table_names=2 and you have cre-
ated InnoDB tables. With lower_case_table_names=0, InnoDB tables were stored in

MySQL Change History

1252

http://dev.mysql.com/

mixed case while setting lower_case_table_names to a non-zero value now forces it to lower
case (to make the table names case insensitive).

Because it's possible to crash MyISAM tables by referring to them with different case on a case-
insensitive filesystem, we recommend that you use lower_case_table_names or
lower_case_table_names=2 on such filesystems.

The easiest way to convert to use lower_case_table_names=2 is to dump all your In-
noDB tables with mysqldump, drop them and then restore them.

• Changed that the relay log is flushed to disk by the slave I/O thread every time it reads a relay
log event. This reduces the risk of losing some part of the relay log in case of brutal crash.

• When a session having open temporary tables terminates, the statement automatically written to
the binary log is now DROP TEMPORARY TABLE IF EXISTS instead of DROP TEMPOR-
ARY TABLE, for more robustness.

• Added option --replicate-same-server-id.

Bugs fixed:

• Added missing full-text variable ft_stopword_file to myisamchk.

• Don't allow stray ',' at the end of field specifications. (Bug #3481)

• INTERVAL now can handle big values for seconds, minutes and hours. (Bug #3498)

• Blank hostname did not work as documented for table and column privileges. Now it's works the
same way as '%'. (Bug #3473)

• Fixed a harmless buffer overflow in replace utility. (Bug# 3541)

• Fixed SOUNDEX() to ignore non-alphabetic characters also in the beginning of the string. (Bug
#3556)

• Fixed a bug in MATCH ... AGAINST() searches when another thread was doing concurrent
inserts into the MyISAM table in question. The first --- full-text search --- query could return in-
correct results in this case (for example, ``phantom'' rows or not all matching rows, even an
empty result set). The easiest way to check whether you are affected is to start mysqld with -
-skip-concurrent-insert switch and see if it helps.

• Fixed bug when doing DROP DATABASE on a directory containing non- MySQL files. Now a
proper error message is returned.

• Fixed bug in ANALYZE TABLE on a BDB table inside a transaction that hangs server thread.
(Bug #2342)

• Fixed a symlink vulnerability in the mysqlbug script. (Bug #3284)

• Fixed core dump bug in SELECT DISTINCT where all selected parts where constants and
there were hidden columns in the created temporary table. (Bug #3203)

• Fixed core dump bug in COUNT(DISTINCT) when there was a lot of values and one had a big
value for max_heap_table_size.

• Fixed problem with multiple-table-update and BDB tables. (Bug: #3098)

• Fixed memory leak when dropping database with RAID tables. (Bug #2882)

• Fixed core dump crash in replication during relay-log switch when the relay log went over
max_relay_log_size and the slave thread did a flush_io_cache() at the same time.

MySQL Change History

1253

• Fixed hangup bug when issuing multiple SLAVE START from different threads at the same
time. (Bug #2921)

• Fixed bug when using DROP DATABASE with lower_case_table_names=2.

• Fixed wrong result in UNION when using lower_case_table_names=2. (Bug #2858)

• One can now kill threads that is 'stuck' in the join optimizer (can happen when there is MANY
tables in the join in which case the optimizer can take really long time). (Bug #2825)

• Rollback DELETE and UPDATE statements if thread is killed. (Bug #2422)

• Ensure that all rows in an INSERT DELAYED statement is written at once if binary logging is
enabled. (Bug #2491).

• Fixed bug in query cache statistic, more accurate formula linked statistic variables mentioned in
the manual.

• Fixed a bug in parallel repair (myisamchk -p, myisam_repair_threads) - sometimes re-
pair process failed to repair a table. (Bug #1334)

• Fixed bugs with names of tables, databases and columns that end to space (Bug #2985)

• Fixed a bug in multiple-table UPDATE statements involving at least one constant table. Bug was
exhibited in allowing non matching row to be updated. (Bug #2996).

• Fixed all bugs in scripts for creating/upgrading system database (Bug #2874) Added tests which
guarantee against such bugs in the future.

• Fixed bug in mysql command-line client in interpreting quotes within comments. (Bug #539)

• --set-character-set and --character-sets-dir options in myisamchk now
work.

• Fixed a bug in mysqlbinlog that caused one pointer to be free'd twice in some cases.

• Fixed a bug in boolean full-text search, that sometimes could lead to false matches in queries
with several levels of subexpressions using + operator (for example, MATCH ...
AGAINST('+(+(word1 word2)) +word3*' IN BOOLEAN MODE).

• Fixed Windows-specific portability bugs in myisam_ftdump.

• Fixed a bug in multiple-table DELETE that was caused by foreign key constraints. If the order of
the tables established by MySQL optimizer did not match parent-child order, no rows were de-
leted and no error message was provided. (Bug #2799)

• Fixed a few years old bug in the range optimizer that caused a segmentation fault on some very
rare queries. (Bug #2698)

• Replication: If a client connects to a slave server and issues an administrative statement for a ta-
ble (for example, OPTIMIZE TABLE or REPAIR TABLE), this could sometimes stop the
slave SQL thread. This does not lead to any corruption, but you must use START SLAVE to get
replication going again. (Bug #1858) The bug was accidentally not fixed in 4.0.17 as it was un-
fortunately earlier said.

• Fixed that when a Rotate event is found by the slave SQL thread in the middle of a transac-
tion, the value of Relay_Log_Pos in SHOW SLAVE STATUS remains correct. (Bug #3017)

• Corrected the master's binary log position that InnoDB reports when it is doing a crash recovery
on a slave server. (Bug #3015)

• Changed that when a DROP TEMPORARY TABLE statement is automatically written to the bin-
ary log when a session ends, the statement is recorded with an error code of value zero (this en-
sures that killing a SELECT on the master does not result in a superfluous error on the slave).

MySQL Change History

1254

(Bug #3063)

• Changed that when a thread handling INSERT DELAYED (also known as a
delayed_insert thread) is killed, its statements are recorded with an error code of value
zero (killing such a thread does not endanger replication, so we thus avoid a superfluous error on
the slave). (Bug #3081)

• Fixed deadlock when two START SLAVE commands were run at the same time. (Bug #2921)

• Fixed that a statement never triggers a superfluous error on the slave, if it must be excluded giv-
en the --replicate-* options. The bug was that if the statement had been killed on the mas-
ter, the slave would stop. (Bug #2983)

• The --local-load option of mysqlbinlog now requires an argument.

• Fixed a segmentation fault when running LOAD DATA FROM MASTER after RESET SLAVE.
(Bug #2922)

• Fixed a rare error condition that caused the slave SQL thread spuriously to print the message
Binlog has bad magic number and stop when it was not necessary to do so. (Bug
#3401)

• Fixed the column Exec_master_log_pos (and its disk image in the relay-log.info
file) to be correct if the master had version 3.23 (it was too big by 6 bytes). This bug does not
exist in the 5.0 version. (Bug #3400)

• Fixed that mysqlbinlog does not forget to print a USE command under rare circumstances where
the binary log contained a LOAD DATA INFILE command. (Bug #3415)

• Fixed a memory corruption when replicating a LOAD DATA INFILE when the master had ver-
sion 3.23. Some smaller problems remain in this setup, See Section 6.7, “Replication Features
and Known Problems”. (Bug #3422)

• Multiple-table DELETE statements were always replicated by the slave if there were some -
-replicate-*-ignore-table options and no --replicate-*-do-table options.
(Bug #3461)

• Fixed a crash of the MySQL slave server when it was built with --with-debug and replicat-
ing itself. (Bug #3568)

D.3.7. Changes in release 4.0.18 (12 Feb 2004)
Functionality added or changed:

• Fixed processing of LOAD DATA by mysqlbinlog in remote mode. (Bug #1378)

• New utility program myisam_ftdump was added to binary distributions.

• ENGINE is now a synonym for the TYPE option for CREATE TABLE and ALTER TABLE.

• lower_case_table_names system variable now can take a value of 2, to store table names
in mixed case on case-insensitive filesystems. It's forced to 2 if the database directory is located
on a case-insensitive filesystem.

• For replication of MEMORY (HEAP) tables: Made the master automatically write a DELETE
FROM statement to its binary log when a MEMORY table is opened for the first time since master's
startup. This is for the case where the slave has replicated a non-empty MEMORY table, then the
master is shut down and restarted: the table is now empty on master; the DELETE FROM emp-
ties it on slave too. Note that even with this fix, between the master's restart and the first use of
the table on master, the slave still has out-of-date data in the table. But if you use the init-
file option to populate the MEMORY table on the master at startup, it ensures that the failing

MySQL Change History

1255

time interval is zero. (Bug #2477)

• Optimizer is now better tuned for the case where the first used key part (of many) is a constant.
(Bug #1679)

• Removed old non-working --old-rpl-compat server option, which was a holdover from
the very first 4.0.x versions. (Bug #2428)

• Added option --sync-frm. It's on by default, to instruct MySQL to sync to disk each time
.frm file is created. Use --disable-sync-frm to disable.

Bugs fixed:

• mysqlhotcopy now works on NetWare.

• DROP DATABASE could not drop databases with RAID tables that had more than nine
RAID_CHUNKS. (Bug #2627)

• Fixed bug in range optimizer when using overlapping ranges. (Bug #2448)

• Limit wait_timeout to 2147483 on Windows (OS limit). (Bug #2400)

• Fixed bug when --init-file crashes MySQL if it contains a large SELECT. (Bug #2526)

• SHOW KEYS now shows NULL in the Sub_part column for FULLTEXT indexes.

• The signal thread's stack size was increased to enable mysqld to run on Debian/IA-64 with a
TLS-enabled glibc. (Bug #2599)

• Now only the SELECT privilege is needed for tables that are only read in multiple-table UP-
DATE statements. (Bug #2377)

• Give proper error message if one uses LOCK TABLES ... ; INSERT ... SELECT and
one used the same table in the INSERT and SELECT part. (Bug #2296)

• SELECT INTO ... DUMPFILE now deletes the generated file on error.

• Fixed foreign key reference handling to allow references to column names that contain spaces.
(Bug #1725)

• Fixed problem with index reads on character columns with BDB tables. The symptom was that
data could be returned in the wrong lettercase. (Bug #2509)

• Fixed a spurious table corruption problem that could sometimes appear on tables with indexed
TEXT columns if these columns happened to contain values having trailing spaces. This bug was
introduced in 4.0.17.

• Fixed a problem where some queries could hang if a condition like indexed_TEXT_column
= expr was present and the column contained values having trailing spaces. This bug was in-
troduced in 4.0.17.

• Fixed a bug that could cause incorrect results from a query that involved range conditions on in-
dexed TEXT columns that happened to contain values having trailing spaces. This bug was intro-
duced in 4.0.17. (Bug #2295)

• Fixed incorrect path names in some of the manual pages. (Bug #2270)

• Fixed spurious ``table corrupted'' errors in parallel repair operations. See Section 5.2.3, “Server
System Variables”.

• Fixed a crashing bug in parallel repair operations. See Section 5.2.3, “Server System Variables”.

MySQL Change History

1256

• Fixed bug in updating MyISAM tables for BLOB values longer than 16MB. (Bug #2159)

• Fixed bug in mysqld_safe when running multiple instances of MySQL. (Bug #2114)

• Fixed a bug in using HANDLER statement with tables not from a current database. (Bug #2304)

• Fixed a crashing bug that occurred due to the fact that multiple-table UPDATE statements did not
check that there was only one table to be updated. (Bug #2103)

• Fixed a crashing bug that occurred due to BLOB column type index size being calculated incor-
rectly in MIN() and MAX() optimizations. (Bug #2189)

• Fixed a bug with incorrect syntax for LOCK TABLES in mysqldump. (Bug #2242)

• Fixed a bug in mysqld_safe that caused mysqld to generate a warning about duplicate
user=xxx options if this option was specified in the [mysqld] or [server] sections of
my.cnf. (Bug #2163)

• INSERT DELAYED ... SELECT ... could cause table corruption because tables were not
locked properly. This is now fixed by ignoring DELAYED in this context. (Bug #1983)

• Replication: Sometimes the master gets a non-fatal error during the execution of a statement that
does not immediately succeed. (For example, a write to a MyISAM table may first receive ``no
space left on device,'' but later complete when disk space becomes available. See Section A.4.3,
“How MySQL Handles a Full Disk”.) The bug was that the master forgot to reset the error code
to 0 after success, so the error code got into its binary log, thus causing the slave to issue false
alarms such as ``did not get the same error as on master.'' (Bug #2083)

• Removed a misleading ``check permissions on master.info'' from a replication error message,
because the cause of the problem could be something other than permissions. (Bug #2121)

• Fixed a crash when the replication slave was unable to create the first relay log. (Bug #2145)

• Replication of LOAD DATA INFILE for an empty file from a 3.23 master to a 4.0 slave caused
the slave to print an error. (Bug #2452)

• When automatically forcing lower_case_table_names to 1 if the file system was case in-
sensitive, mysqld could crash. This bug existed only in MySQL 4.0.17. (Bug #2481)

• Restored ability to specify default values for TIMESTAMP columns that was erroneously dis-
abled in previous release. (Bug #2539) Fixed SHOW CREATE TABLE to reflect these values.
(Bug #1885) Note that because of the auto-update feature for the first TIMESTAMP column in a
table, it makes no sense to specify a default value for the column. Any such default is silently ig-
nored (unless another TIMESTAMP column is added before this one). Also fixed the meaning of
the DEFAULT keyword when it is used to specify the value to be inserted into a TIMESTAMP
column other than the first. (Bug #2464)

• Fixed bug for out-of-range arguments on QNX platform that caused UNIX_TIMESTAMP() to
produce incorrect results or that caused non-zero values to be inserted into TIMESTAMP
columns. (Bug #2523) Also, current time zone now is taken into account when checking if date-
time values satisfy both range boundaries for TIMESTAMP columns. The range allowed for a
TIMESTAMP column is time zone-dependent and equivalent to a range of 1970-01-01
00:00:01 UTC to 2037-12-31 23:59:59 UTC.

• Multiple-table DELETE statements were never replicated by the slave if there were any -
-replicate-*-table options. (Bug #2527)

• Changes to session counterparts of variables query_prealloc_size,
query_alloc_block_size, trans_prealloc_size, trans_alloc_block_size
now have an effect. (Bug #1948)

• Fixed bug in ALTER TABLE RENAME, when rename to the table with the same name in anoth-
er database silently dropped destination table if it existed. (Bug #2628)

MySQL Change History

1257

D.3.8. Changes in release 4.0.17 (14 Dec 2003)
Functionality added or changed:

• mysqldump no longer dumps data for MERGE tables. (Bug #1846)

• lower_case_table_names is now forced to 1 if the database directory is located on a
case-insensitive filesystem. (Bug #1812)

• Symlink creation is now disabled on systems where realpath() doesn't work. (Before one
could use CREATE TABLE .. DATA DIRECTORY=.. even if
HAVE_BROKEN_REALPATH was defined. This is now disabled to avoid problems when run-
ning ALTER TABLE).

• Inserting a negative AUTO_INCREMENT value in a MyISAM table no longer updates the
AUTO_INCREMENT counter to a big unsigned value. (Bug #1366)

• Added four new modes to WEEK(..., mode) function. See WEEK(date: (mode)). (Bug
#1178)

• Allow UNION DISTINCT syntax.

• MySQL now syncs to disk each time .frm file is created.

• mysql_server_init() now returns 1 if it can't initialize the environment. (Previously
mysql_server_init() called exit(1) if it could not create a key with
pthread_key_create(). (Bug #2062)

• Allow spaces in Windows service names.

• Changed the default Windows service name for mysqld from MySql to MySQL. This should
not affect usage, because service names are not case sensitive.

• When you install mysqld as a service on Windows systems, mysqld reads startup options in op-
tion files from the option group with the same name as the service name. (Except when the ser-
vice name is MySQL).

Bugs fixed:

• Sending SIGHUP to mysqld crashed the server if it was running with --log-bin. (Bug
#2045)

• One can now configure MySQL as a Windows service as a normal user. (Bug #1802). Thanks to
Richard Hansen for fixing this.

• Database names are now compared in lowercase in ON clauses when
lower_case_table_names is set. (Bug #1736)

• IGNORE ... LINES option to LOAD DATA INFILE didn't work when used with fixed
length rows. (Bug #1704)

• Fixed problem with UNIX_TIMESTAMP() for timestamps close to 0. (Bug #1998)

• Fixed problem with character values greater than 128 in the QUOTE() function. (Bug #1868)

• Fixed searching of TEXT with endspace. (Bug #1651)

• Fixed caching bug in multiple-table updates where same table was used twice. (Bug #1711)

• Fixed directory permissions for the MySQL-server RPM documentation directory. (Bug #1672)

MySQL Change History

1258

• Fixed server crash when updating an ENUM column that is set to the empty string (for example,
with REPLACE()). (Bug #2023)

• mysql client program now correctly prints connection identifier returned by
mysql_thread_id() as unsigned integer rather than as signed integer. (Bug #1951)

• FOUND_ROWS() could return incorrect number of rows after a query with an impossible
WHERE condition. (Bug #1468)

• SHOW DATABASES no longer shows .sym files (on Windows) that do not point to a valid dir-
ectory. (Bug #1385)

• Fixed a possible memory leak on Mac OS X when using the shared libmysql.so library.
(from pthread_key_create()). (Bug #2061)

• Fixed bug in UNION statement with alias *. (Bug #1249)

• Fixed a bug in DELETE ... ORDER BY ... LIMIT where the rows where not deleted in
the proper order. (Bug #1024, Bug #1697).

• Fixed serious problem with multi-threaded programs on Windows that used the embedded
MySQL libraries. (Locks of tables were not handled correctly between different threads).

• Code cleanup: Fixed a few code defects (potential memory leaks, null pointer dereferences, un-
initialized variables). Thanks to Reasoning Inc. for informing us about these findings.

• Fixed a buffer overflow error that occurred with prepended '0' characters in some columns of
type DECIMAL. (Bug #2128)

• Filesort was never shown in EXPLAIN if query contained an ORDER BY NULL clause. (Bug
#1335)

• Fixed invalidation of whole query cache on DROP DATABASE. (Bug #1898)

• Fixed bug in range optimizer that caused wrong results for some unlikely AND/OR queries. (Bug
#1828)

• Fixed a crash in ORDER BY when ordering by expression and identifier. (Bug #1945)

• Fixed a crash in an open HANDLER when an ALTER TABLE was executed in a different con-
nection. (Bug #1826)

• Fixed a bug in trunc* operator of full-text search which sometimes caused MySQL not to find
all matched rows.

• Fixed bug in prepending '0' characters to DECIMAL column values.

• Fixed optimizer bug, introduced in 4.0.16, when REF access plan was preferred to more efficient
RANGE on another column.

• Fixed problem when installing a MySQL server as a Windows service using a command of the
form mysqld --install mysql --defaults-file=path-to-file. (Bug #1643)

• Fixed an incorrect result from a query that uses only const tables (such as one-row tables) and
non-constant expression (such as RAND()). (Bug #1271)

• Fixed bug when the optimizer did not take SQL_CALC_FOUND_ROWS into account if LIMIT
clause was present. (Bug #1274)

• mysqlbinlog now asks for a password at the console when the -p or --password option is
used with no argument. This is consistent with the way that other clients such mysqladmin and
mysqldump behave. Note: A consequence of this change is that it is no longer possible to in-
voke mysqlbinlog as mysqlbinlog -p pass_val (with a space between the -p option and the fol-
lowing password value). (Bug #1595)

MySQL Change History

1259

• Fixed bug accidentally introduced in 4.0.16 where the slave SQL thread deleted its replicated
temporary tables when STOP SLAVE was issued.

• In a ``chain'' replication setup A->B->C, if 2 sessions on A updated temporary tables of the
same name at the same time, the binary log of B became incorrect, resulting in C becoming con-
fused. (Bug #1686)

• In a ``chain'' replication setup A->B->C, if STOP SLAVE was issued on B while it was replic-
ating a temporary table from A, then when START SLAVE was issued on B, the binary log of B
became incorrect, resulting in C becoming confused. (Bug #1240)

• When MASTER_LOG_FILE and MASTER_LOG_POS were not specified, CHANGE MASTER
used the coordinates of the slave I/O thread to set up replication, which broke replication if the
slave SQL thread lagged behind the slave I/O thread. This caused the slave SQL thread to lose
some events. The new behavior is to use the coordinates of the slave SQL thread instead. See
Section 13.6.2.1, “CHANGE MASTER TO Syntax”. (Bug #1870)

• Now if integer is stored or converted to TIMESTAMP or DATETIME value checks of year,
month, day, hour, minute and second ranges are performed and numbers representing illegal
timestamps are converted to 0 value. This behavior is consistent with manual and with behavior
of string to TIMESTAMP/DATETIME conversion. (Bug #1448)

• Fixed bug when BIT_AND() and BIT_OR() group functions returned incorrect value if SE-
LECT used a temporary table and no rows were found. (Bug #1790).

• BIT_AND() is now unsigned in all contexts. This means that it now returns
18446744073709551615 (= 0xffffffffffffffff) instead of -1 if there were no rows in the result.

• Fixed bug with BIT_AND() still returning signed value for an empty set in some cases. (Bug
#1972)

• Fixed bug with ^ (XOR) and >> (bit shift) still returning signed value in some cases. (Bug
#1993)

• Replication: a rare race condition in the slave SQL thread, which could lead to a wrong com-
plain that the relay log is corrupted. (Bug #2011)

• Replication: in the slave SQL thread, a multiple-table UPDATE could produce a wrong complain
that some record was not found in one table, if the UPDATE was preceded by a INSERT ...
SELECT. (Bug #1701)

• Fixed deficiency in MySQL code which is responsible for scanning directories. This deficiency
caused SHOW TABLE STATUS to be very slow when a database contained a large number of
tables, even if a single particular table were specified. (Bug #1952)

D.3.9. Changes in release 4.0.16 (17 Oct 2003)
Functionality added or changed:

• Option values in option files now may be quoted. This is useful for values that contain
whitespace or comment characters.

• Write memory allocation information to error log when doing mysqladmin debug. This works
only on systems that support the mallinfo() call (like newer Linux systems).

• Added the following new system variables to allow more precise memory allocation:
range_alloc_block_size, query_alloc_block_size,
query_prealloc_size, transaction_alloc_block_size, and transac-
tion_prealloc_size.

• mysqlbinlog now reads option files. To make this work, you must now specify -

MySQL Change History

1260

-read-from-remote-server when reading binary logs from a MySQL server. (Note that
using a remote server is deprecated and may disappear in future mysqlbinlog versions).

• Block SIGPIPE signals also for non-threaded programs. The blocking is moved from
mysql_init() to mysql_server_init(), which is automatically called on the first call
to mysql_init().

• Added --libs_r and --include options to mysql_config.

• New `> prompt for mysql. This prompt is similar to the '> and "> prompts, but indicates that
an identifier quoted with backticks was begun on an earlier line and the closing backtick has not
yet been seen.

• Updated mysql_install_db to be able to use the local machine's IP address instead of the host-
name when building the initial grant tables if skip-name-resolve has been specified. This
option can be helpful on FreeBSD to avoid thread-safety problems with the FreeBSD resolver
libraries. (Thanks to Jeremy Zawodny for the patch.)

• A documentation change: Added a note that when backing up a slave, it is necessary also to back
up the master.info and relay-log.info files, as well as any SQL_LOAD-* files loc-
ated in the directory specified by the --slave-load-tmpdir option. All these files are
needed when the slave resumes replication after you restore the slave's data.

Bugs fixed:

• Fixed a spurious error ERROR 14: Can't change size of file (Errcode: 2)
on Windows in DELETE FROM tbl_name without a WHERE clause or TRUNCATE TABLE
tbl_name, when tbl_name is a MyISAM table. (Bug #1397)

• Fixed a bug that resulted in thr_alarm queue is full warnings after increasing the
max_connections variable with SET GLOBAL. (Bug #1435)

• Made LOCK TABLES to work when Lock_tables_priv is granted on the database level
and Select_priv is granted on the table level.

• Fixed crash of FLUSH QUERY CACHE on queries that use same table several times (Bug
#988).

• Fixed core dump bug when setting an enum system variable (such as SQL_WARNINGS) to
NULL.

• Extended the default timeout value for Windows clients from 30 seconds to 1 year. (The timeout
that was added in MySQL 4.0.15 was way too short). This fixes a bug that caused ERROR
2013: Lost connection to MySQL server during query for queries that las-
ted longer than 30 seconds, if the client didn't specify a limit with mysql_options(). Users
of 4.0.15 on Windows should upgrade to avoid this problem.

• More ``out of memory'' checking in range optimizer.

• Fixed and documented a problem when setting and using a user variable within the same SE-
LECT statement. (Bug #1194).

• Fixed bug in overrun check for BLOB values with compressed tables. This was a bug introduced
in 4.0.14. It caused MySQL to regard some correct tables containing BLOB values as corrupted.
(Bug #770, Bug #1304, and maybe Bug #1295)

• SHOW GRANTS showed USAGE instead of the real column-level privileges when no table-level
privileges were given.

• When copying a database from the master, LOAD DATA FROM MASTER dropped the corres-
ponding database on the slave, thus erroneously dropping tables that had no counterpart on the
master and tables that may have been excluded from replication using -

MySQL Change History

1261

-replicate-*-table rules. Now LOAD DATA FROM MASTER no longer drops the data-
base. Instead, it drops only the tables that have a counterpart on the master and that match the -
-replicate-*-table rules. --replicate-*-db rules can still be used to include or ex-
clude a database as a whole from LOAD DATA FROM MASTER. A database also is included or
excluded as a whole if there are some rules like --replicate-wild-do-table=db1.%
or --replicate-wild-ignore-table=db1.%, as is the case for CREATE DATABASE
and DROP DATABASE in replication. (Bug #1248)

• Fixed a bug where mysqlbinlog crashed with a segmentation fault when used with the -h or -
-host option. (Bug #1258)

• Fixed a bug where mysqlbinlog crashed with a segmentation fault when used on a binary log
containing only final events for LOAD DATA. (Bug #1340)

• mysqlbinlog does not reuse temporary filenames from previous runs. Previously mysqlbinlog
failed if was used several times on the same binary log file that contained a LOAD DATA com-
mand.

• Fixed compilation problem when compiling with OpenSSL 0.9.7 with disabled old DES support
(If OPENSSL_DISABLE_OLD_DES_SUPPORT option was enabled).

• Fixed a bug when two (or more) MySQL servers were running on the same machine, and they
were both slaves, and at least one of them was replicating some LOAD DATA INFILE com-
mand from its master. The bug was that one slave MySQL server sometimes deleted the
SQL_LOAD-* files (used for replication of LOAD DATA INFILE and located in the slave-
load-tmpdir directory, which defaults to tmpdir) belonging to the other slave MySQL
server of this machine, if these slaves had the same slave-load-tmpdir directory. When
that happened, the other slave could not replicate LOAD DATA INFILE and complained about
not being able to open some SQL_LOAD-* file. (Bug #1357)

• If LOAD DATA INFILE failed for a small file, the master forgot to write a marker (a De-
lete_file event) in its binary log, so the slave could not delete 2 files (SQL_LOAD-*.info
and SQL_LOAD-*.data from its tmpdir. (Bug #1391)

• On Windows, the slave forgot to delete a SQL_LOAD-*.info file from tmpdir after suc-
cessfully replicating a LOAD DATA INFILE command. (Bug #1392)

• When a connection terminates, MySQL writes DROP TEMPORARY TABLE statements to the
binary log for all temporary tables which the connection had not explicitly dropped. MySQL for-
got to use backticks to quote the database and table names in the statement. (Bug #1345)

• On some 64-bit machines (some HP-UX and Solaris machines), a slave installed with the 64-bit
MySQL binary could not connect to its master (it connected to itself instead). (Bug #1256, Bug
#1381)

• Code was introduced in MySQL 4.0.15 for the slave to detect that the master had died while
writing a transaction to its binary log. This code reported an error in a legal situation: When the
slave I/O thread was stopped while copying a transaction to the relay log, the slave SQL thread
would later pretend that it found an unfinished transaction. (Bug #1475)

D.3.10. Changes in release 4.0.15 (03 Sep 2003)
IMPORTANT:

If you are using this release on Windows, you should upgrade at least your clients (any program that
uses libmysql.lib) to 4.0.16 or above. This is because the 4.0.15 release had a bug in the Win-
dows client library that causes Windows clients using the library to die with a Lost connec-
tion to MySQL server during query error for queries that take more than 30 seconds.
This problem is specific to Windows; clients on other platforms are unaffected.

Functionality added or changed:

MySQL Change History

1262

• mysqldump now correctly quotes all identifiers when communicating with the server. This as-
sures that during the dump process, mysqldump never sends queries to the server that result in a
syntax error. This problem is not related to the mysqldump program's output, which was not
changed. (Bug #1148)

• Change result set metadata information so that MIN() and MAX() report that they can return
NULL (this is true because an empty set returns NULL). (Bug #324)

• Produce an error message on Windows if a second mysqld server is started on the same TCP/IP
port as a running mysqld server.

• The mysqld system variables wait_timeout, net_read_timeout, and
net_write_timeout now work on Windows. One can now also set timeouts for read and
writes in Windows clients with mysql_options().

• Added option --sql-mode=NO_DIR_IN_CREATE to make it possible for slaves to ignore
INDEX DIRECTORY and DATA DIRECTORY options given to CREATE TABLE. When this
is mode is on, SHOW CREATE TABLE does not show the given directories.

• SHOW CREATE TABLE now shows the INDEX DIRECTORY and DATA DIRECTORY op-
tions, if they were specified when the table was created.

• The open_files_limit system variable now shows the real open files limit.

• MATCH ... AGAINST() in natural language mode now treats words that are present in more
than 2,000,000 rows as stopwords.

• The Mac OS X installation disk images now include an additional MySQLStartupItem.pkg
package that enables the automatic startup of MySQL on system startup. See Section 2.5,
“Installing MySQL on Mac OS X”.

• Most of the documentation included in the binary tarball distributions (.tar.gz) has been
moved into a subdirectory docs. See Section 2.1.5, “Installation Layouts”.

• The manual is now included as an additional info file in the binary distributions. (Bug #1019)

• The binary distributions now include the embedded server library (libmysqld.a) by default.
Due to a linking problem with non-gcc compilers, it was not included in all packages of the ini-
tial 4.0.15 release. The affected packages were rebuilt and released as 4.0.15a. See Sec-
tion 1.3.1.2, “The Embedded MySQL Server”.

• MySQL can now use range optimization for BETWEEN with non-constant limits. (Bug #991)

• Replication error messages now include the default database, so that users can check which data-
base the failing query was run for.

• A documentation change: Added a paragraph about how the binlog-do-db and binlog-
ignore-db options are tested against the database on the master (see Section 5.9.4, “The Bin-
ary Log”), and a paragraph about how --replicate-do-db, --replicate-do-table
and analogous options are tested against the database and tables on the slave (see Section 6.8,
“Replication Startup Options”).

• Now the slave does not replicate SET PASSWORD if it is configured to exclude the mysql
database from replication (using for example -
-replicate-wild-ignore-table=mysql.%). This was the case for GRANT and RE-
VOKE since version 4.0.13 (although there was Bug #980 in 4.0.13 & 4.0.14, which has been
fixed in 4.0.15).

• Rewrote the information shown in the State column of SHOW PROCESSLIST for replication
threads and for MASTER_POS_WAIT() and added the most common states for these threads to
the documentation, see Section 6.3, “Replication Implementation Details”.

• Added a test in replication to detect the case where the master died in the middle of writing a

MySQL Change History

1263

transaction to the binary log; such unfinished transactions now trigger an error message on the
slave.

• A GRANT command that creates an anonymous user (that is, an account with an empty user-
name) no longer requires FLUSH PRIVILEGES for the account to be recognized by the server.
(Bug #473)

• CHANGE MASTER now flushes relay-log.info. Previously this was deferred to the next
run of START SLAVE, so if mysqld was shutdown on the slave after CHANGE MASTER
without having run START SLAVE, the relay log's name and position were lost. At restart they
were reloaded from relay-log.info, thus reverting to their old (incorrect) values from be-
fore CHANGE MASTER and leading to error messages (as the old relay log did not exist any
more) and the slave threads refusing to start. (Bug #858)

Bugs fixed:

• Fixed buffer overflow in password handling which could potentially be exploited by MySQL
users with ALTER privilege on the mysql.user table to execute random code or to gain shell
access with the UID of the mysqld process (thanks to Jedi/Sector One for spotting and reporting
this bug).

• Fixed server crash on FORCE INDEX in a query that contained "Range checked for each re-
cord" in the EXPLAIN output. (Bug #1172)

• Fixed table/column grant handling: The proper sort order (from most specific to less specific,
see Section 5.5.6, “Access Control, Stage 2: Request Verification”) was not honored. (Bug
#928)

• Fixed rare bug in MYISAM introduced in 4.0.3 where the index file header was not updated dir-
ectly after an UPDATE of split dynamic rows. The symptom was that the table had a corrupted
delete-link if mysqld was shut down or the table was checked directly after the update.

• Fixed Can't unlock file error when running myisamchk --sort-index on Windows.
(Bug #1119)

• Fixed possible deadlock when changing key_buffer_size while the key cache was actively
used. (Bug #1088)

• Fixed overflow bug in MyISAM and ISAM when a row is updated in a table with a large number
of columns and at least one BLOB/TEXT column.

• Fixed incorrect result when doing UNION and LIMIT #,# when braces were not used around
the SELECT parts.

• Fixed incorrect result when doing UNION and ORDER BY .. LIMIT # when one didn't use
braces around the SELECT parts.

• Fixed problem with SELECT SQL_CALC_FOUND_ROWS ... UNION ALL ... LIMIT
where FOUND_ROWS() returned incorrect number of rows.

• Fixed unlikely stack bug when having a BIG expression of type 1+1-1+1-1... in certain
combinations. (Bug #871)

• Fixed the bug that sometimes prevented a table with a FULLTEXT index from being marked as
"analyzed".

• Fixed MySQL so that the column length (in C API) for the second column in SHOW CREATE
TABLE is always larger than the data length. The only known application that was affected by
the old behavior was Borland dbExpress, which truncated the output from the command. (Bug
#1064)

• Fixed crash in comparisons of strings using the tis620 character set. (Bug #1116)

MySQL Change History

1264

• Fixed ISAM bug in MAX() optimization.

• myisamchk --sort-records=N no longer marks table as crashed if sorting failed because of an
inappropriate key. (Bug #892)

• Fixed a minor bug in MyISAM compressed table handling that sometimes made it impossible to
repair compressed table in "Repair by sort" mode. "Repair with keycache" (myisamchk -
-safe-recover) worked, though. (Bug #1015)

• Fixed bug in propagating the version number to the manual included in the distribution files.
(Bug #1020)

• Fixed key sorting problem (a PRIMARY key declared for a column that is not explicitly marked
NOT NULL was sorted after a UNIQUE key for a NOT NULL column).

• Fixed the result of INTERVAL when applied to a DATE value. (Bug #792)

• Fixed compiling of the embedded server library in the RPM spec file. (Bug #959)

• Added some missing files to the RPM spec file and fixed some RPM building errors that oc-
curred on Red Hat Linux 9. (Bug #998)

• Fixed incorrect XOR evaluation in WHERE clause. (Bug #992)

• Fixed bug with processing in query cache merged tables constructed from more then 255 tables.
(Bug #930)

• Fixed incorrect results from outer join query (for example, LEFT JOIN) when ON condition is
always false, and range search in used. (Bug #926)

• Fixed a bug causing incorrect results from MATCH ... AGAINST() in some joins. (Bug
#942)

• MERGE tables do not ignore Using index (from EXPLAIN output) anymore.

• Fixed a bug that prevented an empty table from being marked as "analyzed". (Bug #937)

• Fixed myisamchk --sort-records crash when used on compressed table.

• Fixed slow (as compared to 3.23) ALTER TABLE and related commands such as CREATE
INDEX. (Bug #712)

• Fixed segmentation fault resulting from LOAD DATA FROM MASTER when the master was
running without the --log-bin option. (Bug #934)

• Fixed a security bug: A server compiled without SSL support still allowed connections by users
who had the REQUIRE SSL option specified for their accounts.

• Fixed a random bug: Sometimes the slave would replicate GRANT or REVOKE queries even if it
was configured to exclude the mysql database from replication (for example, using -
-replicate-wild-ignore-table=mysql.%). (Bug #980)

• The Last_Errno and Last_Error fields in the output of SHOW SLAVE STATUS are now
cleared by CHANGE MASTER and when the slave SQL thread starts. (Bug #986)

• A documentation mistake: It said that RESET SLAVE does not change connection information
(master host, port, user, and password), whereas it does. The statement resets these to the startup
options (master-host etc) if there were some. (Bug #985)

• SHOW SLAVE STATUS now shows correct information (master host, port, user, and password)
after RESET SLAVE (that is, it shows the new values, which are copied from the startup op-
tions if there were some). (Bug #985)

• Disabled propagation of the original master's log position for events because this caused unex-

MySQL Change History

1265

pected values for Exec_Master_Log_Pos and problems with MASTER_POS_WAIT() in
A->B->C replication setup. (Bug #1086)

• Fixed a segfault in mysqlbinlog when --position=x was used with x being between a
Create_file event and its fellow Append_block, Exec_load or Delete_file
events. (Bug #1091)

• mysqlbinlog printed superfluous warnings when using --database, which caused syntax er-
rors when piped to mysql. (Bug #1092)

• Made mysqlbinlog --database filter LOAD DATA INFILE too (previously, it filtered all quer-
ies except LOAD DATA INFILE). (Bug #1093)

• mysqlbinlog in some cases forgot to put a leading '#' in front of the original LOAD DATA
INFILE (this command is displayed only for information, not to be run; it is later reworked to
LOAD DATA LOCAL with a different filename, for execution by mysql). (Bug #1096)

• binlog-do-db and binlog-ignore-db incorrectly filtered LOAD DATA INFILE (it
was half-written to the binary log). This resulted in a corrupted binary log, which could cause
the slave to stop with an error. (Bug #1100)

• When, in a transaction, a transactional table (such as an InnoDB table) was updated, and later in
the same transaction a non-transactional table (such as a MyISAM table) was updated using the
updated content of the transactional table (with INSERT ... SELECT for example), the quer-
ies were written to the binary log in an incorrect order. (Bug #873)

• When, in a transaction, INSERT ... SELECT updated a non-transactional table, and ROLL-
BACK was issued, no error was returned to the client. Now the client is warned that some
changes could not be rolled back, as this was the case for normal INSERT. (Bug #1113)

• Fixed a potential bug: When STOP SLAVE was run while the slave SQL thread was in the
middle of a transaction, and then CHANGE MASTER was used to point the slave to some non-
transactional statement, the slave SQL thread could get confused (because it would still think,
from the past, that it was in a transaction).

D.3.11. Changes in release 4.0.14 (18 Jul 2003)
Functionality added or changed:

• Added default_week_format system variable. The value is used as the default mode for
the WEEK() function.

• mysqld now reads an additional option file group having a name corresponding to the server's
release series: [mysqld-4.0] for 4.0.x servers, [mysqld-4.1] for 4.1.x servers, and so
forth. This allows options to be specified on a series-specific basis.

• The CONCAT_WS() function no longer skips empty strings. (Bug #586).

• InnoDB now supports indexing a prefix of a column. This means, in particular, that BLOB and
TEXT columns can be indexed in InnoDB tables, which was not possible before.

• A documentation change: Function INTERVAL(NULL, ...) returns -1.

• Enabled INSERT from SELECT when the table into which the records are inserted is also a ta-
ble listed in the SELECT.

• Allow CREATE TABLE and INSERT from any UNION.

• The SQL_CALC_FOUND_ROWS option now always returns the total number of rows for any
UNION.

MySQL Change History

1266

• Removed --table option from mysqlbinlog to avoid repeating mysqldump functionality.

• Comment lines in option files can now start from the middle of a line, too (like
basedir=c:\mysql # installation directory).

• Changed optimizer slightly to prefer index lookups over full table scans in some boundary cases.

• Added thread-specific max_seeks_for_key variable that can be used to force the optimizer
to use keys instead of table scans even if the cardinality of the index is low.

• Added optimization that converts LEFT JOIN to normal join in some cases.

• A documentation change: added a paragraph about failover in replication (how to use a surviv-
ing slave as the new master, how to resume to the original setup). See Section 6.9, “Replication
FAQ”.

• A documentation change: added warning notes about safe use of the CHANGE MASTER com-
mand. See Section 13.6.2.1, “CHANGE MASTER TO Syntax”.

• MySQL now issues a warning (not an error, as in 4.0.13) when it opens a table that was created
with MySQL 4.1.

• Added --nice option to mysqld_safe to allow setting the niceness of the mysqld process.
(Thanks to Christian Hammers for providing the initial patch.) (Bug #627)

• Added --read-only option to cause mysqld to allow no updates except from slave threads or
from users with the SUPER privilege. (Original patch from Markus Benning).

• SHOW BINLOG EVENTS FROM x where x is less than 4 now silently converts x to 4 instead
of printing an error. The same change was done for CHANGE MASTER TO MAS-
TER_LOG_POS=x and CHANGE MASTER TO RELAY_LOG_POS=x.

• mysqld now only adds an interrupt handler for the SIGINT signal if you start it with the new -
-gdb option. This is because some MySQL users encountered strange problems when they ac-
cidentally sent SIGINT to mysqld threads.

• RESET SLAVE now clears the Last_Errno and Last_Error fields in the output of SHOW
SLAVE STATUS.

• Added max_relay_log_size variable; the relay log is rotated automatically when its size
exceeds max_relay_log_size. But if max_relay_log_size is 0 (the default),
max_binlog_size is used (as in older versions). max_binlog_size still applies to bin-
ary logs in any case.

• FLUSH LOGS now rotates relay logs in addition to the other types of logs it rotates.

Bugs fixed:

• Comparison/sorting for latin1_de character set was rewritten. The old algorithm could not
handle cases like "sä" > "ßa". See Section 5.8.1.1, “Using the German Character Set”. In
rare cases it resulted in table corruption.

• Fixed a problem with the password prompt on Windows. (Bug #683)

• ALTER TABLE ... UNION=(...) for MERGE table is now allowed even if some underly-
ing MyISAM tables are read-only. (Bug #702)

• Fixed a problem with CREATE TABLE t1 SELECT x'41'. (Bug #801)

• Removed some incorrect lock warnings from the error log.

• Fixed memory overrun when doing REPAIR TABLE on a table with a multiple-part

MySQL Change History

1267

auto_increment key where one part was a packed CHAR.

• Fixed a probable race condition in the replication code that could potentially lead to INSERT
statements not being replicated in the event of a FLUSH LOGS command or when the binary
log exceeds max_binlog_size. (Bug #791)

• Fixed a crashing bug in INTERVAL and GROUP BY or DISTINCT. (Bug #807)

• Fixed bug in mysqlhotcopy so it actually aborts for unsuccessful table copying operations.
Fixed another bug so that it succeeds when there are thousands of tables to copy. (Bug #812)

• Fixed problem with mysqlhotcopy failing to read options from option files. (Bug #808)

• Fixed bugs in optimizer that sometimes prevented MySQL from using FULLTEXT indexes even
though it was possible (for example, in SELECT * FROM t1 WHERE MATCH a,b
AGAINST("index") > 0).

• Fixed a bug with ``table is full'' in UNION operations.

• Fixed a security problem that enabled users with no privileges to obtain information on the list
of existing databases by using SHOW TABLES and similar commands.

• Fixed a stack problem on UnixWare/OpenUnix.

• Fixed a configuration problem on UnixWare/OpenUNIX and OpenServer.

• Fixed a stack overflow problem in password verification.

• Fixed a problem with max_user_connections.

• HANDLER without an index now works properly when a table has deleted rows. (Bug #787)

• Fixed a bug with LOAD DATA in mysqlbinlog. (Bug #670)

• Fixed that SET CHARACTER SET DEFAULT works. (Bug #462)

• Fixed MERGE table behavior in ORDER BY ... DESC queries. (Bug #515)

• Fixed server crash on PURGE MASTER LOGS or SHOW MASTER LOGS when the binary log
is off. (Bug #733)

• Fixed password-checking problem on Windows. (Bug #464)

• Fixed the bug in comparison of a DATETIME column and an integer constant. (Bug #504)

• Fixed remote mode of mysqlbinlog. (Bug #672)

• Fixed ERROR 1105: Unknown error that occurred for some SELECT queries, where a
column that was declared as NOT NULL was compared with an expression that took NULL
value.

• Changed timeout in mysql_real_connect() to use poll() instead of select() to
work around problem with many open files in the client.

• Fixed incorrect results from MATCH ... AGAINST used with a LEFT JOIN query.

• Fixed a bug that limited the maximum value for mysqld variables to 4294967295 when they are
specified on the command line.

• Fixed a bug that sometimes caused spurious ``Access denied'' errors in HANDLER ... READ
statements, when a table is referenced via an alias.

• Fixed portability problem with safe_malloc, which caused MySQL to give "Freeing wrong
aligned pointer" errors on SCO 3.2.

MySQL Change History

1268

• ALTER TABLE ... ENABLE/DISABLE KEYS could cause a core dump when done after
an INSERT DELAYED statement on the same table.

• Fixed problem with conversion of localtime to GMT where some times resulted in different (but
correct) timestamps. Now MySQL should use the smallest possible timestamp value in this case.
(Bug #316)

• Very small query cache sizes could crash mysqld. (Bug #549)

• Fixed a bug (accidentally introduced by us but present only in version 4.0.13) that made IN-
SERT ... SELECT into an AUTO_INCREMENT column not replicate well. This bug is in the
master, not in the slave. (Bug #490)

• Fixed a bug: When an INSERT ... SELECT statement inserted rows into a non-transactional
table, but failed at some point (for example, due to a ``Duplicate key'' error), the query was not
written to the binary log. Now it is written to the binary log, with its error code, as all other quer-
ies are. About the slave-skip-errors option for how to handle partially completed queries
in the slave, see Section 6.8, “Replication Startup Options”. (Bug #491)

• SET FOREIGN_KEY_CHECKS=0 was not replicated properly. The fix probably will not be
backported to 3.23.

• On a slave, LOAD DATA INFILE which had no IGNORE or REPLACE clause on the master,
was replicated with IGNORE. While this is not a problem if the master and slave data are
identical (a LOAD that produces no duplicate conflicts on the master produces none on the slave
anyway), which is true in normal operation, it is better for debugging not to silently add the IG-
NORE. That way, you can get an error message on the slave and discover that for some reason,
the data on master and slave are different and investigate why. (Bug #571)

• On a slave, LOAD DATA INFILE printed an incomplete ``Duplicate entry '%-.64s' for key
%d''' message (the key name and value were not mentioned) in case of duplicate conflict (which
does not happen in normal operation). (Bug #573)

• When using a slave compiled with --debug, CHANGE MASTER TO RELAY_LOG_POS
could cause a debug assertion failure. (Bug #576)

• When doing a LOCK TABLES WRITE on an InnoDB table, commit could not happen, if the
query was not written to the binary log (for example, if --log-bin was not used, or bin-
log-ignore-db was used). (Bug #578)

• If a 3.23 master had open temporary tables that had been replicated to a 4.0 slave, and the binary
log got rotated, these temporary tables were immediately dropped by the slave (which caused
problems if the master used them subsequently). This bug had been fixed in 4.0.13, but in a
manner which caused an unlikely inconvenience: If the 3.23 master died brutally (power fail-
ure), without having enough time to automatically write DROP TABLE statements to its binary
log, then the 4.0.13 slave would not notice the temporary tables have to be dropped, until the
slave mysqld server is restarted. This minor inconvenience is fixed in 3.23.57 and 4.0.14
(meaning the master must be upgraded to 3.23.57 and the slave to 4.0.14 to remove the incon-
venience). (Bug #254)

• If MASTER_POS_WAIT() was waiting, and the slave was idle, and the slave SQL thread ter-
minated, MASTER_POS_WAIT() would wait forever. Now when the slave SQL thread termin-
ates, MASTER_POS_WAIT() immediately returns NULL (``slave stopped''). (Bug #651)

• After RESET SLAVE; START SLAVE;, the Relay_Log_Space value displayed by SHOW
SLAVE STATUS was too big by four bytes. (Bug #763)

• If a query was ignored on the slave (because of --replicate-ignore-table and other
similar rules), the slave still checked if the query got the same error code (0, no error) as on the
master. So if the master had an error on the query (for example, ``Duplicate entry'' in a multiple-
row insert), then the slave stopped and warned that the error codes didn't match. (Bug #797)

MySQL Change History

1269

D.3.12. Changes in release 4.0.13 (16 May 2003)
Functionality added or changed:

• PRIMARY KEY now implies NOT NULL. (Bug #390)

• The Windows binary packages are now compiled with --enable-local-infile to match
the Unix build configuration.

• Removed timing of tests from mysql-test-run. time does not accept all required parameters on
many platforms (for example, QNX) and timing the tests is not really required (it's not a bench-
mark anyway).

• SHOW MASTER STATUS and SHOW SLAVE STATUS required the SUPER privilege; now
they accept REPLICATION CLIENT as well. (Bug #343)

• Added multi-threaded MyISAM repair optimization and myisam_repair_threads variable
to enable it. See Section 5.2.3, “Server System Variables”.

• Added innodb_max_dirty_pages_pct variable which controls amount of dirty pages al-
lowed in InnoDB buffer pool.

• CURRENT_USER() and Access denied error messages now report the hostname exactly as
it was specified in the GRANT command.

• Removed benchmark results from the source and binary distributions. They are still available in
the BK source tree, though.

• InnoDB tables now support ANALYZE TABLE.

• MySQL now issues an error when it opens a table that was created with MySQL 4.1.

• Option --new now changes binary items (0xFFDF) to be treated as binary strings instead of
numbers by default. This fixes some problems with character sets where it's convenient to input
the string as a binary item. After this change you have to convert the binary string to INTEGER
with a CAST if you want to compare two binary items with each other and know which one is
bigger than the other. SELECT CAST(0xfeff AS UNSIGNED) < CAST(0xff AS UN-
SIGNED). This is the default behavior in MySQL 4.1. (Bug #152)

• Enabled delayed_insert_timeout on Linux (most modern glibc libraries have a fixed
pthread_cond_timedwait()). (Bug #211)

• Don't create more insert delayed threads than given by max_delayed_threads. (Bug #211)

• Changed UPDATE ... LIMIT to apply the limit to rows that were matched, whether or not
they actually were changed. Previously the limit was applied as a restriction on the number of
rows changed.

• Tuned optimizer to favor clustered index over table scan.

• BIT_AND() and BIT_OR() now return an unsigned 64-bit value.

• Added warnings to error log of why a secure connection failed (when running with -
-log-warnings).

• Deprecated options --skip-symlink and --use-symbolic-links and replaced these
with --symbolic-links.

• The default option for innodb_flush_log_at_trx_commit was changed from 0 to 1 to
make InnoDB tables ACID by default. See Section 15.5, “InnoDB Startup Options”.

• Added a feature to SHOW KEYS to display keys that are disabled by ALTER TABLE DIS-
ABLE KEYS command.

MySQL Change History

1270

• When using a non-existing table type with CREATE TABLE, first try if the default table type
exists before falling back to MyISAM.

• Added MEMORY as an alias for HEAP.

• Renamed function rnd to my_rnd as the name was too generic and is an exported symbol in
libmysqlclient (thanks to Dennis Haney for the initial patch).

• Portability fix: renamed include/dbug.h to include/my_dbug.h.

• mysqldump no longer silently deletes the binary logs when invoked with the -
-master-data or --first-slave option; while this behavior was convenient for some
users, others may suffer from it. Now you must explicitly ask for binary logs to be deleted by us-
ing the new --delete-master-logs option.

• If the slave is configured (using for example -
-replicate-wild-ignore-table=mysql.%) to exclude mysql.user,
mysql.host, mysql.db, mysql.tables_priv and mysql.columns_priv from rep-
lication, then GRANT and REVOKE are not replicated.

Bugs fixed:

• Logged Access denied error message had incorrect Using password value. (Bug #398)

• Fixed bug with NATURAL LEFT JOIN, NATURAL RIGHT JOIN and RIGHT JOIN when
using many joined tables. The problem was that the JOIN method was not always associated
with the tables surrounding the JOIN method. If you have a query that uses many RIGHT
JOIN or NATURAL ... JOINS you should verify that they work as you expected after up-
grading MySQL to this version. (Bug #291)

• Fixed mysql parser not to erroneously interpret ''' or '"' characters within /* ... */ com-
ment as beginning a quoted string.

• mysql command-line client no longer looks for * commands inside backtick-quoted strings.

• Fixed Unknown error when using UPDATE ... LIMIT. (Bug #373)

• Fixed problem with ANSI mode and GROUP BY with constants. (Bug #387)

• Fixed bug with UNION and OUTER JOIN. (Bug #386)

• Fixed bug if one used a multiple-table UPDATE and the query required a temporary table bigger
than tmp_table_size. (Bug #286)

• Run mysql_install_db with the -IN-RPM option for the Mac OS X installation to not fail on
systems with improperly configured hostname configurations.

• LOAD DATA INFILE now reads 000000 as a zero date instead of "2000-00-00".

• Fixed bug that caused DELETE FROM table WHERE const_expression always to de-
lete the whole table (even if expression result was false). (Bug #355)

• Fixed core dump bug when using FORMAT('nan',#). (Bug #284)

• Fixed name resolution bug with HAVING ... COUNT(DISTINCT ...).

• Fixed incorrect result from truncation operator (*) in MATCH ... AGAINST() in some com-
plex joins.

• Fixed a crash in REPAIR ... USE_FRM command, when used on read-only, nonexisting ta-
ble or a table with a crashed index file.

MySQL Change History

1271

• Fixed a crashing bug in mysql monitor program. It occurred if program was started with -
-no-defaults, with a prompt that contained the hostname and a connection to a non-existent
database was requested.

• Fixed problem when comparing a key for a multi-byte character set. (Bug #152)

• Fixed bug in LEFT, RIGHT and MID when used with multi-byte character sets and some
GROUP BY queries. (Bug #314)

• Fix problem with ORDER BY being discarded for some DISTINCT queries. (Bug #275)

• Fixed that SET SQL_BIG_SELECTS=1 works as documented (This corrects a new bug intro-
duced in 4.0)

• Fixed some serious bugs in UPDATE ... ORDER BY. (Bug #241)

• Fixed unlikely problem in optimizing WHERE clause with constant expression like in WHERE 1
AND (a=1 AND b=1).

• Fixed that SET SQL_BIG_SELECTS=1 works again.

• Introduced proper backtick quoting for db.table in SHOW GRANTS.

• FULLTEXT index stopped working after ALTER TABLE that converts TEXT column to CHAR.
(Bug #283)

• Fixed a security problem with SELECT and wildcarded select list, when user only had partial
column SELECT privileges on the table.

• Mark a MyISAM table as "analyzed" only when all the keys are indeed analyzed.

• Only ignore world-writable my.cnf files that are regular files (and not, for example, named
pipes or character devices).

• Fixed few smaller issues with SET PASSWORD.

• Fixed error message which contained deprecated text.

• Fixed a bug with two NATURAL JOINs in the query.

• SUM() didn't return NULL when there was no rows in result or when all values was NULL.

• On Unix, symbolic link handling was not enabled by default and there was no way to turn this
on.

• Added missing dashes to parameter --open-files-limit in mysqld_safe. (Bug #264)

• Fixed incorrect hostname for TCP/IP connections displayed in SHOW PROCESSLIST.

• Fixed a bug with NAN in FORMAT(...) function ...

• Fixed a bug with improperly cached database privileges.

• Fixed a bug in ALTER TABLE ENABLE / DISABLE KEYS which failed to force a refresh
of table data in the cache.

• Fixed bugs in replication of LOAD DATA INFILE for custom parameters (ENCLOSED, TER-
MINATED and so on) and temporary tables. (Bug #183, Bug #222)

• Fixed a replication bug when the master is 3.23 and the slave 4.0: the slave lost the replicated
temporary tables if FLUSH LOGS was issued on the master. (Bug #254)

• Fixed a bug when doing LOAD DATA INFILE IGNORE: When reading the binary log,
mysqlbinlog and the replication code read REPLACE instead of IGNORE. This could make the

MySQL Change History

1272

slave's table become different from the master's table. (Bug #218)

• Fixed a deadlock when relay_log_space_limit was set to a too small value. (Bug #79)

• Fixed a bug in HAVING clause when an alias is used from the select list.

• Fixed overflow bug in MyISAM when a row is inserted into a table with a large number of
columns and at least one BLOB/TEXT column. Bug was caused by incorrect calculation of the
needed buffer to pack data.

• Fixed a bug when SELECT @nonexistent_variable caused the error in client - server protocol
due to net_printf() being sent to the client twice.

• Fixed a bug in setting SQL_BIG_SELECTS option.

• Fixed a bug in SHOW PROCESSLIST which only displayed a localhost in the "Host" column.
This was caused by a glitch that used only current thread information instead of information
from the linked list of threads.

• Removed unnecessary Mac OS X helper files from server RPM. (Bug #144)

• Allow optimization of multiple-table update for InnoDB tables as well.

• Fixed a bug in multiple-table updates that caused some rows to be updated several times.

• Fixed a bug in mysqldump when it was called with --master-data: the CHANGE MASTER
TO commands appended to the SQL dump had incorrect coordinates. (Bug #159)

• Fixed a bug when an updating query using USER() was replicated on the slave; this caused seg-
fault on the slave. (Bug #178). USER() is still badly replicated on the slave (it is replicated to
"").

D.3.13. Changes in release 4.0.12 (15 Mar 2003: Pro-
duction)

Functionality added or changed:

• mysqld no longer reads options from world-writable config files.

• Integer values between 9223372036854775807 and 9999999999999999999 are now regarded as
unsigned longlongs, not as floats. This makes these values work similar to values between
10000000000000000000 and 18446744073709551615.

• SHOW PROCESSLIST now includes the client TCP port after the hostname to make it easier to
know from which client the request originated.

• The --new option can be used to make a 4.0 server return TIMESTAMP as a string in 'YYYY-
MM-DD HH:MM:SS' format, the way that 4.1 servers do.

Bugs fixed:

• Fixed mysqld crash on extremely small values of sort_buffer variable.

• INSERT INTO u SELECT ... FROM t was written too late to the binary log if t was very
frequently updated during the execution of this query. This could cause a problem with mysql-
binlog or replication. The master must be upgraded, not the slave. (Bug #136)

• Fixed checking of random part of WHERE clause. (Bug #142)

MySQL Change History

1273

• Fixed a bug with multiple-table updates with InnoDB tables. This bug occurred as, in many
cases, InnoDB tables cannot be updated ``on the fly,'' but offsets to the records have to be
stored in a temporary table.

• Added missing file mysql_secure_installation to the server RPM subpackage.
(Bug #141)

• Fixed MySQL (and myisamchk) crash on artificially corrupted .MYI files.

• Don't allow BACKUP TABLE to overwrite existing files.

• Fixed a bug with multiple-table UPDATE statements when user had all privileges on the database
where tables are located and there were any entries in tables_priv table, that is,
grant_option was true.

• Fixed a bug that allowed a user with table or column grants on some table, TRUNCATE any table
in the same database.

• Fixed deadlock when doing LOCK TABLE followed by DROP TABLE in the same thread. In
this case one could still kill the thread with KILL.

• LOAD DATA LOCAL INFILE was not properly written to the binary log (hence not properly
replicated). (Bug #82)

• RAND() entries were not read correctly by mysqlbinlog from the binary log which caused prob-
lems when restoring a table that was inserted with RAND(). INSERT INTO t1 VAL-
UES(RAND()). In replication this worked okay.

• SET SQL_LOG_BIN=0 was ignored for INSERT DELAYED queries. (Bug #104)

• SHOW SLAVE STATUS reported too old positions (columns Relay_Master_Log_File
and Exec_Master_Log_Pos) for the last executed statement from the master, if this state-
ment was the COMMIT of a transaction. The master must be upgraded for that, not the slave.
(Bug #52)

• LOAD DATA INFILE was not replicated by the slave if replicate_*_table was set on
the slave. (Bug #86)

• After RESET SLAVE, the coordinates displayed by SHOW SLAVE STATUS looked un-reset
(although they were, but only internally). (Bug #70)

• Fixed query cache invalidation on LOAD DATA.

• Fixed memory leak on ANALYZE procedure with error.

• Fixed a bug in handling CHAR(0) columns that could cause incorrect results from the query.

• Fixed rare bug with incorrect initialization of AUTO_INCREMENT column, as a secondary
column in a multi-column key (see Section 3.6.9, “Using AUTO_INCREMENT”), when data was
inserted with INSERT ... SELECT or LOAD DATA into an empty table.

• On Windows, STOP SLAVE didn't stop the slave until the slave got one new command from
the master (this bug has been fixed for MySQL 4.0.11 by releasing updated 4.0.11a Windows
packages, which include this individual fix on top of the 4.0.11 sources). (Bug #69)

• Fixed a crash when no database was selected and LOAD DATA command was issued with full
table name specified, including database prefix.

• Fixed a crash when shutting down replication on some platforms (for example, Mac OS X).

• Fixed a portability bug with pthread_attr_getstacksize on HP-UX 10.20 (Patch was
also included in 4.0.11a sources).

• Fixed the bigint test to not fail on some platforms (for example, HP-UX and Tru64) due to

MySQL Change History

1274

different return values of the atof() function.

• Fixed the rpl_rotate_logs test to not fail on certain platforms (such as Mac OS X) due to
a too-long file name (changed slave-master-info.opt to .slave-mi).

D.3.14. Changes in release 4.0.11 (20 Feb 2003)
Functionality added or changed:

• NULL is now sorted LAST if you use ORDER BY ... DESC (as it was before MySQL 4.0.2).
This change was required to comply with the SQL standard. (The original change was made be-
cause we thought that standard SQL required NULL to be always sorted at the same position, but
this was incorrect).

• Added START TRANSACTION (standard SQL syntax) as alias for BEGIN. This is recommen-
ded to use instead of BEGIN to start a transaction.

• Added OLD_PASSWORD() as a synonym for PASSWORD().

• Allow keyword ALL in group functions.

• Added support for some new INNER JOIN and JOIN syntaxes. For example, SELECT *
FROM t1 INNER JOIN t2 didn't work before.

• Novell NetWare 6.0 porting effort completed, Novell patches merged into the main source tree.

Bugs fixed:

• Fixed problem with multiple-table delete and InnoDB tables.

• Fixed a problem with BLOB NOT NULL columns used with IS NULL.

• Re-added missing pre- and post(un)install scripts to the Linux RPM packages (they were miss-
ing after the renaming of the server subpackage).

• Fixed that table locks are not released with multiple-table updates and deletes with InnoDB
storage engine.

• Fixed bug in updating BLOB columns with long strings.

• Fixed integer-wraparound when giving big integer (>= 10 digits) to function that requires an un-
signed argument, like CREATE TABLE (...) AUTO_INCREMENT=#.

• MIN(key_column) could in some cases return NULL on a column with NULL and other val-
ues.

• MIN(key_column) and MAX(key_column) could in some cases return incorrect values
when used in OUTER JOIN.

• MIN(key_column) and MAX(key_column) could return incorrect values if one of the
tables was empty.

• Fixed rare crash in compressed MyISAM tables with blobs.

• Fixed bug in using aggregate functions as argument for INTERVAL, CASE, FIELD, CON-
CAT_WS, ELT and MAKE_SET functions.

• When running with --lower-case-table-names (default on Windows) and you had
tables or databases with mixed case on disk, then executing SHOW TABLE STATUS followed
with DROP DATABASE or DROP TABLE could fail with Errcode 13.

MySQL Change History

1275

D.3.15. Changes in release 4.0.10 (29 Jan 2003)
Functionality added or changed:

• Added option --log-error[=file_name] to mysqld_safe and mysqld. This option
forces all error messages to be put in a log file if the option --console is not given. On Win-
dows --log-error is enabled as default, with a default name of host_name.err if the
name is not specified.

• Changed some things from Warning: to Note: in the log files.

• The mysqld server should now compile on NetWare.

• Added optimization that if one does GROUP BY ... ORDER BY NULL then result is not
sorted.

• New --ft-stopword-file command-line option for mysqld to replace/disable the built-in
stopword list that is used in full-text searches. See Section 5.2.3, “Server System Variables”.

• Changed default stack size from 64KB to 192KB; This fixes a core dump problem on Red Hat
8.0 and other systems with a glibc that requires a stack size larger than 128K for gethost-
byaddr() to resolve a hostname. You can fix this for earlier MySQL versions by starting
mysqld with --thread-stack=192K.

• Added mysql_waitpid to the binary distribution and the MySQL-client RPM subpackage
(required for mysql-test-run).

• Renamed the main MySQL RPM package to MySQL-server. When updating from an older
version, MySQL-server.rpm simply replaces MySQL.rpm.

• If a slave is configured with replicate_wild_do_table=db.% or replic-
ate_wild_ignore_table=db.%, these rules are applied to CREATE/DROP DATABASE,
too.

• Added timeout value for MASTER_POS_WAIT().

Bugs fixed:

• Fixed initialization of the random seed for newly created threads to give a better rand() distri-
bution from the first call.

• Fixed a bug that caused mysqld to hang when a table was opened with the HANDLER command
and then dropped without being closed.

• Fixed bug in logging to binary log (which affects replication) a query that inserts a NULL in an
AUTO_INCREMENT column and also uses LAST_INSERT_ID().

• Fixed an unlikely bug that could cause a memory overrun when using ORDER BY con-
stant_expression.

• Fixed a table corruption in myisamchk parallel repair mode.

• Fixed bug in query cache invalidation on simple table renaming.

• Fixed bug in mysqladmin --relative.

• On some 64-bit systems, show status reported a strange number for Open_files and
Open_streams.

• Fixed incorrect number of columns in EXPLAIN on empty table.

MySQL Change History

1276

• Fixed bug in LEFT JOIN that caused zero rows to be returned in the case the WHERE condition
was evaluated as FALSE after reading const tables. (Unlikely condition).

• FLUSH PRIVILEGES didn't correctly flush table/column privileges when
mysql.tables_priv is empty.

• Fixed bug in replication when using LOAD DATA INFILE one a file that updated an
AUTO_INCREMENT column with NULL or 0. This bug only affected MySQL 4.0 masters (not
slaves or MySQL 3.23 masters). Note: If you have a slave that has replicated a file with gener-
ated AUTO_INCREMENT columns then the slave data is corrupted and you should reinitialize
the affected tables from the master.

• Fixed possible memory overrun when sending a BLOB value larger than 16M to the client.

• Fixed incorrect error message when setting a NOT NULL column to an expression that returned
NULL.

• Fixed core dump bug in str LIKE "%other_str%" where str or other_str contained
characters >= 128.

• Fixed bug: When executing on master LOAD DATA and InnoDB failed with table full er-
ror the binary log was corrupted.

D.3.16. Changes in release 4.0.9 (09 Jan 2003)
Functionality added or changed:

• OPTIMIZE TABLE for MyISAM tables treats all NULL values as different when calculating
cardinality. This helps in optimizing joins between tables where one of the tables has a lot of
NULL values in a indexed column:

SELECT * from t1, t2 where t1.a=t2.key_with_a_lot_of_null;

• Added join operator FORCE INDEX (key_list). This acts likes USE INDEX
(key_list) but with the addition that a table scan is assumed to be VERY expensive. One
bad thing with this is that it makes FORCE a reserved word.

• Reset internal row buffer in MyISAM after each query. This reduces memory in case you have a
lot of big blobs in a table.

Bugs fixed:

• A security patch in 4.0.8 causes the mysqld server to die if the remote hostname can't be re-
solved. This is now fixed.

• Fixed crash when replication big LOAD DATA INFILE statement that caused log rotation.

D.3.17. Changes in release 4.0.8 (07 Jan 2003)
Functionality added or changed:

• Default max_packet_length for libmysqld.c is now 1024*1024*1024.

• You can now specify max_allowed_packet in a file read by
mysql_options(MYSQL_READ_DEFAULT_FILE). for clients.

MySQL Change History

1277

• When sending a too big packet to the server with the not compressed protocol, the client now
gets an error message instead of a lost connection.

• We now send big queries/result rows in bigger hunks, which should give a small speed improve-
ment.

• Fixed some bugs with the compressed protocol for rows > 16MB.

• InnoDB tables now also support ON UPDATE CASCADE in FOREIGN KEY constraints. See
the InnoDB section in the manual for the InnoDB changelog.

Bugs fixed:

• Fixed bug in ALTER TABLE with BDB tables.

• Fixed core dump bug in QUOTE() function.

• Fixed a bug in handling communication packets bigger than 16MB. Unfortunately this required
a protocol change; If you upgrade the server to 4.0.8 and above and have clients that uses pack-
ets >= 255*255*255 bytes (=16581375) you must also upgrade your clients to at least 4.0.8. If
you don't upgrade, the clients hang when sending a big packet.

• Fixed bug when sending blobs longer than 16MB to client.

• Fixed bug in GROUP BY when used on BLOB column with NULL values.

• Fixed a bug in handling NULL values in CASE ... WHEN ...

D.3.18. Changes in release 4.0.7 (20 Dec 2002)
Functionality added or changed:

• mysqlbug now also reports the compiler version used for building the binaries (if the compiler
supports the option --version).

Bugs fixed:

• Fixed compilation problems on OpenUnix and HPUX 10.20.

• Fixed some optimization problems when compiling MySQL with -DBIG_TABLES on a 32-bit
system.

• mysql_drop_db() didn't check permissions properly so anyone could drop another users
database. DROP DATABASE is checked properly.

D.3.19. Changes in release 4.0.6 (14 Dec 2002: Gamma)
Functionality added or changed:

• Added syntax support for CHARACTER SET xxx and CHARSET=xxx table options (to be
able to read table dumps from 4.1).

• Fixed replication bug that caused the slave to loose its position in some cases when the replica-
tion log was rotated.

MySQL Change History

1278

• Fixed that a slave restarts from the start of a transaction if it's killed in the middle of one.

• Moved the manual pages from man to man/man1 in the binary distributions.

• The default type returned by IFNULL(A,B) is now set to be the more 'general' of the types of
A and B. (The order is STRING, REAL or INTEGER).

• Moved the mysql.server startup script in the RPM packages from /
etc/rc.d/init.d/mysql to /etc/init.d/mysql (which almost all current Linux dis-
tributions support for LSB compliance).

• Added Qcache_lowmem_prunes status variable (number of queries that were deleted from
the cache because of low memory).

• Fixed mysqlcheck so it can deal with table names containing dashes.

• Bulk insert optimization (see Section 5.2.3, “Server System Variables”) is no longer used when
inserting small (less than 100) number of rows.

• Optimization added for queries like SELECT ... FROM merge_table WHERE in-
dexed_column=constant_expr.

• Added functions LOCALTIME and LOCALTIMESTAMP as synonyms for NOW().

• CEIL is now an alias for CEILING.

• The CURRENT_USER() function can be used to get a user@host value as it was matched in
the GRANT system. See Section 12.8.3, “Information Functions”.

• Fixed CHECK constraints to be compatible with standard SQL. This made CHECK a reserved
word. (Checking of CHECK constraints is still not implemented).

• Added CAST(... as CHAR).

• Added PostgreSQL compatible LIMIT syntax: SELECT ... LIMIT row_count OFF-
SET offset

• mysql_change_user() now resets the connection to the state of a fresh connect (Ie,
ROLLBACK any active transaction, close all temporary tables, reset all user variables etc..)

• CHANGE MASTER and RESET SLAVE now require that slave threads both be stopped; these
commands return an error if at least one of these two threads is running.

Bugs fixed:

• Fixed number of found rows returned in multi table updates

• Make --lower-case-table-names default on Mac OS X as the default filesystem
(HFS+) is case insensitive. See Section 9.2.2, “Identifier Case Sensitivity”.

• Transactions in AUTOCOMMIT=0 mode didn't rotate binary log.

• A fix for the bug in a SELECT with joined tables with ORDER BY and LIMIT clause when
filesort had to be used. In that case LIMIT was applied to filesort of one of the tables,
although it could not be. This fix also solved problems with LEFT JOIN.

• mysql_server_init() now makes a copy of all arguments. This fixes a problem when us-
ing the embedded server in C# program.

• Fixed buffer overrun in libmysqlclient library that allowed a malicious MySQL server to
crash the client application.

MySQL Change History

1279

• Fixed security-related bug in mysql_change_user() handling. All users are strongly re-
commended to upgrade to version 4.0.6.

• Fixed bug that prevented --chroot command-line option of mysqld from working.

• Fixed bug in phrase operator "..." in boolean full-text search.

• Fixed bug that caused OPTIMIZE TABLE to corrupt the table under some rare circumstances.

• Part rewrite of multiple-table-update to optimize it, make it safer and more bug-free.

• LOCK TABLES now works together with multiple-table-update and multiple-table-delete.

• --replicate-do=xxx didn't work for UPDATE commands. (Bug introduced in 4.0.0)

• Fixed shutdown problem on Mac OS X.

• Major InnoDB bugs in REPLACE, AUTO_INCREMENT, INSERT INTO ... SELECT
... were fixed. See the InnoDB changelog in the InnoDB section of the manual.

• RESET SLAVE caused a crash if the slave threads were running.

D.3.20. Changes in release 4.0.5 (13 Nov 2002)
Functionality added or changed:

• Port number was added to hostname (if it is known) in SHOW PROCESSLIST command

• Changed handling of last argument in WEEK() so that you can get week number according to
the ISO 8601 specification. (Old code should still work).

• Fixed that INSERT DELAYED threads don't hang on Waiting for INSERT when one
sends a SIGHUP to mysqld.

• Change that AND works according to standard SQL when it comes to NULL handling. In prac-
tice, this affects only queries where you do something like WHERE ... NOT (NULL AND
0).

• mysqld now resolves basedir to its full path (with realpath()). This enables one to use
relative symlinks to the MySQL installation directory. This however causes show vari-
ables to report different directories on systems where there is a symbolic link in the path.

• Fixed that MySQL does not use index scan on index disabled with IGNORE INDEX or USE
INDEX. to be ignored.

• Added --use-frm option to mysqlcheck. When used with REPAIR TABLE, it gets the table
structure from the .frm file, so the table can be repaired even if the .MYI header is corrupted.

• Fixed bug in MAX() optimization when used with JOIN and ON expressions.

• Added support for reading of MySQL 4.1 table definition files.

• BETWEEN behavior changed (see Section 12.1.3, “Comparison Functions and Operators”). Now
datetime_col BETWEEN timestamp AND timestamp should work as expected.

• One can create TEMPORARY MERGE tables now.

• DELETE FROM myisam_table now shrinks not only the .MYD file but also the .MYI file.

• When one uses the --open-files-limit=# option to mysqld_safe it's now passed on to
mysqld.

MySQL Change History

1280

• Changed output from EXPLAIN from 'where used' to 'Using where' to make it more
in line with other output.

• Removed variable safe_show_database as it was no longer used.

• Updated source tree to be built using automake 1.5 and libtool 1.4.

• Fixed an inadvertently changed option (--ignore-space) back to the original -
-ignore-spaces in mysqlclient. (Both syntaxes work).

• Don't require UPDATE privilege when using REPLACE.

• Added support for DROP TEMPORARY TABLE ..., to be used to make replication safer.

• When transactions are enabled, all commands that update temporary tables inside a BEGIN/
COMMIT are now stored in the binary log on COMMIT and not stored if one does ROLLBACK.
This fixes some problems with non-transactional temporary tables used inside transactions.

• Allow braces in joins in all positions. Formerly, things like SELECT * FROM (t2 LEFT
JOIN t3 USING (a)), t1 worked, but not SELECT * FROM t1, (t2 LEFT JOIN
t3 USING (a)). Note that braces are simply removed, they do not change the way the join is
executed.

• InnoDB now supports also isolation levels READ UNCOMMITTED and READ COMMITTED.
For a detailed InnoDB changelog, see Section D.9, “InnoDB Change History” in this manual.

Bugs fixed:

• Fixed bug in MAX() optimization when used with JOIN and ON expressions.

• Fixed that INSERT DELAY threads don't hang on Waiting for INSERT when one sends a
SIGHUP to mysqld.

• Fixed that MySQL does not use an index scan on an index that has been disabled with IGNORE
INDEX or USE INDEX.

• Corrected test for root user in mysqld_safe.

• Fixed error message issued when storage engine cannot do CHECK TABLE or REPAIR TA-
BLE.

• Fixed rare core dump problem in complicated GROUP BY queries that didn't return any result.

• Fixed mysqlshow to work properly with wildcarded database names and with database names
that contain underscores.

• Portability fixes to get MySQL to compile cleanly with Sun Forte 5.0.

• Fixed MyISAM crash when using dynamic-row tables with huge numbers of packed columns.

• Fixed query cache behavior with BDB transactions.

• Fixed possible floating point exception in MATCH relevance calculations.

• Fixed bug in full-text search IN BOOLEAN MODE that made MATCH to return incorrect relev-
ance value in some complex joins.

• Fixed a bug that limited MyISAM key length to a value slightly less that 500. It is exactly 500
now.

• Fixed that GROUP BY on columns that may have a NULL value doesn't always use disk based
temporary tables.

MySQL Change History

1281

• The filename argument for the --des-key-file argument to mysqld is interpreted relative
to the data directory if given as a relative pathname.

• Removed a condition that temp table with index on column that can be NULL has to be
MyISAM. This was okay for 3.23, but not needed in 4.*. This resulted in slowdown in many
queries since 4.0.2.

• Small code improvement in multiple-table updates.

• Fixed a newly introduced bug that caused ORDER BY ... LIMIT row_count to not re-
turn all rows.

• Fixed a bug in multiple-table deletes when outer join is used on an empty table, which gets first
to be deleted.

• Fixed a bug in multiple-table updates when a single table is updated.

• Fixed bug that caused REPAIR TABLE and myisamchk to corrupt FULLTEXT indexes.

• Fixed bug with caching the mysql grant table database. Now queries in this database are not
cached in the query cache.

• Small fix in mysqld_safe for some shells.

• Give error if a MyISAM MERGE table has more than 2 ^ 32 rows and MySQL was not compiled
with -DBIG_TABLES.

• Fixed some ORDER BY ... DESC problems with InnoDB tables.

D.3.21. Changes in release 4.0.4 (29 Sep 2002)

• Fixed bug where GRANT/REVOKE failed if hostname was given in non-matching case.

• Don't give warning in LOAD DATA INFILE when setting a timestamp to a string value of
'0'.

• Fixed bug in myisamchk -R mode.

• Fixed bug that caused mysqld to crash on REVOKE.

• Fixed bug in ORDER BY when there is a constant in the SELECT statement.

• One didn't get an error message if mysqld couldn't open the privilege tables.

• SET PASSWORD FOR ... closed the connection in case of errors (bug from 4.0.3).

• Increased maximum possible max_allowed_packet in mysqld to 1GB.

• Fixed bug when doing a multiple-row INSERT on a table with an AUTO_INCREMENT key
which was not in the first part of the key.

• Changed LOAD DATA INFILE to not re-create index if the table had rows from before.

• Fixed overrun bug when calling AES_DECRYPT() with incorrect arguments.

• --skip-ssl can now be used to disable SSL in the MySQL clients, even if one is using other
SSL options in an option file or previously on the command line.

• Fixed bug in MATCH ... AGAINST(... IN BOOLEAN MODE) used with ORDER BY.

• Added LOCK TABLES and CREATE TEMPORARY TABLES privilege on the database level.
You must run the mysql_fix_privilege_tables script on old installations to activate these.

MySQL Change History

1282

• In SHOW TABLE ... STATUS, compressed tables sometimes showed up as dynamic.

• SELECT @@[global|session].var_name didn't report global | session in the
result column name.

• Fixed problem in replication that FLUSH LOGS in a circular replication setup created an infinite
number of binary log files. Now a rotate-binary-log command in the binary log does not
cause slaves to rotate logs.

• Removed STOP EVENT from binary log when doing FLUSH LOGS.

• Disable the use of SHOW NEW MASTER FOR SLAVE as this needs to be completely reworked
in a future release.

• Fixed a bug with constant expression (for example, column of a one-row table, or column from a
table, referenced by a UNIQUE key) appeared in ORDER BY part of SELECT DISTINCT.

• --log-binary=a.b.c now properly strips off .b.c.

• FLUSH LOGS removed numerical extension for all future update logs.

• GRANT ... REQUIRE didn't store the SSL information in the mysql.user table if SSL
was not enabled in the server.

• GRANT ... REQUIRE NONE can now be used to remove SSL information.

• AND is now optional between REQUIRE options.

• REQUIRE option was not properly saved, which could cause strange output in SHOW GRANTS.

• Fixed that mysqld --help reports correct values for --datadir and --bind-address.

• Fixed that one can drop UDFs that didn't exist when mysqld was started.

• Fixed core dump problem with SHOW VARIABLES on some 64-bit systems (like Solaris
SPARC).

• Fixed a bug in my_getopt(); --set-variable syntax didn't work for those options that
didn't have a valid variable in the my_option struct. This affected at least the default-ta-
ble-type option.

• Fixed a bug from 4.0.2 that caused REPAIR TABLE and myisamchk --recover to fail on tables
with duplicates in a unique key.

• Fixed a bug from 4.0.3 in calculating the default data type for some functions. This affected
queries of type CREATE TABLE tbl_name SELECT expression(),...

• Fixed bug in queries of type SELECT * FROM table-list GROUP BY ... and SE-
LECT DISTINCT * FROM

• Fixed bug with the --slow-log when logging an administrator command (like FLUSH
TABLES).

• Fixed a bug that OPTIMIZE TABLE of locked and modified table, reported table corruption.

• Fixed a bug in my_getopt() in handling of special prefixes (--skip-, --enable-). -
-skip-external-locking didn't work and the bug may have affected other similar op-
tions.

• Fixed bug in checking for output file name of the tee option.

• Added some more optimization to use index for SELECT ... FROM many_tables ..
ORDER BY key limit #

MySQL Change History

1283

• Fixed problem in SHOW OPEN TABLES when a user didn't have access permissions to one of
the opened tables.

D.3.22. Changes in release 4.0.3 (26 Aug 2002: Beta)

• Fixed problem with types of user variables. (Bug #551)

• Fixed problem with configure ... --localstatedir=....

• Cleaned up mysql.server script.

• Fixed a bug in mysqladmin shutdown when pid file was modified while mysqladmin was still
waiting for the previous one to disappear. This could happen during a very quick restart and
caused mysqladmin to hang until shutdown_timeout seconds had passed.

• Don't increment warnings when setting AUTO_INCREMENT columns to NULL in LOAD DATA
INFILE.

• Fixed all boolean type variables/options to work with the old syntax, for example, all of these
work: --lower-case-table-names, --lower-case-table-names=1, -O
lower-case-table-names=1, --set-variable=lower-case-table-names=1

• Fixed shutdown problem (SIGTERM signal handling) on Solaris. (Bug from 4.0.2).

• SHOW MASTER STATUS now returns an empty set if binary log is not enabled.

• SHOW SLAVE STATUS now returns an empty set if slave is not initialized.

• Don't update MyISAM index file on update if not strictly necessary.

• Fixed bug in SELECT DISTINCT ... FROM many_tables ORDER BY not-
used-column.

• Fixed a bug with BIGINT values and quoted strings.

• Added QUOTE() function that performs SQL quoting to produce values that can be used as data
values in queries.

• Changed variable DELAY_KEY_WRITE to an enumeration to allow it to be set for all tables
without taking down the server.

• Changed behavior of IF(condition,column,NULL) so that it returns the value of the
column type.

• Made safe_mysqld a symlink to mysqld_safe in binary distribution.

• Fixed security bug when having an empty database name in the user.db table.

• Fixed some problems with CREATE TABLE ... SELECT function().

• mysqld now has the option --temp-pool enabled by default as this gives better performance
with some operating systems.

• Fixed problem with too many allocated alarms on slave when connecting to master many times
(normally not a very critical error).

• Fixed hang in CHANGE MASTER TO if the slave thread died very quickly.

• Big cleanup in replication code (less logging, better error messages, etc..)

• If the --code-file option is specified, the server calls setrlimit() to set the maximum
allowed core file size to unlimited, so core files can be generated.

MySQL Change History

1284

• Fixed bug in query cache after temporary table creation.

• Added --count=N (-c) option to mysqladmin, to make the program do only N iterations. To
be used with --sleep (-i). Useful in scripts.

• Fixed bug in multiple-table UPDATE: when updating a table, do_select() became confused
about reading records from a cache.

• Fixed bug in multiple-table UPDATE when several columns were referenced from a single table

• Fixed bug in truncating nonexisting table.

• Fixed bug in REVOKE that caused user resources to be randomly set.

• Fixed bug in GRANT for the new CREATE TEMPORARY TABLE privilege.

• Fixed bug in multiple-table DELETE when tables are re-ordered in the table initialization meth-
od and ref_lengths are of different sizes.

• Fixed two bugs in SELECT DISTINCT with large tables.

• Fixed bug in query cache initialization with very small query cache size.

• Allow DEFAULT with INSERT statement.

• The startup parameters myisam_max_sort_file_size and myis-
am_max_extra_sort_file_size are now given in bytes, not megabytes.

• External system locking of MyISAM/ISAM files is now turned off by default. One can turn this
on with --external-locking. (For most users this is never needed).

• Fixed core dump bug with INSERT ... SET db_name.tbl_name.col_name=''.

• Fixed client hangup bug when using some SQL commands with incorrect syntax.

• Fixed a timing bug in DROP DATABASE

• New SET [GLOBAL | SESSION] syntax to change thread-specific and global system vari-
ables at runtime.

• Added variable slave_compressed_protocol.

• Renamed variable query_cache_startup_type to query_cache_type, myis-
am_bulk_insert_tree_size to bulk_insert_buffer_size, record_buffer to
read_buffer_size and record_rnd_buffer to read_rnd_buffer_size.

• Renamed some SQL variables, but old names still work until 5.0. See Section 2.10.3,
“Upgrading from Version 3.23 to 4.0”.

• Renamed --skip-locking to --skip-external-locking.

• Removed unused variable query_buffer_size.

• Fixed a bug that made the pager option in the mysql client non-functional.

• Added full AUTO_INCREMENT support to MERGE tables.

• Extended LOG() function to accept an optional arbitrary base parameter. See Section 12.4.2,
“Mathematical Functions”.

• Added LOG2() function (useful for finding out how many bits a number would require for stor-
age).

• Added LN() natural logarithm function for compatibility with other databases. It is synonymous

MySQL Change History

1285

with LOG(X).

D.3.23. Changes in release 4.0.2 (01 Jul 2002)

• Cleaned up NULL handling for default values in DESCRIBE tbl_name.

• Fixed TRUNCATE() to round up negative values to the nearest integer.

• Changed --chroot=path option to execute chroot() immediately after all options have
been parsed.

• Don't allow database names that contain '\'.

• lower_case_table_names now also applies to database names.

• Added XOR operator (logical and bitwise XOR) with ^ as a synonym for bitwise XOR.

• Added function IS_FREE_LOCK("lock_name"). Based on code contributed by Hartmut
Holzgraefe <hartmut@six.de>.

• Removed mysql_ssl_clear() from C API, as it was not needed.

• DECIMAL and NUMERIC types can now read exponential numbers.

• Added SHA1() function to calculate 160 bit hash value as described in RFC 3174 (Secure Hash
Algorithm). This function can be considered a cryptographically more secure equivalent of
MD5(). See Section 12.8.2, “Encryption Functions”.

• Added AES_ENCRYPT() and AES_DECRYPT() functions to perform encryption according to
AES standard (Rijndael). See Section 12.8.2, “Encryption Functions”.

• Added --single-transaction option to mysqldump, allowing a consistent dump of In-
noDB tables. See Section 8.8, “The mysqldump Database Backup Program”.

• Fixed bug in innodb_log_group_home_dir in SHOW VARIABLES.

• Fixed a bug in optimizer with merge tables when non-unique values are used in summing up
(causing crashes).

• Fixed a bug in optimizer when a range specified makes index grouping impossible (causing
crashes).

• Fixed a rare bug when FULLTEXT index is present and no tables are used.

• Added privileges CREATE TEMPORARY TABLES, EXECUTE, LOCK TABLES, REPLICA-
TION CLIENT, REPLICATION SLAVE, SHOW DATABASES and SUPER. To use these, you
must have run the mysql_fix_privilege_tables script after upgrading.

• Fixed query cache align data bug.

• Fixed mutex bug in replication when reading from master fails.

• Added missing mutex in TRUNCATE TABLE; This fixes some core dump/hangup problems
when using TRUNCATE TABLE.

• Fixed bug in multiple-table DELETE when optimizer uses only indexes.

• Fixed that ALTER TABLE tbl_name RENAME new_tbl_name is as fast as RENAME
TABLE.

• Fixed bug in GROUP BY with two or more columns, where at least one column can contain
NULL values.

MySQL Change History

1286

• Use Turbo Boyer-Moore algorithm to speed up LIKE "%keyword%" searches.

• Fixed bug in DROP DATABASE with symlink.

• Fixed crash in REPAIR ... USE_FRM.

• Fixed bug in EXPLAIN with LIMIT offset != 0.

• Fixed bug in phrase operator "..." in boolean full-text search.

• Fixed bug that caused duplicated rows when using truncation operator * in boolean full-text
search.

• Fixed bug in truncation operator of boolean full-text search (incorrect results when there are
only +word*s in the query).

• Fixed bug in boolean full-text search that caused a crash when an identical MATCH expression
that did not use an index appeared twice.

• Query cache is now automatically disabled in mysqldump.

• Fixed problem on Windows 98 that made sending of results very slow.

• Boolean full-text search weighting scheme changed to something more reasonable.

• Fixed bug in boolean full-text search that caused MySQL to ignore queries of
ft_min_word_len characters.

• Boolean full-text search now supports ``phrase searches.''

• New configure option --without-query-cache.

• Memory allocation strategy for ``root memory'' changed. Block size now grows with number of
allocated blocks.

• INET_NTOA() now returns NULL if you give it an argument that is too large (greater than the
value corresponding to 255.255.255.255).

• Fix SQL_CALC_FOUND_ROWS to work with UNION. It works only if the first SELECT has this
option and if there is global LIMIT for the entire statement. For the moment, this requires using
parentheses for individual SELECT queries within the statement.

• Fixed bug in SQL_CALC_FOUND_ROWS and LIMIT.

• Don't give an error for CREATE TABLE ...(... VARCHAR(0)).

• Fixed SIGINT and SIGQUIT problems in mysql.cc on Linux with some glibc versions.

• Fixed bug in convert.cc, which is caused by having an incorrect net_store_length()
linked in the CONVERT::store() method.

• DOUBLE and FLOAT columns now honor the UNSIGNED flag on storage.

• InnoDB now retains foreign key constraints through ALTER TABLE and CREATE/DROP
INDEX.

• InnoDB now allows foreign key constraints to be added through the ALTER TABLE syntax.

• InnoDB tables can now be set to automatically grow in size (autoextend).

• Added --ignore-lines=n option to mysqlimport. This has the same effect as the IGNORE
n LINES clause for LOAD DATA.

• Fixed bug in UNION with last offset being transposed to total result set.

MySQL Change History

1287

• REPAIR ... USE_FRM added.

• Fixed that DEFAULT_SELECT_LIMIT is always imposed on UNION result set.

• Fixed that some SELECT options can appear only in the first SELECT.

• Fixed bug with LIMIT with UNION, where last select is in the braces.

• Fixed that full-text works fine with UNION operations.

• Fixed bug with indexless boolean full-text search.

• Fixed bug that sometimes appeared when full-text search was used with const tables.

• Fixed incorrect error value when doing a SELECT with an empty HEAP table.

• Use ORDER BY column DESC now sorts NULL values first. (In other words, NULL values
sort first in all cases, whether or not DESC is specified.) This is changed back in 4.0.10.

• Fixed bug in WHERE key_name='constant' ORDER BY key_name DESC.

• Fixed bug in SELECT DISTINCT ... ORDER BY DESC optimization.

• Fixed bug in ... HAVING 'GROUP_FUNCTION'(xxx) IS [NOT] NULL.

• Fixed bug in truncation operator for boolean full-text search.

• Allow value of --user=# option for mysqld to be specified as a numeric user ID.

• Fixed a bug where SQL_CALC_ROWS returned an incorrect value when used with one table and
ORDER BY and with InnoDB tables.

• Fixed that SELECT 0 LIMIT 0 doesn't hang thread.

• Fixed some problems with USE/IGNORE INDEX when using many keys with the same start
column.

• Don't use table scan with BerkeleyDB and InnoDB tables when we can use an index that
covers the whole row.

• Optimized InnoDB sort-buffer handling to take less memory.

• Fixed bug in multiple-table DELETE and InnoDB tables.

• Fixed problem with TRUNCATE and InnoDB tables that produced the error Can't execute
the given command because you have active locked tables or an
active transaction.

• Added NO_UNSIGNED_SUBTRACTION to the set of flags that may be specified with the -
-sql-mode option for mysqld. It disables unsigned arithmetic rules when it comes to subtrac-
tion. (This makes MySQL 4.0 behave more like 3.23 with UNSIGNED columns).

• The result returned for all bit functions (|, <<, ...) is now of type unsigned integer.

• Added detection of nan values in MyISAM to make it possible to repair tables with nan in float
or double columns.

• Fixed new bug in myisamchk where it didn't correctly update number of ``parts'' in the MyISAM
index file.

• Changed to use autoconf 2.52 (from autoconf 2.13).

• Fixed optimization problem where the MySQL Server was in ``preparing'' state for a long time
when selecting from an empty table which had contained a lot of rows.

MySQL Change History

1288

• Fixed bug in complicated join with const tables. This fix also improves performance a bit
when referring to another table from a const table.

• First pre-version of multiple-table UPDATE statement.

• Fixed bug in multiple-table DELETE.

• Fixed bug in SELECT CONCAT(argument_list) ... GROUP BY 1.

• INSERT ... SELECT did a full rollback in case of an error. Fixed so that we only roll back
the last statement in the current transaction.

• Fixed bug with empty expression for boolean full-text search.

• Fixed core dump bug in updating full-text key from/to NULL.

• ODBC compatibility: Added BIT_LENGTH() function.

• Fixed core dump bug in GROUP BY BINARY column.

• Added support for NULL keys in HEAP tables.

• Use index for ORDER BY in queries of type: SELECT * FROM t WHERE key_part1=1
ORDER BY key_part1 DESC, key_part2 DESC

• Fixed bug in FLUSH QUERY CACHE.

• Added CAST() and CONVERT() functions. The CAST and CONVERT functions are nearly
identical and mainly useful when you want to create a column with a specific type in a CREATE
... SELECT statement. For more information, read Section 12.7, “Cast Functions and Operat-
ors”.

• CREATE ... SELECT on DATE and TIME functions now create columns of the expected
type.

• Changed order in which keys are created in tables.

• Added new columns Null and Index_type to SHOW INDEX output.

• Added --no-beep and --prompt options to mysql command-line client.

• New feature: management of user resources.

GRANT ... WITH MAX_QUERIES_PER_HOUR N1
MAX_UPDATES_PER_HOUR N2
MAX_CONNECTIONS_PER_HOUR N3;

See Section 5.6.4, “Limiting Account Resources”.

• Added mysql_secure_installation to the scripts/ directory.

D.3.24. Changes in release 4.0.1 (23 Dec 2001)

• Added system command to mysql.

• Fixed bug when HANDLER was used with some unsupported table type.

• mysqldump now puts ALTER TABLE tbl_name DISABLE KEYS and ALTER TABLE
tbl_name ENABLE KEYS in the sql dump.

• Added mysql_fix_extensions script.

MySQL Change History

1289

• Fixed stack overrun problem with LOAD DATA FROM MASTER on OSF/1.

• Fixed shutdown problem on HP-UX.

• Added DES_ENCRYPT() and DES_DECRYPT() functions.

• Added FLUSH DES_KEY_FILE statement.

• Added --des-key-file option to mysqld.

• HEX(str) now returns the characters in str converted to hexadecimal.

• Fixed problem with GRANT when using lower_case_table_names=1.

• Changed SELECT ... IN SHARE MODE to SELECT ... LOCK IN SHARE MODE (as
in MySQL 3.23).

• A new query cache to cache results from identical SELECT queries.

• Fixed core dump bug on 64-bit machines when it got an incorrect communication packet.

• MATCH ... AGAINST(... IN BOOLEAN MODE) can now work without FULLTEXT in-
dex.

• Fixed slave to replicate from 3.23 master.

• Miscellaneous replication fixes/cleanup.

• Got shutdown to work on Mac OS X.

• Added myisam/ft_dump utility for low-level inspection of FULLTEXT indexes.

• Fixed bug in DELETE ... WHERE ... MATCH

• Added support for MATCH ... AGAINST(... IN BOOLEAN MODE). Note: You must re-
build your tables with ALTER TABLE tbl_name TYPE=MyISAM to be able to use boolean
full-text search.

• LOCATE() and INSTR() are now case sensitive if either argument is a binary string.

• Changed RAND() initialization so that RAND(N) and RAND(N+1) are more distinct.

• Fixed core dump bug in UPDATE ... ORDER BY.

• In 3.23, INSERT INTO ... SELECT always had IGNORE enabled. Now MySQL stops (and
possibly rolls back) by default in case of an error unless you specify IGNORE.

• Ignore DATA DIRECTORY and INDEX DIRECTORY directives on Windows.

• Added boolean full-text search code. It should be considered early alpha.

• Extended MODIFY and CHANGE in ALTER TABLE to accept the FIRST and AFTER
keywords.

• Indexes are now used with ORDER BY on a whole InnoDB table.

D.3.25. Changes in release 4.0.0 (Oct 2001: Alpha)

• Added --xml option to mysql for producing XML output.

• Added full-text variables ft_min_word_len, ft_max_word_len, and
ft_max_word_len_for_sort system variables.

MySQL Change History

1290

• Added full-text variables ft_min_word_len, ft_max_word_len, and
ft_max_word_len_for_sort variables to myisamchk.

• Added documentation for libmysqld, the embedded MySQL server library. Also added ex-
ample programs (a mysql client and mysqltest test program) which use libmysqld.

• Removed all Gemini hooks from MySQL server.

• Removed my_thread_init() and my_thread_end() from mysql_com.h, and added
mysql_thread_init() and mysql_thread_end() to mysql.h.

• Support for communication packets > 16MB. In 4.0.1 we extended MyISAM to be able to handle
these.

• Secure connections (with SSL).

• Unsigned BIGINT constants now work. MIN() and MAX() now handle signed and unsigned
BIGINT numbers correctly.

• New character set latin1_de which provides correct German sorting.

• STRCMP() now uses the current character set when doing comparisons, which means that the
default comparison behavior now is case insensitive.

• TRUNCATE TABLE and DELETE FROM tbl_name are now separate functions. One bonus
is that DELETE FROM tbl_name now returns the number of deleted rows, rather than zero.

• DROP DATABASE now executes a DROP TABLE on all tables in the database, which fixes a
problem with InnoDB tables.

• Added support for UNION.

• Added support for multiple-table DELETE operations.

• A new HANDLER interface to MyISAM tables.

• Added support for INSERT on MERGE tables. Patch from Benjamin Pflugmann.

• Changed WEEK(date,0) to match the calendar in the USA.

• COUNT(DISTINCT) is about 30% faster.

• Speed up all internal list handling.

• Speed up IS NULL, ISNULL() and some other internal primitives.

• Full-text index creation now is much faster.

• Tree-like cache to speed up bulk inserts and myisam_bulk_insert_tree_size variable.

• Searching on packed (CHAR/VARCHAR) keys is now much faster.

• Optimized queries of type: SELECT DISTINCT * FROM tbl_name ORDER by
key_part1 LIMIT row_count.

• SHOW CREATE TABLE now shows all table attributes.

• ORDER BY ... DESC can now use keys.

• LOAD DATA FROM MASTER ``automatically'' sets up a slave.

• Renamed safe_mysqld to mysqld_safe to make this name more in line with other MySQL
scripts/commands.

MySQL Change History

1291

• Added support for symbolic links to MyISAM tables. Symlink handling is now enabled by de-
fault for Windows.

• Added SQL_CALC_FOUND_ROWS and FOUND_ROWS(). This makes it possible to know how
many rows a query would have returned without a LIMIT clause.

• Changed output format of SHOW OPEN TABLES.

• Allow SELECT expression LIMIT

• Added ORDER BY syntax to UPDATE and DELETE.

• SHOW INDEXES is now a synonym for SHOW INDEX.

• Added ALTER TABLE tbl_name DISABLE KEYS and ALTER TABLE tbl_name
ENABLE KEYS commands.

• Allow use of IN as a synonym for FROM in SHOW commands.

• Implemented ``repair by sort'' for FULLTEXT indexes. REPAIR TABLE, ALTER TABLE, and
OPTIMIZE TABLE for tables with FULLTEXT indexes are now up to 100 times faster.

• Allow standard SQL syntax X'hexadecimal-number'.

• Cleaned up global lock handling for FLUSH TABLES WITH READ LOCK.

• Fixed problem with DATETIME = constant in WHERE optimization.

• Added --master-data and --no-autocommit options to mysqldump. (Thanks to Brian
Aker for this.)

• Added script mysql_explain_log.sh to distribution. (Thanks to mobile.de).

D.4. Changes in release 3.23.x (Recent; still
supported)

Please note that since release 4.0 is now production level, only critical fixes are done in the 3.23 re-
lease series. You are recommended to upgrade when possible, to take advantage of all speed and
feature improvements in 4.0. See Section 2.10.3, “Upgrading from Version 3.23 to 4.0”.

The 3.23 release has several major features that are not present in previous versions. We have added
three new table types:

• MyISAM

A new ISAM library which is tuned for SQL and supports large files.

• InnoDB

A transaction-safe storage engine that supports row level locking, and many Oracle-like features.

• BerkeleyDB or BDB

Uses the Berkeley DB library from Sleepycat Software to implement transaction-safe tables.

Note that only MyISAM is available in the standard binary distribution.

The 3.23 release also includes support for database replication between a master and many slaves,
full-text indexing, and much more.

MySQL Change History

1292

All new features are being developed in the 4.1.x and 5.0.x versions. Only serious bugfixes are ad-
ded to 3.23.

D.4.1. Changes in release 3.23.59 (not released yet)

• Fixed an old bug in concurrent accesses to MERGE tables (even one MERGE table and MyISAM
tables), that could've resulted in a crash or hang of the server. (Bug #2408)

• Fixed incorrect destruction of expression which led to crash of server on complex AND/OR ex-
pressions if query was ignored (either by a replication server because of -
-replicate-*-table rules, or by any MySQL server because of a syntax error). (Bug
#3969, Bug #4494)

• Fixed problem with parsing complex queries on 64-bit architectures. (Bug #4204)

• Fixed a symlink vulnerability in the mysqlbug script (vulnerability ID CAN-2004-0381). (Bug
#3284)

• Fixed bug in privilege checking of ALTER TABLE RENAME. (Bug #3270)

• Fixed bugs in ACOS(), ASIN() (Bug #2338) and in FLOOR() (Bug #3051). The cause of the
problem is an overly strong optimization done by gcc in this case.

• Fixed bug in INSERT ... SELECT statements where, if a NOT NULL column is assigned a
value of NULL, the following columns in the row might be assigned a value of zero. (Bug
#2012)

• If a query was ignored on the slave (because of --replicate-ignore-table and other
similar rules), the slave still checked if the query got the same error code (0, no error) as on the
master. So if the master had an error on the query (for example, ``Duplicate entry'' in a multiple-
row insert), then the slave stopped and warned that the error codes didn't match. This is a back-
port of the fix for MySQL 4.0. (Bug #797)

• mysqlbinlog now asks for a password at console when the -p/--password option is used
with no argument. This is how the other clients (mysqladmin, mysqldump..) behave. Note that
one now has to use mysqlbinlog -p<my_password>; mysqlbinlog -p <my_password> does
not work anymore (in other words, put no space after -p). (Bug #1595)

• On some 64-bit machines (some HP-UX and Solaris machines), a slave installed with the 64-bit
MySQL binary could not connect to its master (it connected to itself instead). (Bug #1256, Bug
#1381)

• Fixed a Windows-specific bug present since MySQL 3.23.57 and 3.23.58 that caused Windows
slaves to crash when they started replication if a master.info file existed. (Bug #1720)

• Fixed bug in ALTER TABLE RENAME, when rename to the table with the same name in anoth-
er database silently dropped destination table if it existed. (Bug #2628)

• Fixed potential memory overrun in mysql_real_connect() (which required a comprom-
ised DNS server and certain operating systems). (Bug #4017)

D.4.2. Changes in release 3.23.58 (11 Sep 2003)

• Fixed buffer overflow in password handling which could potentially be exploited by MySQL
users with ALTER privilege on the mysql.user table to execute random code or to gain shell
access with the UID of the mysqld process (thanks to Jedi/Sector One for spotting and reporting
this bug).

• mysqldump now correctly quotes all identifiers when communicating with the server. This as-

MySQL Change History

1293

sures that during the dump process, mysqldump never sends queries to the server that result in a
syntax error. This problem is not related to the mysqldump program's output, which was not
changed. (Bug #1148)

• Fixed table/column grant handling: The proper sort order (from most specific to less specific,
see Section 5.5.6, “Access Control, Stage 2: Request Verification”) was not honored. (Bug
#928)

• Fixed overflow bug in MyISAM and ISAM when a row is updated in a table with a large number
of columns and at least one BLOB/TEXT column.

• Fixed MySQL so that field length (in C API) for the second column in SHOW CREATE TABLE
is always larger than the data length. The only known application that was affected by the old
behavior was Borland dbExpress, which truncated the output from the command. (Bug #1064)

• Fixed ISAM bug in MAX() optimization.

• Fixed Unknown error when doing ORDER BY on reference table which was used with
NULL value on NOT NULL column. (Bug #479)

D.4.3. Changes in release 3.23.57 (06 Jun 2003)

• Fixed problem in alarm handling that could cause problems when getting a packet that is too
large.

• Fixed problem when installing MySQL as a service on Windows when two arguments were spe-
cified to mysqld (option file group name and service name).

• Fixed kill pid-of-mysqld to work on Mac OS X.

• SHOW TABLE STATUS displayed incorrect Row_format value for tables that have been
compressed with myisampack. (Bug #427)

• SHOW VARIABLES LIKE 'innodb_data_file_path' displayed only the name of the
first data file. (Bug #468)

• Fixed security problem where mysqld didn't allow one to UPDATE rows in a table even if one
had a global UPDATE privilege and a database SELECT privilege.

• Fixed a security problem with SELECT and wildcarded select list, when user only had partial
column SELECT privileges on the table.

• Fixed unlikely problem in optimizing WHERE clause with a constant expression such as in
WHERE 1 AND (a=1 AND b=1).

• Fixed problem on IA-64 with timestamps that caused mysqlbinlog to fail.

• The default option for innodb_flush_log_at_trx_commit was changed from 0 to 1 to
make InnoDB tables ACID by default. See Section 15.5, “InnoDB Startup Options”.

• Fixed problem with too many allocated alarms on slave when connecting to master many times
(normally not a very critical error).

• Fixed a bug in replication of temporary tables. (Bug #183)

• Fixed 64-bit bug that affected at least AMD hammer systems.

• Fixed a bug when doing LOAD DATA INFILE IGNORE: When reading the binary log,
mysqlbinlog and the replication code read REPLACE instead of IGNORE. This could make the
slave's table become different from the master's table. (Bug #218)

MySQL Change History

1294

• Fixed overflow bug in MyISAM when a row is inserted into a table with a large number of
columns and at least one BLOB/TEXT column. Bug was caused by incorrect calculation of the
needed buffer to pack data.

• The binary log was not locked during TRUNCATE tbl_name or DELETE FROM tbl_name
statements, which could cause an INSERT to tbl_name to be written to the log before the
TRUNCATE or DELETE statements.

• Fixed rare bug in UPDATE of InnoDB tables where one row could be updated multiple times.

• Produce an error for empty table and column names.

• Changed PROCEDURE ANALYSE() to report DATE instead of NEWDATE.

• Changed PROCEDURE ANALYSE(#) to restrict the number of values in an ENUM column to #
also for string values.

• mysqldump no longer silently deletes the binary logs when invoked with the -
-master-data or --first-slave option; while this behavior was convenient for some
users, others may suffer from it. Now you must explicitly ask for binary logs to be deleted by us-
ing the new --delete-master-logs option.

• Fixed a bug in mysqldump when it was invoked with the --master-data option: The
CHANGE MASTER TO statements that were appended to the SQL dump had incorrect coordin-
ates. (Bug #159)

D.4.4. Changes in release 3.23.56 (13 Mar 2003)

• Fixed mysqld crash on extremely small values of sort_buffer variable.

• Fixed a bug in privilege system for GRANT UPDATE on the column level.

• Fixed a rare bug when using a date in HAVING with GROUP BY.

• Fixed checking of random part of WHERE clause. (Bug #142)

• Fixed MySQL (and myisamchk) crash on artificially corrupted .MYI files.

• Security enhancement: mysqld no longer reads options from world-writable config files.

• Security enhancement: mysqld and safe_mysqld now use only the first --user option spe-
cified on the command line. (Normally this comes from /etc/my.cnf)

• Security enhancement: Don't allow BACKUP TABLE to overwrite existing files.

• Fixed unlikely deadlock bug when one thread did a LOCK TABLE and another thread did a
DROP TABLE. In this case one could do a KILL on one of the threads to resolve the deadlock.

• LOAD DATA INFILE was not replicated by slave if replicate_*_table was set on the
slave.

• Fixed a bug in handling CHAR(0) columns that could cause incorrect results from the query.

• Fixed a bug in SHOW VARIABLES on 64-bit platforms. The bug was caused by incorrect de-
claration of variable server_id.

• The Comment column in SHOW TABLE STATUS now reports that it can contain NULL values
(which is the case for a crashed .frm file).

• Fixed the rpl_rotate_logs test to not fail on certain platforms (such as Mac OS X) due to
a too-long file name (changed slave-master-info.opt to .slave-mi).

MySQL Change History

1295

• Fixed a problem with BLOB NOT NULL columns used with IS NULL.

• Fixed bug in MAX() optimization in MERGE tables.

• Better RAND() initialization for new connections.

• Fixed bug with connect timeout. This bug was manifested on OS's with poll() system call,
which resulted in timeout the value specified as it was executed in both select() and
poll().

• Fixed bug in SELECT * FROM table WHERE datetime1 IS NULL OR date-
time2 IS NULL.

• Fixed bug in using aggregate functions as argument for INTERVAL, CASE, FIELD, CON-
CAT_WS, ELT and MAKE_SET functions.

• When running with --lower-case-table-names=1 (default on Windows) and you had
tables or databases with mixed case on disk, then executing SHOW TABLE STATUS followed
with DROP DATABASE or DROP TABLE could fail with Errcode 13.

• Fixed bug in logging to binary log (which affects replication) a query that inserts a NULL in an
auto_increment field and also uses LAST_INSERT_ID().

• Fixed bug in mysqladmin --relative.

• On some 64-bit systems, show status reported a strange number for Open_files and
Open_streams.

D.4.5. Changes in release 3.23.55 (23 Jan 2003)

• Fixed double free'd pointer bug in mysql_change_user() handling, that enabled a spe-
cially hacked version of MySQL client to crash mysqld. Note that you must log in to the server
by using a valid user account to be able to exploit this bug.

• Fixed bug with the --slow-log when logging an administrator command (like FLUSH
TABLES).

• Fixed bug in GROUP BY when used on BLOB column with NULL values.

• Fixed a bug in handling NULL values in CASE ... WHEN

• Bugfix for --chroot (see Section D.4.6, “Changes in release 3.23.54 (05 Dec 2002)”) is re-
verted. Unfortunately, there is no way to make it to work, without introducing backward-in-
compatible changes in my.cnf. Those who need --chroot functionality, should upgrade to
MySQL 4.0. (The fix in the 4.0 branch did not break backward-compatibility).

• Make --lower-case-table-names default on Mac OS X as the default filesystem
(HFS+) is case insensitive.

• Fixed a bug in scripts/mysqld_safe.sh in NOHUP_NICENESS testing.

• Transactions in AUTOCOMMIT=0 mode didn't rotate binary log.

• Fixed a bug in scripts/make_binary_distribution that resulted in a remaining
@HOSTNAME@ variable instead of replacing it with the correct path to the hostname binary.

• Fixed a very unlikely bug that could cause SHOW PROCESSLIST to core dump in
pthread_mutex_unlock() if a new thread was connecting.

• Forbid SLAVE STOP if the thread executing the query has locked tables. This removes a pos-
sible deadlock situation.

MySQL Change History

1296

D.4.6. Changes in release 3.23.54 (05 Dec 2002)

• Fixed a bug, that allowed to crash mysqld with a specially crafted packet.

• Fixed a rare crash (double free'd pointer) when altering a temporary table.

• Fixed buffer overrun in libmysqlclient library that allowed malicious MySQL server to
crash the client application.

• Fixed security-related bug in mysql_change_user() handling. All users are strongly re-
commended to upgrade to the version 3.23.54.

• Fixed bug that prevented --chroot command-line option of mysqld from working.

• Fixed bug that made OPTIMIZE TABLE to corrupt the table under some rare circumstances.

• Fixed mysqlcheck so it can deal with table names containing dashes.

• Fixed shutdown problem on Mac OS X.

• Fixed bug with comparing an indexed NULL field with <=> NULL.

• Fixed bug that caused IGNORE INDEX and USE INDEX sometimes to be ignored.

• Fixed rare core dump problem in complicated GROUP BY queries that didn't return any result.

• Fixed a bug where MATCH ... AGAINST () >=0 was treated as if it was >.

• Fixed core dump in SHOW PROCESSLIST when running with an active slave (unlikely timing
bug).

• Make it possible to use multiple MySQL servers on Windows (code backported from 4.0.2).

• One can create TEMPORARY MERGE tables now.

• Fixed that --core-file works on Linux (at least on kernel 2.4.18).

• Fixed a problem with BDB and ALTER TABLE.

• Fixed reference to freed memory when doing complicated GROUP BY ... ORDER BY quer-
ies. Symptom was that mysqld died in function send_fields.

• Allocate heap rows in smaller blocks to get better memory usage.

• Fixed memory allocation bug when storing BLOB values in internal temporary tables used for
some (unlikely) GROUP BY queries.

• Fixed a bug in key optimizing handling where the expression WHERE col_name =
key_col_name was calculated as true for NULL values.

• Fixed core dump bug when doing LEFT JOIN ... WHERE key_column=NULL.

• Fixed MyISAM crash when using dynamic-row tables with huge numbers of packed fields.

• Updated source tree to be built using automake 1.5 and libtool 1.4.

D.4.7. Changes in release 3.23.53 (09 Oct 2002)

• Fixed crash when SHOW INNODB STATUS was used and skip-innodb was defined.

• Fixed possible memory corruption bug in binary log file handling when slave rotated the logs

MySQL Change History

1297

(only affected 3.23, not 4.0).

• Fixed problem in LOCK TABLES on Windows when one connects to a database that contains
uppercase letters.

• Fixed that --skip-show-database doesn't reset the --port option.

• Small fix in safe_mysqld for some shells.

• Fixed that FLUSH STATUS doesn't reset delayed_insert_threads.

• Fixed core dump bug when using the BINARY cast on a NULL value.

• Fixed race condition when someone did a GRANT at the same time a new user logged in or did a
USE database.

• Fixed bug in ALTER TABLE and RENAME TABLE when running with -O
lower_case_table_names=1 (typically on Windows) when giving the table name in up-
percase.

• Fixed that -O lower_case_table_names=1 also converts database names to lowercase.

• Fixed unlikely core dump with SELECT ... ORDER BY ... LIMIT.

• Changed AND/OR to report that they can return NULL. This fixes a bug in GROUP BY on
AND/OR expressions that return NULL.

• Fixed a bug that OPTIMIZE TABLE of locked and modified MyISAM table, reported table cor-
ruption.

• Fixed a BDB-related ALTER TABLE bug with dropping a column and shutting down immedi-
ately thereafter.

• Fixed problem with configure ... --localstatedir=....

• Fixed problem with UNSIGNED BIGINT on AIX (again).

• Fixed bug in pthread_mutex_trylock() on HPUX 11.0.

• Multi-threaded stress tests for InnoDB.

D.4.8. Changes in release 3.23.52 (14 Aug 2002)

• Wrap BEGIN/COMMIT around transaction in the binary log. This makes replication honor trans-
actions.

• Fixed security bug when having an empty database name in the user.db table.

• Changed initialization of RAND() to make it less predicatable.

• Fixed problem with GROUP BY on result with expression that created a BLOB field.

• Fixed problem with GROUP BY on columns that have NULL values. To solve this we now cre-
ate an MyISAM temporary table when doing a GROUP BY on a possible NULL item. From
MySQL 4.0.5 we can use in memory HEAP tables for this case.

• Fixed problem with privilege tables when downgrading from 4.0.2 to 3.23.

• Fixed thread bug in SLAVE START, SLAVE STOP and automatic repair of MyISAM tables
that could cause table cache to be corrupted.

• Fixed possible thread related key-cache-corruption problem with OPTIMIZE TABLE and RE-

MySQL Change History

1298

PAIR TABLE.

• Added name of 'administrator command' logs.

• Fixed bug with creating an auto-increment value on second part of a UNIQUE() key where first
part could contain NULL values.

• Don't write slave-timeout reconnects to the error log.

• Fixed bug with slave net read timeouting

• Fixed a core-dump bug with MERGE tables and MAX() function.

• Fixed bug in ALTER TABLE with BDB tables.

• Fixed bug when logging LOAD DATA INFILE to binary log with no active database.

• Fixed a bug in range optimizer (causing crashes).

• Fixed possible problem in replication when doing DROP DATABASE on a database with In-
noDB tables.

• Fixed mysql_info() to return 0 for Duplicates value when using INSERT DELAYED
IGNORE.

• Added -DHAVE_BROKEN_REALPATH to the Mac OS X (darwin) compile options in con-
figure.in to fix a failure under high load.

D.4.9. Changes in release 3.23.51 (31 May 2002)

• Fix bug with closing tags missing slash for mysqldump XML output.

• Remove endspace from ENUM values. (This fixed a problem with SHOW CREATE TABLE.)

• Fixed bug in CONCAT_WS() that cut the result.

• Changed name of server variables Com_show_master_stat to
Com_show_master_status and Com_show_slave_stat to
Com_show_slave_status.

• Changed handling of gethostbyname() to make the client library thread-safe even if
gethostbyname_r doesn't exist.

• Fixed core-dump problem when giving a wrong password string to GRANT.

• Fixed bug in DROP DATABASE with symlinked directory.

• Fixed optimization problem with DATETIME and value outside DATETIME range.

• Removed Sleepycat's BDB doc files from the source tree, as they're not needed (MySQL covers
BDB in its own documentation).

• Fixed MIT-pthreads to compile with glibc 2.2 (needed for make dist).

• Fixed the FLOAT(X+1,X) is not converted to FLOAT(X+2,X). (This also affected
DECIMAL, DOUBLE and REAL types)

• Fixed the result from IF() is case in-sensitive if the second and third arguments are case sensit-
ive.

• Fixed core dump problem on OSF/1 in gethostbyname_r.

MySQL Change History

1299

• Fixed that underflowed decimal fields are not zero filled.

• If we get an overflow when inserting '+11111' for DECIMAL(5,0) UNSIGNED columns,
we just drop the sign.

• Fixed optimization bug with ISNULL(expression_which_cannot_be_null) and IS-
NULL(constant_expression).

• Fixed host lookup bug in the glibc library that we used with the 3.23.50 Linux-x86 binaries.

D.4.10. Changes in release 3.23.50 (21 Apr 2002)

• Fixed buffer overflow problem if someone specified a too-long datadir parameter to mysqld.

• Add missing <row> tags for mysqldump XML output.

• Fixed problem with crash-me and gcc 3.0.4.

• Fixed that @@unknown_variable doesn't hang server.

• Added @@VERSION as a synonym for VERSION().

• SHOW VARIABLES LIKE 'xxx' is now case-insensitive.

• Fixed timeout for GET_LOCK() on HP-UX with DCE threads.

• Fixed memory allocation bug in the glibc library used to build Linux binaries, which caused
mysqld to die in free().

• Fixed SIGINT and SIGQUIT problems in mysql.

• Fixed bug in character table converts when used with big (larger than 64KB) strings.

• InnoDB now retains foreign key constraints through ALTER TABLE and CREATE/DROP
INDEX.

• InnoDB now allows foreign key constraints to be added through the ALTER TABLE syntax.

• InnoDB tables can now be set to automatically grow in size (autoextend).

• Our Linux RPMS and binaries are now compiled with gcc 3.0.4, which should make them a bit
faster.

• Fixed some buffer overflow problems when reading startup parameters.

• Because of problems on shutdown we have now disabled named pipes on Windows by default.
One can enable named pipes by starting mysqld with --enable-named-pipe.

• Fixed bug when using WHERE key_column = 'J' or key_column='j'.

• Fixed core-dump bug when using --log-bin with LOAD DATA INFILE without an active
database.

• Fixed bug in RENAME TABLE when used with lower_case_table_names=1 (default on
Windows).

• Fixed unlikely core-dump bug when using DROP TABLE on a table that was in use by a thread
that also used queries on only temporary tables.

• Fixed problem with SHOW CREATE TABLE and PRIMARY KEY when using 32 indexes.

• Fixed that one can use SET PASSWORD for the anonymous user.

MySQL Change History

1300

• Fixed core dump bug when reading client groups from option files using mysql_options().

• Memory leak (16 bytes per every corrupted table) closed.

• Fixed binary builds to use --enable-local-infile.

• Update source to work with new version of bison.

• Updated shell scripts to now agree with new POSIX standard.

• Fixed bug where DATE_FORMAT() returned empty string when used with GROUP BY.

D.4.11. Changes in release 3.23.49 (14 Feb 2002)

• For a MERGE table, DELETE FROM merge_table used without a WHERE clause no longer
clears the mapping for the table by emptying the .MRG file. Instead, it deletes records from the
mapped tables.

• Don't give warning for a statement that is only a comment; this is needed for mysqldump -
-disable-keys to work.

• Fixed unlikely caching bug when doing a join without keys. In this case, the last used field for a
table always returned NULL.

• Added options to make LOAD DATA LOCAL INFILE more secure.

• MySQL binary release 3.23.48 for Linux contained a new glibc library, which has serious
problems under high load and Red Hat 7.2. The 3.23.49 binary release doesn't have this prob-
lem.

• Fixed shutdown problem on NT.

D.4.12. Changes in release 3.23.48 (07 Feb 2002)

• Added --xml option to mysqldump for producing XML output.

• Changed to use autoconf 2.52 (from autoconf 2.13)

• Fixed bug in complicated join with const tables.

• Added internal safety checks for InnoDB.

• Some InnoDB variables were always shown in SHOW VARIABLES as OFF on high-byte-first
systems (like SPARC).

• Fixed problem with one thread using an InnoDB table and another thread doing an ALTER
TABLE on the same table. Before that, mysqld could crash with an assertion failure in
row0row.c, line 474.

• Tuned the InnoDB SQL optimizer to favor index searches more often over table scans.

• Fixed a performance problem with InnoDB tables when several large SELECT queries are run
concurrently on a multiprocessor Linux computer. Large CPU-bound SELECT queries now also
generally run faster on all platforms.

• If MySQL binary logging is used, InnoDB now prints after crash recovery the latest MySQL
binary log name and the offset InnoDB was able to recover to. This is useful, for example,
when resynchronizing a master and a slave database in replication.

MySQL Change History

1301

• Added better error messages to help in installation problems of InnoDB tables.

• It is now possible to recover MySQL temporary tables that have become orphaned inside the
InnoDB tablespace.

• InnoDB now prevents a FOREIGN KEY declaration where the signedness is not the same in
the referencing and referenced integer columns.

• Calling SHOW CREATE TABLE or SHOW TABLE STATUS could cause memory corruption
and make mysqld crash. Especially at risk was mysqldump, because it frequently calls SHOW
CREATE TABLE.

• If inserts to several tables containing an AUTO_INCREMENT column were wrapped inside one
LOCK TABLES, InnoDB asserted in lock0lock.c.

• In 3.23.47 we allowed several NULL values in a UNIQUE secondary index for an InnoDB table.
But CHECK TABLE was not relaxed: it reports the table as corrupt. CHECK TABLE no longer
complains in this situation.

• SHOW GRANTS now shows REFERENCES instead of REFERENCE.

D.4.13. Changes in release 3.23.47 (27 Dec 2001)

• Fixed bug when using the following construct: SELECT ... WHERE key=@var_name OR
key=@var_name2

• Restrict InnoDB keys to 500 bytes.

• InnoDB now supports NULL in keys.

• Fixed shutdown problem on HP-UX. (Introduced in 3.23.46)

• Fixed core dump bug in replication when using SELECT RELEASE_LOCK().

• Added new statement: DO expr[,expr]...

• Added slave-skip-errors option.

• Added statistics variables for all MySQL commands. (SHOW STATUS is now much longer.)

• Fixed default values for InnoDB tables.

• Fixed that GROUP BY expr DESC works.

• Fixed bug when using t1 LEFT JOIN t2 ON t2.key=constant.

• mysql_config now also works with binary (relocated) distributions.

D.4.14. Changes in release 3.23.46 (29 Nov 2001)

• Fixed problem with aliased temporary table replication.

• InnoDB and BDB tables now use index when doing an ORDER BY on the whole table.

• Fixed bug where one got an empty set instead of a DEADLOCK error when using BDB tables.

• One can now kill ANALYZE TABLE, REPAIR TABLE, and OPTIMIZE TABLE when the
thread is waiting to get a lock on the table.

MySQL Change History

1302

• Fixed race condition in ANALYZE TABLE.

• Fixed bug when joining with caching (unlikely to happen).

• Fixed race condition when using the binary log and INSERT DELAYED which could cause the
binary log to have rows that were not yet written to MyISAM tables.

• Changed caching of binary log to make replication slightly faster.

• Fixed bug in replication on Mac OS X.

D.4.15. Changes in release 3.23.45 (22 Nov 2001)

• (UPDATE|DELETE) ...WHERE MATCH bugfix.

• shutdown should now work on Darwin (Mac OS X).

• Fixed core dump when repairing corrupted packed MyISAM files.

• --core-file now works on Solaris.

• Fix a bug which could cause InnoDB to complain if it cannot find free blocks from the buffer
cache during recovery.

• Fixed bug in InnoDB insert buffer B-tree handling that could cause crashes.

• Fixed bug in InnoDB lock timeout handling.

• Fixed core dump bug in ALTER TABLE on a TEMPORARY InnoDB table.

• Fixed bug in OPTIMIZE TABLE that reset index cardinality if it was up to date.

• Fixed problem with t1 LEFT_JOIN t2 ... WHERE t2.date_column IS NULL
when date_column was declared as NOT NULL.

• Fixed bug with BDB tables and keys on BLOB columns.

• Fixed bug in MERGE tables on OS with 32-bit file pointers.

• Fixed bug in TIME_TO_SEC() when using negative values.

D.4.16. Changes in release 3.23.44 (31 Oct 2001)

• Fixed Rows_examined count in slow query log.

• Fixed bug when using a reference to an AVG() column in HAVING.

• Fixed that date functions that require correct dates, like DAYOFYEAR(column), return NULL
for 0000-00-00 dates.

• Fixed bug in const-propagation when comparing columns of different types. (SELECT *
FROM date_col="2001-01-01" and date_col=time_col)

• Fixed bug that caused error message Can't write, because of unique con-
straint with some GROUP BY queries.

• Fixed problem with sjis character strings used within quoted table names.

• Fixed core dump when using CREATE ... FULLTEXT keys with other storage engines than

MySQL Change History

1303

MyISAM.

• Don't use signal() on Windows because this appears to not be 100% reliable.

• Fixed bug when doing WHERE col_name=NULL on an indexed column that had NULL val-
ues.

• Fixed bug when doing LEFT JOIN ... ON (col_name = constant) WHERE
col_name = constant.

• When using replications, aborted queries that contained % could cause a core dump.

• TCP_NODELAY was not used on some systems. (Speed problem.)

• Applied portability fixes for OS/2. (Patch by Yuri Dario.)

The following changes are for InnoDB tables:

• Add missing InnoDB variables to SHOW VARIABLES.

• Foreign key checking is now done for InnoDB tables.

• DROP DATABASE now works also for InnoDB tables.

• InnoDB now supports data files and raw disk partitions bigger than 4GB on those operating
systems that have big files.

• InnoDB calculates better table cardinality estimates for the MySQL optimizer.

• Accent characters in the default character set latin1 are ordered according to the MySQL or-
dering.

Note: If you are using latin1 and have inserted characters whose code is greater than 127 into
an indexed CHAR column, you should run CHECK TABLE on your table when you upgrade to
3.23.44, and drop and reimport the table if CHECK TABLE reports an error!

• A new my.cnf parameter, innodb_thread_concurrency, helps in performance tuning
in heavily concurrent environments.

• A new my.cnf parameter, innodb_fast_shutdown, speeds up server shutdown.

• A new my.cnf parameter, innodb_force_recovery, helps to save your data in case the
disk image of the database becomes corrupt.

• innodb_monitor has been improved and a new innodb_table_monitor added.

• Increased maximum key length from 500 to 7000 bytes.

• Fixed a bug in replication of AUTO_INCREMENT columns with multiple-line inserts.

• Fixed a bug when the case of letters changes in an update of an indexed secondary column.

• Fixed a hang when there are more than 24 data files.

• Fixed a crash when MAX(col) is selected from an empty table, and col is not the first column
in a multi-column index.

• Fixed a bug in purge which could cause crashes.

D.4.17. Changes in release 3.23.43 (04 Oct 2001)

MySQL Change History

1304

• Fixed a bug in INSERT DELAYED and FLUSH TABLES introduced in 3.23.42.

• Fixed unlikely bug, which returned non-matching rows, in SELECT with many tables and multi-
column indexes and 'range' type.

• Fixed an unlikely core dump bug when doing EXPLAIN SELECT when using many tables and
ORDER BY.

• Fixed bug in LOAD DATA FROM MASTER when using table with CHECKSUM=1.

• Added unique error message when a DEADLOCK occurs during a transaction with BDB tables.

• Fixed problem with BDB tables and UNIQUE columns defined as NULL.

• Fixed problem with myisampack when using pre-space filled CHAR columns.

• Applied patch from Yuri Dario for OS/2.

• Fixed bug in --safe-user-create.

D.4.18. Changes in release 3.23.42 (08 Sep 2001)

• Fixed problem when using LOCK TABLES and BDB tables.

• Fixed problem with REPAIR TABLE on MyISAM tables with row lengths in the range from
65517 to 65520 bytes.

• Fixed rare hang when doing mysqladmin shutdown when there was a lot of activity in other
threads.

• Fixed problem with INSERT DELAYED where delayed thread could be hanging on upgrad-
ing locks for no apparent reason.

• Fixed problem with myisampack and BLOB.

• Fixed problem when one edited .MRG tables by hand. (Patch from Benjamin Pflugmann).

• Enforce that all tables in a MERGE table come from the same database.

• Fixed bug with LOAD DATA INFILE and transactional tables.

• Fix bug when using INSERT DELAYED with wrong column definition.

• Fixed core dump during REPAIR TABLE of some particularly broken tables.

• Fixed bug in InnoDB and AUTO_INCREMENT columns.

• Fixed bug in InnoDB and RENAME TABLE columns.

• Fixed critical bug in InnoDB and BLOB columns. If you have used BLOB columns larger than
8000 bytes in an InnoDB table, it is necessary to dump the table with mysqldump, drop it and
restore it from the dump.

• Applied large patch for OS/2 from Yuri Dario.

• Fixed problem with InnoDB when one could get the error Can't execute the given
command... even when no transaction was active.

• Applied some minor fixes that concern Gemini.

• Use real arithmetic operations even in integer context if not all arguments are integers. (Fixes
uncommon bug in some integer contexts).

MySQL Change History

1305

• Don't force everything to lowercase on Windows. (To fix problem with Windows and ALTER
TABLE.) Now --lower_case_table_names also works on Unix.

• Fixed that automatic rollback is done when thread end doesn't lock other threads.

D.4.19. Changes in release 3.23.41 (11 Aug 2001)

• Added --sql-mode=value[,value[,value]] option to mysqld. See Section 5.2.1,
“mysqld Command-Line Options”.

• Fixed possible problem with shutdown on Solaris where the .pid file wasn't deleted.

• InnoDB now supports < 4GB rows. The former limit was 8000 bytes.

• The doublewrite file flush method is used in InnoDB. It reduces the need for Unix
fsync() calls to a fraction and improves performance on most Unix flavors.

• You can now use the InnoDB Monitor to print a lot of InnoDB state information, including
locks, to the standard output. This is useful in performance tuning.

• Several bugs which could cause hangs in InnoDB have been fixed.

• Split record_buffer to record_buffer and record_rnd_buffer. To make things
compatible to previous MySQL versions, if record_rnd_buffer is not set, then it takes the
value of record_buffer.

• Fixed optimizing bug in ORDER BY where some ORDER BY parts where wrongly removed.

• Fixed overflow bug with ALTER TABLE and MERGE tables.

• Added prototypes for my_thread_init() and my_thread_end() to mysql_com.h

• Added --safe-user-create option to mysqld.

• Fixed bug in SELECT DISTINCT ... HAVING that caused error message Can't find
record in #...

D.4.20. Changes in release 3.23.40 (18 Jul 2001)

• Fixed problem with --low-priority-updates and INSERT statements.

• Fixed bug in slave thread when under some rare circumstances it could get 22 bytes ahead on the
offset in the master.

• Added slave_net_timeout for replication.

• Fixed problem with UPDATE and BDB tables.

• Fixed hard bug in BDB tables when using key parts.

• Fixed problem when using GRANT FILE ON database.* ...; previously we added the
DROP privilege for the database.

• Fixed DELETE FROM tbl_name ... LIMIT 0 and UPDATE FROM tbl_name ...
LIMIT 0, which acted as though the LIMIT clause was not present (they deleted or updated all
selected rows).

• CHECK TABLE now checks whether an AUTO_INCREMENT column contains the value 0.

MySQL Change History

1306

• Sending a SIGHUP to mysqld now only flushes the logs, but does not reset the replication.

• Fixed parser to allow floats of type 1.0e1 (no sign after e).

• Option --force to myisamchk now also updates states.

• Added option --warnings to mysqld. Now mysqld prints the error Aborted connec-
tion only if this option is used.

• Fixed problem with SHOW CREATE TABLE when you didn't have a PRIMARY KEY.

• Properly fixed the rename of innodb_unix_file_flush_method variable to in-
nodb_flush_method.

• Fixed bug when converting BIGINT UNSIGNED to DOUBLE. This caused a problem when do-
ing comparisons with BIGINT values outside of the signed range.

• Fixed bug in BDB tables when querying empty tables.

• Fixed a bug when using COUNT(DISTINCT) with LEFT JOIN and there weren't any match-
ing rows.

• Removed all documentation referring to the GEMINI table type. GEMINI is not released under
an Open Source license.

D.4.21. Changes in release 3.23.39 (12 Jun 2001)

• The AUTO_INCREMENT sequence wasn't reset when dropping and adding an
AUTO_INCREMENT column.

• CREATE ... SELECT now creates non-unique indexes delayed.

• Fixed problem where LOCK TABLES tbl_name READ followed by FLUSH TABLES put
an exclusive lock on the table.

• REAL @variable values were represented with only 2 digits when converted to strings.

• Fixed problem that client ``hung'' when LOAD TABLE FROM MASTER failed.

• myisamchk --fast --force no longer repairs tables that only had the open count wrong.

• Added functions to handle symbolic links to make life easier in 4.0.

• We are now using the -lcma thread library on HP-UX 10.20 so that MySQL is more stable on
HP-UX.

• Fixed problem with IF() and number of decimals in the result.

• Fixed date-part extraction functions to work with dates where day and/or month is 0.

• Extended argument length in option files from 256 to 512 chars.

• Fixed problem with shutdown when INSERT DELAYED was waiting for a LOCK TABLE.

• Fixed core dump bug in InnoDB when tablespace was full.

• Fixed problem with MERGE tables and big tables (larger than 4GB) when using ORDER BY.

D.4.22. Changes in release 3.23.38 (09 May 2001)

MySQL Change History

1307

• Fixed a bug when SELECT from MERGE table sometimes results in incorrectly ordered rows.

• Fixed a bug in REPLACE() when using the ujis character set.

• Applied Sleepycat BDB patches 3.2.9.1 and 3.2.9.2.

• Added --skip-stack-trace option to mysqld.

• CREATE TEMPORARY now works with InnoDB tables.

• InnoDB now promotes sub keys to whole keys.

• Added option CONCURRENT to LOAD DATA.

• Better error message when slave max_allowed_packet is too low to read a very long log
event from the master.

• Fixed bug when too many rows where removed when using SELECT DISTINCT ... HAV-
ING.

• SHOW CREATE TABLE now returns TEMPORARY for temporary tables.

• Added Rows_examined to slow query log.

• Fixed problems with function returning empty string when used together with a group function
and a WHERE that didn't match any rows.

• New program mysqlcheck.

• Added database name to output for administrative commands like CHECK TABLE, REPAIR
TABLE, OPTIMIZE TABLE.

• Lots of portability fixes for InnoDB.

• Changed optimizer so that queries like SELECT * FROM tbl_name, tbl_name2 ...
ORDER BY key_part1 LIMIT row_count use an index on key_part1 instead of
filesort.

• Fixed bug when doing LOCK TABLE to_table WRITE,...; INSERT INTO
to_table... SELECT ... when to_table was empty.

• Fixed bug with LOCK TABLE and BDB tables.

D.4.23. Changes in release 3.23.37 (17 Apr 2001)

• Fixed a bug when using MATCH() in HAVING clause.

• Fixed a bug when using HEAP tables with LIKE.

• Added --mysql-version option to safe_mysqld

• Changed INNOBASE to InnoDB (because the INNOBASE name was in use). All configure op-
tions and mysqld start options now use innodb instead of innobase. This means that before
upgrading to this version, you have to change any configuration files where you have used in-
nobase options!

• Fixed bug when using indexes on CHAR(255) NULL columns.

• Slave threads now start even if master-host is not set, as long as server-id is set and
valid master.info is present.

• Partial updates (terminated with kill) are now logged with a special error code to the binary log.

MySQL Change History

1308

Slave refuses to execute them if the error code indicates the update was terminated abnormally,
and has to be recovered with SET SQL_SLAVE_SKIP_COUNTER=1; SLAVE START after
a manual sanity check/correction of data integrity.

• Fixed bug that erroneously logged a drop of internal temporary table on thread termination to the
binary log --- this bug affected replication.

• Fixed a bug in REGEXP on 64-bit machines.

• UPDATE and DELETE with WHERE unique_key_part IS NULL didn't update/delete all
rows.

• Disabled INSERT DELAYED for tables that support transactions.

• Fixed bug when using date functions on TEXT/BLOB column with wrong date format.

• UDFs now also work on Windows. (Patch by Ralph Mason.)

• Fixed bug in ALTER TABLE and LOAD DATA INFILE that disabled key-sorting. These com-
mands should now be faster in most cases.

• Fixed performance bug where reopened tables (tables that had been waiting for FLUSH or RE-
PAIR TABLE) would not use indexes for the next query.

• Fixed problem with ALTER TABLE to InnoDB tables on FreeBSD.

• Added mysqld variables myisam_max_sort_file_size and myis-
am_max_extra_sort_file_size.

• Initialize signals early to avoid problem with signals in InnoDB.

• Applied patch for the tis620 character set to make comparisons case-independent and to fix a
bug in LIKE for this character set. Note: All tables that uses the tis620 character set must be
fixed with myisamchk -r or REPAIR TABLE !

• Added --skip-safemalloc option to mysqld.

D.4.24. Changes in release 3.23.36 (27 Mar 2001)

• Fixed a bug that allowed use of database names containing a '.' character. This fixes a serious
security issue when mysqld is run as root.

• Fixed bug when thread creation failed (could happen when doing a lot of connections in a short
time).

• Fixed some problems with FLUSH TABLES and TEMPORARY tables. (Problem with freeing the
key cache and error Can't reopen table....)

• Fixed a problem in InnoDB with other character sets than latin1 and another problem when
using many columns.

• Fixed bug that caused a core dump when using a very complex query involving DISTINCT and
summary functions.

• Added SET TRANSACTION ISOLATION LEVEL ...

• Added SELECT ... FOR UPDATE.

• Fixed bug where the number of affected rows was not returned when MySQL was compiled
without transaction support.

MySQL Change History

1309

• Fixed a bug in UPDATE where keys weren't always used to find the rows to be updated.

• Fixed a bug in CONCAT_WS() where it returned incorrect results.

• Changed CREATE ... SELECT and INSERT ... SELECT to not allow concurrent inserts
as this could make the binary log hard to repeat. (Concurrent inserts are enabled if you are not
using the binary or update log.)

• Changed some macros to be able to use fast mutex with glibc 2.2.

D.4.25. Changes in release 3.23.35 (15 Mar 2001)

• Fixed newly introduced bug in ORDER BY.

• Fixed wrong define CLIENT_TRANSACTIONS.

• Fixed bug in SHOW VARIABLES when using INNOBASE tables.

• Setting and using user variables in SELECT DISTINCT didn't work.

• Tuned SHOW ANALYZE for small tables.

• Fixed handling of arguments in the benchmark script run-all-tests.

D.4.26. Changes in release 3.23.34a (11 Mar 2001)

• Added extra files to the distribution to allow INNOBASE support to be compiled.

D.4.27. Changes in release 3.23.34 (10 Mar 2001)

• Added the INNOBASE storage engine and the BDB storage engine to the MySQL source distri-
bution.

• Updated the documentation about GEMINI tables.

• Fixed a bug in INSERT DELAYED that caused threads to hang when inserting NULL into an
AUTO_INCREMENT column.

• Fixed a bug in CHECK TABLE / REPAIR TABLE that could cause a thread to hang.

• Fixed problem that REPLACE would not replace a row that conflicts with an
AUTO_INCREMENT generated key.

• mysqld now only sets CLIENT_TRANSACTIONS in mysql->server_capabilities if
the server supports a transaction-safe storage engine.

• Fixed LOAD DATA INFILE to allow numeric values to be read into ENUM and SET columns.

• Improved error diagnostic for slave thread exit.

• Fixed bug in ALTER TABLE ... ORDER BY.

• Added max_user_connections variable to mysqld.

• Limit query length for replication by max_allowed_packet, not the arbitrary limit of 4MB.

MySQL Change History

1310

• Allow space around = in argument to --set-variable.

• Fixed problem in automatic repair that could leave some threads in state Waiting for ta-
ble.

• SHOW CREATE TABLE now displays the UNION=() for MERGE tables.

• ALTER TABLE now remembers the old UNION=() definition.

• Fixed bug when replicating timestamps.

• Fixed bug in bidirectional replication.

• Fixed bug in the BDB storage engine that occurred when using an index on multiple-part key
where a key part may be NULL.

• Fixed MAX() optimization on sub-key for BDB tables.

• Fixed problem where garbage results were returned when using BDB tables and BLOB or TEXT
fields when joining many tables.

• Fixed a problem with BDB tables and TEXT columns.

• Fixed bug when using a BLOB key where a const row wasn't found.

• Fixed that mysqlbinlog writes the timestamp value for each query. This ensures that one gets
same values for date functions like NOW() when using mysqlbinlog to pipe the queries to an-
other server.

• Allow --skip-gemini, --skip-bdb, and --skip-innodb options to be specified when
invoking mysqld, even if these storage engines are not compiled in to mysqld.

• You can now use ASC and DESC with GROUP BY columns to specify a sort order.

• Fixed a deadlock in the SET code, when one ran SET @foo=bar, where bar is a column ref-
erence, an error was not properly generated.

D.4.28. Changes in release 3.23.33 (09 Feb 2001)

• Fixed DNS lookups not to use the same mutex as the hostname cache. This enables known hosts
to be quickly resolved even if a DNS lookup takes a long time.

• Added --character-sets-dir option to myisampack.

• Removed warnings when running REPAIR TABLE ... EXTENDED.

• Fixed a bug that caused a core dump when using GROUP BY on an alias, where the alias was the
same as an existing column name.

• Added SEQUENCE() as an example UDF function.

• Changed mysql_install_db to use BINARY for CHAR columns in the privilege tables.

• Changed TRUNCATE tbl_name to TRUNCATE TABLE tbl_name to use the same syntax
as Oracle. Until 4.0 we also allow TRUNCATE tbl_name to not crash old code.

• Fixed ``no found rows'' bug in MyISAM tables when a BLOB was first part of a multiple-part
key.

• Fixed bug where CASE didn't work with GROUP BY.

• Added --sort-recover option to myisamchk.

MySQL Change History

1311

• myisamchk -S and OPTIMIZE TABLE now work on Windows.

• Fixed bug when using DISTINCT on results from functions that referred to a group function,
like:

SELECT a, DISTINCT SEC_TO_TIME(SUM(a))
FROM tbl_name GROUP BY a, b;

• Fixed buffer overrun in libmysqlclient library. Fixed bug in handling STOP event after
ROTATE event in replication.

• Fixed another buffer overrun in DROP DATABASE.

• Added Table_locks_immediate and Table_locks_waited status variables.

• Fixed bug in replication that broke slave server start with existing master.info. This fixes a
bug introduced in 3.23.32.

• Added SET SQL_SLAVE_SKIP_COUNTER=n command to recover from replication glitches
without a full database copy.

• Added max_binlog_size variable; the binary log is rotated automatically when the size
crosses the limit.

• Added Last_Error, Last_Errno, and Slave_skip_counter variables to SHOW
SLAVE STATUS.

• Fixed bug in MASTER_POS_WAIT() function.

• Execute core dump handler on SIGILL, and SIGBUS in addition to SIGSEGV.

• On x86 Linux, print the current query and thread (connection) id, if available, in the core dump
handler.

• Fixed several timing bugs in the test suite.

• Extended mysqltest to take care of the timing issues in the test suite.

• ALTER TABLE can now be used to change the definition for a MERGE table.

• Fixed creation of MERGE tables on Windows.

• Portability fixes for OpenBSD and OS/2.

• Added --temp-pool option to mysqld. Using this option causes most temporary files created
to use a small set of names, rather than a unique name for each new file. This is to work around
a problem in the Linux kernel dealing with creating a bunch of new files with different names.
With the old behavior, Linux seems to "leak" memory, as it's being allocated to the directory
entry cache instead of the disk cache.

D.4.29. Changes in release 3.23.32 (22 Jan 2001)

• Changed code to get around compiler bug in Compaq C++ on OSF/1, that broke BACKUP TA-
BLE, RESTORE TABLE, CHECK TABLE, REPAIR TABLE, and ANALYZE TABLE.

• Added option FULL to SHOW COLUMNS. Now we show the privilege list for the columns only
if this option is given.

• Fixed bug in SHOW LOGS when there weren't any BDB logs.

• Fixed a timing problem in replication that could delay sending an update to the client until a new

MySQL Change History

1312

update was done.

• Don't convert field names when using mysql_list_fields(). This is to keep this code
compatible with SHOW FIELDS.

• MERGE tables didn't work on Windows.

• Fixed problem with SET PASSWORD=... on Windows.

• Added missing my_config.h to RPM distribution.

• TRIM("foo" from "foo") didn't return an empty string.

• Added --with-version-suffix option to configure.

• Fixed core dump when client aborted connection without mysql_close().

• Fixed a bug in RESTORE TABLE when trying to restore from a non-existent directory.

• Fixed a bug which caused a core dump on the slave when replicating SET PASSWORD.

• Added MASTER_POS_WAIT() function.

D.4.30. Changes in release 3.23.31 (17 Jan 2001: Pro-
duction)

• The test suite now tests all reachable BDB interface code. During testing we found and fixed
many errors in the interface code.

• Using HAVING on an empty table could produce one result row when it shouldn't.

• Fixed the MySQL RPM so it no longer depends on Perl5.

• Fixed some problems with HEAP tables on Windows.

• SHOW TABLE STATUS didn't show correct average row length for tables larger than 4GB.

• CHECK TABLE ... EXTENDED didn't check row links for fixed size tables.

• Added option MEDIUM to CHECK TABLE.

• Fixed problem when using DECIMAL() keys on negative numbers.

• HOUR() (and some other TIME functions) on a CHAR column always returned NULL.

• Fixed security bug in something (please upgrade if you are using an earlier MySQL 3.23 ver-
sion).

• Fixed buffer overflow bug when writing a certain error message.

• Added usage of setrlimit() on Linux to get -O --open_files_limit=# to work on
Linux.

• Added bdb_version variable to mysqld.

• Fixed bug when using expression of type:

SELECT ... FROM t1 LEFT JOIN t2 ON (t1.a=t2.a) WHERE t1.a=t2.a

In this case the test in the WHERE clause was wrongly optimized away.

MySQL Change History

1313

• Fixed bug in MyISAM when deleting keys with possible NULL values, but the first key-column
was not a prefix-compressed text column.

• Fixed mysql.server to read the [mysql.server] option file group rather than the
[mysql_server] group.

• Fixed safe_mysqld and mysql.server to also read the server option section.

• Added Threads_created status variable to mysqld.

D.4.31. Changes in release 3.23.30 (04 Jan 2001)

• Added SHOW OPEN TABLES command.

• Fixed that myisamdump works against old mysqld servers.

• Fixed myisamchk -k# so that it works again.

• Fixed a problem with replication when the binary log file went over 2G on 32-bit systems.

• LOCK TABLES now automatically starts a new transaction.

• Changed BDB tables to not use internal subtransactions and reuse open files to get more speed.

• Added --mysqld=# option to safe_mysqld.

• Allow hex constants in the --fields-*-by and --lines-terminated-by options to
mysqldump and mysqlimport. By Paul DuBois.

• Added --safe-show-database option to mysqld.

• Added have_bdb, have_gemini, have_innobase, have_raid and have_openssl
to SHOW VARIABLES to make it easy to test for supported extensions.

• Added --open-files-limit option to mysqld.

• Changed --open-files option to --open-files-limit in safe_mysqld.

• Fixed a bug where some rows were not found with HEAP tables that had many keys.

• Fixed that --bdb-no-sync works.

• Changed --bdb-recover to --bdb-no-recover as recover should be on by default.

• Changed the default number of BDB locks to 10000.

• Fixed a bug from 3.23.29 when allocating the shared structure needed for BDB tables.

• Changed mysqld_multi.sh to use configure variables. Patch by Christopher McCrory.

• Added fixing of include files for Solaris 2.8.

• Fixed bug with --skip-networking on Debian Linux.

• Fixed problem that some temporary files where reported as having the name UNOPENED in error
messages.

• Fixed bug when running two simultaneous SHOW LOGS queries.

D.4.32. Changes in release 3.23.29 (16 Dec 2000)

MySQL Change History

1314

• Configure updates for Tru64, large file support, and better TCP wrapper support. By Albert
Chin-A-Young.

• Fixed bug in <=> operator.

• Fixed bug in REPLACE with BDB tables.

• LPAD() and RPAD() shortens the result string if it's longer than the length argument.

• Added SHOW LOGS command.

• Remove unused BDB logs on shutdown.

• When creating a table, put PRIMARY keys first, followed by UNIQUE keys.

• Fixed a bug in UPDATE involving multiple-part keys where you specified all key parts both in
the update and the WHERE part. In this case MySQL could try to update a record that didn't
match the whole WHERE part.

• Changed drop table to first drop the tables and then the .frm file.

• Fixed a bug in the hostname cache which caused mysqld to report the hostname as '' in some
error messages.

• Fixed a bug with HEAP type tables; the variable max_heap_table_size wasn't used. Now
either MAX_ROWS or max_heap_table_size can be used to limit the size of a HEAP type
table.

• Changed the default server-id value to 1 for masters and 2 for slaves to make it easier to use
the binary log.

• Renamed bdb_lock_max variable to bdb_max_lock.

• Added support for AUTO_INCREMENT on sub-fields for BDB tables.

• Added ANALYZE TABLE of BDB tables.

• In BDB tables, we now store the number of rows; this helps to optimize queries when we need an
approximation of the number of rows.

• If we get an error in a multiple-row statement, we now only roll back the last statement, not the
entire transaction.

• If you do a ROLLBACK when you have updated a non-transactional table you get an error as a
warning.

• Added --bdb-shared-data option to mysqld.

• Added Slave_open_temp_tables status variable to mysqld

• Added binlog_cache_size and max_binlog_cache_size variables to mysqld.

• DROP TABLE, RENAME TABLE, CREATE INDEX and DROP INDEX are now transaction
endpoints.

• If you do a DROP DATABASE on a symbolically linked database, both the link and the original
database are deleted.

• Fixed DROP DATABASE to work on OS/2.

• Fixed bug when doing a SELECT DISTINCT ... table1 LEFT JOIN table2 ...
when table2 was empty.

• Added --abort-slave-event-count and --disconnect-slave-event-count

MySQL Change History

1315

options to mysqld for debugging and testing of replication.

• Fixed replication of temporary tables. Handles everything except slave server restart.

• SHOW KEYS now shows whether key is FULLTEXT.

• New script mysqld_multi. See Section 5.1.5, “The mysqld_multi Program for Managing Mul-
tiple MySQL Servers”.

• Added new script, mysql-multi.server.sh. Thanks to Tim Bunce
<Tim.Bunce@ig.co.uk> for modifying mysql.server to easily handle hosts running many
mysqld processes.

• safe_mysqld, mysql.server, and mysql_install_db have been modified to use
mysql_print_defaults instead of various hacks to read the my.cnf files. In addition, the
handling of various paths has been made more consistent with how mysqld handles them by de-
fault.

• Automatically remove Berkeley DB transaction logs that no longer are in use.

• Fixed bug with several FULLTEXT indexes in one table.

• Added a warning if number of rows changes on REPAIR TABLE/OPTIMIZE TABLE.

• Applied patches for OS/2 by Yuri Dario.

• FLUSH TABLES tbl_name didn't always flush the index tree to disk properly.

• --bootstrap is now run in a separate thread. This fixes a problem that caused
mysql_install_db to core dump on some Linux machines.

• Changed mi_create() to use less stack space.

• Fixed bug with optimizer trying to over-optimize MATCH() when used with UNIQUE key.

• Changed crash-me and the MySQL benchmarks to also work with FrontBase.

• Allow RESTRICT and CASCADE after DROP TABLE to make porting easier.

• Reset status variable which could cause problem if one used --slow-log.

• Added connect_timeout variable to mysql and mysqladmin.

• Added connect-timeout as an alias for timeout for option files read by
mysql_options().

D.4.33. Changes in release 3.23.28 (22 Nov 2000:
Gamma)

• Added new options --pager[=...], --no-pager, --tee=... and --no-tee to the
mysql client. The new corresponding interactive commands are pager, nopager, tee and
notee. See Section 8.3, “mysql, the Command-Line Tool”, mysql --help and the interactive
help for more information.

• Fixed crash when automatic repair of MyISAM table failed.

• Fixed a major performance bug in the table locking code when a lot of SELECT, UPDATE and
INSERT statements constantly were running. The symptom was that the UPDATE and INSERT
queries were locked for a long time while new SELECT statements were executed before the up-
dates.

MySQL Change History

1316

• When reading options_files with mysql_options() the return-found-rows op-
tion was ignored.

• You can now specify interactive-timeout in the option file that is read by
mysql_options(). This makes it possible to force programs that run for a long time (like
mysqlhotcopy) to use the interactive_timeout time instead of the wait_timeout
time.

• Added to the slow query log the time and the username for each logged query. If you are using -
-log-long-format then also queries that do not use an index are logged, even if the query
takes less than long_query_time seconds.

• Fixed a problem in LEFT JOIN which caused all columns in a reference table to be NULL.

• Fixed a problem when using NATURAL JOIN without keys.

• Fixed a bug when using a multiple-part keys where the first part was of type TEXT or BLOB.

• DROP of temporary tables wasn't stored in the update/binary log.

• Fixed a bug where SELECT DISTINCT * ... LIMIT row_count only returned one
row.

• Fixed a bug in the assembler code in strstr() for SPARC and cleaned up the global.h
header file to avoid a problem with bad aliasing with the compiler submitted with Red Hat 7.0.
(Reported by Trond Eivind Glomsrød)

• The --skip-networking option now works properly on NT.

• Fixed a long outstanding bug in the ISAM tables when a row with a length of more than 65KB
was shortened by a single byte.

• Fixed a bug in MyISAM when running multiple updating processes on the same table.

• Allow one to use FLUSH TABLE tbl_name.

• Added --replicate-ignore-table, --replicate-do-table, -
-replicate-wild-ignore-table, and --replicate-wild-do-table options to
mysqld.

• Changed all log files to use our own IO_CACHE mechanism instead of FILE to avoid OS prob-
lems when there are many files open.

• Added --open-files and --timezone options to safe_mysqld.

• Fixed a fatal bug in CREATE TEMPORARY TABLE ... SELECT

• Fixed a problem with CREATE TABLE ... SELECT NULL.

• Added variables large_file_support,net_read_timeout, net_write_timeout
and query_buffer_size to SHOW VARIABLES.

• Added status variables Created_tmp_files and Sort_merge_passes to SHOW
STATUS.

• Fixed a bug where we didn't allow an index name after the FOREIGN KEY definition.

• Added TRUNCATE tbl_name as a synonym for DELETE FROM tbl_name.

• Fixed a bug in a BDB key compare function when comparing part keys.

• Added bdb_lock_max variable to mysqld.

• Added more tests to the benchmark suite.

MySQL Change History

1317

• Fixed an overflow bug in the client code when using overly long database names.

• mysql_connect() now aborts on Linux if the server doesn't answer in timeout seconds.

• SLAVE START did not work if you started with --skip-slave-start and had not expli-
citly run CHANGE MASTER TO.

• Fixed the output of SHOW MASTER STATUS to be consistent with SHOW SLAVE STATUS.
(It now has no directory in the log name.)

• Added PURGE MASTER LOGS TO.

• Added SHOW MASTER LOGS statement to display a list of binary log files.

• Added --safemalloc-mem-limit option to mysqld to simulate memory shortage when
compiled with the --with-debug=full option.

• Fixed several core dumps in out-of-memory conditions.

• SHOW SLAVE STATUS was using an uninitialized mutex if the slave had not been started yet.

• Fixed bug in ELT() and MAKE_SET() when the query used a temporary table.

• CHANGE MASTER TO without specifying MASTER_LOG_POS would set it to 0 instead of 4
and hit the magic number in the master binary log.

• ALTER TABLE ... ORDER BY ... syntax added. This creates the new table with the
rows in a specific order.

D.4.34. Changes in release 3.23.27 (24 Oct 2000)

• Fixed a bug where the automatic repair of MyISAM tables sometimes failed when the data file
was corrupt.

• Fixed a bug in SHOW CREATE when using AUTO_INCREMENT columns.

• Changed BDB tables to use new compare function in Berkeley DB 3.2.3.

• You can now use Unix socket files with MIT-pthreads.

• Added the latin5 (turkish) character set.

• Small portability fixes.

D.4.35. Changes in release 3.23.26 (18 Oct 2000)

• Renamed FLUSH MASTER and FLUSH SLAVE to RESET MASTER and RESET SLAVE.

• Fixed <> to work properly with NULL.

• Fixed a problem with SUBSTRING_INDEX() and REPLACE(). (Patch by Alexander Igon-
itchev)

• Fix CREATE TEMPORARY TABLE IF NOT EXISTS not to produce an error if the table ex-
ists.

• If you don't create a PRIMARY KEY in a BDB table, a hidden PRIMARY KEY is created.

• Added read-only-key optimization to BDB tables.

MySQL Change History

1318

• LEFT JOIN in some cases preferred a full table scan when there was no WHERE clause.

• When using --log-slow-queries, don't count the time waiting for a lock.

• Fixed bug in lock code on Windows which could cause the key cache to report that the key file
was crashed even if it was okay.

• Automatic repair of MyISAM tables if you start mysqld with --myisam-recover.

• Removed the TYPE= keyword from CHECK TABLE and REPAIR TABLE. Allow CHECK
TABLE options to be combined. (You can still use TYPE=, but this usage is deprecated.)

• Fixed mutex bug in the binary replication log --- long update queries could be read only in part
by the slave if it did it at the wrong time, which was not fatal, but resulted in a performance-de-
grading reconnect and a scary message in the error log.

• Changed the format of the binary log --- added magic number, server version, binary log ver-
sion. Added the server ID and query error code for each query event.

• Replication thread from the slave now kills all the stale threads from the same server.

• Long replication usernames were not being handled properly.

• Added --replicate-rewrite-db option to mysqld.

• Added --skip-slave-start option to mysqld.

• Updates that generated an error code (such as INSERT INTO foo(some_key) values
(1),(1)) erroneously terminated the slave thread.

• Added optimization of queries where DISTINCT is used only on columns from some of the
tables.

• Allow floating-point numbers where there is no sign after the exponent (like 1e1).

• SHOW GRANTS didn't always show all column grants.

• Added --default-extra-file=# option to all MySQL clients.

• Columns referenced in INSERT statements now are initialized properly.

• UPDATE didn't always work when used with a range on a timestamp that was part of the key
that was used to find rows.

• Fixed a bug in FULLTEXT index when inserting a NULL column.

• Changed to use mkstemp() instead of tempnam(). Based on a patch from John Jones.

D.4.36. Changes in release 3.23.25 (29 Sep 2000)

• Fixed that databasename works as second argument to mysqlhotcopy.

• The values for the UMASK and UMASK_DIR environment variables now can be specified in
octal by beginning the value with a zero.

• Added RIGHT JOIN. This makes RIGHT a reserved word.

• Added @@IDENTITY as a synonym for LAST_INSERT_ID(). (This is for MSSQL compatib-
ility.)

• Fixed a bug in myisamchk and REPAIR TABLE when using FULLTEXT index.

MySQL Change History

1319

• LOAD DATA INFILE now works with FIFOs. (Patch by Toni L. Harbaugh-Blackford.)

• FLUSH LOGS broke replication if you specified a log name with an explicit extension as the
value of the log-bin option.

• Fixed a bug in MyISAM with packed multiple-part keys.

• Fixed crash when using CHECK TABLE on Windows.

• Fixed a bug where FULLTEXT index always used the koi8_ukr character set.

• Fixed privilege checking for CHECK TABLE.

• The MyISAM repair/reindex code didn't use the --tmpdir option for its temporary files.

• Added BACKUP TABLE and RESTORE TABLE.

• Fixed core dump on CHANGE MASTER TO when the slave did not have the master to start
with.

• Fixed incorrect Time in the processlist for Connect of the slave thread.

• The slave now logs when it connects to the master.

• Fixed a core dump bug when doing FLUSH MASTER if you didn't specify a filename argument
to --log-bin.

• Added missing ha_berkeley.x files to the MySQL Windows distribution.

• Fixed some mutex bugs in the log code that could cause thread blocks if new log files couldn't
be created.

• Added lock time and number of selected processed rows to slow query log.

• Added --memlock option to mysqld to lock mysqld in memory on systems with the mlock-
all() call (as in Solaris).

• HEAP tables didn't use keys properly. (Bug from 3.23.23.)

• Added better support for MERGE tables (keys, mapping, creation, documentation...). See Sec-
tion 14.2, “The MERGE Storage Engine”.

• Fixed bug in mysqldump from 3.23 which caused some CHAR columns not to be quoted.

• Merged analyze, check, optimize and repair code.

• OPTIMIZE TABLE is now mapped to REPAIR TABLE with statistics and sorting of the index
tree. This means that for the moment it only works on MyISAM tables.

• Added a pre-alloced block to root_malloc to get fewer mallocs.

• Added a lot of new statistics variables.

• Fixed ORDER BY bug with BDB tables.

• Removed warning that mysqld couldn't remove the .pid file under Windows.

• Changed --log-isam to log MyISAM tables instead of isam tables.

• Fixed CHECK TABLE to work on Windows.

• Added file mutexes to make pwrite() safe on Windows.

MySQL Change History

1320

D.4.37. Changes in release 3.23.24 (08 Sep 2000)

• Added Created_tmp_disk_tables variable to mysqld.

• To make it possible to reliably dump and restore tables with TIMESTAMP(X) columns,
MySQL now reports columns with X other than 14 or 8 to be strings.

• Changed sort order for latin1 as it was before MySQL 3.23.23. Any table that was created or
modified with 3.23.22 must be repaired if it has CHAR columns that may contain characters with
ASCII values greater than 128!

• Fixed small memory leak introduced from 3.23.22 when creating a temporary table.

• Fixed problem with BDB tables and reading on a unique (not primary) key.

• Restored the win1251 character set (it's now only marked deprecated).

D.4.38. Changes in release 3.23.23 (01 Sep 2000)

• Changed sort order for 'German'; all tables created with 'German' sortorder must be repaired with
REPAIR TABLE or myisamchk before use!

• Added --core-file option to mysqld to get a core file on Linux if mysqld dies on the SIG-
SEGV signal.

• MySQL client mysql now starts with option --no-named-commands (-g) by default. This
option can be disabled with --enable-named-commands (-G). This may cause incompat-
ibility problems in some cases, for example, in SQL scripts that use named commands without a
semicolon, etc.! Long format commands still work from the first line.

• Fixed a problem when using many pending DROP TABLE statements at the same time.

• Optimizer didn't use keys properly when using LEFT JOIN on an empty table.

• Added shorter help text when invoking mysqld with incorrect options.

• Fixed non-fatal free() bug in mysqlimport.

• Fixed bug in MyISAM index handling of DECIMAL/NUMERIC keys.

• Fixed a bug in concurrent insert in MyISAM tables. In some contexts, usage of
MIN(key_part) or MAX(key_part) returned an empty set.

• Updated mysqlhotcopy to use the new FLUSH TABLES table_list syntax. Only tables
which are being backed up are flushed now.

• Changed behavior of --enable-thread-safe-client so that both non-threaded (-
lmysqlclient) and threaded (-lmysqlclient_r) libraries are built. Users who linked
against a threaded -lmysqlclient need to link against -lmysqlclient_r now.

• Added atomic RENAME TABLE command.

• Don't count NULL values in COUNT(DISTINCT ...).

• Changed ALTER TABLE, LOAD DATA INFILE on empty tables and INSERT ... SE-
LECT ... on empty tables to create non-unique indexes in a separate batch with sorting. This
makes these statements much faster when you have many indexes.

• ALTER TABLE now logs the first used insert_id correctly.

• Fixed crash when adding a default value to a BLOB column.

MySQL Change History

1321

• Fixed a bug with DATE_ADD/DATE_SUB where it returned a datetime instead of a date.

• Fixed a problem with the thread cache which made some threads show up as ***DEAD*** in
SHOW PROCESSLIST.

• Fixed a lock in our thr_rwlock code, which could make selects that run at the same time as con-
current inserts crash. This affects only systems that don't have the
pthread_rwlock_rdlock code.

• When deleting rows with a non-unique key in a HEAP table, all rows weren't always deleted.

• Fixed bug in range optimizer for HEAP tables for searches on a part index.

• Fixed SELECT on part keys to work with BDB tables.

• Fixed INSERT INTO bdb_table ... SELECT to work with BDB tables.

• CHECK TABLE now updates key statistics for the table.

• ANALYZE TABLE now only updates tables that have been changed since the last ANALYZE
TABLE. Note that this is a new feature and tables are not marked to be analyzed until they are
updated in any way with 3.23.23 or newer. For older tables, you have to do CHECK TABLE to
update the key distribution.

• Fixed some minor privilege problems with CHECK TABLE, ANALYZE TABLE, REPAIR TA-
BLE and SHOW CREATE commands.

• Added CHANGE MASTER TO statement.

• Added FAST, QUICK EXTENDED check types to CHECK TABLES.

• Changed myisamchk so that --fast and --check-only-changed are also honored with
--sort-index and --analyze.

• Fixed fatal bug in LOAD TABLE FROM MASTER that did not lock the table during index re-
build.

• LOAD DATA INFILE broke replication if the database was excluded from replication.

• More variables in SHOW SLAVE STATUS and SHOW MASTER STATUS.

• SLAVE STOP now does not return until the slave thread actually exits.

• Full-text search via the MATCH() function and FULLTEXT index type (for MyISAM files). This
makes FULLTEXT a reserved word.

D.4.39. Changes in release 3.23.22 (31 Jul 2000)

• Fixed that lex_hash.h is created properly for each MySQL distribution.

• Fixed that MASTER and COLLECTION are not reserved words.

• The log generated by --slow-query-log didn't contain the whole queries.

• Fixed that open transactions in BDB tables are rolled back if the connection is closed unexpec-
tedly.

• Added workaround for a bug in gcc 2.96 (intel) and gcc 2.9 (IA-64) in gen_lex_hash.c.

• Fixed memory leak in the client library when using host= in the my.cnf file.

• Optimized functions that manipulate the hours/minutes/seconds.

MySQL Change History

1322

• Fixed bug when comparing the result of DATE_ADD()/DATE_SUB() against a number.

• Changed the meaning of -F, --fast for myisamchk. Added -C, -
-check-only-changed option to myisamchk.

• Added ANALYZE tbl_name to update key statistics for tables.

• Changed binary items 0x... to be regarded as integers by default.

• Fix for SCO and SHOW PROCESSLIST.

• Added auto-rehash on reconnect for the mysql client.

• Fixed a newly introduced bug in MyISAM, where the index file couldn't get bigger than 64MB.

• Added SHOW MASTER STATUS and SHOW SLAVE STATUS.

D.4.40. Changes in release 3.23.21 (04 Jul 2000)

• Added mysql_character_set_name() function to the MySQL C API.

• Made the update log ASCII 0 safe.

• Added the mysql_config script.

• Fixed problem when using < or > with a char column that was only partly indexed.

• One would get a core dump if the log file was not readable by the MySQL user.

• Changed mysqladmin to use CREATE DATABASE and DROP DATABASE statements instead
of the old deprecated API calls.

• Fixed chown warning in safe_mysqld.

• Fixed a bug in ORDER BY that was introduced in 3.23.19.

• Only optimize the DELETE FROM tbl_name to do a drop+create of the table if we are in
AUTOCOMMIT mode (needed for BDB tables).

• Added extra checks to avoid index corruption when the ISAM/MyISAM index files get full dur-
ing an INSERT/UPDATE.

• myisamchk didn't correctly update row checksum when used with -ro (this only gave a warn-
ing in subsequent runs).

• Fixed bug in REPAIR TABLE so that it works with tables without indexes.

• Fixed buffer overrun in DROP DATABASE.

• LOAD TABLE FROM MASTER is sufficiently bug-free to announce it as a feature.

• MATCH and AGAINST are now reserved words.

D.4.41. Changes in release 3.23.20 (28 Jun 2000: Beta)

• Fixed bug in 3.23.19; DELETE FROM tbl_name removed the .frm file.

• Added SHOW CREATE TABLE.

MySQL Change History

1323

D.4.42. Changes in release 3.23.19

• Changed copyright for all files to GPL for the server code and utilities and to LGPL for the cli-
ent libraries. See http://www.fsf.org/licenses/.

• Fixed bug where all rows matching weren't updated on a MyISAM table when doing update
based on key on a table with many keys and some key changed values.

• The Linux MySQL RPMs and binaries are now statically linked with a linuxthread version that
has faster mutex handling when used with MySQL.

• ORDER BY can now use REF keys to find subsets of the rows that need to be sorted.

• Changed name of print_defaults program to my_print_defaults to avoid name confusion.

• Fixed NULLIF() to work as required by standard SQL.

• Added net_read_timeout and net_write_timeout as startup parameters to mysqld.

• Fixed bug that destroyed index when doing myisamchk --sort-records on a table with prefix
compressed index.

• Added pack_isam and myisampack to the standard MySQL distribution.

• Added the syntax BEGIN WORK (the same as BEGIN).

• Fixed core dump bug when using ORDER BY on a CONV() expression.

• Added LOAD TABLE FROM MASTER.

• Added FLUSH MASTER and FLUSH SLAVE.

• Fixed big/little endian problem in the replication.

D.4.43. Changes in release 3.23.18 (11 Jun 2000)

• Fixed a problem from 3.23.17 when choosing character set on the client side.

• Added FLUSH TABLES WITH READ LOCK to make a global lock suitable for making a
copy of MySQL data files.

• CREATE TABLE ... SELECT ... PROCEDURE now works.

• Internal temporary tables now use compressed index when using GROUP BY on VARCHAR/
CHAR columns.

• Fixed a problem when locking the same table with both a READ and a WRITE lock.

• Fixed problem with myisamchk and RAID tables.

D.4.44. Changes in release 3.23.17 (07 Jun 2000)

• Fixed a bug in FIND_IN_SET() when the first argument was NULL.

• Added table locks to Berkeley DB.

• Fixed a bug with LEFT JOIN and ORDER BY where the first table had only one matching row.

MySQL Change History

1324

http://www.fsf.org/licenses/

• Added 4 sample my.cnf example files in the support-files directory.

• Fixed duplicated key problem when doing big GROUP BY operations. (This bug was
probably introduced in 3.23.15.)

• Changed syntax for INNER JOIN to match standard SQL.

• Added NATURAL JOIN syntax.

• A lot of fixes in the BDB interface.

• Added handling of --no-defaults and --defaults-file to safe_mysqld.sh and
mysql_install_db.sh.

• Fixed bug in reading compressed tables with many threads.

• Fixed that USE INDEX works with PRIMARY keys.

• Added BEGIN statement to start a transaction in AUTOCOMMIT mode.

• Added support for symbolic links for Windows.

• Changed protocol to let client know if the server is in AUTOCOMMIT mode and if there is a
pending transaction. If there is a pending transaction, the client library gives an error before re-
connecting to the server to let the client know that the server did a rollback. The protocol is still
backward-compatible with old clients.

• KILL now works on a thread that is locked on a 'write' to a dead client.

• Fixed memory leak in the replication slave thread.

• Added new log-slave-updates option to mysqld, to allow daisy-chaining the slaves.

• Fixed compile error on FreeBSD and other systems where pthread_t is not the same as int.

• Fixed master shutdown aborting the slave thread.

• Fixed a race condition in INSERT DELAYED code when doing ALTER TABLE.

• Added deadlock detection sanity checks to INSERT DELAYED.

D.4.45. Changes in release 3.23.16 (16 May 2000)

• Added SLAVE START and SLAVE STOP statements.

• Added TYPE=QUICK option to CHECK TABLE and to REPAIR TABLE.

• Fixed bug in REPAIR TABLE when the table was in use by other threads.

• Added a thread cache to make it possible to debug MySQL with gdb when one does a lot of re-
connects. This also improves systems where you can't use persistent connections.

• Lots of fixes in the Berkeley DB interface.

• UPDATE IGNORE does not abort if an update results in a DUPLICATE_KEY error.

• Put CREATE TEMPORARY TABLE commands in the update log.

• Fixed bug in handling of masked IP numbers in the privilege tables.

• Fixed bug with delay_key_write tables and CHECK TABLE.

MySQL Change History

1325

• Added --replicate-do-db and --replicate-ignore-db options to mysqld, to re-
strict which databases get replicated.

• Added SQL_LOG_BIN option.

D.4.46. Changes in release 3.23.15 (08 May 2000)

• To start mysqld as root, you must now use the --user=root option.

• Added interface to Berkeley DB. (This is not yet functional; play with it at your own risk!)

• Replication between master and slaves.

• Fixed bug that other threads could steal a lock when a thread had a lock on a table and did a
FLUSH TABLES command.

• Added the slow_launch_time variable and the Slow_launch_threads status variable
to mysqld. These can be examined with mysqladmin variables and mysqladmin extended-
status.

• Added functions INET_NTOA() and INET_ATON().

• The default type of IF() now depends on the second and third arguments and not only on the
second argument.

• Fixed case when myisamchk could go into a loop when trying to repair a crashed table.

• Don't write INSERT DELAYED to update log if SQL_LOG_UPDATE=0.

• Fixed problem with REPLACE on HEAP tables.

• Added possible character sets and time zone to SHOW VARIABLES output.

• Fixed bug in locking code that could result in locking problems with concurrent inserts under
high load.

• Fixed a problem with DELETE of many rows on a table with compressed keys where MySQL
scanned the index to find the rows.

• Fixed problem with CHECK TABLE on table with deleted keyblocks.

• Fixed a bug in reconnect (at the client side) where it didn't free memory properly in some con-
texts.

• Fixed problems in update log when using LAST_INSERT_ID() to update a table with an
AUTO_INCREMENT key.

• Added NULLIF() function.

• Fixed bug when using LOAD DATA INFILE on a table with BLOB/TEXT columns.

• Optimized MyISAM to be faster when inserting keys in sorted order.

• EXPLAIN SELECT ... now also prints out whether MySQL needs to create a temporary ta-
ble or use file sorting when resolving the SELECT.

• Added optimization to skip ORDER BY parts where the part is a constant expression in the
WHERE part. Indexes can now be used even if the ORDER BY doesn't match the index exactly,
as long as all the unused index parts and all the extra ORDER BY columns are constants in the
WHERE clause. See Section 7.4.5, “How MySQL Uses Indexes”.

• UPDATE and DELETE on a whole unique key in the WHERE part are now faster than before.

MySQL Change History

1326

• Changed RAID_CHUNKSIZE to be in 1024-byte increments.

• Fixed core dump in LOAD_FILE(NULL).

D.4.47. Changes in release 3.23.14 (09 Apr 2000)

• Added mysqlbinlog program for displaying binary log files in text format.

• Added mysql_real_escape_string() function to the MySQL C API.

• Fixed a bug in CONCAT() where one of the arguments was a function that returned a modified
argument.

• Fixed a critical bug in myisamchk, where it updated the header in the index file when one only
checked the table. This confused the mysqld daemon if it updated the same table at the same
time. Now the status in the index file is only updated if one uses --update-state. With
older myisamchk versions you should use --read-only when only checking tables, if there
is the slightest chance that the mysqld server is working on the table at the same time!

• Fixed that DROP TABLE is logged in the update log.

• Fixed problem when searching on DECIMAL() key field where the column data contained lead-
ing zeros.

• Fix bug in myisamchk when the AUTO_INCREMENT column isn't the first key.

• Allow DATETIME in ISO8601 format: 2000-03-12T12:00:00

• Dynamic character sets. A mysqld binary can now handle many different character sets (you can
choose which when starting mysqld).

• Added REPAIR TABLE statement.

• Added mysql_thread_safe() function to the MySQL C API.

• Added the UMASK_DIR environment variable.

• Added CONNECTION_ID() function to return the client connection thread ID.

• When using = on BLOB or VARCHAR BINARY keys, where only a part of the column was in-
dexed, the whole column of the result row wasn't compared.

• Fix for sjis character set and ORDER BY.

• When running in ANSI mode, don't allow columns to be used that aren't in the GROUP BY part.

D.4.48. Changes in release 3.23.13 (14 Mar 2000)

• Fixed problem when doing locks on the same table more than 2 times in the same LOCK TA-
BLE command; this fixed the problem one got when running the test-ATIS test with --fast or
--check-only-changed.

• Added SQL_BUFFER_RESULT option to SELECT.

• Removed endspace from double/float numbers in results from temporary tables.

• Added CHECK TABLE command.

• Added changes for MyISAM in 3.23.12 that didn't get into the source distribution because of

MySQL Change History

1327

CVS problems.

• Fixed bug so that mysqladmin shutdown waits for the local server to close down.

• Fixed a possible endless loop when calculating timestamp.

• Added print_defaults program to the .rpm files. Removed mysqlbug from the client .rpm
file.

D.4.49. Changes in release 3.23.12 (07 Mar 2000)

• Fixed bug in MyISAM involving REPLACE ... SELECT ... which could give a corrupted
table.

• Fixed bug in myisamchk where it incorrectly reset the AUTO_INCREMENT value.

• LOTS of patches for Linux Alpha. MySQL now appears to be relatively stable on Alpha.

• Changed DISTINCT on HEAP temporary tables to use hashed keys to quickly find duplicated
rows. This mostly concerns queries of type SELECT DISTINCT ... GROUP BY
This fixes a problem where not all duplicates were removed in queries of the above type. In ad-
dition, the new code is MUCH faster.

• Added patches to make MySQL compile on Mac OS X.

• Added IF NOT EXISTS clause to CREATE DATABASE.

• Added --all-databases and --databases options to mysqldump to allow dumping of
many databases at the same time.

• Fixed bug in compressed DECIMAL() index in MyISAM tables.

• Fixed bug when storing 0 into a timestamp.

• When doing mysqladmin shutdown on a local connection, mysqladmin now waits until the
PID file is gone before terminating.

• Fixed core dump with some COUNT(DISTINCT ...) queries.

• Fixed that myisamchk works properly with RAID tables.

• Fixed problem with LEFT JOIN and key_col IS NULL.

• Fixed bug in net_clear() which could give the error Aborted connection in the
MySQL clients.

• Added options USE INDEX (key_list) and IGNORE INDEX (key_list) as paramet-
ers in SELECT.

• DELETE and RENAME should now work on RAID tables.

D.4.50. Changes in release 3.23.11 (16 Feb 2000)

• Added HIGH_PRIORITY option to INSERT. This overrides the effect of the -
-low-priority-updates server option and does not perform concurrent inserts.

• Allow the ALTER TABLE tbl_name ADD (field_list) syntax.

• Fixed problem with optimizer that could sometimes use incorrect keys.

MySQL Change History

1328

• Fixed that GRANT/REVOKE ALL PRIVILEGES doesn't affect GRANT OPTION.

• Removed extra ')' from the output of SHOW GRANTS.

• Fixed problem when storing numbers in timestamps.

• Fix problem with time zones that have half hour offsets.

• Allow the syntax UNIQUE INDEX in CREATE statements.

• mysqlhotcopy - fast online hot-backup utility for local MySQL databases. By Tim Bunce.

• New more secure mysqlaccess. Thanks to Steve Harvey for this.

• Added --i-am-a-dummy and --safe-updates options to mysql.

• Added select_limit and max_join_size variables to mysql.

• Added SQL_MAX_JOIN_SIZE and SQL_SAFE_UPDATES options.

• Added READ LOCAL lock that doesn't lock the table for concurrent inserts. (This is used by
mysqldump.)

• Changed that LOCK TABLES ... READ no longer allows concurrent inserts.

• Added --skip-delay-key-write option to mysqld.

• Fixed security problem in the protocol regarding password checking.

• _rowid can now be used as an alias for an integer type unique indexed column.

• Added back blocking of SIGPIPE when compiling with --thread-safe-clients to
make things safe for old clients.

D.4.51. Changes in release 3.23.10 (30 Jan 2000)

• Fixed bug in 3.23.9 where memory wasn't properly freed when using LOCK TABLES.

D.4.52. Changes in release 3.23.9 (29 Jan 2000)

• Fixed problem that affected queries that did arithmetic on group functions.

• Fixed problem with timestamps and INSERT DELAYED.

• Fixed that date_col BETWEEN const_date AND const_date works.

• Fixed problem when only changing a 0 to NULL in a table with BLOB/TEXT columns.

• Fixed bug in range optimizer when using many key parts and or on the middle key parts: WHERE
K1=1 and K3=2 and (K2=2 and K4=4 or K2=3 and K4=5)

• Added source command to mysql to allow reading of batch files inside the mysql client. Ori-
ginal patch by Matthew Vanecek.

• Fixed critical problem with the WITH GRANT OPTION option.

• Don't give an unnecessary GRANT error when using tables from many databases in the same
query.

MySQL Change History

1329

• Added VIO wrapper (needed for SSL support; by Andrei Errapart and Tõnu Samuel).

• Fixed optimizer problem on SELECT when using many overlapping indexes. MySQL should
now be able to choose keys even better when there are many keys to choose from.

• Changed optimizer to prefer a range key instead of a ref key when the range key can uses more
columns than the ref key (which only can use columns with =). For example, the following type
of queries should now be faster: SELECT * from key_part_1=const and
key_part_2 > const2

• Fixed bug that a change of all VARCHAR columns to CHAR columns didn't change row type
from dynamic to fixed.

• Disabled floating-point exceptions for FreeBSD to fix core dump when doing SELECT
FLOOR(POW(2,63)).

• Renamed mysqld startup option from --delay-key-write to -
-delay-key-write-for-all-tables.

• Added read-next-on-key to HEAP tables. This should fix all problems with HEAP tables
when using non-UNIQUE keys.

• Added option to print default arguments to all clients.

• Added --log-slow-queries option to mysqld to log all queries that take a long time to a
separate log file with a time indicating how long the query took.

• Fixed core dump when doing WHERE key_col=RAND(...).

• Fixed optimization bug in SELECT ... LEFT JOIN ... key_col IS NULL, when
key_col could contain NULL values.

• Fixed problem with 8-bit characters as separators in LOAD DATA INFILE.

D.4.53. Changes in release 3.23.8 (02 Jan 2000)

• Fixed problem when handling indexfiles larger than 8GB.

• Added latest patches to MIT-pthreads for NetBSD.

• Fixed problem with time zones that are < GMT - 11.

• Fixed a bug when deleting packed keys in NISAM.

• Fixed problem with ISAM when doing some ORDER BY ... DESC queries.

• Fixed bug when doing a join on a text key which didn't cover the whole key.

• Option --delay-key-write didn't enable delayed key writing.

• Fixed update of TEXT column which involved only case changes.

• Fixed that INSERT DELAYED doesn't update timestamps that are given.

• Added function YEARWEEK() and options x, X, v and V to DATE_FORMAT().

• Fixed problem with MAX(indexed_column) and HEAP tables.

• Fixed problem with BLOB NULL keys and LIKE "prefix%".

• Fixed problem with MyISAM and fixed-length rows < 5 bytes.

MySQL Change History

1330

• Fixed problem that could cause MySQL to touch freed memory when doing very complicated
GROUP BY queries.

• Fixed core dump if you got a crashed table where an ENUM field value was too big.

D.4.54. Changes in release 3.23.7 (10 Dec 1999)

• Fixed workaround under Linux to avoid problems with pthread_mutex_timedwait(),
which is used with INSERT DELAYED. See Section 2.12.1, “Linux Notes”.

• Fixed that one get a 'disk full' error message if one gets disk full when doing sorting (instead of
waiting until we got more disk space).

• Fixed a bug in MyISAM with keys > 250 characters.

• In MyISAM one can now do an INSERT at the same time as other threads are reading from the
table.

• Added max_write_lock_count variable to mysqld to force a READ lock after a certain
number of WRITE locks.

• Inverted flag delay_key_write on show variables.

• Renamed concurrency variable to thread_concurrency.

• The following functions are now multi-byte-safe: LOCATE(substr,str),
POSITION(substr IN str), LOCATE(substr,str,pos), INSTR(str,substr),
LEFT(str,len), RIGHT(str,len), SUBSTRING(str,pos,len), SUBSTRING(str
FROM pos FOR len), MID(str,pos,len), SUBSTRING(str,pos),
SUBSTRING(str FROM pos), SUBSTRING_INDEX(str,delim,count),
RTRIM(str), TRIM([[BOTH | TRAILING] [remstr] FROM] str),
REPLACE(str,from_str,to_str), REVERSE(str),
INSERT(str,pos,len,newstr), LCASE(str), LOWER(str), UCASE(str) and
UPPER(str); patch by Wei He.

• Fix core dump when releasing a lock from a non-existent table.

• Remove locks on tables before starting to remove duplicates.

• Added option FULL to SHOW PROCESSLIST.

• Added option --verbose to mysqladmin.

• Fixed problem when automatically converting HEAP to MyISAM.

• Fixed bug in HEAP tables when doing insert + delete + insert + scan the table.

• Fixed bugs on Alpha with REPLACE() and LOAD DATA INFILE.

• Added interactive_timeout variable to mysqld.

• Changed the argument to mysql_data_seek() from ulong to ulonglong.

D.4.55. Changes in release 3.23.6 (15 Nov 1999)

• Added -O lower_case_table_names={0|1} option to mysqld to allow users to force
table names to lowercase.

• Added SELECT ... INTO DUMPFILE.

MySQL Change History

1331

• Added --ansi option to mysqld to make some functions standard SQL compatible.

• Temporary table names now start with #sql.

• Added quoting of identifiers with ` (" in --ansi mode).

• Changed to use snprintf() when printing floats to avoid some buffer overflows on
FreeBSD.

• Made FLOOR() overflow safe on FreeBSD.

• Added --quote-names option to mysqldump.

• Fixed bug that one could make a part of a PRIMARY KEY NOT NULL.

• Fixed encrypt() to be thread-safe and not reuse buffer.

• Added mysql_odbc_escape_string() function to support big5 characters in MyODBC.

• Rewrote the storage engine to use classes. This introduces a lot of new code, but make table
handling faster and better.

• Added patch by Sasha for user-defined variables.

• Changed that FLOAT and DOUBLE (without any length modifiers) no longer are fixed decimal
point numbers.

• Changed the meaning of FLOAT(X): Now this is the same as FLOAT if X <= 24 and a DOUBLE
if 24 < X <= 53.

• DECIMAL(X) is now an alias for DECIMAL(X,0) and DECIMAL is now an alias for DECIM-
AL(10,0). The same goes for NUMERIC.

• Added option ROW_FORMAT={DEFAULT | DYNAMIC | FIXED | COMPRESSED} to
CREATE_TABLE.

• DELETE FROM tbl_name didn't work on temporary tables.

• Changed function CHAR_LENGTH() to be multi-byte character safe.

• Added function ORD(string).

D.4.56. Changes in release 3.23.5 (20 Oct 1999)

• Fixed some Y2K problems in the new date handling in 3.23.

• Fixed problem with SELECT DISTINCT ... ORDER BY RAND().

• Added patches by Sergei A. Golubchik for text searching on the MyISAM level.

• Fixed cache overflow problem when using full joins without keys.

• Fixed some configure issues.

• Some small changes to make parsing faster.

• Adding a column after the last field with ALTER TABLE didn't work.

• Fixed problem when using an AUTO_INCREMENT column in two keys

• With MyISAM, you now can have an AUTO_INCREMENT column as a key sub part: CREATE
TABLE foo (a INT NOT NULL AUTO_INCREMENT, b CHAR(5), PRIMARY KEY

MySQL Change History

1332

(b,a))

• Fixed bug in MyISAM with packed char keys that could be NULL.

• AS on field name with CREATE TABLE tbl_name SELECT ... didn't work.

• Allow use of NATIONAL and NCHAR when defining character columns. This is the same as not
using BINARY.

• Don't allow NULL columns in a PRIMARY KEY (only in UNIQUE keys).

• Clear LAST_INSERT_ID() if one uses this in ODBC: WHERE
auto_increment_column IS NULL. This seems to fix some problems with Access.

• SET SQL_AUTO_IS_NULL=0|1 now turns on/off the handling of searching for the last inser-
ted row with WHERE auto_increment_column IS NULL.

• Added new variable concurrency to mysqld for Solaris.

• Added --relative option to mysqladmin to make extended-status more useful to
monitor changes.

• Fixed bug when using COUNT(DISTINCT ...) on an empty table.

• Added support for the Chinese character set GBK.

• Fixed problem with LOAD DATA INFILE and BLOB columns.

• Added bit operator ~ (negation).

• Fixed problem with UDF functions.

D.4.57. Changes in release 3.23.4 (28 Sep 1999)

• Inserting a DATETIME into a TIME column no longer try to store 'days' in it.

• Fixed problem with storage of float/double on little endian machines. (This affected SUM().)

• Added connect timeout on TCP/IP connections.

• Fixed problem with LIKE "%" on an index that may have NULL values.

• REVOKE ALL PRIVILEGES didn't revoke all privileges.

• Allow creation of temporary tables with same name as the original table.

• When granting an account a GRANT option for a database, the account couldn't grant privileges
to other users.

• New statement: SHOW GRANTS FOR user (by Sinisa).

• New date_add syntax: date/datetime + INTERVAL # interval_type. By
Joshua Chamas.

• Fixed privilege check for LOAD DATA REPLACE.

• Automatic fixing of broken include files on Solaris 2.7

• Some configure issues to fix problems with big filesystem detection.

• REGEXP is now case-insensitive if you use non-binary strings.

MySQL Change History

1333

D.4.58. Changes in release 3.23.3 (13 Sep 1999)

• Added patches for MIT-pthreads on NetBSD.

• Fixed range bug in MyISAM.

• ASC is now the default again for ORDER BY.

• Added LIMIT to UPDATE.

• Added mysql_change_user() function to the MySQL C API.

• Added character set to SHOW VARIABLES.

• Added support of --[whitespace] comments.

• Allow INSERT INTO tbl_name VALUES (), that is, you may now specify an empty
value list to insert a row in which each column is set to its default value.

• Changed SUBSTRING(text FROM pos) to conform to standard SQL. (Before this con-
struct returned the rightmost pos characters.)

• SUM() with GROUP BY returned 0 on some systems.

• Changed output for SHOW TABLE STATUS.

• Added DELAY_KEY_WRITE option to CREATE TABLE.

• Allow AUTO_INCREMENT on any key part.

• Fixed problem with YEAR(NOW()) and YEAR(CURDATE()).

• Added CASE construct.

• New COALESCE() function.

D.4.59. Changes in release 3.23.2 (09 Aug 1999)

• Fixed range optimizer bug: SELECT * FROM tbl_name WHERE key_part1 >=
const AND (key_part2 = const OR key_part2 = const). The bug was that
some rows could be duplicated in the result.

• Running myisamchk without -a updated the index distribution incorrectly.

• SET SQL_LOW_PRIORITY_UPDATES=1 was causing a parse error.

• You can now update index columns that are used in the WHERE clause. UPDATE tbl_name
SET KEY=KEY+1 WHERE KEY > 100

• Date handling should now be a bit faster.

• Added handling of fuzzy dates (dates where day or month is 0), such as '1999-01-00'.

• Fixed optimization of SELECT ... WHERE key_part1=const1 AND
key_part_2=const2 AND key_part1=const4 AND key_part2=const4; index-
type should be range instead of ref.

• Fixed egcs 1.1.2 optimizer bug (when using BLOB values) on Linux Alpha.

• Fixed problem with LOCK TABLES combined with DELETE FROM table.

MySQL Change History

1334

• MyISAM tables now allow keys on NULL and BLOB/TEXT columns.

• The following join is now much faster: SELECT ... FROM t1 LEFT JOIN t2 ON ...
WHERE t2.not_null_column IS NULL.

• ORDER BY and GROUP BY can be done on functions.

• Changed handling of 'const_item' to allow handling of ORDER BY RAND().

• Indexes are now used for WHERE key_column = function.

• Indexes are now used for WHERE key_column = col_name even if the columns are not
identically packed.

• Indexes are now used for WHERE col_name IS NULL.

• Changed heap tables to be stored in low_byte_first order (to make it easy to convert to MyISAM
tables)

• Automatic change of HEAP temporary tables to MyISAM tables in case of ``table is full'' errors.

• Added --init-file=file_name option to mysqld.

• Added COUNT(DISTINCT value, [value, ...]).

• CREATE TEMPORARY TABLE now creates a temporary table, in its own namespace, that is
automatically deleted if connection is dropped.

• New reserved words (required for CASE): CASE, THEN, WHEN, ELSE and END.

• New functions EXPORT_SET() and MD5().

• Support for the GB2312 Chinese character set.

D.4.60. Changes in release 3.23.1 (08 Jul 1999)

• Fixed some compilation problems.

D.4.61. Changes in release 3.23.0 (05 Jul 1999: Alpha)

• A new storage engine library (MyISAM) with a lot of new features. See Section 14.1, “The My-
ISAM Storage Engine”.

• You can create in-memory HEAP tables which are extremely fast for lookups.

• Support for big files (63-bit) on OSs that support big files.

• New function LOAD_FILE(filename) to get the contents of a file as a string value.

• New <=> operator that acts as = but returns TRUE if both arguments are NULL. This is useful
for comparing changes between tables.

• Added the ODBC 3.0 EXTRACT(interval FROM datetime) function.

• Columns defined as FLOAT(X) are not rounded on storage and may be in scientific notation
(1.0 E+10) when retrieved.

• REPLACE is now faster than before.

MySQL Change History

1335

• Changed LIKE character comparison to behave as =; This means that 'e' LIKE 'é' is now
true. (If the line doesn't display correctly, the latter 'e' is a French 'e' with an acute accent above.)

• SHOW TABLE STATUS returns a lot of information about the tables.

• Added LIKE to the SHOW STATUS command.

• Added Privileges column to SHOW COLUMNS.

• Added Packed and Comment columns to SHOW INDEX.

• Added comments to tables (with CREATE TABLE ... COMMENT 'xxx').

• Added UNIQUE, as in CREATE TABLE tbl_name (col INT NOT NULL UNIQUE)

• New create syntax: CREATE TABLE tbl_name SELECT ...

• New create syntax: CREATE TABLE IF NOT EXISTS ...

• Allow creation of CHAR(0) columns.

• DATE_FORMAT() now requires '%' before any format character.

• DELAYED is now a reserved word (sorry about that :().

• An example procedure is added: analyse, file: sql_analyse.c. This describes the data in
your query. Try the following:

SELECT ... FROM ...
WHERE ... PROCEDURE ANALYSE([max elements,[max memory]])

This procedure is extremely useful when you want to check the data in your table!

• BINARY cast to force a string to be compared in case-sensitive fashion.

• Added --skip-show-database option to mysqld.

• Check whether a row has changed in an UPDATE now also works with BLOB/TEXT columns.

• Added the INNER join syntax. Note: This made INNER a reserved word!

• Added support for netmasks to the hostname in the MySQL grant tables. You can specify a net-
mask using the IP/NETMASK syntax.

• If you compare a NOT NULL DATE/DATETIME column with IS NULL, this is changed to a
compare against 0 to satisfy some ODBC applications. (By <shreeve@uci.edu>.)

• NULL IN (...) now returns NULL instead of 0. This ensures that null_column NOT IN
(...) doesn't match NULL values.

• Fix storage of floating-point values in TIME columns.

• Changed parsing of TIME strings to be more strict. Now the fractional second part is detected
(and currently skipped). The following formats are supported:

• [[DAYS] [H]H:]MM:]SS[.fraction]

• [[[[[H]H]H]H]MM]SS[.fraction]

• Detect (and ignore) fractional second part from DATETIME.

• Added the LOW_PRIORITY attribute to LOAD DATA INFILE.

• The default index name now uses the same case as the column name on which the index name is

MySQL Change History

1336

based.

• Changed default number of connections to 100.

• Use bigger buffers when using LOAD DATA INFILE.

• DECIMAL(x,y) now works according to standard SQL.

• Added aggregate UDF functions. Thanks to Andreas F. Bobak (<bobak@relog.ch>) for
this!

• LAST_INSERT_ID() is now updated for INSERT INTO ... SELECT.

• Some small changes to the join table optimizer to make some joins faster.

• SELECT DISTINCT is much faster; it uses the new UNIQUE functionality in MyISAM. One
difference compared to MySQL 3.22 is that the output of DISTINCT is no longer sorted.

• All C client API macros are now functions to make shared libraries more reliable. Because of
this, you can no longer call mysql_num_fields() on a MYSQL object, you must use
mysql_field_count() instead.

• Added use of LIBWRAP; patch by Henning P. Schmiedehausen.

• Don't allow AUTO_INCREMENT for other than numerical columns.

• Using AUTO_INCREMENT now automatically makes the column NOT NULL.

• Show NULL as the default value for AUTO_INCREMENT columns.

• Added SQL_BIG_RESULT; SQL_SMALL_RESULT is now default.

• Added a shared library RPM. This enhancement was contributed by David Fox
(<dsfox@cogsci.ucsd.edu>).

• Added --enable-large-files and --disable-large-files options to configure.
See configure.in for some systems where this is automatically turned off because of
broken implementations.

• Upgraded readline to 4.0.

• New CREATE TABLE options: PACK_KEYS and CHECKSUM.

• Added --default-table-type option to mysqld.

D.5. Changes in release 3.22.x (Old; discon-
tinued)

The 3.22 version has faster and safer connect code than version 3.21, as well as a lot of new nice en-
hancements. As there aren't really any major changes, upgrading from 3.21 to 3.22 should be very
easy and painless. See Section 2.10.5, “Upgrading from Version 3.21 to 3.22”.

D.5.1. Changes in release 3.22.35

• Fixed problem with STD().

• Merged changes from the newest ISAM library from 3.23.

• Fixed problem with INSERT DELAYED.

MySQL Change History

1337

• Fixed a bug core dump when using a LEFT JOIN/STRAIGHT_JOIN on a table with only one
row.

D.5.2. Changes in release 3.22.34

• Fixed problem with GROUP BY on TINYBLOB columns; this caused bugzilla to not show rows
in some queries.

• Had to do total recompile of the Windows binary version as VC++ didn't compile all relevant
files for 3.22.33 :(

D.5.3. Changes in release 3.22.33

• Fixed problems in Windows when locking tables with LOCK TABLE.

• Quicker kill of SELECT DISTINCT queries.

D.5.4. Changes in release 3.22.32 (14 Feb 2000)

• Fixed problem when storing numbers in timestamps.

• Fix problem with time zones that have half hour offsets.

• Added mysqlhotcopy, a fast online hot-backup utility for local MySQL databases. By Tim
Bunce.

• New more secure mysqlaccess. Thanks to Steve Harvey for this.

• Fixed security problem in the protocol regarding password checking.

• Fixed problem that affected queries that did arithmetic on GROUP functions.

• Fixed a bug in the ISAM code when deleting rows on tables with packed indexes.

D.5.5. Changes in release 3.22.31

• A few small fixes for the Windows version.

D.5.6. Changes in release 3.22.30 (11 Jan 2000)

• Fixed optimizer problem on SELECT when using many overlapping indexes.

• Disabled floating-point exceptions for FreeBSD to fix core dump when doing SELECT
FLOOR(POW(2,63)).

• Added print of default arguments options to all clients.

• Fixed critical problem with the WITH GRANT OPTION option.

• Fixed non-critical Y2K problem when writing short date to log files.

MySQL Change History

1338

D.5.7. Changes in release 3.22.29 (02 Jan 2000)

• Upgraded the configure and include files to match the latest 3.23 version. This should increase
portability and make it easier to build shared libraries.

• Added latest patches to MIT-pthreads for NetBSD.

• Fixed problem with time zones that are < GMT -11.

• Fixed a bug when deleting packed keys in NISAM.

• Fixed problem that could cause MySQL to touch freed memory when doing very complicated
GROUP BY queries.

• Fixed core dump if you got a crashed table where an ENUM field value was too big.

• Added mysqlshutdown.exe and mysqlwatch.exe to the Windows distribution.

• Fixed problem when doing ORDER BY on a reference key.

• Fixed that INSERT DELAYED doesn't update timestamps that are given.

D.5.8. Changes in release 3.22.28 (20 Oct 1999)

• Fixed problem with LEFT JOIN and COUNT() on a column which was declared NULL + and
it had a DEFAULT value.

• Fixed core dump problem when using CONCAT() in a WHERE clause.

• Fixed problem with AVG() and STD() with NULL values.

D.5.9. Changes in release 3.22.27 (05 Oct 1999)

• Fixed prototype in my_ctype.h when using other character sets.

• Some configure issues to fix problems with big filesystem detection.

• Fixed problem when sorting on big BLOB columns.

• ROUND() now works on Windows.

D.5.10. Changes in release 3.22.26 (16 Sep 1999)

• Fixed core dump with empty BLOB/TEXT column argument to REVERSE().

• Extended /*! */ with version numbers.

• Changed SUBSTRING(text FROM pos) to conform to standard SQL. (Before this con-
struct returned the rightmost 'pos' characters.)

• Fixed problem with LOCK TABLES combined with DELETE FROM table

• Fixed problem that INSERT ... SELECT didn't use BIG_TABLES.

• SET SQL_LOW_PRIORITY_UPDATES=# didn't work.

MySQL Change History

1339

• Password wasn't updated correctly if privileges didn't change on: GRANT ... IDENTIFIED
BY

• Fixed range optimizer bug in SELECT * FROM tbl_name WHERE key_part1 >=
const AND (key_part2 = const OR key_part2 = const).

• Fixed bug in compression key handling in ISAM.

D.5.11. Changes in release 3.22.25 (07 Jun 1999)

• Fixed some small problems with the installation.

D.5.12. Changes in release 3.22.24 (05 Jul 1999)

• DATA is no longer a reserved word.

• Fixed optimizer bug with tables with only one row.

• Fixed bug when using LOCK TABLES tbl_name READ; FLUSH TABLES;

• Applied some patches for HP-UX.

• isamchk should now work on Windows.

• Changed configure to not use big file handling on Linux as this crashes some Red Hat 6.0
systems

D.5.13. Changes in release 3.22.23 (08 Jun 1999)

• Upgraded to use Autoconf 2.13, Automake 1.4 and libtool 1.3.2.

• Better support for SCO in configure.

• Added option --defaults-file=file_name to option file handling to force use of only
one specific option file.

• Extended CREATE syntax to ignore MySQL 3.23 keywords.

• Fixed deadlock problem when using INSERT DELAYED on a table locked with LOCK
TABLES.

• Fixed deadlock problem when using DROP TABLE on a table that was locked by another
thread.

• Add logging of GRANT/REVOKE commands in the update log.

• Fixed isamchk to detect a new error condition.

• Fixed bug in NATURAL LEFT JOIN.

D.5.14. Changes in release 3.22.22 (30 Apr 1999)

• Fixed problem in the C API when you called mysql_close() directly after
mysql_init().

MySQL Change History

1340

• Better client error message when you can't open socket.

• Fixed delayed_insert_thread counting when you couldn't create a new delayed_insert
thread.

• Fixed bug in CONCAT() with many arguments.

• Added patches for DEC 3.2 and SCO.

• Fixed path-bug when installing MySQL as a service on NT.

• MySQL on Windows is now compiled with VC++ 6.0 instead of with VC++ 5.0.

• New installation setup for MySQL on Windows.

D.5.15. Changes in release 3.22.21 (04 Apr 1999)

• Fixed problem with DELETE FROM TABLE when table was locked by another thread.

• Fixed bug in LEFT JOIN involving empty tables.

• Changed the mysql.db column from CHAR(32) to CHAR(60).

• MODIFY and DELAYED are no longer reserved words.

• Fixed a bug when storing days in a TIME column.

• Fixed a problem with Host '...' is not allowed to connect to this
MySQL server after one had inserted a new MySQL user with a GRANT command.

• Changed to use TCP_NODELAY also on Linux (should give faster TCP/IP connections).

D.5.16. Changes in release 3.22.20 (18 Mar 1999)

• Fixed STD() for big tables when result should be 0.

• The update log didn't have newlines on some operating systems.

• INSERT DELAYED had some garbage at end in the update log.

D.5.17. Changes in release 3.22.19 (01 Mar 1999)

• Fixed bug in mysql_install_db (from 3.22.17).

• Changed default key cache size to 8MB.

• Fixed problem with queries that needed temporary tables with BLOB columns.

D.5.18. Changes in release 3.22.18 (26 Feb 1999)

• Fixes a fatal problem in 3.22.17 on Linux; after shutdown not all threads died properly.

• Added option -O flush_time=# to mysqld. This is mostly useful on Windows and tells
how often MySQL should close all unused tables and flush all updated tables to disk.

MySQL Change History

1341

• Fixed problem that a VARCHAR column compared with CHAR column didn't use keys effi-
ciently.

D.5.19. Changes in release 3.22.17 (22 Feb 1999: Pro-
duction)

• Fixed a core dump problem when using --log-update and connecting without a default
database.

• Fixed some configure and portability problems.

• Using LEFT JOIN on tables that had circular dependencies caused mysqld to hang forever.

D.5.20. Changes in release 3.22.16 (05 Feb 1999)

• mysqladmin processlist could kill the server if a new user logged in.

• DELETE FROM tbl_name WHERE key_column=col_name didn't find any matching
rows. Fixed.

• DATE_ADD(column, ...) didn't work.

• INSERT DELAYED could deadlock with status upgrading lock.

• Extended ENCRYPT() to take longer salt strings than 2 characters.

• longlong2str is now much faster than before. For Intel x86 platforms, this function is
written in optimized assembler.

• Added the MODIFY keyword to ALTER TABLE.

D.5.21. Changes in release 3.22.15 (27 Jan 1999)

• GRANT used with IDENTIFIED BY didn't take effect until privileges were flushed.

• Name change of some variables in SHOW STATUS.

• Fixed problem with ORDER BY with 'only index' optimization when there were multiple key
definitions for a used column.

• DATE and DATETIME columns are now up to 5 times faster than before.

• INSERT DELAYED can be used to let the client do other things while the server inserts rows
into a table.

• LEFT JOIN USING (col1,col2) didn't work if one used it with tables from 2 different
databases.

• LOAD DATA LOCAL INFILE didn't work in the Unix version because of a missing file.

• Fixed problems with VARCHAR/BLOB on very short rows (< 4 bytes); error 127 could occur
when deleting rows.

• Updating BLOB/TEXT through formulas didn't work for short (< 256 char) strings.

• When you did a GRANT on a new host, mysqld could die on the first connect from this host.

MySQL Change History

1342

• Fixed bug when one used ORDER BY on column name that was the same name as an alias.

• Added BENCHMARK(loop_count,expression) function to time expressions.

D.5.22. Changes in release 3.22.14 (01 Jan 1999:
Gamma)

• Allow empty arguments to mysqld to make it easier to start from shell scripts.

• Setting a TIMESTAMP column to NULL didn't record the timestamp value in the update log.

• Fixed lock handler bug when one did INSERT INTO TABLE ... SELECT ... GROUP
BY.

• Added a patch for localtime_r() on Windows so that it no longer crashes if your date is >
2039, but instead returns a time of all zero.

• Names for user-defined functions are no longer case-sensitive.

• Added escape of ^Z (ASCII 26) to \Z as ^Z doesn't work with pipes on Windows.

• mysql_fix_privileges adds a new column to the mysql.func to support aggregate UDF func-
tions in future MySQL releases.

D.5.23. Changes in release 3.22.13 (16 Dec 1998)

• Saving NOW(), CURDATE() or CURTIME() directly in a column didn't work.

• SELECT COUNT(*) ... LEFT JOIN ... didn't work with no WHERE part.

• Updated config.guess to allow MySQL to configure on UnixWare 7.1.x.

• Changed the implementation of pthread_cond() on the Windows version. get_lock()
now correctly times out on Windows!

D.5.24. Changes in release 3.22.12 (09 Dec 1998)

• Fixed problem when using DATE_ADD() and DATE_SUB() in a WHERE clause.

• You can now set the password for a user with the GRANT ... TO user IDENTIFIED BY
'password' syntax.

• Fixed bug in GRANT checking with SELECT on many tables.

• Added missing file mysql_fix_privilege_tables to the RPM distribution. This is not run by de-
fault because it relies on the client package.

• Added option SQL_SMALL_RESULT to SELECT to force use of fast temporary tables when
you know that the result set is small.

• Allow use of negative real numbers without a decimal point.

• Day number is now adjusted to maximum days in month if the resulting month after
DATE_ADD/DATE_SUB() doesn't have enough days.

• Fix that GRANT compares columns in case-insensitive fashion.

MySQL Change History

1343

• Fixed a bug in sql_list.h that made ALTER TABLE dump core in some contexts.

• The hostname in user@hostname can now include '.' and '-' without quotes in the context of
the GRANT, REVOKE and SET PASSWORD FOR ... statements.

• Fix for isamchk for tables which need big temporary files.

D.5.25. Changes in release 3.22.11 (24 Nov 1998)

• Important: You must run the mysql_fix_privilege_tables script when you upgrade to this ver-
sion! This is needed because of the new GRANT system. If you don't do this, you get Access
denied when you try to use ALTER TABLE, CREATE INDEX, or DROP INDEX.

• GRANT to allow/deny users table and column access.

• Changed USER() to return a value in user@host format. Formerly it returned only user.

• Changed the syntax for how to set PASSWORD for another user.

• New command FLUSH STATUS that resets most status variables to zero.

• New status variables: aborted_threads, aborted_connects.

• New option variable: connection_timeout.

• Added support for Thai sorting (by Pruet Boonma
<pruet@ds90.intanon.nectec.or.th>).

• Slovak and Japanese error messages.

• Configuration and portability fixes.

• Added option SET SQL_WARNINGS=1 to get a warning count also for simple (single-row) in-
serts.

• MySQL now uses SIGTERM instead of SIGQUIT with shutdown to work better on FreeBSD.

• Added option \G (print vertically) to mysql.

• SELECT HIGH_PRIORITY ... killed mysqld.

• IS NULL on a AUTO_INCREMENT column in a LEFT JOIN didn't work as expected.

• New function MAKE_SET().

D.5.26. Changes in release 3.22.10 (04 Nov 1998)

• mysql_install_db no longer starts the MySQL server! You should start mysqld with
safe_mysqld after installing it! The MySQL RPM , however, starts the server as before.

• Added --bootstrap option to mysqld and recoded mysql_install_db to use it. This makes it
easier to install MySQL with RPMs.

• Changed +, - (sign and minus), *, /, %, ABS() and MOD() to be BIGINT aware (64-bit safe).

• Fixed a bug in ALTER TABLE that caused mysqld to crash.

• MySQL now always reports the conflicting key values when a duplicate key entry occurs.
(Before this was only reported for INSERT.)

MySQL Change History

1344

• New syntax: INSERT INTO tbl_name SET col_name=value,
col_name=value, ...

• Most errors in the .err log are now prefixed with a time stamp.

• Added option MYSQL_INIT_COMMAND to mysql_options() to make a query on connect
or reconnect.

• Added option MYSQL_READ_DEFAULT_FILE and MYSQL_READ_DEFAULT_GROUP to
mysql_options() to read the following parameters from the MySQL option files: port,
socket, compress, password, pipe, timeout, user, init-command, host and
database.

• Added maybe_null to the UDF structure.

• Added option IGNORE to INSERT statements with many rows.

• Fixed some problems with sorting of the koi8 character sets; users of koi8 must run isamchk
-rq on each table that has an index on a CHAR or VARCHAR column.

• New script mysql_setpermission, by Luuk de Boer. It allows easy creation of new users with
permissions for specific databases.

• Allow use of hexadecimal strings (0x...) when specifying a constant string (like in the column
separators with LOAD DATA INFILE).

• Ported to OS/2 (thanks to Antony T. Curtis <antony.curtis@olcs.net>).

• Added more variables to SHOW STATUS and changed format of output to be like SHOW
VARIABLES.

• Added extended-status command to mysqladmin which shows the new status variables.

D.5.27. Changes in release 3.22.9 (19 Oct 1998)

• SET SQL_LOG_UPDATE=0 caused a lockup of the server.

• New SQL statement: FLUSH [TABLES | HOSTS | LOGS | PRIVILEGES] [,
...]

• New SQL statement: KILL thread_id.

• Added casts and changed include files to make MySQL easier to compile on AIX and DEC
OSF/1 4.x

• Fixed conversion problem when using ALTER TABLE from a INT to a short CHAR() column.

• Added SELECT HIGH_PRIORITY; this gets a lock for the SELECT even if there is a thread
waiting for another SELECT to get a WRITE LOCK.

• Moved wild_compare() to string class to be able to use LIKE on BLOB/TEXT columns
with \0.

• Added ESCAPE option to LIKE.

• Added a lot more output to mysqladmin debug.

• You can now start mysqld on Windows with the --flush option. This flushes all tables to
disk after each update. This makes things much safer on the Windows platforms but also much
slower.

MySQL Change History

1345

D.5.28. Changes in release 3.22.8 (06 Oct 1998)

• Czech character sets should now work much better.

• DATE_ADD() and DATE_SUB() didn't work with group functions.

• mysql now also tries to reconnect on USE database commands.

• Fix problem with ORDER BY and LEFT JOIN and const tables.

• Fixed problem with ORDER BY if the first ORDER BY column was a key and the rest of the
ORDER BY columns wasn't part of the key.

• Fixed a big problem with OPTIMIZE TABLE.

• MySQL clients on NT now by default first try to connect with named pipes and after this with
TCP/IP.

• Fixed a problem with DROP TABLE and mysqladmin shutdown on Windows (a fatal bug from
3.22.6).

• Fixed problems with TIME columns and negative strings.

• Added an extra thread signal loop on shutdown to avoid some error messages from the client.

• MySQL now uses the next available number as extension for the update log file.

• Added patches for UNIXWARE 7.

D.5.29. Changes in release 3.22.7 (21 Sep 1998: Beta)

• Added LIMIT clause for the DELETE statement.

• You can now use the /*! ... */ syntax to hide MySQL-specific keywords when you write
portable code. MySQL parses the code inside the comments as if the surrounding /*! and */
comment characters didn't exist.

• OPTIMIZE TABLE tbl_name can now be used to reclaim disk space after many deletes.
Currently, this uses ALTER TABLE to regenerate the table, but in the future it will use an integ-
rated isamchk for more speed.

• Upgraded libtool to make the configuration process more portable.

• Fixed slow UPDATE and DELETE operations when using DATETIME or DATE keys.

• Changed optimizer to make it better at deciding when to do a full join and when using keys.

• You can now use mysqladmin proc to display information about your own threads. Only users
with the PROCESS privilege can get information about all threads. (In 4.0.2, you need the SU-
PER privilege for this.)

• Added handling of formats YYMMDD, YYYYMMDD, YYMMDDHHMMSS for numbers when using
DATETIME and TIMESTAMP types. (Formerly these formats only worked with strings.)

• Added connect option CLIENT_IGNORE_SPACE to allow use of spaces after function names
and before '(' (Powerbuilder requires this). This makes all function names reserved words.

• Added the --log-long-format option to mysqld to enable timestamps and INSERT_IDs
in the update log.

• Added --where option to mysqldump (patch by Jim Faucette).

MySQL Change History

1346

• The lexical analyzer now uses ``perfect hashing'' for faster parsing of SQL statements.

D.5.30. Changes in release 3.22.6 (31 Aug 1998)

• Faster mysqldump.

• For the LOAD DATA INFILE statement, you can now use the new LOCAL keyword to read
the file from the client. mysqlimport automatically uses LOCAL when importing with the TCP/
IP protocol.

• Fixed small optimize problem when updating keys.

• Changed makefiles to support shared libraries.

• MySQL-NT can now use named pipes, which means that you can now use MySQL-NT without
having to install TCP/IP.

D.5.31. Changes in release 3.22.5 (20 Aug 1998: Alpha)

• All table lock handing is changed to avoid some very subtle deadlocks when using DROP TA-
BLE, ALTER TABLE, DELETE FROM TABLE and mysqladmin flush-tables under heavy us-
age. Changed locking code to get better handling of locks of different types.

• Updated DBI to 1.00 and DBD to 1.2.0.

• Added a check that the error message file contains error messages suitable for the current ver-
sion of mysqld. (To avoid errors if you accidentally try to use an old error message file.)

• All count structures in the client (affected_rows(), insert_id(), ...) are now of type
BIGINT to allow 64-bit values to be used. This required a minor change in the MySQL protocol
which should affect only old clients when using tables with AUTO_INCREMENT values >
16MB.

• The return type of mysql_fetch_lengths() has changed from uint * to ulong *.
This may give a warning for old clients but should work on most machines.

• Change mysys and dbug libraries to allocate all thread variables in one struct. This makes it
easier to make a threaded libmysql.dll library.

• Use the result from gethostname() (instead of uname()) when constructing .pid file-
names.

• New better compressed client/server protocol.

• COUNT(), STD() and AVG() are extended to handle more than 4GB rows.

• You can now store values in the range -838:59:59 <= x <= 838:59:59 in a TIME column.

• Warning: Incompatible change!! If you set a TIME column to too short a value, MySQL now
assumes the value is given as: [[[D]HH:]MM:]SS instead of HH[:MM[:SS]].

• TIME_TO_SEC() and SEC_TO_TIME() can now handle negative times and hours up to
32767.

• Added new option SET SQL_LOG_UPDATE={0|1} to allow users with the PROCESS priv-
ilege to bypass the update log. (Modified patch from Sergey A Mukhin
<violet@rosnet.net>.)

• Fixed fatal bug in LPAD().

MySQL Change History

1347

• Initialize line buffer in mysql.cc to make BLOB reading from pipes safer.

• Added -O max_connect_errors=# option to mysqld. Connect errors are now reset for
each correct connection.

• Increased the default value of max_allowed_packet to 1M in mysqld.

• Added --low-priority-updates option to mysqld, to give table-modifying operations
(INSERT, REPLACE, UPDATE, DELETE) lower priority than retrievals. You can now use
{INSERT | REPLACE | UPDATE | DELETE} LOW_PRIORITY ... You can also
use SET SQL_LOW_PRIORITY_UPDATES={0|1} to change the priority for one thread.
One side effect is that LOW_PRIORITY is now a reserved word. :(

• Add support for INSERT INTO table ... VALUES(...),(...),(...), to allow in-
serting multiple rows with a single statement.

• INSERT INTO tbl_name is now also cached when used with LOCK TABLES. (Previously
only INSERT ... SELECT and LOAD DATA INFILE were cached.)

• Allow GROUP BY functions with HAVING:

mysql> SELECT col FROM table GROUP BY col HAVING COUNT(*)>0;

• mysqld now ignores trailing ';' characters in queries. This is to make it easier to migrate from
some other SQL servers that require the trailing ';'.

• Fix for corrupted fixed-format output generated by SELECT INTO OUTFILE.

• Warning: Incompatible change! Added Oracle GREATEST() and LEAST() functions. You
must now use these instead of the MAX() and MIN() functions to get the largest/smallest value
from a list of values. These can now handle REAL, BIGINT and string (CHAR or VARCHAR)
values.

• Warning: Incompatible change! DAYOFWEEK() had offset 0 for Sunday. Changed the offset
to 1.

• Give an error for queries that mix GROUP BY columns and fields when there is no GROUP BY
specification.

• Added --vertical option to mysql, for printing results in vertical mode.

• Index-only optimization; some queries are now resolved using only indexes. Until MySQL 4.0,
this works only for numeric columns. See Section 7.4.5, “How MySQL Uses Indexes”.

• Lots of new benchmarks.

• A new C API chapter and lots of other improvements in the manual.

D.5.32. Changes in release 3.22.4 (06 Jul 1998: Beta)

• Added --tmpdir option to mysqld, for specifying the location of the temporary file directory.

• MySQL now automatically changes a query from an ODBC client:

SELECT ... FROM table WHERE auto_increment_column IS NULL

to:

SELECT ... FROM table WHERE auto_increment_column == LAST_INSERT_ID()

This allows some ODBC programs (Delphi, Access) to retrieve the newly inserted row to fetch

MySQL Change History

1348

the AUTO_INCREMENT value.

• DROP TABLE now waits for all users to free a table before deleting it.

• Fixed small memory leak in the new connect protocol.

• New functions BIN(), OCT(), HEX() and CONV() for converting between different number
bases.

• Added function SUBSTRING() with two arguments.

• If you created a table with a record length smaller than 5, you couldn't delete rows from the ta-
ble.

• Added optimization to remove const reference tables from ORDER BY and GROUP BY.

• mysqld now automatically disables system locking on Linux and Windows, and for systems that
use MIT-pthreads. You can force the use of locking with the -
-enable-external-locking option.

• Added --console option to mysqld, to force a console window (for error messages) when us-
ing Windows.

• Fixed table locks for Windows.

• Allow '$' in identifiers.

• Changed name of user-specific configuration file from my.cnf to .my.cnf (Unix only).

• Added DATE_ADD() and DATE_SUB() functions.

D.5.33. Changes in release 3.22.3 (30 Jun 1998)

• Fixed a lock problem (bug in MySQL 3.22.1) when closing temporary tables.

• Added missing mysql_ping() to the client library.

• Added --compress option to all MySQL clients.

• Changed byte to char in mysql.h and mysql_com.h.

D.5.34. Changes in release 3.22.2

• Searching on multiple constant keys that matched more than 30% of the rows didn't always use
the best possible key.

• New functions <<, >>, RPAD() and LPAD().

• You can now save default options (like passwords) in a configuration file (my.cnf).

• Lots of small changes to get ORDER BY to work when no records are found when using fields
that are not in GROUP BY (MySQL extension).

• Added --chroot option to mysqld, to start mysqld in a chroot environment (by Nikki Chu-
makov <nikkic@cityline.ru>).

• Trailing spaces are now ignored when comparing case-sensitive strings; this should fix some
problems with ODBC and flag 512!

MySQL Change History

1349

• Fixed a core dump bug in the range optimizer.

• Added --one-thread option to mysqld, for debugging with LinuxThreads (or glibc).
(This replaces the -T32 flag)

• Added DROP TABLE IF EXISTS to prevent an error from occurring if the table doesn't exist.

• IF and EXISTS are now reserved words (they would have to be sooner or later).

• Added lots of new options to mysqldump.

• Server error messages are now in mysqld_error.h.

• The client/server protocol now supports compression.

• All bugfixes from MySQL 3.21.32.

D.5.35. Changes in release 3.22.1 (Jun 1998)

• Added new C API function mysql_ping().

• Added new API functions mysql_init() and mysql_options(). You now MUST call
mysql_init() before you call mysql_real_connect(). You don't have to call
mysql_init() if you only use mysql_connect().

• Added mysql_options(...,MYSQL_OPT_CONNECT_TIMEOUT,...) so you can set a
timeout for connecting to a server.

• Added --timeout option to mysqladmin, as a test of mysql_options().

• Added AFTER column and FIRST options to ALTER TABLE ... ADD columns. This
makes it possible to add a new column at some specific location within a row in an existing ta-
ble.

• WEEK() now takes an optional argument to allow handling of weeks when the week starts on
Monday (some European countries). By default, WEEK() assumes the week starts on Sunday.

• TIME columns weren't stored properly (bug in MySQL 3.22.0).

• UPDATE now returns information about how many rows were matched and updated, and how
many ``warnings'' occurred when doing the update.

• Fixed incorrect result from FORMAT(-100,2).

• ENUM and SET columns were compared in binary (case-sensitive) fashion; changed to be case-
insensitive.

D.5.36. Changes in release 3.22.0 (18 May 1998: Alpha)

• New (backward-compatible) connect protocol that allows you to specify the database to use
when connecting, to get much faster connections to a specific database.

The mysql_real_connect() call is changed to:

mysql_real_connect(MYSQL *mysql, const char *host, const char *user,
const char *passwd, const char *db, uint port,
const char *unix_socket, uint client_flag)

MySQL Change History

1350

• Each connection is handled by its own thread, rather than by the master accept() thread. This
fixes permanently the telnet bug that was a topic on the mail list some time ago.

• All TCP/IP connections are now checked with backward-resolution of the hostname to get better
security. mysqld now has a local hostname resolver cache so connections should actually be
faster than before, even with this feature.

• A site automatically is blocked from future connections if someone repeatedly connects with an
``improper header'' (like when one uses telnet).

• You can now refer to tables in different databases with references of the form
tbl_name@db_name or db_name.tbl_name. This makes it possible to give a user read
access to some tables and write access to others simply by keeping them in different databases!

• Added --user option to mysqld, to allow it to run as another Unix user (if it is started as the
Unix root user).

• Added caching of users and access rights (for faster access rights checking)

• Normal users (not anonymous ones) can change their password with mysqladmin password
"newpwd". This uses encrypted passwords that are not logged in the normal MySQL log!

• All important string functions are now coded in assembler for x86 Linux machines. This gives a
speedup of 10% in many cases.

• For tables that have many columns, the column names are now hashed for much faster column
name lookup (this speeds up some benchmark tests a lot!)

• Some benchmarks are changed to get better individual timing. (Some loops were so short that a
specific test took < 2 seconds. The loops have been changed to take about 20 seconds to make it
easier to compare different databases. A test that took 1-2 seconds before now takes 11-24
seconds, which is much better)

• Re-arranged SELECT code to handle some very specific queries involving group functions (like
COUNT(*)) without a GROUP BY but with HAVING. The following now works:

mysql> SELECT COUNT(*) as C FROM table HAVING C > 1;

• Changed the protocol for field functions to be faster and avoid some calls to malloc().

• Added -T32 option to mysqld, for running all queries under the main thread. This makes it pos-
sible to debug mysqld under Linux with gdb!

• Added optimization of not_null_column IS NULL (needed for some Access queries).

• Allow STRAIGHT_JOIN to be used between two tables to force the optimizer to join them in a
specific order.

• String functions now return VARCHAR rather than CHAR and the column type is now VARCHAR
for fields saved as VARCHAR. This should make the MyODBC driver better, but may break
some old MySQL clients that don't handle FIELD_TYPE_VARCHAR the same way as
FIELD_TYPE_CHAR.

• CREATE INDEX and DROP INDEX are now implemented through ALTER TABLE. CREATE
TABLE is still the recommended (fast) way to create indexes.

• Added --set-variable option wait_timeout to mysqld.

• Added time column to mysqladmin processlist to show how long a query has taken or how
long a thread has slept.

• Added lots of new variables to show variables and some new to show status.

MySQL Change History

1351

• Added new type YEAR. YEAR is stored in 1 byte with allowable values of 0, and 1901 to 2155.

• Added new DATE type that is stored in 3 bytes rather than 4 bytes. All new tables are created
with the new date type if you don't use the --old-protocol option to mysqld.

• Fixed bug in record caches; for some queries, you could get Error from table hand-
ler: # on some operating systems.

• Added --enable-assembler option to configure, for x86 machines (tested on Linux +
gcc). This enables assembler functions for the most important string functions for more speed!

D.6. Changes in release 3.21.x
MySQL 3.21 is quite old now, and should be avoided if possible. This information is kept here for
historical purposes only.

D.6.1. Changes in release 3.21.33 (08 Jul 1998)

• Fixed problem when sending SIGHUP to mysqld; mysqld dumped core when starting from
boot on some systems.

• Fixed problem with losing a little memory for some connections.

• DELETE FROM tbl_name without a WHERE condition is now done the long way when you
use LOCK TABLES or if the table is in use, to avoid race conditions.

• INSERT INTO TABLE (timestamp_column) VALUES (NULL); didn't set
timestamp.

D.6.2. Changes in release 3.21.32 (30 Jun 1998)

• Fixed some possible race conditions when doing many reopen/close on the same tables under
heavy load! This can happen if you execute mysqladmin refresh often. This could in some very
rare cases corrupt the header of the index file and cause error 126 or 138.

• Fixed fatal bug in refresh() when running with the --skip-external-locking op-
tion. There was a ``very small'' time gap after a mysqladmin refresh when a table could be cor-
rupted if one thread updated a table while another thread did mysqladmin refresh and another
thread started a new update ont the same table before the first thread had finished. A refresh (or
--flush-tables) now does not return until all used tables are closed!

• SELECT DISTINCT with a WHERE clause that didn't match any rows returned a row in some
contexts (bug only in 3.21.31).

• GROUP BY + ORDER BY returned one empty row when no rows where found.

• Fixed a bug in the range optimizer that wrote Use_count: Wrong count for ... in the
error log file.

D.6.3. Changes in release 3.21.31 (10 Jun 1998)

• Fixed a sign extension problem for the TINYINT type on Irix.

• Fixed problem with LEFT("constant_string",function).

MySQL Change History

1352

• Fixed problem with FIND_IN_SET().

• LEFT JOIN dumped core if the second table is used with a constant WHERE/ON expression
that uniquely identifies one record.

• Fixed problems with DATE_FORMAT() and incorrect dates. DATE_FORMAT() now ignores
'%' to make it possible to extend it more easily in the future.

D.6.4. Changes in release 3.21.30

• mysql now returns an exit code > 0 if the query returned an error.

• Saving of command-line history to file in mysql client. By Tommy Larsen
<tommy@mix.hive.no>.

• Fixed problem with empty lines that were ignored in mysql.cc.

• Save the pid of the signal handler thread in the pid file instead of the pid of the main thread.

• Added patch by <tommy@valley.ne.jp> to support Japanese characters SJIS and UJIS.

• Changed safe_mysqld to redirect startup messages to host_name.err instead of
host_name.log to reclaim file space on mysqladmin refresh.

• ENUM always had the first entry as default value.

• ALTER TABLE wrote two entries to the update log.

• sql_acc() now closes the mysql grant tables after a reload to save table space and memory.

• Changed LOAD DATA to use less memory with tables and BLOB columns.

• Sorting on a function which made a division / 0 produced a wrong set in some cases.

• Fixed SELECT problem with LEFT() when using the czech character set.

• Fixed problem in isamchk; it couldn't repair a packed table in a very unusual case.

• SELECT statements with & or | (bit functions) failed on columns with NULL values.

• When comparing a field = field, where one of the fields was a part key, only the length of the
part key was compared.

D.6.5. Changes in release 3.21.29

• LOCK TABLES + DELETE from tbl_name never removed locks properly.

• Fixed problem when grouping on an OR function.

• Fixed permission problem with umask() and creating new databases.

• Fixed permission problem on result file with SELECT ... INTO OUTFILE ...

• Fixed problem in range optimizer (core dump) for a very complex query.

• Fixed problem when using MIN(integer) or MAX(integer) in GROUP BY.

• Fixed bug on Alpha when using integer keys. (Other keys worked on Alpha.)

MySQL Change History

1353

• Fixed bug in WEEK("XXXX-xx-01").

D.6.6. Changes in release 3.21.28

• Fixed socket permission (clients couldn't connect to Unix socket on Linux).

• Fixed bug in record caches; for some queries, you could get Error from table hand-
ler: # on some operating systems.

D.6.7. Changes in release 3.21.27

• Added user level lock functions GET_LOCK(string,timeout), RE-
LEASE_LOCK(string).

• Added Opened_tables to show status.

• Changed connect timeout to 3 seconds to make it somewhat harder for crackers to kill mysqld
through telnet + TCP/IP.

• Fixed bug in range optimizer when using WHERE key_part_1 >= something AND
key_part_2 <= something_else.

• Changed configure for detection of FreeBSD 3.0 9803xx and above

• WHERE with string_col_key = constant_string didn't always find all rows if the
column had many values differing only with characters of the same sort value (like e and e with
an accent).

• Strings keys looked up with 'ref' were not compared in case-sensitive fashion.

• Added umask() to make log files non-readable for normal users.

• Ignore users with old (8-byte) password on startup if not using --old-protocol option to
mysqld.

• SELECT which matched all key fields returned the values in the case of the matched values, not
of the found values. (Minor problem.)

D.6.8. Changes in release 3.21.26

• FROM_DAYS(0) now returns "0000-00-00".

• In DATE_FORMAT(), PM and AM were swapped for hours 00 and 12.

• Extended the default maximum key size to 256.

• Fixed bug when using BLOB/TEXT in GROUP BY with many tables.

• An ENUM field that is not declared NOT NULL has NULL as the default value. (Previously, the
default value was the first enumeration value.)

• Fixed bug in the join optimizer code when using many part keys on the same key: INDEX
(Organization,Surname(35),Initials(35)).

• Added some tests to the table order optimizer to get some cases with SELECT ... FROM
many_tables much faster.

MySQL Change History

1354

• Added a retry loop around accept() to possibly fix some problems on some Linux machines.

D.6.9. Changes in release 3.21.25

• Changed typedef 'string' to typedef 'my_string' for better portability.

• You can now kill threads that are waiting on a disk-full condition.

• Fixed some problems with UDF functions.

• Added long options to isamchk. Try isamchk --help.

• Fixed a bug when using 8 bytes long (alpha); filesort() didn't work. Affects DISTINCT,
ORDER BY and GROUP BY on 64-bit processors.

D.6.10. Changes in release 3.21.24

• Dynamic loadable functions. Based on source from Alexis Mikhailov.

• You couldn't delete from a table if no one had done a SELECT on the table.

• Fixed problem with range optimizer with many OR operators on key parts inside each other.

• Recoded MIN() and MAX() to work properly with strings and HAVING.

• Changed default umask value for new files from 0664 to 0660.

• Fixed problem with LEFT JOIN and constant expressions in the ON part.

• Added Italian error messages from <brenno@dewinter.com>.

• configure now works better on OSF/1 (tested on 4.0D).

• Added hooks to allow LIKE optimization with international character support.

• Upgraded DBI to 0.93.

D.6.11. Changes in release 3.21.23

• The following symbols are now reserved words: TIME, DATE, TIMESTAMP, TEXT, BIT,
ENUM, NO, ACTION, CHECK, YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, STATUS,
VARIABLES.

• Setting a TIMESTAMP to NULL in LOAD DATA INFILE ... didn't set the current time for
the TIMESTAMP.

• Fix BETWEEN to recognize binary strings. Now BETWEEN is case-sensitive.

• Added --skip-thread-priority option to mysqld, for systems where mysqld thread
scheduling doesn't work properly (BSDI 3.1).

• Added ODBC functions DAYNAME() and MONTHNAME().

• Added function TIME_FORMAT(). This works like DATE_FORMAT(), but takes a time string
('HH:MM:SS') as argument.

MySQL Change History

1355

• Fixed unlikely(?) key optimizer bug when using OR operators of key parts inside AND expres-
sions.

• Added variables command to mysqladmin.

• A lot of small changes to the binary releases.

• Fixed a bug in the new protocol from MySQL 3.21.20.

• Changed ALTER TABLE to work with Windows (Windows can't rename open files). Also fixed
a couple of small bugs in the Windows version.

• All standard MySQL clients are now ported to MySQL for Windows.

• MySQL can now be started as a service on NT.

D.6.12. Changes in release 3.21.22

• Starting with this version, all MySQL distributions are configured, compiled and tested with
crash-me and the benchmarks on the following platforms: SunOS 5.6 sun4u, SunOS 5.5.1
sun4u, SunOS 4.14 sun4c, SunOS 5.6 i86pc, Irix 6.3 mips5k, HP-UX 10.20 hppa, AIX 4.2.1
ppc, OSF/1 V4.0 alpha, FreeBSD 2.2.2 i86pc and BSDI 3.1 i386.

• Fix COUNT(*) problems when the WHERE clause didn't match any records. (Bug from
3.21.17.)

• Removed that NULL = NULL is true. Now you must use IS NULL or IS NOT NULL to test
whether a value is NULL. (This is according to standard SQL but may break old applications that
are ported from mSQL.) You can get the old behavior by compiling with
-DmSQL_COMPLIANT.

• Fixed bug that caused core-dump when using many LEFT OUTER JOIN clauses.

• Fixed bug in ORDER BY on string formula with possible NULL values.

• Fixed problem in range optimizer when using <= on sub index.

• Added functions DAYOFYEAR(), DAYOFMONTH(), MONTH(), YEAR(), WEEK(),
QUARTER(), HOUR(), MINUTE(), SECOND() and FIND_IN_SET().

• Added SHOW VARIABLES command.

• Added support of ``long constant strings'' from standard SQL:

mysql> SELECT 'first ' 'second'; -> 'first second'

• Upgraded Msql-Mysql-modules to 1.1825.

• Upgraded mysqlaccess to 2.02.

• Fixed problem with Russian character set and LIKE.

• Ported to OpenBSD 2.1.

• New Dutch error messages.

D.6.13. Changes in release 3.21.21a

MySQL Change History

1356

• Configure changes for some operating systems.

D.6.14. Changes in release 3.21.21

• Fixed optimizer bug when using WHERE data_field = date_field2 AND
date_field2 = constant.

• Added SHOW STATUS command.

• Removed manual.ps from the source distribution to make it smaller.

D.6.15. Changes in release 3.21.20

• Changed the maximum table name and column name lengths from 32 to 64.

• Aliases can now be of ``any'' length.

• Fixed mysqladmin stat to return the right number of queries.

• Changed protocol (downward compatible) to mark if a column has the AUTO_INCREMENT at-
tribute or is a TIMESTAMP. This is needed for the new Java driver.

• Added Hebrew sorting order by Zeev Suraski.

• Solaris 2.6: Fixed configure bugs and increased maximum table size from 2GB to 4GB.

D.6.16. Changes in release 3.21.19

• Upgraded DBD to 1.1823. This version implements mysql_use_result in DBD-Mysql.

• Benchmarks updated for empress (by Luuk).

• Fixed a case of slow range searching.

• Configure fixes (Docs directory).

• Added function REVERSE() (by Zeev Suraski).

D.6.17. Changes in release 3.21.18

• Issue error message if client C functions are called in wrong order.

• Added automatic reconnect to the libmysql.c library. If a write command fails, an automatic
reconnect is done.

• Small sort sets no longer use temporary files.

• Upgraded DBI to 0.91.

• Fixed a couple of problems with LEFT OUTER JOIN.

• Added CROSS JOIN syntax. CROSS is now a reserved word.

• Recoded yacc/bison stack allocation to be even safer and to allow MySQL to handle even big-

MySQL Change History

1357

ger expressions.

• Fixed a couple of problems with the update log.

• ORDER BY was slow when used with key ranges.

D.6.18. Changes in release 3.21.17

• Changed documentation string of --with-unix-socket-path to avoid confusion.

• Added ODBC and standard SQL style LEFT OUTER JOIN.

• The following are new reserved words: LEFT, NATURAL, USING.

• The client library now uses the value of the environment variable MYSQL_HOST as the default
host if it's defined.

• SELECT col_name, SUM(expr) now returns NULL for col_name when there are
matching rows.

• Fixed problem with comparing binary strings and BLOB values with ASCII characters over 127.

• Fixed lock problem: when freeing a read lock on a table with multiple read locks, a thread wait-
ing for a write lock would have been given the lock. This shouldn't affect data integrity, but
could possibly make mysqld restart if one thread was reading data that another thread modified.

• LIMIT offset,count didn't work in INSERT ... SELECT.

• Optimized key block caching. This is quicker than the old algorithm when using bigger key
caches.

D.6.19. Changes in release 3.21.16

• Added ODBC 2.0 & 3.0 functions POWER(), SPACE(), COT(), DEGREES(), RADIANS(),
ROUND(2 arg) and TRUNCATE().

• Warning: Incompatible change! LOCATE() parameters were swapped according to ODBC
standard. Fixed.

• Added function TIME_TO_SEC().

• In some cases, default values were not used for NOT NULL fields.

• Timestamp wasn't always updated properly in UPDATE SET ... statements.

• Allow empty strings as default values for BLOB and TEXT, to be compatible with mysqldump.

D.6.20. Changes in release 3.21.15

• Warning: Incompatible change! mysqlperl is now from Msql-Mysql-modules. This means
that connect() now takes host, database, user, password arguments! The old ver-
sion took host, database, password, user.

• Allow DATE '1997-01-01', TIME '12:10:10' and TIMESTAMP '1997-01-01
12:10:10' formats required by standard SQL. Warning: Incompatible change! This has the
unfortunate side effect that you no longer can have columns named DATE, TIME or

MySQL Change History

1358

TIMESTAMP. :(Old columns can still be accessed through tbl_name.col_name!)

• Changed Makefiles to hopefully work better with BSD systems. Also, manual.dvi is now in-
cluded in the distribution to avoid having stupid make programs trying to rebuild it.

• readline library upgraded to version 2.1.

• A new sortorder german-1. That is a normal ISO-Latin1 with a german sort order.

• Perl DBI/DBD is now included in the distribution. DBI is now the recommended way to connect
to MySQL from Perl.

• New portable benchmark suite with DBD, with test results from mSQL 2.0.3, MySQL, Postgr-
eSQL 6.2.1 and Solid server 2.2.

• crash-me is now included with the benchmarks; this is a Perl program designed to find as
many limits as possible in an SQL server. Tested with mSQL, PostgreSQL, Solid and MySQL.

• Fixed bug in range-optimizer that crashed MySQL on some queries.

• Table and column name completion for mysql command-line tool, by Zeev Suraski and Andi
Gutmans.

• Added new command REPLACE that works like INSERT but replaces conflicting records with
the new record. REPLACE INTO TABLE ... SELECT ... works also.

• Added new commands CREATE DATABASE db_name and DROP DATABASE db_name.

• Added RENAME option to ALTER TABLE: ALTER TABLE name RENAME TO
new_name.

• make_binary_distribution now includes libgcc.a in libmysqlclient.a. This should
make linking work for people who don't have gcc.

• Changed net_write() to my_net_write() because of a name conflict with Sybase.

•
New function DAYOFWEEK() compatible with ODBC.

• Stack checking and bison memory overrun checking to make MySQL safer with weird queries.

D.6.21. Changes in release 3.21.14b

• Fixed a couple of small configure problems on some platforms.

D.6.22. Changes in release 3.21.14a

• Ported to SCO Openserver 5.0.4 with FSU Pthreads.

• HP-UX 10.20 should work.

• Added new function DATE_FORMAT().

• Added NOT IN.

• Added automatic removal of 'ODBC function conversions': {fn now() }

• Handle ODBC 2.50.3 option flags.

MySQL Change History

1359

• Fixed comparison of DATE and TIME values with NULL.

• Changed language name from germany to german to be consistent with the other language
names.

• Fixed sorting problem on functions returning a FLOAT. Previously, the values were converted to
INT values before sorting.

• Fixed slow sorting when sorting on key field when using key_col=constant.

• Sorting on calculated DOUBLE values sorted on integer results instead.

• mysql no longer requires a database argument.

• Changed the place where HAVING should be. According to the SQL standards, it should be after
GROUP BY but before ORDER BY. MySQL 3.20 incorrectly had it last.

• Added Sybase command USE database to start using another database.

• Added automatic adjusting of number of connections and table cache size if the maximum num-
ber of files that can be opened is less than needed. This should fix that mysqld doesn't crash
even if you haven't done a ulimit -n 256 before starting mysqld.

• Added lots of limit checks to make it safer when running with too little memory or when doing
weird queries.

D.6.23. Changes in release 3.21.13

• Added retry of interrupted reads and clearing of errno. This makes Linux systems much safer!

• Fixed locking bug when using many aliases on the same table in the same SELECT.

• Fixed bug with LIKE on number key.

• New error message so you can check whether the connection was lost while the command was
running or whether the connection was down from the start.

• Added --table option to mysql to print in table format. Moved time and row information
after query result. Added automatic reconnect of lost connections.

• Added != as a synonym for <>.

• Added function VERSION() to make easier logs.

• New multi-user test tests/fork_test.pl to put some strain on the thread library.

D.6.24. Changes in release 3.21.12

• Fixed ftruncate() call in MIT-pthreads. This made isamchk destroy the .ISM files on
(Free)BSD 2.x systems.

• Fixed broken __P_ patch in MIT-pthreads.

• Many memory overrun checks. All string functions now return NULL if the returned string
should be longer than max_allowed_packet bytes.

• Changed the name of the INTERVAL type to ENUM, because INTERVAL is used in standard
SQL.

MySQL Change History

1360

• In some cases, doing a JOIN + GROUP + INTO OUTFILE, the result wasn't grouped.

• LIKE with '_' as last character didn't work. Fixed.

• Added extended standard SQL TRIM() function.

• Added CURTIME().

• Added ENCRYPT() function by Zeev Suraski.

• Fixed better FOREIGN KEY syntax skipping. New reserved words: MATCH, FULL, PARTIAL.

• mysqld now allows IP number and hostname for the --bind-address option.

• Added SET CHARACTER SET cp1251_koi8 to enable conversions of data to and from the
cp1251_koi8 character set.

• Lots of changes for Windows 95 port. In theory, this version should now be easily portable to
Windows 95.

• Changed the CREATE COLUMN syntax of NOT NULL columns to be after the DEFAULT value,
as specified in the SQL standard. This makes mysqldump with NOT NULL and default values
incompatible with MySQL 3.20.

• Added many function name aliases so the functions can be used with ODBC or standard SQL
syntax.

• Fixed syntax of ALTER TABLE tbl_name ALTER COLUMN col_name SET DE-
FAULT NULL.

• Added CHAR and BIT as synonyms for CHAR(1).

• Fixed core dump when updating as a user who has only SELECT privilege.

• INSERT ... SELECT ... GROUP BY didn't work in some cases. An Invalid use
of group function error occurred.

• When using LIMIT, SELECT now always uses keys instead of record scan. This gives better
performance on SELECT and a WHERE that matches many rows.

• Added Russian error messages.

D.6.25. Changes in release 3.21.11

• Configure changes.

• MySQL now works with the new thread library on BSD/OS 3.0.

• Added new group functions BIT_OR() and BIT_AND().

• Added compatibility functions CHECK and REFERENCES. CHECK is now a reserved word.

• Added ALL option to GRANT for better compatibility. (GRANT is still a dummy function.)

• Added partly translated Dutch error messages.

• Fixed bug in ORDER BY and GROUP BY with NULL columns.

• Added function LAST_INSERT_ID() SQL function to retrieve last AUTO_INCREMENT
value. This is intended for clients to ODBC that can't use the mysql_insert_id() API
function, but can be used by any client.

MySQL Change History

1361

• Added --flush-logs option to mysqladmin.

• Added command STATUS to mysql.

• Fixed problem with ORDER BY/GROUP BY because of bug in gcc.

• Fixed problem with INSERT ... SELECT ... GROUP BY.

D.6.26. Changes in release 3.21.10

• New program mysqlaccess.

• CREATE now supports all ODBC types and the mSQL TEXT type. All ODBC 2.5 functions are
also supported (added REPEAT). This provides better portability.

• Added text types TINYTEXT, TEXT, MEDIUMTEXT and LONGTEXT. These are actually BLOB
types, but all searching is done in case-insensitive fashion.

• All old BLOB fields are now TEXT fields. This only changes that all searching on strings is done
in case-sensitive fashion. You must do an ALTER TABLE and change the data type to BLOB if
you want to have tests done in case-sensitive fashion.

• Fixed some configure issues.

• Made the locking code a bit safer. Fixed very unlikely deadlock situation.

• Fixed a couple of bugs in the range optimizer. Now the new range benchmark test-select
works.

D.6.27. Changes in release 3.21.9

• Added --enable-unix-socket=pathname option to configure.

• Fixed a couple of portability problems with include files.

• Fixed bug in range calculation that could return empty set when searching on multiple key with
only one entry (very rare).

• Most things ported to FSU Pthreads, which should allow MySQL to run on SCO. See Sec-
tion 2.12.5.8, “SCO Notes”.

D.6.28. Changes in release 3.21.8

• Works now in Solaris 2.6.

• Added handling of calculation of SUM() functions. For example, you can now use
SUM(column)/COUNT(column).

• Added handling of trigometric functions: PI(), ACOS(), ASIN(), ATAN(), COS(), SIN()
and TAN().

• New languages: Norwegian, Norwegian-ny and Portuguese.

• Fixed parameter bug in net_print() in procedure.cc.

• Fixed a couple of memory leaks.

MySQL Change History

1362

• Now allow also the old SELECT ... INTO OUTFILE syntax.

• Fixed bug with GROUP BY and SELECT on key with many values.

• mysql_fetch_lengths() sometimes returned incorrect lengths when you used
mysql_use_result(). This affected at least some cases of mysqldump --quick.

• Fixed bug in optimization of WHERE const op field.

• Fixed problem when sorting on NULL fields.

• Fixed a couple of 64-bit (Alpha) problems.

• Added --pid-file=# option to mysqld.

• Added date formatting to FROM_UNIXTIME(), originally by Zeev Suraski.

• Fixed bug in BETWEEN in range optimizer (did only test = of the first argument).

• Added machine-dependent files for MIT-pthreads i386-SCO. There is probably more to do to
get this to work on SCO 3.5.

D.6.29. Changes in release 3.21.7

• Changed Makefile.am to take advantage of Automake 1.2.

• Added the beginnings of a benchmark suite.

• Added more secure password handling.

• Added new client function mysql_errno(), to get the error number of the error message.
This makes error checking in the client much easier. This makes the new server incompatible
with the 3.20.x server when running without --old-protocol. The client code is backward-
compatible. More information can be found in the README file!

• Fixed some problems when using very long, illegal names.

D.6.30. Changes in release 3.21.6

• Fixed more portability issues (incorrect sigwait and sigset defines).

• configure should now be able to detect the last argument to accept().

D.6.31. Changes in release 3.21.5

• Should now work with FreeBSD 3.0 if used with FreeBSD-3.0-libc_r-1.0.diff,
which can be found at http://dev.mysql.com/downloads/os-freebsd.html.

• Added new -O tmp_table_size=# option to mysqld.

• New function FROM_UNIXTIME(timestamp) which returns a date string in 'YYYY-
MM-DD HH:MM:SS' format.

• New function SEC_TO_TIME(seconds) which returns a string in 'HH:MM:SS' format.

• New function SUBSTRING_INDEX(), originally by Zeev Suraski.

MySQL Change History

1363

http://dev.mysql.com/downloads/os-freebsd.html

D.6.32. Changes in release 3.21.4

• Should now configure and compile on OSF/1 4.0 with the DEC compiler.

• Configuration and compilation on BSD/OS 3.0 works, but due to some bugs in BSD/OS 3.0,
mysqld doesn't work on it yet.

• Configuration and compilation on FreeBSD 3.0 works, but I couldn't get pthread_create to
work.

D.6.33. Changes in release 3.21.3

• Added reverse check lookup of hostnames to get better security.

• Fixed some possible buffer overflows if filenames that are too long are used.

• mysqld doesn't accept hostnames that start with digits followed by a '.', because the hostname
may look like an IP number.

• Added --skip-networking option to mysqld, to allow only socket connections. (This does
not work with MIT-pthreads!)

• Added check of too long table names for alias.

• Added check whether database name is okay.

• Added check whether too long table names.

• Removed incorrect free() that killed the server on CREATE DATABASE or DROP DATA-
BASE.

• Changed some mysqld -O options to better names.

• Added -O join_cache_size=# option to mysqld.

• Added -O max_join_size=# option to mysqld, to be able to set a limit how big queries (in
this case big = slow) one should be able to handle without specifying SET
SQL_BIG_SELECTS=1. A # = is about 10 examined records. The default is ``unlimited.''

• When comparing a TIME, DATE, DATETIME or TIMESTAMP column to a constant, the con-
stant is converted to a time value before performing the comparison. This makes it easier to get
ODBC (particularly Access97) to work with these types. It should also make dates easier to use
and the comparisons should be quicker than before.

• Applied patch from Jochen Wiedmann that allows query() in mysqlperl to take a query
with \0 in it.

• Storing a timestamp with a two-digit year (YYMMDD) didn't work.

• Fix that timestamp wasn't automatically updated if set in an UPDATE clause.

• Now the automatic timestamp field is the FIRST timestamp field.

• SELECT * INTO OUTFILE, which didn't correctly if the outfile existed.

• mysql now shows the thread ID when starting or doing a reconnect.

• Changed the default sort buffer size from 2MB to 1MB.

MySQL Change History

1364

D.6.34. Changes in release 3.21.2

• The range optimizer is coded, but only 85% tested. It can be enabled with --new, but it crashes
core a lot yet...

• More portable. Should compile on AIX and alpha-digital. At least the isam library should be
relatively 64-bit clean.

• New isamchk which can detect and fix more problems.

• New options for isamlog.

• Using new version of Automake.

• Many small portability changes (from the AIX and alpha-digital port) Better checking of
pthread(s) library.

• czech error messages by <snajdr@pvt.net>.

• Decreased size of some buffers to get fewer problems on systems with little memory. Also ad-
ded more checks to handle ``out of memory'' problems.

• mysqladmin: you can now do mysqladmin kill 5,6,7,8 to kill multiple threads.

• When the maximum connection limit is reached, one extra connection by a user with the pro-
cess_acl privilege is granted.

• Added -O backlog=# option to mysqld.

• Increased maximum packet size from 512KB to 1024KB for client.

• Almost all of the function code is now tested in the internal test suite.

• ALTER TABLE now returns warnings from field conversions.

• Port changed to 3306 (got it reserved from ISI).

• Added a fix for Visual FoxBase so that any schema name from a table specification is automat-
ically removed.

• New function ASCII().

• Removed function BETWEEN(a,b,c). Use the standard SQL syntax instead: expr
BETWEEN expr AND expr.

• MySQL no longer has to use an extra temporary table when sorting on functions or SUM()
functions.

• Fixed bug that you couldn't use tbl_name.field_name in UPDATE.

• Fixed SELECT DISTINCT when using 'hidden group'. For example:

mysql> SELECT DISTINCT MOD(some_field,10) FROM test
-> GROUP BY some_field;

Note: some_field is normally in the SELECT part. Standard SQL should require it.

D.6.35. Changes in release 3.21.0

• New reserved words used: INTERVAL, EXPLAIN, READ, WRITE, BINARY.

MySQL Change History

1365

• Added ODBC function CHAR(num,...).

• New operator IN. This uses a binary search to find a match.

• New command LOCK TABLES tbl_name [AS alias] {READ|WRITE} ...

• Added --log-update option to mysqld, to get a log suitable for incremental updates.

• New command EXPLAIN SELECT ... to get information about how the optimizer does the
join.

• For easier client code, the client should no longer use FIELD_TYPE_TINY_BLOB,
FIELD_TYPE_MEDIUM_BLOB, FIELD_TYPE_LONG_BLOB or
FIELD_TYPE_VAR_STRING (as previously returned by mysql_list_fields). You
should instead use only FIELD_TYPE_BLOB or FIELD_TYPE_STRING. If you want exact
types, you should use the command SHOW FIELDS.

• Added varbinary syntax: 0x###### which can be used as a string (default) or a number.

• FIELD_TYPE_CHAR is renamed to FIELD_TYPE_TINY.

• Changed all fields to C++ classes.

• Removed FORM struct.

• Fields with DEFAULT values no longer need to be NOT NULL.

• New field types:

• ENUM

A string which can take only a couple of defined values. The value is stored as a 1-3 byte
number that is mapped automatically to a string. This is sorted according to string positions!

• SET

A string which may have one or many string values separated by ','. The string is stored as a
1-, 2-, 3-, 4- or 8-byte number where each bit stands for a specific set member. This is sorted
according to the unsigned value of the stored packed number.

• Now all function calculation is done with double or long long. This provides the full
64-bit range with bit functions and fixes some conversions that previously could result in preci-
sion losses. One should avoid using unsigned long long columns with full 64-bit range
(numbers bigger than 9223372036854775807) because calculations are done with signed
long long.

• ORDER BY now puts NULL field values first. GROUP BY also works with NULL values.

• Full WHERE with expressions.

• New range optimizer that can resolve ranges when some keypart prefix is constant. Example:

mysql> SELECT * FROM tbl_name
-> WHERE key_part_1='customer'
-> AND key_part_2>=10 AND key_part_2<=10;

D.7. Changes in release 3.20.x
MySQL 3.20 is quite old now, and should be avoided if possible. This information is kept here for
historical purposes only.

MySQL Change History

1366

Changes from 3.20.18 to 3.20.32b are not documented here because the 3.21 release branched here.
And the relevant changes are also documented as changes to the 3.21 version.

D.7.1. Changes in release 3.20.18

• Added -p# (remove # directories from path) to isamlog. All files are written with a relative
path from the database directory Now mysqld shouldn't crash on shutdown when using the -
-log-isam option.

• New mysqlperl version. It is now compatible with msqlperl-0.63.

• New DBD module available.

• Added group function STD() (standard deviation).

• The mysqld server is now compiled by default without debugging information. This makes the
daemon smaller and faster.

• Now one usually only has to specify the --basedir option to mysqld. All other paths are rel-
ative in a normal installation.

• BLOB columns sometimes contained garbage when used with a SELECT on more than one table
and ORDER BY.

• Fixed that calculations that are not in GROUP BY work as expected (standard SQL extension).
Example:

mysql> SELECT id,id+1 FROM table GROUP BY id;

• The test of using MYSQL_PWD was reversed. Now MYSQL_PWD is enabled as default in the de-
fault release.

• Fixed conversion bug which caused mysqld to core dump with Arithmetic error on SPARC-386.

• Added --unbuffered option to mysql, for new mysqlaccess.

• When using overlapping (unnecessary) keys and join over many tables, the optimizer could get
confused and return 0 records.

D.7.2. Changes in release 3.20.17

• You can now use BLOB columns and the functions IS NULL and IS NOT NULL in the
WHERE clause.

• All communication packets and row buffers are now allocated dynamically on demand. The de-
fault value of max_allowed_packet is now 64KB for the server and 512KB for the client.
This is mainly used to catch incorrect packets that could trash all memory. The server limit may
be changed when it is started.

• Changed stack usage to use less memory.

• Changed safe_mysqld to check for running daemon.

• The ELT() function is renamed to FIELD(). The new ELT() function returns a value based
on an index: FIELD() is the inverse of ELT() Example: ELT(2,"A","B","C") returns
"B". FIELD("B","A","B","C") returns 2.

• COUNT(field), where field could have a NULL value, now works.

MySQL Change History

1367

• A couple of bugs fixed in SELECT ... GROUP BY.

• Fixed memory overrun bug in WHERE with many unoptimizable brace levels.

• Fixed some small bugs in the grant code.

• If hostname isn't found by get_hostname, only the IP is checked. Previously, you got Ac-
cess denied.

• Inserts of timestamps with values didn't always work.

• INSERT INTO ... SELECT ... WHERE could give the error Duplicated field.

• Added some tests to safe_mysqld to make it ``safer.''

• LIKE was case-sensitive in some places and case-insensitive in others. Now LIKE is always
case-insensitive.

• mysql.cc: Allow '#' anywhere on the line.

• New command SET SQL_SELECT_LIMIT=#. See the FAQ for more details.

• New version of the mysqlaccess script.

• Change FROM_DAYS() and WEEKDAY() to also take a full TIMESTAMP or DATETIME as ar-
gument. Before they only took a number of type YYYYMMDD or YYMMDD.

• Added new function UNIX_TIMESTAMP(timestamp_column).

D.7.3. Changes in release 3.20.16

• More changes in MIT-pthreads to get them safer. Fixed also some link bugs at least in SunOS.

• Changed mysqld to work around a bug in MIT-pthreads. This makes multiple small SELECT
operations 20 times faster. Now lock_test.pl should work.

• Added mysql_FetchHash(handle) to mysqlperl.

• The mysqlbug script is now distributed built to allow for reporting bugs that appear during the
build with it.

• Changed libmysql.c to prefer getpwuid() instead of cuserid().

• Fixed bug in SELECT optimizer when using many tables with the same column used as key to
different tables.

• Added new latin2 and Russian KOI8 character tables.

• Added support for a dummy GRANT command to satisfy Powerbuilder.

D.7.4. Changes in release 3.20.15

• Fixed fatal bug packets out of order when using MIT-pthreads.

• Removed possible loop when a thread waits for command from client and fcntl() fails.
Thanks to Mike Bretz for finding this bug.

• Changed alarm loop in mysqld.cc because shutdown didn't always succeed in Linux.

MySQL Change History

1368

• Removed use of termbits from mysql.cc. This conflicted with glibc 2.0.

• Fixed some syntax errors for at least BSD and Linux.

• Fixed bug when doing a SELECT as superuser without a database.

• Fixed bug when doing SELECT with group calculation to outfile.

D.7.5. Changes in release 3.20.14

• If one gives -p or --password option to mysql without an argument, the user is solicited for
the password from the tty.

• Added default password from MYSQL_PWD (by Elmar Haneke).

• Added command kill to mysqladmin to kill a specific MySQL thread.

• Sometimes when doing a reconnect on a down connection this succeeded first on second try.

• Fixed adding an AUTO_INCREMENT key with ALTER_TABLE.

• AVG() gave too small value on some SELECT statements with GROUP BY and ORDER BY.

• Added new DATETIME type (by Giovanni Maruzzelli <maruzz@matrice.it>).

• Fixed that defining DONT_USE_DEFAULT_FIELDS works.

• Changed to use a thread to handle alarms instead of signals on Solaris to avoid race conditions.

• Fixed default length of signed numbers. (George Harvey <georgeh@pinacl.co.uk>.)

• Allow anything for CREATE INDEX.

• Add prezeros when packing numbers to DATE, TIME and TIMESTAMP.

• Fixed a bug in OR of multiple tables (gave empty set).

• Added many patches to MIT-pthreads. This fixes at least one lookup bug.

D.7.6. Changes in release 3.20.13

• Added standard SQL DATE and TIME types.

• Fixed bug in SELECT with AND-OR levels.

• Added support for Slovenian characters. The Contrib directory contains source and instruc-
tions for adding other character sets.

• Fixed bug with LIMIT and ORDER BY.

• Allow ORDER BY and GROUP BY on items that aren't in the SELECT list. (Thanks to Wim
Bonis <bonis@kiss.de>, for pointing this out.)

• Allow setting of timestamp values in INSERT.

• Fixed bug with SELECT ... WHERE ... = NULL.

• Added changes for glibc 2.0. To get glibc to work, you should add the gibc-
2.0-sigwait-patch before compiling glibc.

MySQL Change History

1369

• Fixed bug in ALTER TABLE when changing a NOT NULL field to allow NULL values.

• Added some standard SQL synonyms as field types to CREATE TABLE. CREATE TABLE now
allows FLOAT(4) and FLOAT(8) to mean FLOAT and DOUBLE.

• New utility program mysqlaccess by <Yves.Carlier@rug.ac.be>. This program shows
the access rights for a specific user and the grant rows that determine this grant.

• Added WHERE const op field (by <bonis@kiss.de>).

D.7.7. Changes in release 3.20.11

• When using SELECT ... INTO OUTFILE, all temporary tables are ISAM instead of HEAP
to allow big dumps.

• Changed date functions to be string functions. This fixed some ``funny'' side effects when sort-
ing on dates.

• Extended ALTER TABLE for standard SQL compliance.

• Some minor compatibility changes.

• Added --port and --socket options to all utility programs and mysqld.

• Fixed MIT-pthreads readdir_r(). Now mysqladmin create database and mysqladmin
drop database should work.

• Changed MIT-pthreads to use our tempnam(). This should fix the ``sort aborted'' bug.

• Added sync of records count in sql_update. This fixed slow updates on first connection.
(Thanks to Vaclav Bittner for the test.)

D.7.8. Changes in release 3.20.10

• New insert type: INSERT INTO ... SELECT ...

• MEDIUMBLOB fixed.

• Fixed bug in ALTER TABLE and BLOB values.

• SELECT ... INTO OUTFILE now creates the file in the current database directory.

• DROP TABLE now can take a list of tables.

• Oracle synonym DESCRIBE (DESC).

• Changes to make_binary_distribution.

• Added some comments to installation instructions about configure C++ link test.

• Added --without-perl option to configure.

• Lots of small portability changes.

D.7.9. Changes in release 3.20.9

MySQL Change History

1370

• ALTER TABLE didn't copy null bit. As a result, fields that were allowed to have NULL values
were always NULL.

• CREATE didn't take numbers as DEFAULT.

• Some compatibility changes for SunOS.

• Removed config.cache from old distribution.

D.7.10. Changes in release 3.20.8

• Fixed bug with ALTER TABLE and multiple-part keys.

D.7.11. Changes in release 3.20.7

• New commands: ALTER TABLE, SELECT ... INTO OUTFILE and LOAD DATA IN-
FILE.

• New function: NOW().

• Added new field File_priv to mysql/user table.

• New script add_file_priv which adds the new field File_priv to the user table. This
script must be executed if you want to use the new SELECT ... INTO and LOAD DATA
INFILE ... commands with a version of MySQL earlier than 3.20.7.

• Fixed bug in locking code, which made lock_test.pl test fail.

• New files NEW and BUGS.

• Changed select_test.c and insert_test.c to include config.h.

• Added status command to mysqladmin for short logging.

• Increased maximum number of keys to 16 and maximum number of key parts to 15.

• Use of sub keys. A key may now be a prefix of a string field.

• Added -k option to mysqlshow, to get key information for a table.

• Added long options to mysqldump.

D.7.12. Changes in release 3.20.6

• Portable to more systems because of MIT-pthreads, which is used automatically if configure
cannot find a -lpthreads library.

• Added GNU-style long options to almost all programs. Test with program --help.

• Some shared library support for Linux.

• The FAQ is now in .texi format and is available in .html, .txt and .ps formats.

• Added new SQL function RAND([init]).

• Changed sql_lex to handle \0 unquoted, but the client can't send the query through the C

MySQL Change History

1371

API, because it takes a str pointer. You must use mysql_real_query() to send the query.

• Added API function mysql_get_client_info().

• mysqld now uses the N_MAX_KEY_LENGTH from nisam.h as the maximum allowable key
length.

• The following now works:

mysql> SELECT filter_nr,filter_nr FROM filter ORDER BY filter_nr;

Previously, this resulted in the error: Column: 'filter_nr' in order clause is
ambiguous.

• mysql now outputs '\0', '\t', '\n' and '\\' when encountering ASCII 0, tab, newline, or
'\' while writing tab-separated output. This is to allow printing of binary data in a portable
format. To get the old behavior, use -r (or --raw).

• Added german error messages (60 of 80 error messages translated).

• Added new API function mysql_fetch_lengths(MYSQL_RES *), which returns an ar-
ray of column lengths (of type uint).

• Fixed bug with IS NULL in WHERE clause.

• Changed the optimizer a little to get better results when searching on a key part.

• Added SELECT option STRAIGHT_JOIN to tell the optimizer that it should join tables in the
given order.

• Added support for comments starting with '--' in mysql.cc (Postgres syntax).

• You can have SELECT expressions and table columns in a SELECT which are not used in the
group part. This makes it efficient to implement lookups. The column that is used should be a
constant for each group because the value is calculated only once for the first row that is found
for a group.

mysql> SELECT id,lookup.text,SUM(*) FROM test,lookup
-> WHERE test.id=lookup.id GROUP BY id;

• Fixed bug in SUM(function) (could cause a core dump).

• Changed AUTO_INCREMENT placement in the SQL query:

INSERT INTO table (auto_field) VALUES (0);

inserted 0, but it should insert an AUTO_INCREMENT value.

• mysqlshow.c: Added number of records in table. Had to change the client code a little to fix
this.

• mysql now allows doubled '' or "" within strings for embedded ' or ".

• New math functions: EXP(), LOG(), SQRT(), ROUND(), CEILING().

D.7.13. Changes in release 3.20.3

• The configure source now compiles a thread-free client library -lmysqlclient. This is the
only library that needs to be linked with client applications. When using the binary releases, you
must link with -lmysql -lmysys -ldbug -lmystrings as before.

MySQL Change History

1372

• New readline library from bash-2.0.

• LOTS of small changes to configure and makefiles (and related source).

• It should now be possible to compile in another directory using VPATH. Tested with GNU Make
3.75.

• safe_mysqld and mysql.server changed to be more compatible between the source and the bin-
ary releases.

• LIMIT now takes one or two numeric arguments. If one argument is given, it indicates the max-
imum number of rows in a result. If two arguments are given, the first argument indicates the
offset of the first row to return, the second is the maximum number of rows. With this it's easy to
do a poor man's next page/previous page WWW application.

• Changed name of SQL function FIELDS() to ELT(). Changed SQL function INTERVALL()
to INTERVAL().

• Made SHOW COLUMNS a synonym for SHOW FIELDS. Added compatibility syntax FRIEND
KEY to CREATE TABLE. In MySQL, this creates a non-unique key on the given columns.

• Added CREATE INDEX and DROP INDEX as compatibility functions. In MySQL, CREATE
INDEX only checks whether the index exists and issues an error if it doesn't exist. DROP IN-
DEX always succeeds.

• mysqladmin.c: added client version to version information.

• Fixed core dump bug in sql_acl (core on new connection).

• Removed host, user and db tables from database test in the distribution.

• FIELD_TYPE_CHAR can now be signed (-128 to 127) or unsigned (0 to 255) Previously, it was
always unsigned.

• Bug fixes in CONCAT() and WEEKDAY().

• Changed a lot of source to get mysqld to be compiled with SunPro compiler.

• SQL functions must now have a '(' immediately after the function name (no intervening
space). For example, 'USER(' is regarded as beginning a function call, and 'USER (' is re-
garded as an identifier USER followed by a '(', not as a function call.

D.7.14. Changes in release 3.20.0

• The source distribution is done with configure and Automake. It makes porting much easier.
The readline library is included in the distribution.

• Separate client compilation: the client code should be very easy to compile on systems which
don't have threads.

• The old Perl interface code is automatically compiled and installed. Automatic compiling of
DBD follows when the new DBD code is ported.

• Dynamic language support: mysqld can now be started with Swedish or English (default) error
messages.

• New functions: INSERT(), RTRIM(), LTRIM() and FORMAT().

• mysqldump now works correctly for all field types (even AUTO_INCREMENT). The format for
SHOW FIELDS FROM tbl_name is changed so the Type column contains information suit-
able for CREATE TABLE. In previous releases, some CREATE TABLE information had to be

MySQL Change History

1373

patched when re-creating tables.

• Some parser bugs from 3.19.5 (BLOB and TIMESTAMP) are corrected. TIMESTAMP now re-
turns different date information depending on its create length.

• Changed parser to allow a database, table or field name to start with a number or '_'.

• All old C code from Unireg changed to C++ and cleaned up. This makes the daemon a little
smaller and easier to understand.

• A lot of small bugfixes done.

• New INSTALL files (not final version) and some information regarding porting.

D.8. Changes in release 3.19.x
MySQL 3.19 is quite old now, and should be avoided if possible. This information is kept here for
historical purposes only.

D.8.1. Changes in release 3.19.5

• Some new functions, some more optimization on joins.

• Should now compile clean on Linux (2.0.x).

• Added functions DATABASE(), USER(), POW(), LOG10() (needed for ODBC).

• In a WHERE with an ORDER BY on fields from only one table, the table is now preferred as first
table in a multi-join.

• HAVING and IS NULL or IS NOT NULL now works.

• A group on one column and a sort on a group function (SUM(), AVG()...) didn't work together.
Fixed.

• mysqldump: Didn't send password to server.

D.8.2. Changes in release 3.19.4

• Fixed horrible locking bug when inserting in one thread and reading in another thread.

• Fixed one-off decimal bug. 1.00 was output as 1.0.

• Added attribute 'Locked' to process list as information if a query is locked by another query.

• Fixed full magic timestamp. Timestamp length may now be 14, 12, 10, 8, 6, 4 or 2 bytes.

• Sort on some numeric functions could sort incorrectly on last number.

• IF(arg,syntax_error,syntax_error) crashed.

• Added functions CEILING(), ROUND(), EXP(), LOG() and SQRT().

• Enhanced BETWEEN to handle strings.

D.8.3. Changes in release 3.19.3

MySQL Change History

1374

• Fixed SELECT with grouping on BLOB columns not to return incorrect BLOB info. Grouping,
sorting and distinct on BLOB columns does not yet work as expected (probably it grous/sorts by
the first 7 characters in the BLOB). Grouping on formulas with a fixed string size (use MID() on
a BLOB) should work.

• When doing a full join (no direct keys) on multiple tables with BLOB fields, the BLOB was
garbage on output.

• Fixed DISTINCT with calculated columns.

D.9. InnoDB Change History
Starting from 4.0.22 and 4.1.5, all InnoDB changes are included in the MySQL Change His-
tory, and this manual section is no longer separately maintained.

D.9.1. MySQL/InnoDB-4.0.21, September 10, 2004
Functionality added or changed:

• Renamed the innodb.status.<pid> files (created in the data directory) to in-
nodb_status.<pid>. This avoids problems on filesystems that do not allow multiple peri-
ods in filenames.

• Added innodb_status_file system variable to mysqld to control whether output from
SHOW INNODB STATUS is written to a innodb_status.<pid> file in the data directory.
By default, the file is not created. To create it, start mysqld with the -
-innodb_status_file=1 option.

• Changes for NetWare to exit InnoDB gracefully on NetWare even in a case of an assertion fail-
ure, instead of intentionally crashing the `mysqld' server process.

Bugs fixed:

• Fixed a bug in ON DELETE CASCADE and ON UPDATE CASCADE foreign key constraints:
long chains of cascaded operations would cause a stack overflow and crash the server. Cascaded
operations are now limited to 15 levels. (Bug #4446)

• Fixed a possible bug in LOCK TABLES introduced in MySQL/InnoDB-4.0.19: The count of
tables explicitly locked by a transaction was incremented only after the locks were granted, but
decremented when the lock structures were destroyed.

• Fixed a bug in UNLOCK TABLES in AUTOCOMMIT=0 mode, introduced in MySQL/In-
noDB-4.0.19: The memory allocated for some locks acquired by the transaction could be deal-
located before those locks were released. The bug can lead to crashes and memory corruption of
the buffer pool when the transaction acquires a large number of locks (table locks or row-level
locks).

• Increment the InnoDB watchdog timeout during CHECK TABLE. A long-running CHECK TA-
BLE would cause InnoDB to complain about a 'long semaphore wait', and crash the server, if a
query had to wait more than 600 seconds behind that CHECK TABLE operation. (Bug #2694)

• If you configure innodb_additional_mem_pool_size so small that InnoDB memory
allocation spills over from it, then every 4 billionth spill may cause memory corruption. A symp-
tom is a printout like below in the .err log. The workaround is to make in-
nodb_additional_mem_pool_size big enough to hold all memory allocation. Use
SHOW INNODB STATUS to determine that there is plenty of free space available in the addi-
tional mem pool, and the total allocated memory stays rather constant.

MySQL Change History

1375

InnoDB: Error: Mem area size is 0. Possibly a memory overrun of the
InnoDB: previous allocated area!
InnoDB: Apparent memory corruption: mem dump len 500; hex

• The special meaning of the table names innodb_monitor, innodb_lock_monitor, in-
nodb_tablespace_monitor, innodb_table_monitor, and innodb_validate in
CREATE TABLE and DROP TABLE statements was accidentally removed in MySQL/In-
noDB-4.0.19. The diagnostic functions attached to these special table names (see Sec-
tion 15.12.1, “SHOW INNODB STATUS and the InnoDB Monitors”) are accessible again in
MySQL/InnoDB-4.0.21.

• When the private SQL parser of InnoDB was modified in MySQL/InnoDB-4.0.19 in order to al-
low the use of the apostrophe (''') in table and column names, the fix relied on a previously un-
used function mem_realloc(), whose implementation was incorrect. As a result, InnoDB can
incorrectly parse column and table names as the empty string. The InnoDB realloc() imple-
mentation has been corrected in MySQL/InnoDB-4.0.21.

• Fixed a glitch introduced in 4.0.18 and 4.1.2: in SHOW TABLE STATUS InnoDB systematic-
ally overestimated the row count by 1 if the table fit on a single 16 kB data page.

• InnoDB created temporary files with the C library function tmpfile(). On Windows, the files
would be created in the root directory of the current file system. To correct this behavior, the in-
vocations of tmpfile() were replaced with code that uses the function cre-
ate_temp_file() in the MySQL portability layer. (Bug #3998)

• If ALTER TABLE ... DROP FOREIGN KEY ... fails because of a wrong constraint
name, return a table handler error number 150 instead of 152.

• If there was little file I/O in InnoDB, but the insert buffer was used, it could happen that
'Pending normal aio reads' was bigger than 0, but the I/O handler thread did not get waken up in
600 seconds. This resulted in a hang, and crashing of InnoDB.

• If we RENAMEd a table, InnoDB forgot to load the FOREIGN KEY constraints that reference
the new table name, and forgot to check that they are compatible with the table.

D.9.2. MySQL/InnoDB-4.1.4, August 31, 2004
Functionality added or changed:

• Important: Made internal representation of TIMESTAMP values in InnoDB in 4.1 to be the
same as in 4.0. This difference resulted in incorrect datetime values in TIMESTAMP columns in
InnoDB tables after an upgrade from 4.0 to 4.1. (Bug #4492) Warning: extra steps during up-
grade required! This means that if you are upgrading from 4.1.x, where x <= 3, to 4.1.4 you
should use mysqldump for saving and then restoring your InnoDB tables with TIMESTAMP
columns. No conversion is needed if you upgrade from 3.23 or 4.0 to 4.1.4 or later.

• Added a new startup option innodb_locks_unsafe_for_binlog. This option forces
InnoDB not to use next-key locking in searches and index scans.

• Added innodb_status_file system variable to mysqld to control whether output from
SHOW INNODB STATUS is written to a innodb_status.<pid> file in the data directory.
By default, the file is not created. To create it, start mysqld with the -
-innodb_status_file=1 option.

• Changes for NetWare to exit InnoDB gracefully on NetWare even in a case of an assertion fail-
ure, instead of intentionally crashing the mysqld server process.

• 'Gap' type row locks without the LOCK_INSERT_INTENTION flag do not need to wait for
anything. This is because different users can have conflicting lock types on gaps. This change

MySQL Change History

1376

reduces unnecessary deadlocks.

Bugs fixed:

• Fixed a bug in ON DELETE CASCADE and ON UPDATE CASCADE foreign key constraints:
long chains of cascaded operations would cause a stack overflow and crash the server. Cascaded
operations are now limited to 15 levels. (Bug #4446)

• Increment the InnoDB watchdog timeout during CHECK TABLE. (Bug #2694)

• If you configure innodb_additional_mem_pool_size so small that InnoDB memory
allocation spills over from it, then every 4 billionth spill may cause memory corruption. A symp-
tom is a printout like below in the .err log.

InnoDB: Error: Mem area size is 0. Possibly a memory overrun of the
InnoDB: previous allocated area!
InnoDB: Apparent memory corruption: mem dump len 500; hex

• Fixed a glitch introduced in 4.0.18 and 4.1.2: in SHOW TABLE STATUS InnoDB systematic-
ally overestimated the row count by 1 if the table fit on a single 16 kB data page.

• InnoDB created temporary files with the C library function tmpfile(). On Windows, the files
would be created in the root directory of the current file system. To correct this behavior, the in-
vocations of tmpfile() were replaced with code that uses the function cre-
ate_temp_file() in the MySQL portability layer. (Bug #3998)

• If we RENAMEd a table, InnoDB forgot to load the foreign key constraints that reference the new
table name, and forgot to check that they are compatible with the table.

• If there was little file I/O in InnoDB, but the insert buffer was used, it could happen that
'Pending normal aio reads' was bigger than 0, but the I/O handler thread did not get waken up in
600 seconds. This resulted in a hang, and an intentional crashing of mysqld.

D.9.3. MySQL/InnoDB-4.1.3, June 28, 2004
Functionality added or changed:

• Important: Starting from MySQL 4.1.3, InnoDB uses the same character set comparison func-
tions as MySQL for non-latin1_swedish_ci character strings that are not BINARY. This
changes the sorting order of space and characters < ASCII(32) in those character sets. For lat-
in1_swedish_ci character strings and BINARY strings, InnoDB uses its own pad-
spaces-at-end comparison method, which stays unchanged. If you have an InnoDB table created
with MySQL 4.1.2 or earlier, with an index on a non-latin1 character set (in the case of 4.1.0
and 4.1.1 with any character set) CHAR/VARCHAR/or TEXT column that is not BINARY but may
contain characters < ASCII(32), then you should do ALTER TABLE or OPTIMIZE table on it
to regenerate the index, after upgrading to MySQL 4.1.3 or later.

• OPTIMIZE TABLE for InnoDB tables is now mapped to ALTER TABLE rather than to ANA-
LYZE TABLE.

• Added an interface for storing the binlog offset in the InnoDB log and flushing the log.

Bugs fixed:

• The critical bug in 4.1.2 (crash recovery skipping all .ibd files if you specify in-
nodb_file_per_table on Unix) has been fixed. The bug was a combination of two bugs.
Crash recovery ignored the files, because the attempt to lock them in the wrong mode failed.

MySQL Change History

1377

From now on, locks are only obtained for regular files opened in read/write mode, and crash re-
covery stops if an .ibd file for a table exists in a database directory but is unaccessible.

• Do not remember the original select_lock_type inside LOCK TABLES. (Bug #4047)

• The special meaning of the table names innodb_monitor, innodb_lock_monitor, in-
nodb_tablespace_monitor, innodb_table_monitor, and innodb_validate in
CREATE TABLE and DROP TABLE statements was accidentally removed in MySQL/In-
noDB-4.1.2. The diagnostic functions attached to these special table names (see Section 15.12.1,
“SHOW INNODB STATUS and the InnoDB Monitors”) are accessible again in MySQL/In-
noDB-4.1.3.

• When the private SQL parser of InnoDB was modified in MySQL/InnoDB-4.0.19 in order to al-
low the use of the apostrophe (''') in table and column names, the fix relied on a previously un-
used function mem_realloc(), whose implementation was incorrect. As a result, InnoDB can
incorrectly parse column and table names as the empty string. The InnoDB realloc() imple-
mentation has been corrected in MySQL/InnoDB-4.1.3.

• In a clean-up of MySQL/InnoDB-4.1.2, the code for invalidating the query cache was broken.
Now the query cache should be correctly invalidated for tables affected by ON UPDATE CAS-
CADE or ON DELETE CASCADE constraints.

• Fixed a bug: in LIKE 'abc%', the '%' did not match the empty string if the character set was
not latin1_swedish_ci. This bug was fixed by changing the sorting order in these charac-
ter sets. See the above note about data conversion in 4.1.3.

D.9.4. MySQL/InnoDB-4.1.2, May 30, 2004
NOTE: CRITICAL BUG in 4.1.2 if you specify innodb_file_per_table in my.cnf on
Unix. In crash recovery InnoDB skips the crash recovery for all .ibd files and those tables become
CORRUPT! The symptom is a message Unable to lock ...ibd with lock 1, er-
ror: 9: fcntl: Bad file descriptor in the .err log in crash recovery.

Functionality added or changed:

• Support multiple character sets. Note that tables created in other collations than lat-
in1_swedish_ci cannot be accessed in MySQL/InnoDB 4.0.

• Automatically create a suitable index on a FOREIGN KEY, if the user does not create one. Re-
moves most of the cases of Error 1005 (errno 150) in table creation.

• Do not assert in log0log.c, line 856 if ib_logfiles are too small for in-
nodb_thread_concurrency. Instead, print instructions how to adjust my.cnf and call
exit(1).

• If MySQL tries to SELECT from an InnoDB table without setting any table locks, print a de-
scriptive error message and assert; some subquery bugs were of this type.

• Allow a key part length in InnoDB to be up to 3,500 bytes; this is needed so that you can create
an index on a column with 255 UTF-8 characters.

• All new features from InnoDB-4.0.17, InnoDB-4.0.18, InnoDB-4.0.19 and InnoDB-4.0.20.

Bugs fixed:

• If you configure innodb_additional_mem_pool_size so small that InnoDB memory
allocation spills over from it, then every 4 billionth spill may cause memory corruption. A symp-
tom is a printout like below in the .err log.

MySQL Change History

1378

InnoDB: Error: Mem area size is 0. Possibly a memory overrun of the
InnoDB: previous allocated area!
InnoDB: Apparent memory corruption: mem dump len 500; hex

• Improved portability to 64-bit platforms, especially Win64.

• Fixed an assertion failure when a purge of a table was not possible because of missing .ibd
file.

• Fixed a bug: do not retrieve all columns in a table if we only need the 'ref' of the row (usually,
the PRIMARY KEY) to calculate an ORDER BY. (Bug #1942)

• On Unix-like systems, obtain an exclusive advisory lock on InnoDB files, to prevent corruption
when multiple instances of MySQL are running on the same set of data files. The Windows ver-
sion of InnoDB currently takes a mandatory lock on the files. (Bug #3608)

• Added a missing space to the output format of SHOW INNODB STATUS; reported by Jocelyn
Fournier.

• All bugfixes from InnoDB-4.0.17, InnoDB-4.0.18, InnoDB-4.0.19 and InnoDB-4.0.20.

D.9.5. MySQL/InnoDB-4.0.20, May 18, 2004
Bugs fixed:

• Apostrophe characters now are recognized by the internal InnoDB parser and can be used with-
in quoted table and column identifiers in FOREIGN KEY clauses.

• Make LOCK TABLE aware of InnoDB row-level locks and InnoDB aware of locks set with
LOCK TABLE. (Bug #3299)

• Fixed race conditions in SHOW INNODB STATUS. (Bug #3596)

D.9.6. MySQL/InnoDB-4.0.19, May 4, 2004
Functionality added or changed:

• Better error message when the server has to crash because the buffer pool is exhausted by the
lock table or the adaptive hash index.

• Print always the count of pending pread() and pwrite() calls if there is a long semaphore
wait.

• Improve space utilization when rows of 1,500 to 8,000 bytes are inserted in the order of the
primary key.

• Remove potential buffer overflow errors by sending diagnostic output to stderr or files instead of
stdout or fixed-size memory buffers. As a side effect, the output of SHOW INNODB STATUS is
written to a file <datadir>/innodb.status.<pid> every 15 seconds.

Bugs fixed:

• Fixed a bug: DROP DATABASE did not work if FOREIGN KEY references were defined within
the database. (Bug #3058)

MySQL Change History

1379

• Remove unnecessary files, functions and variables. Many of these were needed in the standalone
version of InnoDB. Remove debug functions and variables from non-debug build.

• Add diagnostic code to analyze an assertion failure in ha_innodb.cc on line 2020 reported by a
user. (Bug #2903)

• Fixed a bug: in a FOREIGN KEY, ON UPDATE CASCADE was not triggered if the update
changed a string to another value identical in alphabetical ordering, for example, 'abc' -> 'aBc'.

• Protect the reading of the latest foreign key error explanation buffer with a mutex; in theory, a
race condition could cause SHOW INNODB STATUS print garbage characters after the error
info.

• Fixed a bug: The row count and key cardinality estimate was grossly too small if each clustered
index page only contained one record.

• Parse CONSTRAINT FOREIGN KEY correctly. (Bug #3332)

• Fixed a memory corruption bug on Windows. The bug is present in all InnoDB versions in Win-
dows, but it depends on how the linker places a static array in srv0srv.c, whether the bug
shows itself. 4 bytes were overwritten with a pointer to a statically allocated string 'get win-
dows aio return value'.

• Fix a glitch reported by Philippe Lewicki on the general mailing list: do not print a warning to
the .err log if read_key fails with a lock wait timeout error 146.

• Allow quotes to be embedded in strings in the private SQL parser of InnoDB, so that ''' can be
used in InnoDB table and column names. Display quotes within identifiers properly.

• Debugging: Allow UNIV_SYNC_DEBUG to be disabled while UNIV_DEBUG is enabled.

• Debugging: Handle magic numbers in a more consistent way.

D.9.7. MySQL/InnoDB-4.0.18, February 13, 2004

• Do not allow dropping a table referenced by a FOREIGN KEY constraint, unless the user does
SET FOREIGN_KEY_CHECKS=0. The error message here is somewhat misleading ``Cannot
delete or update a parent row...'', and must be changed in a future version 4.1.x.

• Make InnoDB to remember the CONSTRAINT name given by a user for a FOREIGN KEY.

• Change the print format of FOREIGN KEY constraints spanning multiple databases to
`db_name`.`tbl_name`. But when parsing them, we must also accept
`db_name.tbl_name`, because that was the output format in < 4.0.18.

• An optimization in locking: If AUTOCOMMIT=1, then we do not need to make a plain SELECT
set shared locks even on the SERIALIZABLE isolation level, because we know that the transac-
tion is read-only. A read-only transaction can always be performed on the REPEATABLE READ
level, and that does not endanger the serializability.

• Implement an automatic downgrade from >= 4.1.1 -> 4.0.18 if the user has not created tables in
.ibd files or used other 4.1.x features. Consult the manual section on multiple tablespaces
carefully if you want to downgrade!

• Fixed a bug: MySQL should not allow REPLACE to internally perform an UPDATE if the table
is referenced by a FOREIGN KEY. The MySQL manual states that REPLACE must resolve a
duplicate-key error semantically with DELETE(s) + INSERT, and not by an UPDATE. In ver-
sions < 4.0.18 and < 4.1.2, MySQL could resolve a duplicate key conflict in REPLACE by doing
an UPDATE on the existing row, and FOREIGN KEY checks could behave in a semantically
wrong way. (Bug #2418)

MySQL Change History

1380

• Fixed a bug: generate FOREIGN KEY constraint identifiers locally for each table, in the form
db_name/tbl_name_ibfk_number. If the user gives the constraint name explicitly, then
remember it. These changes should ensure that foreign key id's in a slave are the same as in the
master, and DROP FOREIGN KEY does not break replication. (Bug #2167)

• Fixed a bug: allow quoting of identifiers in InnoDB's FOREIGN KEY definitions with a back-
tick (`) and a double quote ("). You can now use also spaces in table and column names, if you
quote the identifiers. (Bug #1725, Bug #2424)

• Fixed a bug: FOREIGN KEY ... ON UPDATE/DELETE NO ACTION must check the for-
eign key constraint, not ignore it. Since we do not have deferred constraints in InnoDB, this
bugfix makes InnoDB to check NO ACTION constraints immediately, like it checks RE-
STRICT constraints.

• Fixed a bug: InnoDB crashed in RENAME TABLE if db_name.tbl_name is shorter than 5
characters. (Bug #2689)

• Fixed a bug: in SHOW TABLE STATUS, InnoDB row count and index cardinality estimates
wrapped around at 512 million in 32-bit computers. Note that unless MySQL is compiled with
the BIG_TABLES option, they still wrap around at 4 billion.

• Fixed a bug: If there was a UNIQUE secondary index, and NULL values in that unique index,
then with the IS NULL predicate, InnoDB returned only the first matching row, though there
can be many. This bug was introduced in 4.0.16. (Bug #2483)

D.9.8. MySQL/InnoDB-5.0.0, December 24, 2003

• Important note: If you upgrade to MySQL 4.1.1 or higher, it is difficult to downgrade back to
4.0 or 4.1.0! That is because, for earlier versions, InnoDB is not aware of multiple tablespaces.

• InnoDB in 5.0.0 is essentially the same as InnoDB-4.1.1 with the bugfixes of InnoDB-4.0.17
included.

D.9.9. MySQL/InnoDB-4.0.17, December 17, 2003

• Fixed a bug: If you created a column prefix secondary index and updated it so that the last char-
acters in the column prefix were spaces, InnoDB would assert in row0upd.c, line 713. The
same assertion failed if you updated a column in an ordinary secondary index so that the new
value was alphabetically equivalent, but had a different length. This could happen, for example,
in the UTF8 character set if you updated a letter to its accented or umlaut form.

• Fixed a bug: InnoDB could think that a secondary index record was not locked though it had
been updated to an alphabetically equivalent value, for example, 'abc' -> 'aBc'.

• Fixed a bug: If you updated a secondary index column to an alphabetically equivalent value, and
rolled back your update, InnoDB failed to restore the field in the secondary index to its original
value.

• There are still several outstanding non-critical bugs reported in the MySQL bugs database. Their
fixing has been delayed, because resources were allocated to the 4.1.1 release.

D.9.10. MySQL/InnoDB-4.1.1, December 4, 2003

• Important note: If you upgrade to MySQL 4.1.1 or higher, you cannot downgrade to a version
lower than 4.1.1 any more! That is because, for earlier versions, InnoDB is not aware of mul-
tiple tablespaces.

MySQL Change History

1381

• Multiple tablespaces now available for InnoDB. You can store each InnoDB type table and its
indexes into a separate .ibd file into a MySQL database directory, into the same directory
where the .frm file is stored.

• The MySQL query cache now works for InnoDB tables also if AUTOCOMMIT=0, or the state-
ments are enclosed inside BEGIN ... COMMIT.

• Reduced InnoDB memory consumption by a few megabytes if one sets the buffer pool size <
8MB.

• You can use raw disk partitions also in Windows.

D.9.11. MySQL/InnoDB-4.0.16, October 22, 2003

• Fixed a bug: in contrary to what was said in the manual, in a locking read InnoDB set two re-
cord locks if a unique exact match search condition was used on a multi-column unique key. For
a single column unique key it worked right.

• Fixed a bug: If you used the rename trick #sql... -> rsql... to recover a temporary ta-
ble, InnoDB asserted in row_mysql_lock_data_dictionary().

• There are several outstanding non-critical bugs reported in the MySQL bugs database. Their fix-
ing has been delayed, because resources are allocated to the upcoming 4.1.1 release.

D.9.12. MySQL/InnoDB-3.23.58, September 15, 2003

• Fixed a bug: InnoDB could make the index page directory corrupt in the first B-tree page splits
after mysqld startup. A symptom would be an assertion failure in page0page.c, in function
page_dir_find_slot().

• Fixed a bug: InnoDB could in rare cases return an extraneous row if a rollback, purge, and a
SELECT coincided.

• Fixed a possible hang over the btr0sea.c latch if SELECT was used inside LOCK TABLES.

• Fixed a bug: If a single DELETE statement first managed to delete some rows and then failed in
a FOREIGN KEY error or a Table is full error, MySQL did not roll back the whole SQL
statement as it should.

D.9.13. MySQL/InnoDB-4.0.15, September 10, 2003

• Fixed a bug: If you updated a row so that the 8000 byte maximum length (without BLOB and
TEXT) was exceeded, InnoDB simply removed the record from the clustered index. In a similar
insert, InnoDB would leak reserved file space extents, which would only be freed at the next
mysqld startup.

• Fixed a bug: If you used big BLOB values, and your log files were relatively small, InnoDB
could in a big BLOB operation temporarily write over the log produced after the latest check-
point. If InnoDB would crash at that moment, then the crash recovery would fail, because In-
noDB would not be able to scan the log even up to the latest checkpoint. Starting from this ver-
sion, InnoDB tries to ensure the latest checkpoint is young enough. If that is not possible, In-
noDB prints a warning to the .err log of MySQL and advises you to make the log files bigger.

• Fixed a bug: setting innodb_fast_shutdown=0 had no effect.

• Fixed a bug introduced in 4.0.13: If a CREATE TABLE ended in a comment, that could cause a

MySQL Change History

1382

memory overrun.

• Fixed a bug: If InnoDB printed Operating system error number .. in a file
operation to the .err log in Windows, the error number explanation was wrong. Work-
around: look at section 13.2 of http://www.innodb.com/ibman.php about Windows error num-
bers.

• Fixed a bug: If you created a column prefix PRIMARY KEY like in t(a CHAR(200),
PRIMARY KEY (a(10))) on a fixed-length CHAR column, InnoDB would crash even in a
simple SELECT. A CHECK TABLE would report the table as corrupt, also in the case where the
created key was not PRIMARY.

D.9.14. MySQL/InnoDB-4.0.14, July 22, 2003

• InnoDB now supports the SAVEPOINT and ROLLBACK TO SAVEPOINT SQL statements.
See http://www.innodb.com/ibman.php#Savepoints for the syntax.

• You can now create column prefix keys like in CREATE TABLE t (a BLOB, INDEX
(a(10))).

• You can also use O_DIRECT as the innodb_flush_method on the latest versions of Linux
and FreeBSD. Beware of possible bugs in those operating systems, though.

• Fixed the checksum calculation of data pages. Previously most OS file system corruption went
unnoticed. Note that if you downgrade from version >= 4.0.14 to an earlier version < 4.0.14 then
in the first startup(s) InnoDB prints warnings:

InnoDB: Warning: An inconsistent page in the doublewrite buffer
InnoDB: space id 2552202359 page number 8245, 127'th page in dblwr buf.

but that is not dangerous and can be ignored.

• Modified the buffer pool replacement algorithm so that it tries to flush modified pages if there
are no replaceable pages in the last 10 % of the LRU list. This can reduce disk I/O if the work-
load is a mixture of reads and writes.

• The buffer pool checkpoint flush algorithm now tries to flush also close neighbors of the page at
the end of the flush list. This can speed up database shutdown, and can also speed up disk writes
if InnoDB log files are very small compared to the buffer pool size.

• In 4.0.13 we made SHOW INNODB STATUS to print detailed info on the latest UNIQUE KEY
error, but storing that information could slow down REPLACE significantly. We no longer store
or print the info.

• Fixed a bug: SET FOREIGN_KEY_CHECKS=0 was not replicated properly in the MySQL rep-
lication. The fix will not be backported to 3.23.

• Fixed a bug: the parameter innodb_max_dirty_pages_pct forgot to take into account
the free pages in the buffer pool. This could lead to excessive flushing even though there were
lots of free pages in the buffer pool. Workaround: SET GLOBAL in-
nodb_max_dirty_pages_pct = 100.

• Fixed a bug: If there were big index scans then a file read request could starve and InnoDB
could assert because of a very long semaphore wait.

• Fixed a bug: If AUTOCOMMIT=1 then inside LOCK TABLES MySQL failed to do the commit
after an updating SQL statement if binary logging was not on, and for SELECT statements did
not commit regardless of binary logging state.

• Fixed a bug: InnoDB could make the index page directory corrupt in the first B-tree page splits
after a mysqld startup. A symptom would be an assertion in page0page.c, in function

MySQL Change History

1383

page_dir_find_slot().

• Fixed a bug: If in a FOREIGN KEY with an UPDATE CASCADE clause the parent column was
of a different internal storage length than the child column, then a cascaded update would make
the column length wrong in the child table and corrupt the child table. Because of MySQL's 'si-
lent column specification changes' a fixed-length CHAR column can change internally to a
VARCHAR and cause this error.

• Fixed a bug: If a non-latin1 character set was used and if in a FOREIGN KEY the parent
column was of a different internal storage length than the child column, then all inserts to the
child table would fail in a foreign key error.

• Fixed a bug: InnoDB could complain that it cannot find the clustered index record, or in rare
cases return an extraneous row if a rollback, purge, and a SELECT coincided.

• Fixed a possible hang over the btr0sea.c latch if SELECT was used inside LOCK TABLES.

• Fixed a bug: contrary to what the release note of 4.0.13 said, the group commit still did not work
if the MySQL binary logging was on.

• Fixed a bug: os_event_wait() did not work properly in Unix, which might have caused starvation
in various log operations.

• Fixed a bug: If a single DELETE statement first managed to delete some rows and then failed in
a FOREIGN KEY error or a Table is full error, MySQL did not roll back the whole SQL
statement as it should, and also wrote the failed statement to the binary log, reporting there a
non-zero error_code.

• Fixed a bug: the maximum allowed number of columns in a table is 1000, but InnoDB did not
check that limit in CREATE TABLE, and a subsequent INSERT or SELECT from that table
could cause an assertion.

D.9.15. MySQL/InnoDB-3.23.57, June 20, 2003

• Changed the default value of innodb_flush_log_at_trx_commit from 0 to 1. If you
have not specified it explicitly in your my.cnf, and your application runs much slower with
this new release, it is because the value 1 causes a log flush to disk at each transaction commit.

• Fixed a bug: InnoDB forgot to call pthread_mutex_destroy() when a table was dropped. That
could cause memory leakage on FreeBSD and other non-Linux Unixes.

• Fixed a bug: MySQL could erroneously return 'Empty set' if InnoDB estimated an index range
size to 0 records though the range was not empty; MySQL also failed to do the next-key locking
in the case of an empty index range.

• Fixed a bug: GROUP BY and DISTINCT could treat NULL values inequal.

D.9.16. MySQL/InnoDB-4.0.13, May 20, 2003

• InnoDB now supports ALTER TABLE DROP FOREIGN KEY. You have to use SHOW
CREATE TABLE to find the internally generated foreign key ID when you want to drop a for-
eign key.

• SHOW INNODB STATUS now prints detailed information of the latest detected FOREIGN
KEY and UNIQUE KEY errors. If you do not understand why InnoDB gives the error 150 from
a CREATE TABLE, you can use this statement to study the reason.

• ANALYZE TABLE now works also for InnoDB type tables. It makes 10 random dives to each

MySQL Change History

1384

of the index trees and updates index cardinality estimates accordingly. Note that because these
are only estimates, repeated runs of ANALYZE TABLE may produce different numbers. MySQL
uses index cardinality estimates only in join optimization. If some join is not optimized in the
right way, you may try using ANALYZE TABLE.

• InnoDB group commit capability now works also when MySQL binary logging is switched on.
There have to be > 2 client threads for the group commit to become active.

• Changed the default value of innodb_flush_log_at_trx_commit from 0 to 1. If you
have not specified it explicitly in your my.cnf, and your application runs much slower with
this new release, it is because the value 1 causes a log flush to disk at each transaction commit.

• Added a new global settable MySQL system variable innodb_max_dirty_pages_pct. It
is an integer in the range 0 - 100. The default is 90. The main thread in InnoDB tries to flush
pages from the buffer pool so that at most this many percents are not yet flushed at any time.

• If innodb_force_recovery=6, do not let InnoDB do repair of corrupt pages based on the
doublewrite buffer.

• InnoDB startup now happens faster because it does not set the memory in the buffer pool to
zero.

• Fixed a bug: The InnoDB parser for FOREIGN KEY definitions was confused by the keywords
'foreign key' inside MySQL comments.

• Fixed a bug: If you dropped a table to which there was a FOREIGN KEY reference, and later
created the same table with non-matching column types, InnoDB could assert in
dict0load.c, in function dict_load_table().

• Fixed a bug: GROUP BY and DISTINCT could treat NULL values as not equal. MySQL also
failed to do the next-key locking in the case of an empty index range.

• Fixed a bug: Do not commit the current transaction when a MyISAM table is updated; this also
makes CREATE TABLE not to commit an InnoDB transaction, even when binary logging is
enabled.

• Fixed a bug: We did not allow ON DELETE SET NULL to modify the same table where the
delete was made; we can allow it because that cannot produce infinite loops in cascaded opera-
tions.

• Fixed a bug: Allow HANDLER PREV and NEXT also after positioning the cursor with a unique
search on the primary key.

• Fixed a bug: If MIN() or MAX() resulted in a deadlock or a lock wait timeout, MySQL did not
return an error, but returned NULL as the function value.

• Fixed a bug: InnoDB forgot to call pthread_mutex_destroy() when a table was
dropped. That could cause memory leakage on FreeBSD and other non-Linux Unix systems.

D.9.17. MySQL/InnoDB-4.1.0, April 3, 2003

• InnoDB now supports up to 64GB of buffer pool memory in a Windows 32-bit Intel computer.
This is possible because InnoDB can use the AWE extension of Windows to address memory
over the 4GB limit of a 32-bit process. A new startup variable in-
nodb_buffer_pool_awe_mem_mb enables AWE and sets the size of the buffer pool in
megabytes.

• Reduced the size of buffer headers and the lock table. InnoDB uses 2 % less memory.

MySQL Change History

1385

D.9.18. MySQL/InnoDB-3.23.56, March 17, 2003

• Fixed a major bug in InnoDB query optimization: queries of type SELECT ... WHERE index-
column < x and SELECT ... WHERE indexcolumn > x could cause a table scan even if the se-
lectivity would have been very good.

• Fixed a potential bug if MySQL calls store_lock with TL_IGNORE in the middle of a query.

D.9.19. MySQL/InnoDB-4.0.12, March 18, 2003

• In crash recovery InnoDB now prints the progress in percents of a transaction rollback.

• Fixed a bug/feature: If your application program used mysql_use_result(), and used >= 2 con-
nections to send SQL queries, it could deadlock on the adaptive hash S-latch in btr0sea.c. Now
mysqld releases the S-latch whenever it passes data from a SELECT to the client.

• Fixed a bug: MySQL could erroneously return 'Empty set' if InnoDB estimated an index range
size to 0 records though the range was not empty; MySQL also failed to do the next-key locking
in the case of an empty index range.

D.9.20. MySQL/InnoDB-4.0.11, February 25, 2003

• Fixed a bug introduced in 4.0.10: SELECT ... FROM ... ORDER BY ... DESC could hang in an
infinite loop.

• An outstanding bug: SET FOREIGN_KEY_CHECKS=0 is not replicated properly in the
MySQL replication.

D.9.21. MySQL/InnoDB-4.0.10, February 4, 2003

• In INSERT INTO t1 SELECT ... FROM t2 WHERE ... MySQL previously set a table level read
lock on t2. This lock is now removed.

• Increased SHOW INNODB STATUS maximum printed length to 200KB.

• Fixed a major bug in InnoDB query optimization: queries of type SELECT ... WHERE index-
column < x and SELECT ... WHERE indexcolumn > x could cause a table scan even if the se-
lectivity would have been very good.

• Fixed a bug: purge could cause a hang in a BLOB table where the primary key index tree was of
height 1. Symptom: semaphore waits caused by an X-latch set in
btr_free_externally_stored_field().

• Fixed a bug: using InnoDB HANDLER commands on a fresh handle crashed mysqld in
ha_innobase::change_active_index().

• Fixed a bug: If MySQL estimated a query in the middle of a SELECT statement, InnoDB could
hang on the adaptive hash index latch in btr0sea.c.

• Fixed a bug: InnoDB could report table corruption and assert in page_dir_find_owner_slot() if
an adaptive hash index search coincided with purge or an insert.

• Fixed a bug: some filesystem snapshot tool in Windows 2000 could cause an InnoDB file write
to fail with error 33 ERROR_LOCK_VIOLATION. In synchronous writes InnoDB now retries
the write 100 times at 1 second intervals.

MySQL Change History

1386

• Fixed a bug: REPLACE INTO t1 SELECT ... did not work if t1 has an auto-inc column.

• An outstanding bug: SET FOREIGN_KEY_CHECKS=0 is not replicated properly in the
MySQL replication.

D.9.22. MySQL/InnoDB-3.23.55, January 24, 2003

• In INSERT INTO t1 SELECT ... FROM t2 WHERE ... MySQL previously set a table level read
lock on t2. This lock is now removed.

• Fixed a bug: If the combined size of InnoDB log files was >= 2GB in a 32-bit computer, In-
noDB would write log in a wrong position. That could make crash recovery and InnoDB Hot
Backup to fail in log scan.

• Fixed a bug: index cursor restoration could theoretically fail.

• Fixed a bug: an assertion in btr0sea.c, in function btr_search_info_update_slow could theoretic-
ally fail in a race of 3 threads.

• Fixed a bug: purge could cause a hang in a BLOB table where the primary key index tree was of
height 1. Symptom: semaphore waits caused by an X-latch set in
btr_free_externally_stored_field().

• Fixed a bug: If MySQL estimated a query in the middle of a SELECT statement, InnoDB could
hang on the adaptive hash index latch in btr0sea.c.

• Fixed a bug: InnoDB could report table corruption and assert in page_dir_find_owner_slot() if
an adaptive hash index search coincided with purge or an insert.

• Fixed a bug: some filesystem snapshot tool in Windows 2000 could cause an InnoDB file write
to fail with error 33 ERROR_LOCK_VIOLATION. In synchronous writes InnoDB now retries
the write 100 times at 1 second intervals.

• An outstanding bug: SET FOREIGN_KEY_CHECKS=0 is not replicated properly in the
MySQL replication. The fix appears in 4.0.11 and probably will not be backported to 3.23.

• Fixed bug in InnoDB page0cur.c file in function page_cur_search_with_match which
caused InnoDB to remain on the same page forever. This bug is evident only in tables with
more than one page.

D.9.23. MySQL/InnoDB-4.0.9, January 14, 2003

• Removed the warning message: 'InnoDB: Out of memory in additional memory pool.'

• Fixed a bug: If the combined size of InnoDB log files was >= 2GB in a 32-bit computer, In-
noDB would write log in a wrong position. That could make crash recovery and InnoDB Hot
Backup to fail.

• Fixed a bug: index cursor restoration could theoretically fail.

D.9.24. MySQL/InnoDB-4.0.8, January 7, 2003

• InnoDB now supports also FOREIGN KEY (...) REFERENCES ...(...) [ON UPDATE CAS-
CADE | ON UPDATE SET NULL | ON UPDATE RESTRICT | ON UPDATE NO ACTION].

• Tables and indexes now reserve 4 % less space in the tablespace. Also existing tables reserve

MySQL Change History

1387

less space. By upgrading to 4.0.8 you should see more free space in "InnoDB free" in SHOW
TABLE STATUS.

• Fixed bugs: updating the PRIMARY KEY of a row would generate a foreign key error on all
FOREIGN KEYs which referenced secondary keys of the row to be updated. Also, if a referen-
cing FOREIGN KEY constraint only referenced the first columns in an index, and there were
more columns in that index, updating the additional columns generated a foreign key error.

• Fixed a bug: If an index contains some column twice, and that column is updated, the table be-
comes corrupt. From now on InnoDB prevents creation of such indexes.

• Fixed a bug: removed superfluous error 149 and 150 printouts from the .err log when a locking
SELECT caused a deadlock or a lock wait timeout.

• Fixed a bug: an assertion in btr0sea.c, in function btr_search_info_update_slow could theoretic-
ally fail in a race of 3 threads.

• Fixed a bug: one could not switch a session transaction isolation level back to REPEATABLE
READ after setting it to something else.

D.9.25. MySQL/InnoDB-4.0.7, December 26, 2002

• InnoDB in 4.0.7 is essentially the same as in 4.0.6.

D.9.26. MySQL/InnoDB-4.0.6, December 19, 2002

• Since innodb_log_arch_dir has no relevance under MySQL, there is no need to specify it any
more in my.cnf.

• LOAD DATA INFILE in AUTOCOMMIT=1 mode no longer does implicit commits for each
1MB of written binary log.

• Fixed a bug introduced in 4.0.4: LOCK TABLES ... READ LOCAL should not set row locks on
the rows read. This caused deadlocks and lock wait timeouts in mysqldump.

• Fixed two bugs introduced in 4.0.4: in AUTO_INCREMENT, REPLACE could cause the
counter to be left 1 too low. A deadlock or a lock wait timeout could cause the same problem.

• Fixed a bug: TRUNCATE on a TEMPORARY table crashed InnoDB.

• Fixed a bug introduced in 4.0.5: If binary logging was not switched on, INSERT INTO ... SE-
LECT ... or CREATE TABLE ... SELECT ... could cause InnoDB to hang on a semaphore cre-
ated in btr0sea.c, line 128. Workaround: switch binary logging on.

• Fixed a bug: in replication issuing SLAVE STOP in the middle of a multiple-statement transac-
tion could cause that SLAVE START would only perform a part of the transaction. A similar er-
ror could occur if the slave crashed and was restarted.

D.9.27. MySQL/InnoDB-3.23.54, December 12, 2002

• Fixed a bug: the InnoDB range estimator greatly exaggerated the size of a short index range if
the paths to the endpoints of the range in the index tree happened to branch in the root. This
could cause unnecessary table scans in SQL queries.

• Fixed a bug: ORDER BY could fail if you had not created a primary key to a table, but had
defined several indexes of which at least one was a UNIQUE index with all its columns declared

MySQL Change History

1388

as NOT NULL.

• Fixed a bug: a lock wait timeout in connection with ON DELETE CASCADE could cause cor-
ruption in indexes.

• Fixed a bug: If a SELECT was done with a unique key from a primary index, and the search
matched to a delete-marked record, InnoDB could erroneously return the NEXT record.

• Fixed a bug introduced in 3.23.53: LOCK TABLES ... READ LOCAL should not set row locks
on the rows read. This caused deadlocks and lock wait timeouts in mysqldump.

• Fixed a bug: If an index contains some column twice, and that column is updated, the table be-
comes corrupt. From now on InnoDB prevents creation of such indexes.

D.9.28. MySQL/InnoDB-4.0.5, November 18, 2002

• InnoDB now supports also transaction isolation levels READ COMMITTED and READ UN-
COMMITTED. READ COMMITTED more closely emulates Oracle and makes porting of ap-
plications from Oracle to MySQL easier.

• Deadlock resolution is now selective: we try to pick as victims transactions with less modified or
inserted rows.

• FOREIGN KEY definitions are now aware of the lower_case_table_names setting in my.cnf.

• SHOW CREATE TABLE does not output the database name to a FOREIGN KEY definition if
the referred table is in the same database as the table.

• InnoDB does a consistency check to most index pages before writing them to a data file.

• If you set innodb_force_recovery > 0, InnoDB tries to jump over corrupt index records
and pages when doing SELECT * FROM table. This helps in dumping.

• InnoDB now again uses asynchronous unbuffered I/O in Windows 2000 and XP; only unbuf-
fered simulated async I/O in NT, 95/98/ME.

• Fixed a bug: the InnoDB range estimator greatly exaggerated the size of a short index range if
the paths to the endpoints of the range in the index tree happened to branch in the root. This
could cause unnecessary table scans in SQL queries. The fix is also backported to 3.23.54.

• Fixed a bug present in 3.23.52, 4.0.3, 4.0.4: InnoDB startup could take very long or even crash
on some Windows 95/98/ME computers.

• Fixed a bug: the AUTO-INC lock was held to the end of the transaction if it was granted after a
lock wait. This could cause unnecessary deadlocks.

• Fixed a bug: If SHOW INNODB STATUS, innodb_monitor, or innodb_lock_monitor had to
print several hundred transactions in one report, and the output became truncated, InnoDB
would hang, printing to the error log many waits for a mutex created at srv0srv.c, line 1621.

• Fixed a bug: SHOW INNODB STATUS on Unix always reported average file read size as 0
bytes.

• Fixed a potential bug in 4.0.4: InnoDB now does ORDER BY ... DESC like MyISAM.

• Fixed a bug: DROP TABLE could cause crash or a hang if there was a rollback concurrently
running on the table. The fix will be backported to 3.23 only if this appears a real problem for
users.

• Fixed a bug: ORDER BY could fail if you had not created a primary key to a table, but had
defined several indexes of which at least one was a UNIQUE index with all its columns declared

MySQL Change History

1389

as NOT NULL.

• Fixed a bug: a lock wait timeout in connection with ON DELETE CASCADE could cause cor-
ruption in indexes.

• Fixed a bug: If a SELECT was done with a unique key from a primary index, and the search
matched to a delete-marked record, InnoDB could return the NEXT record.

• Outstanding bugs: in 4.0.4 two bugs were introduced to AUTO_INCREMENT. REPLACE can
cause the counter to be left 1 too low. A deadlock or a lock wait timeout can cause the same
problem. These are fixed in 4.0.6.

D.9.29. MySQL/InnoDB-3.23.53, October 9, 2002

• We again use unbuffered disk I/O to data files in Windows. Windows XP and Windows 2000
read performance seems to be very poor with normal I/O.

• Tuned range estimator so that index range scans are preferred over full index scans.

• Allow dropping and creating a table even if innodb_force_recovery is set. One can use this to
drop a table which would cause a crash in rollback or purge, or if a failed table import causes a
runaway rollback in recovery.

• Fixed a bug present in 3.23.52, 4.0.3, 4.0.4: InnoDB startup could take very long or even crash
on some Windows 95/98/ME computers.

• Fixed a bug: fast shutdown (which is the default) sometimes was slowed down by purge and in-
sert buffer merge.

• Fixed a bug: doing a big SELECT from a table where no rows were visible in a consistent read
could cause a very long (> 600 seconds) semaphore wait in btr0cur.c line 310.

• Fixed a bug: the AUTO-INC lock was held to the end of the transaction if it was granted after a
lock wait. This could cause unnecessary deadlocks.

• Fixed a bug: If you created a temporary table inside LOCK TABLES, and used that temporary
table, that caused an assertion failure in ha_innobase.cc.

• Fixed a bug: If SHOW INNODB STATUS, innodb_monitor, or innodb_lock_monitor had to
print several hundred transactions in one report, and the output became truncated, InnoDB
would hang, printing to the error log many waits for a mutex created at srv0srv.c, line 1621.

• Fixed a bug: SHOW INNODB STATUS on Unix always reported average file read size as 0
bytes.

D.9.30. MySQL/InnoDB-4.0.4, October 2, 2002

• We again use unbuffered disk I/O in Windows. Windows XP and Windows 2000 read perform-
ance seems to be very poor with normal I/O.

• Increased the maximum key length of InnoDB tables from 500 to 1024 bytes.

• Increased the table comment field in SHOW TABLE STATUS so that up to 16000 characters of
foreign key definitions can be printed there.

• The auto-increment counter is no longer incremented if an insert of a row immediately fails in an
error.

• Allow dropping and creating a table even if innodb_force_recovery is set. One can use this to

MySQL Change History

1390

drop a table which would cause a crash in rollback or purge, or if a failed table import causes a
runaway rollback in recovery.

• Fixed a bug: Using ORDER BY primarykey DESC in 4.0.3 causes an assertion failure in
btr0pcur.c, line 203.

• Fixed a bug: fast shutdown (which is the default) sometimes was slowed down by purge and in-
sert buffer merge.

• Fixed a bug: doing a big SELECT from a table where no rows were visible in a consistent read
could cause a very long (> 600 seconds) semaphore wait in btr0cur.c line 310.

• Fixed a bug: If the MySQL query cache was used, it did not get invalidated by a modification
done by ON DELETE CASCADE or ...SET NULL.

• Fixed a bug: If you created a temporary table inside LOCK TABLES, and used that temporary
table, that caused an assertion failure in ha_innodb.cc.

• Fixed a bug: If you set innodb_flush_log_at_trx_commit to 1, SHOW VARIABLES would
show its value as 16 million.

D.9.31. MySQL/InnoDB-4.0.3, August 28, 2002

• Removed unnecessary deadlocks when inserts have to wait for a locking read, update, or delete
to release its next-key lock.

• The MySQL HANDLER SQL commands now work also for InnoDB type tables. InnoDB does
the HANDLER reads always as consistent reads. HANDLER is a direct access path to read indi-
vidual indexes of tables. In some cases, HANDLER can be used as a substitute of server-side
cursors.

• Fixed a bug in 4.0.2: even a simple insert could crash the AIX version.

• Fixed a bug: If you used in a table name characters whose code is > 127, in DROP TABLE In-
noDB could assert on line 155 of pars0sym.c.

• Compilation from source now provides a working version both on HP-UX-11 and HP-
UX-10.20. The source of 4.0.2 worked only on 11, and the source of 3.23.52 only on 10.20.

• Fixed a bug: If compiled on 64-bit Solaris, InnoDB produced a bus error at startup.

D.9.32. MySQL/InnoDB-3.23.52, August 16, 2002

• The feature set of 3.23 is frozen from this version on. New features go the 4.0 branch, and only
bugfixes are made to the 3.23 branch.

• Many CPU-bound join queries now run faster. On Windows also many other CPU-bound quer-
ies run faster.

• A new SQL command SHOW INNODB STATUS returns the output of the InnoDB Monitor to
the client. The InnoDB Monitor now prints detailed information on the latest detected deadlock.

• InnoDB made the SQL query optimizer to avoid too much index-only range scans and choose
full table scans instead. This is now fixed.

• BEGIN and COMMIT are now added in the binary log around transactions. The MySQL replica-
tion now respects transaction borders: a user no longer sees half transactions in replication
slaves.

MySQL Change History

1391

• A replication slave now prints in crash recovery the last master binary log position it was able to
recover to.

• A new setting innodb_flush_log_at_trx_commit=2 makes InnoDB to write the log
to the operating system file cache at each commit. This is almost as fast as the setting in-
nodb_flush_log_at_trx_commit=0, and the setting 2 also has the nice feature that in a crash
where the operating system does not crash, no committed transaction is lost. If the operating sys-
tem crashes or there is a power outage, then the setting 2 is no safer than the setting 0.

• Added checksum fields to log blocks.

• SET FOREIGN_KEY_CHECKS=0 helps in importing tables in an arbitrary order which does
not respect the foreign key rules.

• SET UNIQUE_CHECKS=0 speeds up table imports into InnoDB if you have UNIQUE con-
straints on secondary indexes. This flag should be used only if you are certain that the input re-
cords contain no UNIQUE constraint violations.

• SHOW TABLE STATUS now lists also possible ON DELETE CASCADE or ON DELETE
SET NULL in the comment field of the table.

• When CHECK TABLE is run on any InnoDB type table, it now checks also the adaptive hash
index for all tables.

• If you defined ON DELETE CASCADE or SET NULL and updated the referenced key in the
parent row, InnoDB deleted or updated the child row. This is now changed to conform to stand-
ard SQL: you get the error 'Cannot delete parent row'.

• Improved the auto-increment algorithm: now the first insert or SHOW TABLE STATUS initial-
izes the auto-increment counter for the table. This removes almost all surprising deadlocks
caused by SHOW TABLE STATUS.

• Aligned some buffers used in reading and writing to data files. This allows using unbuffered raw
devices as data files in Linux.

• Fixed a bug: If you updated the primary key of a table so that only the case of characters
changed, that could cause assertion failures, mostly in page0page.ic line 515.

• Fixed a bug: If you delete or update a row referenced in a foreign key constraint and the foreign
key check has to wait for a lock, then the check may report an erroneous result. This affects also
the ON DELETE... operation.

• Fixed a bug: A deadlock or a lock wait timeout error in InnoDB causes InnoDB to roll back
the whole transaction, but MySQL could still write the earlier SQL statements to the binary log,
even though InnoDB rolled them back. This could, for example, cause replicated databases to
get out-of-sync.

• Fixed a bug: If the database happened to crash in the middle of a commit, then the recovery
might leak tablespace pages.

• Fixed a bug: If you specified a non-latin1 character set in my.cnf, then, in contrary to what is
stated in the manual, in a foreign key constraint a string type column had to have the same
length specification in the referencing table and the referenced table.

• Fixed a bug: DROP TABLE or DROP DATABASE could fail if there simultaneously was a
CREATE TABLE running.

• Fixed a bug: If you configured the buffer pool bigger than 2GB in a 32-bit computer, InnoDB
would assert in buf0buf.ic line 214.

• Fixed a bug: on 64-bit computers updating rows which contained the SQL NULL in some
column could cause the undo log and the ordinary log to become corrupt.

• Fixed a bug: innodb_log_monitor caused a hang if it suppressed lock prints for a page.

MySQL Change History

1392

• Fixed a bug: in the HP-UX-10.20 version mutexes would leak and cause race conditions and
crashes in any part of InnoDB code.

• Fixed a bug: If you ran in the AUTOCOMMIT mode, executed a SELECT, and immediately
after that a RENAME TABLE, then RENAME would fail and MySQL would complain about
error 1192.

• Fixed a bug: If compiled on 64-bit Solaris, InnoDB produced a bus error at startup.

D.9.33. MySQL/InnoDB-4.0.2, July 10, 2002

• InnoDB is essentially the same as InnoDB-3.23.51.

• If no innodb_data_file_path is specified, InnoDB at the database creation now creates a 10MB
auto-extending data file ibdata1 to the datadir of MySQL. In 4.0.1 the file was 64MB and not
auto-extending.

D.9.34. MySQL/InnoDB-3.23.51, June 12, 2002

• Fixed a bug: a join could result in a seg fault in copying of a BLOB or TEXT column if some of
the BLOB or TEXT columns in the table contained SQL NULL values.

• Fixed a bug: If you added self-referential foreign key constraints with ON DELETE CASCADE
to tables and a row deletion caused InnoDB to attempt the deletion of the same row twice be-
cause of a cascading delete, then you got an assertion failure.

• Fixed a bug: If you use MySQL 'user level locks' and close a connection, then InnoDB may as-
sert in ha_innobase.cc, line 302.

D.9.35. MySQL/InnoDB-3.23.50, April 23, 2002

• InnoDB now supports an auto-extending last data file. You do not need to preallocate the whole
data file at the database startup.

• Made several changes to facilitate the use of the InnoDB Hot Backup tool. It is a separate
non-free tool you can use to take online backups of your database without shutting down the
server or setting any locks.

• If you want to run the InnoDB Hot Backup tool on an auto-extending data file you have to
upgrade it to version ibbackup-0.35.

• The log scan phase in crash recovery now runs much faster.

• Starting from this server version, the hot backup tool truncates unused ends in the backup In-
noDB data files.

• To allow the hot backup tool to work, on Windows we no longer use unbuffered I/O or native
async I/O; instead we use the same simulated async I/O as on Unix.

• You can now define the ON DELETE CASCADE or ON DELETE SET NULL clause on for-
eign keys.

• FOREIGN KEY constraints now survive ALTER TABLE and CREATE INDEX.

• We suppress the FOREIGN KEY check if any of the column values in the foreign key or refer-
enced key to be checked is the SQL NULL. This is compatible with Oracle, for example.

MySQL Change History

1393

• SHOW CREATE TABLE now lists also foreign key constraints. Also mysqldump no longer
forgets about foreign keys in table definitions.

• You can now add a new foreign key constraint with ALTER TABLE ... ADD CONSTRAINT
FOREIGN KEY (...) REFERENCES ... (...).

• FOREIGN KEY definitions now allow backticks around table and column names.

• MySQL command SET TRANSACTION ISOLATION LEVEL ... has now the following effect
on InnoDB tables: If a transaction is defined as SERIALIZABLE then InnoDB conceptually
adds LOCK IN SHARE MODE to all consistent reads. If a transaction is defined to have any
other isolation level, then InnoDB obeys its default locking strategy which is REPEATABLE
READ.

• SHOW TABLE STATUS no longer sets an x-lock at the end of an auto-increment index if the
auto-increment counter has been initialized. This removes in almost all cases the surprising
deadlocks caused by SHOW TABLE STATUS.

• Fixed a bug: in a CREATE TABLE statement the string 'foreign' followed by a non-space char-
acter confused the FOREIGN KEY parser and caused table creation to fail with errno 150.

D.9.36. MySQL/InnoDB-3.23.49, February 17, 2002

• Fixed a bug: If you called DROP DATABASE for a database on which there simultaneously
were running queries, the MySQL server could crash or hang. Crashes fixed, but a full fix has to
wait some changes in the MySQL layer of code.

• Fixed a bug: on Windows one had to put the database name in lowercase for DROP DATABASE
to work. Fixed in 3.23.49: case no longer matters on Windows. On Unix, the database name re-
mains case sensitive.

• Fixed a bug: If one defined a non-latin1 character set as the default character set, then definition
of foreign key constraints could fail in an assertion failure in dict0crea.c, reporting an internal
error 17.

D.9.37. MySQL/InnoDB-3.23.48, February 9, 2002

• Tuned the SQL optimizer to favor more often index searches over table scans.

• Fixed a performance problem when several large SELECT queries are run concurrently on a
multiprocessor Linux computer. Large CPU-bound SELECT queries now also generally run
faster on all platforms.

• If MySQL binary logging is used, InnoDB now prints after crash recovery the latest MySQL
binary log file name and the position in that file (= byte offset) InnoDB was able to recover to.
This is useful, for example, when resynchronizing a master and a slave database in replication.

• Added better error messages to help in installation problems.

• One can now recover also MySQL temporary tables which have become orphaned inside the
InnoDB tablespace.

• InnoDB now prevents a FOREIGN KEY declaration where the signedness is not the same in
the referencing and referenced integer columns.

• Fixed a bug: calling SHOW CREATE TABLE or SHOW TABLE STATUS could cause
memory corruption and make mysqld to crash. Especially at risk was mysqldump, because it
calls frequently SHOW CREATE TABLE.

MySQL Change History

1394

• Fixed a bug: If on Unix you did an ALTER TABLE to an InnoDB table and simultaneously did
queries to it, mysqld could crash with an assertion failure in row0row.c, line 474.

• Fixed a bug: If inserts to several tables containing an auto-inc column were wrapped inside one
LOCK TABLES, InnoDB asserted in lock0lock.c.

• In 3.23.47 we allowed several NULLS in a UNIQUE secondary index. But CHECK TABLE
was not relaxed: it reports the table as corrupt. CHECK TABLE no longer complains in this situ-
ation.

• Fixed a bug: on Sparc and other high-endian processors SHOW VARIABLES showed in-
nodb_flush_log_at_trx_commit and other boolean-valued startup parameters always OFF even if
they were switched on.

• Fixed a bug: If you ran mysqld-max-nt as a service on Windows NT/2000, the service shutdown
did not always wait long enough for the InnoDB shutdown to finish.

D.9.38. MySQL/InnoDB-3.23.47, December 28, 2001

• Recovery happens now faster, especially in a lightly loaded system, because background check-
pointing has been made more frequent.

• InnoDB allows now several similar key values in a UNIQUE secondary index if those values
contain SQL NULLs. Thus the convention is now the same as in MyISAM tables.

• InnoDB gives a better row count estimate for a table which contains BLOBs.

• In a FOREIGN KEY constraint InnoDB is now case-insensitive to column names, and in Win-
dows also to table names.

• InnoDB allows a FOREIGN KEY column of CHAR type to refer to a column of VARCHAR
type, and vice versa. MySQL silently changes the type of some columns between CHAR and
VARCHAR, and these silent changes do not hinder FOREIGN KEY declaration any more.

• Recovery has been made more resilient to corruption of log files.

• Unnecessary statistics calculation has been removed from queries which generate a temporary
table. Some ORDER BY and DISTINCT queries now run much faster.

• MySQL now knows that the table scan of an InnoDB table is done through the primary key.
This saves a sort in some ORDER BY queries.

• The maximum key length of InnoDB tables is again restricted to 500 bytes. The MySQL inter-
preter is not able to handle longer keys.

• The default value of innodb_lock_wait_timeout was changed from infinite to 50 seconds, the de-
fault value of innodb_file_io_threads from 9 to 4.

D.9.39. MySQL/InnoDB-4.0.1, December 23, 2001

• InnoDB is the same as in 3.23.47.

• In 4.0.0 the MySQL interpreter did not know the syntax LOCK IN SHARE MODE. This has
been fixed.

• In 4.0.0 multiple-table delete did not work for transactional tables. This has been fixed.

MySQL Change History

1395

D.9.40. MySQL/InnoDB-3.23.46, November 30, 2001

• This is the same as 3.23.45.

D.9.41. MySQL/InnoDB-3.23.45, November 23, 2001

• This is a bugfix release.

• In versions 3.23.42-.44 when creating a table on Windows, you have to use lowercase letters in
the database name to be able to access the table. Fixed in 3.23.45.

• InnoDB now flushes stdout and stderr every 10 seconds: If these are redirected to files, the file
contents can be better viewed with an editor.

• Fixed an assertion failure in .44, in trx0trx.c, line 178 when you drop a table which has the .frm
file but does not exist inside InnoDB.

• Fixed a bug in the insert buffer. The insert buffer tree could get into an inconsistent state, caus-
ing a crash, and also crashing the recovery. This bug could appear especially in large table im-
ports or alterations.

• Fixed a bug in recovery: InnoDB could go into an infinite loop constantly printing a warning
message that it cannot find free blocks from the buffer pool.

• Fixed a bug: when you created a temporary table of the InnoDB type, and then used ALTER
TABLE to it, the MySQL server could crash.

• Prevented creation of MySQL system tables 'mysql.user', 'mysql.host', or 'mysql.db', in the In-
noDB type.

• Fixed a bug which can cause an assertion failure in 3.23.44 in srv0srv.c, line 1728.

D.9.42. MySQL/InnoDB-3.23.44, November 2, 2001

• You can define foreign key constraints on InnoDB tables. An example: FOREIGN KEY (col1)
REFERENCES table2(col2).

• You can create data files larger than 4GB in those filesystems that allow it.

• Improved InnoDB monitors, including a new innodb_table_monitor which allows you to print
the contents of the InnoDB internal data dictionary.

• DROP DATABASE now works also for InnoDB tables.

• Accent characters in the default character set latin1 are ordered according to the MySQL order-
ing.

NOTE: If you are using latin1 and have inserted characters whose code is > 127 to an indexed
CHAR column, you should run CHECK TABLE on your table when you upgrade to 3.23.43,
and drop and reimport the table if CHECK TABLE reports an error!

• InnoDB calculates better table cardinality estimates.

• Change in deadlock resolution: in .43 a deadlock rolls back only the SQL statement, in .44 it
rolls back the whole transaction.

• Deadlock, lock wait timeout, and foreign key constraint violations (no parent row, child rows
exist) now return native MySQL error codes 1213, 1205, 1216, 1217, respectively.

MySQL Change History

1396

• A new my.cnf parameter innodb_thread_concurrency helps in performance tuning in high con-
currency environments.

• A new my.cnf option innodb_force_recovery helps you in dumping tables from a corrupted data-
base.

• A new my.cnf option innodb_fast_shutdown speeds up shutdown. Normally InnoDB does a full
purge and an insert buffer merge at shutdown.

• Raised maximum key length to 7000 bytes from a previous limit of 500 bytes.

• Fixed a bug in replication of auto-inc columns with multiline inserts.

• Fixed a bug when the case of letters changes in an update of an indexed secondary column.

• Fixed a hang when there are more than 24 data files.

• Fixed a crash when MAX(col) is selected from an empty table, and col is a not the first column
in a multi-column index.

• Fixed a bug in purge which could cause crashes.

D.9.43. MySQL/InnoDB-3.23.43, October 4, 2001

• This is essentially the same as InnoDB-3.23.42.

D.9.44. MySQL/InnoDB-3.23.42, September 9, 2001

• Fixed a bug which corrupted the table if the primary key of a > 8000-byte row was updated.

• There are now 3 types of InnoDB Monitors: innodb_monitor, innodb_lock_monitor, and in-
nodb_tablespace_monitor. innodb_monitor now prints also buffer pool hit rate and the total
number of rows inserted, updated, deleted, read.

• Fixed a bug in RENAME TABLE.

• Fixed a bug in replication with an auto-increment column.

D.9.45. MySQL/InnoDB-3.23.41, August 13, 2001

• Support for < 4GB rows. The previous limit was 8000 bytes.

• Use the doublewrite file flush method.

• Raw disk partitions supported as data files.

• InnoDB Monitor.

• Several hang bugs fixed and an ORDER BY bug (``Sort aborted'') fixed.

D.9.46. MySQL/InnoDB-3.23.40, July 16, 2001

• Only a few rare bugs fixed.

MySQL Change History

1397

D.9.47. MySQL/InnoDB-3.23.39, June 13, 2001

• CHECK TABLE now works for InnoDB tables.

• A new my.cnf parameter innodb_unix_file_flush_method introduced. It can be
used to tune disk write performance.

• An auto-increment column now gets new values past the transaction mechanism. This saves
CPU time and eliminates transaction deadlocks in new value assignment.

• Several bugfixes, most notably the rollback bug in 3.23.38.

D.9.48. MySQL/InnoDB-3.23.38, May 12, 2001

• The new syntax SELECT ... LOCK IN SHARE MODE is introduced.

• InnoDB now calls fsync() after every disk write and calculates a checksum for every data-
base page it writes or reads, which reveals disk defects.

• Several bugfixes.

D.10. MySQL Cluster Change History
D.10.1. MySQL Cluster-4.1.10 (not released yet)

Functionality added or changed:

Bugs fixed:

D.10.2. MySQL Cluster-4.1.9 (13 Jan 2005)
Functionality added or changed:

• New implementation of shared memory transporter.

• Cluster automatically configures shared memory transporter if possible.

• Cluster prioritizes usage of transporters with shared memory and localhost TCP

• Added switches to control the above functions, ndb-shm and ndb-optim-
ized-node-selection.

Bugs fixed:

• (Bug #7379) ndb restore fails to handle blobs and multiple databases

• (Bug #7346) ndb_restore enters infinite loop

• (Bug #7124) ndb_mgmd is aborted on startup when using SHM connection

D.10.3. MySQL Cluster-4.1.8 (14 Dec 2004)
Functionality added or changed:

MySQL Change History

1398

• Default port for ndb_mgmd was changed to 1186 (from 2200) as this port number was offi-
cially assigned to MySQL Cluster by IANA.

• New command in ndb_mgm, PURGE STALE SESSIONS, as a workaround for cases where
nodes fail to allocate a node id even if it is free to use.

• New command in ndb_mgm, CONNECT.

• The ndb executables have been changed to make use of the regular MySQL command line op-
tion parsing features. See Section 16.4.5, “Command Options for MySQL Cluster Processes” for
notes on changes.

• As bonus of the above you can now specify all command line options in my.cnf using the ex-
ecutable names as sections, i.e. [ndbd], [ndb_mgmd], [ndb_mgm], [ndb_restore] etc.

[ndbd]
ndb-connectstring=myhost.domain.com:1234
[ndb_mgm]
ndb-connectstring=myhost.domain.com:1234

• Added use of section [mysql_cluster] in my.cnf. All cluster executables, including
mysqld, parse this section. Convenient place to put e.g. ndb-connectstring so that it only
needs to be specified once.

• Added cluster log info events on allocation and deallocation of nodeid's.

• Added cluster log info events on connection refuse as a result of version mismatch.

• Extended connectstring syntax to allow for leaving the port number out. E.g. ndb-
connectstring|connect-string=myhost1,myhost2,myhost3 is a valid connect-
string and connect occurs on default port 1186.

• Clear text ndb error messages provided also for error codes that are mapped to corresponding
mysql error codes, by executing SHOW WARNINGS after an error has occured which relates to
the ndb storage engine.

• Significant performance improvements done for read performance, especially for blobs.

• Added some variables for performance tuning, ndb_force_send and
ndb_use_exact_count. Do show variables like 'ndb%'; in mysql client for
listing. Use set command to alter variables.

• Added variables to set some options, ndb_use_transactions and
ndb_autoincrement_prefetch_sz.

Bugs fixed:

• (Bug #7303) ndb_mgm: Trying to set CLUSTERLOG for a specific node id core dumps

• (Bug #7193) start backup gives false error printout

• (Bug #7153) Cluster nodes don't report error on endianness mismatch

• (Bug #7152) ndb_mgmd segfaults on incorrect HostName in configuration

• (Bug #7104) clusterlog filtering and level setting broken

• (Bug #6995) ndb_recover on varchar fields results in changing case of data

• (Bug #6919) all status only shows 2 nodes on a 8-node cluster

• (Bug #6871) DBD execute failed: Got error 897 'Unknown error code' from ndbcluster

MySQL Change History

1399

• (Bug #6794) Wrong outcome of update operation of ndb table

• (Bug #6791) Segmentation fault when config.ini is not correctly set

• (Bug #6775) failure in acc when running many mysql clients

• (Bug #6696) ndb_mgm command line options inconsistent with behaviour

• (Bug #6684) ndb_restore doesn't give error messages if inproper command given

• (Bug #6677) ndb_mgm can crash on "ALL CLUSTERLOG"

• (Bug #6538) Error code returned when select max() on empty table with index

• (Bug #6451) failing create table givers "ghost" tables which are impossible to remove

• (Bug #6435) strange behaviour of left join

• (Bug #6426) update with long pk fails

• (Bug #6398) update of primary key fails

• (Bug #6354) mysql does not complain about --ndbcluster option when NDB is not compiled in

• (Bug #6331) INSERT IGNORE .. SELECT breaks subsequent inserts

• (Bug #6288) cluster nodes crash on data import

• (Bug #6031) To drop database you have to execute DROP DATABASE command twice

• (Bug #6020) LOCK TABLE + delete returns error 208

• (Bug #6018) REPLACE does not work for BLOBs + NDB

• (Bug #6016) Strange crash with blobs + different DATABASES

• (Bug #5973) ndb table belonging to different database shows up in show tables

• (Bug #5872) ALTER TABLE with blob from ndb table to myisam fails

• (Bug #5844) Failing mysql-test-run leaves stray NDB processes behind

• (Bug #5824) HELP text messed up in ndb_mgm

• (Bug #5786) Duplicate key error after restore

• (Bug #5785) lock timeout during concurrent update

• (Bug #5782) Unknown error when using LIMIT with ndb table

• (Bug #5756) RESTART node from ndb_mgm fails

• A few more not reported bugs fixed

D.10.4. MySQL Cluster-4.1.7 (23 Oct 2004)
Functionality added or changed:

• Optimization 1: Improved performance on index scans. Measured 30% performance increase on
query which do large amounts of index scans.

• Optimization 2: Improved performance on primary key lookups. Around double performance for

MySQL Change History

1400

autocommitted primary key lookups.

• Optimization 3: Improved performance when using blobs by avoiding usage of exclusive locks
for blobs.

Bugs fixed:

• A few bugs fixed.

D.10.5. MySQL Cluster-4.1.6 (10 Oct 2004)
Functionality added or changed:

• Limited character set support for storage engine NDBCLUSTER:

Char set Collation

big5 big5_chinese_ci

big5_bin

binary binary

euckr euckr_korean_ci

euckr_bin

gb2312 gb2312_chinese_ci

gb2312_bin

gbk gbk_chinese_ci

gbk_bin

latin1 latin1_swedish_ci

latin1_bin

sjis sjis_japanese_ci

sjis_bin

tis620 tis620_bin

ucs2 ucs2_general_ci

ucs2_bin

ujis ujis_japanese_ci

ujis_bin

utf8 utf8_general_ci

utf8_bin

• The SCI Transporter has been brought up-to-date with all changes and now works and has been
documented as well.

• Optimizations when several clients to a MySQL Server access ndb tables.

• Added more checks and warnings for erroneous and unappropriate cluster configurations.

• SHOW TABLES now directly shows ndb tables created on a different mysql server, i.e. without
a prior table access.

• Enhanced support for starting MySQL Server independently of ndbd and ndb_mgmd.

• Clear text ndb error messages provided by executing SHOW WARNINGS after an error has oc-

MySQL Change History

1401

cured which relates to the ndb storage engine.

Bugs fixed:

• Quite a few bugs fixed.

D.10.6. MySQL Cluster-4.1.5 (16 Sep 2004)
Functionality added or changed:

• Many queries in MySQL Cluster are executed as range scans or full table scans. All queries that
don't use a unique hash index or the primary hash index use this access method. In a distributed
system it is crucial that batching is properly performed.

In previous version the batch size was fixed to 16 per storage node. In this version it is configur-
able per MySQL Server. So for queries using lots of large scans it is appropriate to set this para-
meter rather large and for queries using lots of small scans only fetching a small amount of re-
cords it is appropriate to set it low.

The performance of queries can easily change as much as 40% based on how this variable is set.

In future versions more logic will be made to assess the batch size on per query basis. Thus the
semantics of this new configuration variable ScanBatchSize is likely to change.

• The fixed size overhead of the ndbd process was greatly decreased. Also overhead per operation
record was greatly decreased and also overhead per table and index was greatly decreased.

A number of new configuration variables was introduced to be able to configure more buffers in
the system. Configuration variables to specify the number of tables, unique hash indexes and
ordered indexes was introduced as well.

New configuration variables: MaxNoOfOrderedIndexes, MaxNoOfUnique-
HashIndexes

Configuration variables no longer used: MaxNoOfIndexes (split into the two above).

• In previous versions ALTER TABLE, TRUNCATE TABLE, and LOAD DATA were performed
as one big transaction. In this version, all those statements are automatically separated into a
number of transactions.

This removes the limitation that one could not change very large tables due to the MaxNoOf-
ConcurrentOperations parameter.

• The online backup feature of MySQL Cluster now also backs up the indexes such that the re-
store ensures that both data and indexes are restored.

• In previous versions it was not possible to use NULL in indexes. This is now possible in all in-
dexes.

• Much work has been put onto making AUTO_INCREMENT features work as for other table
handlers. Autoincrements as a partial key is still only supported by MyISAM.

• In previous version,s mysqld would crash if the cluster wasn't started and the --ndbcluster
option was used. Now mysqld handles cluster crashes and starts without crashing.

• The -i option for initial startup has been removed from ndbd. Initial startup still can be spe-
cified by using the --initial option. The reason is to ensure that it is clearer what takes
place when using the --initial option. This option completely removes all data from the
disk and should only be used at initial start, in certain software upgrade cases, and in some cases

MySQL Change History

1402

when node restarts don't work as a workaround.

• The management client (ndb_mgm) now has more commands and more information is printed
in some commands such as show.

• In previous versions, the files were called ndb_0.. when it wasn't possible to allocate a node
ID when starting the node. To ensure that files are not so easily overwritten, these files are now
named ndb_pid.., where pid is the process ID assigned by the OS.

• The default parameters have changed for ndb_mgmd and ndbd. Yn particular, they are now
started as daemons by default. The -n option was removed since it could confusion as to wheth-
er its meaning is nostart or nodaemon.

• In the configuration file, you can now use [NDBD] as an alias for [DB], [MYSQLD] as an alias
for [API], and [NDB_MGMD] as an alias for [MGM].

• Many more checks of the consistency of the configuration have been introduced to provide
quicker feedback on configuration errors.

• In the connect string, it is now possible to use both ';' and ',' as the separator between entries.
So "nodeid=2,host=localhost:2200" is equivalent to "nodeid=2;host=localhost:2200".

In the configuration, it is possible to use ':' or '=' as the assignment symbol. Thus MaxNoO-
fOrderedIndexes : 128 and MaxNoOfOrderedIndexes = 128 are equivalent.

• The configuration variable names are now case insensitive so MaxNoOfOrderedIndexes:
128 is equivalent to MAXNOOFORDEREDINDEXES = 128.

• It is possible now to set the backup directory separately from the FileSystemPath by using
the BackupDir config variable.

Log files and trace files can now be put in any directory by setting the DataDir configuration
variable.

FileSystemPath is no longer mandatory and defaults to DataDir.

• It is now supported to perform queries involving tables from different databases in MySQL.

• It is now possible to update the primary key.

• The performance of the ordered index has been greatly improved, particularly the maintenance
of the index at updates, inserts and deletes.

Bugs fixed:

• Quite a few bugs fixed.

D.10.7. MySQL Cluster-4.1.4 (31 Aug 2004)
Functionality added or changed:

• The names of the log files and trace files created by the ndbd and ndb_mgmd processes have
changed.

• Support for the many BLOB data types was introduced in this version.

Bugs fixed:

MySQL Change History

1403

• Quite a few bugs were fixed in the 4.1.4 release.

D.10.8. MySQL Cluster-5.0.1 (27 Jul 2004)
Functionality added or changed:

• This was the first MySQL Cluster release in 5.0. Actually almost all attention was on getting 4.1
stable so it is not recommended to use MySQL 5.0.1 for MySQL Cluster usage.

Bugs fixed:

•

D.10.9. MySQL Cluster-4.1.3 (28 Jun 2004)
Functionality added or changed:

• This was the first MySQL Cluster release so all the functionality was new.

Bugs fixed:

• Various bugs fixed in the development process leading up to 4.1.3.

MySQL Change History

1404

Appendix E. Porting to Other Systems
This appendix helps you port MySQL to other operating systems. Do check the list of currently sup-
ported operating systems first. See Section 2.1.1, “Operating Systems Supported by MySQL”. If
you have created a new port of MySQL, please let us know so that we can list it here and on our
Web site (http://www.mysql.com/), recommending it to other users.

Note: If you create a new port of MySQL, you are free to copy and distribute it under the GPL li-
cense, but it does not make you a copyright holder of MySQL.

A working POSIX thread library is needed for the server. On Solaris 2.5 we use Sun PThreads (the
native thread support in 2.4 and earlier versions is not good enough), on Linux we use LinuxThreads
by Xavier Leroy, <Xavier.Leroy@inria.fr>.

The hard part of porting to a new Unix variant without good native thread support is probably to
port MIT-pthreads. See mit-pthreads/README and Programming POSIX Threads (ht-
tp://www.humanfactor.com/pthreads/).

Up to MySQL 4.0.2, the MySQL distribution included a patched version of Chris Provenzano's
Pthreads from MIT (see the MIT Pthreads Web page at ht-
tp://www.mit.edu/afs/sipb/project/pthreads/ and a programming introduction at ht-
tp://www.mit.edu:8001/people/proven/IAP_2000/). These can be used for some operating systems
that do not have POSIX threads. See Section 2.8.5, “MIT-pthreads Notes”.

It is also possible to use another user level thread package named FSU Pthreads (see ht-
tp://moss.csc.ncsu.edu/~mueller/pthreads/). This implementation is being used for the SCO port.

See the thr_lock.c and thr_alarm.c programs in the mysys directory for some tests/
examples of these problems.

Both the server and the client need a working C++ compiler. We use gcc on many platforms. Other
compilers that are known to work are SPARCworks, Sun Forte, Irix cc, HP-UX aCC, IBM AIX
xlC_r), Intel ecc/icc and Compaq cxx).

To compile only the client use ./configure --without-server.

There is currently no support for only compiling the server, nor is it likly to be added unless
someone has a good reason for it.

If you want/need to change any Makefile or the configure script you also need GNU Automake
and Autoconf. See Section 2.8.3, “Installing from the Development Source Tree”.

All steps needed to remake everything from the most basic files.

/bin/rm */.deps/*.P
/bin/rm -f config.cache
aclocal
autoheader
aclocal
automake
autoconf
./configure --with-debug=full --prefix='your installation directory'
The makefiles generated above need GNU make 3.75 or newer.
(called gmake below)
gmake clean all install init-db

If you run into problems with a new port, you may have to do some debugging of MySQL! See Sec-
tion E.1, “Debugging a MySQL Server”.

Note: Before you start debugging mysqld, first get the test programs mysys/thr_alarm and
mysys/thr_lock to work. This ensures that your thread installation has even a remote chance to
work!

1405

http://www.mysql.com/
http://www.humanfactor.com/pthreads/
http://www.humanfactor.com/pthreads/
http://www.mit.edu/afs/sipb/project/pthreads/
http://www.mit.edu/afs/sipb/project/pthreads/
http://www.mit.edu:8001/people/proven/IAP_2000/
http://www.mit.edu:8001/people/proven/IAP_2000/
http://moss.csc.ncsu.edu/~mueller/pthreads/
http://moss.csc.ncsu.edu/~mueller/pthreads/

E.1. Debugging a MySQL Server
If you are using some functionality that is very new in MySQL, you can try to run mysqld with the
--skip-new (which disables all new, potentially unsafe functionality) or with --safe-mode
which disables a lot of optimization that may cause problems. See Section A.4.2, “What to Do If
MySQL Keeps Crashing”.

If mysqld doesn't want to start, you should verify that you don't have any my.cnf files that inter-
fere with your setup! You can check your my.cnf arguments with mysqld --print-defaults and
avoid using them by starting with mysqld --no-defaults

If mysqld starts to eat up CPU or memory or if it ``hangs,'' you can use mysqladmin processlist
status to find out if someone is executing a query that takes a long time. It may be a good idea to
run mysqladmin -i10 processlist status in some window if you are experiencing performance prob-
lems or problems when new clients can't connect.

The command mysqladmin debug dumps some information about locks in use, used memory and
query usage to the MySQL log file. This may help solve some problems. This command also
provides some useful information even if you haven't compiled MySQL for debugging!

If the problem is that some tables are getting slower and slower you should try to optimize the table
with OPTIMIZE TABLE or myisamchk. See Chapter 5, Database Administration. You should
also check the slow queries with EXPLAIN.

You should also read the OS-specific section in this manual for problems that may be unique to your
environment. See Section 2.12, “Operating System-Specific Notes”.

E.1.1. Compiling MySQL for Debugging
If you have some very specific problem, you can always try to debug MySQL. To do this you must
configure MySQL with the --with-debug or the --with-debug=full option. You can
check whether MySQL was compiled with debugging by doing: mysqld --help. If the --debug
flag is listed with the options then you have debugging enabled. mysqladmin ver also lists the
mysqld version as mysql ... --debug in this case.

If you are using gcc or egcs, the recommended configure line is:

CC=gcc CFLAGS="-O2" CXX=gcc CXXFLAGS="-O2 -felide-constructors \
-fno-exceptions -fno-rtti" ./configure --prefix=/usr/local/mysql \
--with-debug --with-extra-charsets=complex

This avoids problems with the libstdc++ library and with C++ exceptions (many compilers have
problems with C++ exceptions in threaded code) and compile a MySQL version with support for all
character sets.

If you suspect a memory overrun error, you can configure MySQL with --with-debug=full,
which installs a memory allocation (SAFEMALLOC) checker. However, running with SAFEMAL-
LOC is quite slow, so if you get performance problems you should start mysqld with the -
-skip-safemalloc option. This disables the memory overrun checks for each call to mal-
loc() and free().

If mysqld stops crashing when you compile it with --with-debug, you probably have found a
compiler bug or a timing bug within MySQL. In this case, you can try to add -g to the CFLAGS and
CXXFLAGS variables above and not use --with-debug. If mysqld dies, you can at least attach to
it with gdb or use gdb on the core file to find out what happened.

When you configure MySQL for debugging you automatically enable a lot of extra safety check
functions that monitor the health of mysqld. If they find something ``unexpected,'' an entry is writ-
ten to stderr, which safe_mysqld directs to the error log! This also means that if you are having
some unexpected problems with MySQL and are using a source distribution, the first thing you
should do is to configure MySQL for debugging! (The second thing is to send mail to a MySQL
mailing list and ask for help. See Section 1.4.1.1, “The MySQL Mailing Lists”. Please use the

Porting to Other Systems

1406

mysqlbug script for all bug reports or questions regarding the MySQL version you are using!

In the Windows MySQL distribution, mysqld.exe is by default compiled with support for trace
files.

E.1.2. Creating Trace Files
If the mysqld server doesn't start or if you can cause it to crash quickly, you can try to create a trace
file to find the problem.

To do this, you must have a mysqld that has been compiled with debugging support. You can check
this by executing mysqld -V. If the version number ends with -debug, it's compiled with sup-
port for trace files.

Start the mysqld server with a trace log in /tmp/mysqld.trace on Unix or
C:\mysqld.trace on Windows:

shell> mysqld --debug

On Windows, you should also use the --standalone flag to not start mysqld as a service. In a
console window, use this command:

C:\> mysqld --debug --standalone

After this, you can use the mysql.exe command-line tool in a second console window to repro-
duce the problem. You can stop the mysqld server with mysqladmin shutdown.

Note that the trace file become very big! If you want to generate a smaller trace file, you can use de-
bugging options something like this:

mysqld --debug=d,info,error,query,general,where:O,/tmp/mysqld.trace

This only prints information with the most interesting tags to the trace file.

If you make a bug report about this, please only send the lines from the trace file to the appropriate
mailing list where something seems to go wrong! If you can't locate the wrong place, you can ftp the
trace file, together with a full bug report, to ftp://ftp.mysql.com/pub/mysql/upload/ so that a MySQL
developer can take a look a this.

The trace file is made with the DBUG package by Fred Fish. See Section E.3, “The DBUG Pack-
age”.

E.1.3. Debugging mysqld under gdb
On most systems you can also start mysqld from gdb to get more information if mysqld crashes.

With some older gdb versions on Linux you must use run --one-thread if you want to be able
to debug mysqld threads. In this case, you can only have one thread active at a time. We recom-
mend you to upgrade to gdb 5.1 ASAP as thread debugging works much better with this version!

NTPL threads (the new thread library on Linux) may cause problems while running mysqld under
gdb. Some symptoms are:

• mysqld hangs during startup (before it writes ready for connections).

• mysqld crashes during a pthread_mutex_lock() or pthread_mutex_unlock() call.

In this case you should set the following environment variable in the shell before starting gdb:

LD_ASSUME_KERNEL=2.4.1

Porting to Other Systems

1407

ftp://ftp.mysql.com/pub/mysql/upload/

export LD_ASSUME_KERNEL

When running mysqld under gdb, you should disable the stack trace with -
-skip-stack-trace to be able to catch segfaults within gdb.

In MySQL 4.0.14 and above you should use the --gdb option to mysqld. This installs an interrupt
handler for SIGINT (needed to stop mysqld with ^C to set breakpoints) and disable stack tracing
and core file handling.

It's very hard to debug MySQL under gdb if you do a lot of new connections the whole time as gdb
doesn't free the memory for old threads. You can avoid this problem by starting mysqld with -O
thread_cache_size= 'max_connections +1'. In most cases just using -O
thread_cache_size=5' helps a lot!

If you want to get a core dump on Linux if mysqld dies with a SIGSEGV signal, you can start
mysqld with the --core-file option. This core file can be used to make a backtrace that may
help you find out why mysqld died:

shell> gdb mysqld core
gdb> backtrace full
gdb> exit

See Section A.4.2, “What to Do If MySQL Keeps Crashing”.

If you are using gdb 4.17.x or above on Linux, you should install a .gdb file, with the following in-
formation, in your current directory:

set print sevenbit off
handle SIGUSR1 nostop noprint
handle SIGUSR2 nostop noprint
handle SIGWAITING nostop noprint
handle SIGLWP nostop noprint
handle SIGPIPE nostop
handle SIGALRM nostop
handle SIGHUP nostop
handle SIGTERM nostop noprint

If you have problems debugging threads with gdb, you should download gdb 5.x and try this in-
stead. The new gdb version has very improved thread handling!

Here is an example how to debug mysqld:

shell> gdb /usr/local/libexec/mysqld
gdb> run
...
backtrace full # Do this when mysqld crashes

Include the above output in a mail generated with mysqlbug and mail this to the general MySQL
mailing list. See Section 1.4.1.1, “The MySQL Mailing Lists”.

If mysqld hangs you can try to use some system tools like strace or /
usr/proc/bin/pstack to examine where mysqld has hung.

strace /tmp/log libexec/mysqld

If you are using the Perl DBI interface, you can turn on debugging information by using the trace
method or by setting the DBI_TRACE environment variable.

E.1.4. Using a Stack Trace

Porting to Other Systems

1408

On some operating systems, the error log contains a stack trace if mysqld dies unexpectedly. You
can use this to find out where (and maybe why) mysqld died. See Section 5.9.1, “The Error Log”.
To get a stack trace, you must not compile mysqld with the -fomit-frame-pointer option to
gcc. See Section E.1.1, “Compiling MySQL for Debugging”.

If the error file contains something like the following:

mysqld got signal 11;
The manual section 'Debugging a MySQL server' tells you how to use a
stack trace and/or the core file to produce a readable backtrace that may
help in finding out why mysqld died
Attempting backtrace. You can use the following information to find out
where mysqld died. If you see no messages after this, something went
terribly wrong...
stack range sanity check, ok, backtrace follows
0x40077552
0x81281a0
0x8128f47
0x8127be0
0x8127995
0x8104947
0x80ff28f
0x810131b
0x80ee4bc
0x80c3c91
0x80c6b43
0x80c1fd9
0x80c1686

you can find where mysqld died by doing the following:

1. Copy the preceding numbers to a file, for example mysqld.stack.

2. Make a symbol file for the mysqld server:

nm -n libexec/mysqld > /tmp/mysqld.sym

Note that most MySQL binary distributions (except for the "debug" packages, where this in-
formation is included inside of the binaries themselves) ship with the above file, named
mysqld.sym.gz. In this case, you can simply unpack it by doing:

gunzip < bin/mysqld.sym.gz > /tmp/mysqld.sym

3. Execute resolve_stack_dump -s /tmp/mysqld.sym -n mysqld.stack.

This prints out where mysqld died. If this doesn't help you find out why mysqld died, you
should make a bug report and include the output from the above command with the bug report.

Note however that in most cases it does not help us to just have a stack trace to find the reason
for the problem. To be able to locate the bug or provide a workaround, we would in most cases
need to know the query that killed mysqld and preferable a test case so that we can repeat the
problem! See Section 1.4.1.3, “How to Report Bugs or Problems”.

E.1.5. Using Log Files to Find Cause of Errors in
mysqld

Note that before starting mysqld with --log you should check all your tables with myisamchk.
See Chapter 5, Database Administration.

If mysqld dies or hangs, you should start mysqld with --log. When mysqld dies again, you can

Porting to Other Systems

1409

examine the end of the log file for the query that killed mysqld.

If you are using --log without a file name, the log is stored in the database directory as
host_name.log In most cases it is the last query in the log file that killed mysqld, but if possible
you should verify this by restarting mysqld and executing the found query from the mysql com-
mand-line tools. If this works, you should also test all complicated queries that didn't complete.

You can also try the command EXPLAIN on all SELECT statements that takes a long time to ensure
that mysqld is using indexes properly. See Section 7.2.1, “EXPLAIN Syntax (Get Information
About a SELECT)”.

You can find the queries that take a long time to execute by starting mysqld with -
-log-slow-queries. See Section 5.9.5, “The Slow Query Log”.

If you find the text mysqld restarted in the error log file (normally named hostname.err)
you probably have found a query that causes mysqld to fail. If this happens, you should check all
your tables with myisamchk (see Chapter 5, Database Administration), and test the queries in the
MySQL log files to see if one doesn't work. If you find such a query, try first upgrading to the new-
est MySQL version. If this doesn't help and you can't find anything in the mysql mail archive, you
should report the bug to a MySQL mailing list. The mailing lists are described at ht-
tp://lists.mysql.com/, which also has links to online list archives.

If you have started mysqld with myisam-recover, MySQL automatically checks and tries to re-
pair MyISAM tables if they are marked as 'not closed properly' or 'crashed'. If this happens, MySQL
writes an entry in the hostname.err file 'Warning: Checking table ...' which is
followed by Warning: Repairing table if the table needs to be repaired. If you get a lot of
these errors, without mysqld having died unexpectedly just before, then something is wrong and
needs to be investigated further. See Section 5.2.1, “mysqld Command-Line Options”.

It's not a good sign if mysqld did died unexpectedly, but in this case one shouldn't investigate the
Checking table... messages but instead try to find out why mysqld died.

E.1.6. Making a Test Case If You Experience Table Cor-
ruption

If you get corrupted tables or if mysqld always fails after some update commands, you can test
whether this bug is reproducible by doing the following:

• Take down the MySQL daemon (with mysqladmin shutdown).

• Make a backup of the tables (to guard against the very unlikely case that the repair does
something bad).

• Check all tables with myisamchk -s database/*.MYI. Repair any wrong tables with myis-
amchk -r database/table.MYI.

• Make a second backup of the tables.

• Remove (or move away) any old log files from the MySQL data directory if you need more
space.

• Start mysqld with --log-bin. See Section 5.9.4, “The Binary Log”. If you want to find a
query that crashes mysqld, you should use --log --log-bin.

• When you have gotten a crashed table, stop the mysqld server.

• Restore the backup.

• Restart the mysqld server without --log-bin

• Re-execute the commands with mysqlbinlog update-log-file | mysql. The update log is saved in
the MySQL database directory with the name hostname-bin.#.

Porting to Other Systems

1410

http://lists.mysql.com/
http://lists.mysql.com/

• If the tables are corrupted again or you can get mysqld to die with the above command, you
have found reproducible bug that should be easy to fix! FTP the tables and the binary log to
ftp://ftp.mysql.com/pub/mysql/upload/ and enter it into our bugs system at ht-
tp://bugs.mysql.com/. If you are a support customer, you can use the MySQL Customer Support
Center https://support.mysql.com/ to alert the MySQL team about the problem and have it fixed
as soon as possible.

You can also use the script mysql_find_rows to just execute some of the update statements if
you want to narrow down the problem.

E.2. Debugging a MySQL Client
To be able to debug a MySQL client with the integrated debug package, you should configure
MySQL with --with-debug or --with-debug=full. See Section 2.8.2, “Typical configure
Options”.

Before running a client, you should set the MYSQL_DEBUG environment variable:

shell> MYSQL_DEBUG=d:t:O,/tmp/client.trace
shell> export MYSQL_DEBUG

This causes clients to generate a trace file in /tmp/client.trace.

If you have problems with your own client code, you should attempt to connect to the server and run
your query using a client that is known to work. Do this by running mysql in debugging mode
(assuming that you have compiled MySQL with debugging on):

shell> mysql --debug=d:t:O,/tmp/client.trace

This provides useful information in case you mail a bug report. See Section 1.4.1.3, “How to Report
Bugs or Problems”.

If your client crashes at some 'legal' looking code, you should check that your mysql.h include file
matches your MySQL library file. A very common mistake is to use an old mysql.h file from an
old MySQL installation with new MySQL library.

E.3. The DBUG Package
The MySQL server and most MySQL clients are compiled with the DBUG package originally cre-
ated by Fred Fish. When you have configured MySQL for debugging, this package makes it pos-
sible to get a trace file of what the program is debugging. See Section E.1.2, “Creating Trace Files”.

This section summaries the argument values that you can specify in debug options on the command
line for MySQL programs that have been built with debugging support. For more information about
programming with the DBUG package, see the DBUG manual in the dbug directory of MySQL
source distributions. It's best to use a recent distribution for MySQL 5.0 to get the most updated
DBUG manual.

You use the debug package by invoking a program with the --debug="..." or the -#... op-
tion.

Most MySQL programs have a default debug string that is used if you don't specify an option to -
-debug. The default trace file is usually /tmp/program_name.trace on Unix and
\program_name.trace on Windows.

The debug control string is a sequence of colon-separated fields as follows:

<field_1>:<field_2>:...:<field_N>

Porting to Other Systems

1411

ftp://ftp.mysql.com/pub/mysql/upload/
http://bugs.mysql.com/
http://bugs.mysql.com/
https://support.mysql.com/

Each field consists of a mandatory flag character followed by an optional ',' and comma-separated
list of modifiers:

flag[,modifier,modifier,...,modifier]

The currently recognized flag characters are:

Fla
g

Description

d Enable output from DBUG_<N> macros for the current state. May be followed by a list of
keywords which selects output only for the DBUG macros with that keyword. An empty list
of keywords implies output for all macros.

D Delay after each debugger output line. The argument is the number of tenths of seconds to
delay, subject to machine capabilities. For example, -#D,20 specifies a delay of two
seconds.

f Limit debugging and/or tracing, and profiling to the list of named functions. Note that a null
list disables all functions. The appropriate d or t flags must still be given; this flag only limits
their actions if they are enabled.

F Identify the source file name for each line of debug or trace output.

i Identify the process with the PID or thread ID for each line of debug or trace output.

g Enable profiling. Create a file called dbugmon.out containing information that can be used
to profile the program. May be followed by a list of keywords that select profiling only for the
functions in that list. A null list implies that all functions are considered.

L Identify the source file line number for each line of debug or trace output.

n Print the current function nesting depth for each line of debug or trace output.

N Number each line of debug output.

o Redirect the debugger output stream to the specified file. The default output is stderr.

O Like o, but the file is really flushed between each write. When needed, the file is closed and
reopened between each write.

p Limit debugger actions to specified processes. A process must be identified with the
DBUG_PROCESS macro and match one in the list for debugger actions to occur.

P Print the current process name for each line of debug or trace output.

r When pushing a new state, do not inherit the previous state's function nesting level. Useful
when the output is to start at the left margin.

S Do function _sanity(_file_,_line_) at each debugged function until _sanity()
returns something that differs from 0. (Mostly used with safemalloc to find memory leaks)

t Enable function call/exit trace lines. May be followed by a list (containing only one modifier)
giving a numeric maximum trace level, beyond which no output occurs for either debugging
or tracing macros. The default is a compile time option.

Some examples of debug control strings that might appear on a shell command line (the -# is typic-
ally used to introduce a control string to an application program) are:

-#d:t
-#d:f,main,subr1:F:L:t,20
-#d,input,output,files:n
-#d:t:i:O,\\mysqld.trace

In MySQL, common tags to print (with the d option) are enter, exit, error, warning, info,
and loop.

E.4. Comments about RTS Threads

Porting to Other Systems

1412

I have tried to use the RTS thread packages with MySQL but stumbled on the following problems:

They use old versions of many POSIX calls and it is very tedious to make wrappers for all func-
tions. I am inclined to think that it would be easier to change the thread libraries to the newest
POSIX specification.

Some wrappers are currently written. See mysys/my_pthread.c for more info.

At least the following should be changed:

pthread_get_specific should use one argument. sigwait should take two arguments. A
lot of functions (at least pthread_cond_wait, pthread_cond_timedwait()) should re-
turn the error code on error. Now they return -1 and set errno.

Another problem is that user-level threads use the ALRM signal and this aborts a lot of functions
(read, write, open...). MySQL should do a retry on interrupt on all of these but it is not that
easy to verify it.

The biggest unsolved problem is the following:

To get thread-level alarms I changed mysys/thr_alarm.c to wait between alarms with
pthread_cond_timedwait(), but this aborts with error EINTR. I tried to debug the thread
library as to why this happens, but couldn't find any easy solution.

If someone wants to try MySQL with RTS threads I suggest the following:

• Change functions MySQL uses from the thread library to POSIX. This shouldn't take that long.

• Compile all libraries with the -DHAVE_rts_threads.

• Compile thr_alarm.

• If there are some small differences in the implementation, they may be fixed by changing
my_pthread.h and my_pthread.c.

• Run thr_alarm. If it runs without any ``warning,'' ``error,'' or aborted messages, you are on
the right track. Here is a successful run on Solaris:

Main thread: 1
Thread 0 (5) started
Thread: 5 Waiting
process_alarm
Thread 1 (6) started
Thread: 6 Waiting
process_alarm
process_alarm
thread_alarm
Thread: 6 Slept for 1 (1) sec
Thread: 6 Waiting
process_alarm
process_alarm
thread_alarm
Thread: 6 Slept for 2 (2) sec
Thread: 6 Simulation of no alarm needed
Thread: 6 Slept for 0 (3) sec
Thread: 6 Waiting
process_alarm
process_alarm
thread_alarm
Thread: 6 Slept for 4 (4) sec
Thread: 6 Waiting
process_alarm
thread_alarm
Thread: 5 Slept for 10 (10) sec
Thread: 5 Waiting

Porting to Other Systems

1413

process_alarm
process_alarm
thread_alarm
Thread: 6 Slept for 5 (5) sec
Thread: 6 Waiting
process_alarm
process_alarm
...
thread_alarm
Thread: 5 Slept for 0 (1) sec
end

E.5. Differences Between Thread Packages
MySQL is very dependent on the thread package used. So when choosing a good platform for
MySQL, the thread package is very important.

There are at least three types of thread packages:

• User threads in a single process. Thread switching is managed with alarms and the threads lib-
rary manages all non-thread-safe functions with locks. Read, write and select operations are usu-
ally managed with a thread-specific select that switches to another thread if the running threads
have to wait for data. If the user thread packages are integrated in the standard libs (FreeBSD
and BSDI threads) the thread package requires less overhead than thread packages that have to
map all unsafe calls (MIT-pthreads, FSU Pthreads and RTS threads). In some environments (for
example, SCO), all system calls are thread-safe so the mapping can be done very easily (FSU
Pthreads on SCO). Downside: All mapped calls take a little time and it's quite tricky to be able
to handle all situations. There are usually also some system calls that are not handled by the
thread package (like MIT-pthreads and sockets). Thread scheduling isn't always optimal.

• User threads in separate processes. Thread switching is done by the kernel and all data are
shared between threads. The thread package manages the standard thread calls to allow sharing
data between threads. LinuxThreads is using this method. Downside: Lots of processes. Thread
creating is slow. If one thread dies the rest are usually left hanging and you must kill them all
before restarting. Thread switching is somewhat expensive.

• Kernel threads. Thread switching is handled by the thread library or the kernel and is very fast.
Everything is done in one process, but on some systems, ps may show the different threads. If
one thread aborts, the whole process aborts. Most system calls are thread-safe and should require
very little overhead. Solaris, HP-UX, AIX and OSF/1 have kernel threads.

In some systems kernel threads are managed by integrating user level threads in the system libraries.
In such cases, the thread switching can only be done by the thread library and the kernel isn't really
``thread aware.''

Porting to Other Systems

1414

Appendix F. Environment Variables
This appendix lists all the environment variables that are used directly or indirectly by MySQL.
Most of these can also be found in other places in this manual.

Note that any options on the command line take precedence over values specified in option files and
environment variables, and values in option files take precedence over values in environment vari-
ables.

In many cases, it's preferable to use an option file instead of environment variables to modify the be-
havior of MySQL. See Section 4.3.2, “Using Option Files”.

Variable Description

CXX The name of your C++ compiler (for running configure).

CC The name of your C compiler (for running configure).

CFLAGS Flags for your C compiler (for running configure).

CXXFLAGS Flags for your C++ compiler (for running configure).

DBI_USER The default username for Perl DBI.

DBI_TRACE Trace options for Perl DBI.

HOME The default path for the mysql history file is
$HOME/.mysql_history.

LD_RUN_PATH Used to specify where your libmysqlclient.so is located.

MYSQL_DEBUG Debug trace options when debugging.

MYSQL_HISTFILE The path to the mysql history file. If this variable is set, its value over-
rides the default of $HOME/.mysql_history.

MYSQL_HOST The default hostname used by the mysql command-line client.

MYSQL_PS1 The command prompt to use in the mysql command-line client.

MYSQL_PWD The default password when connecting to mysqld. Note that use of this
is insecure! See Section 5.6.6, “Keeping Your Password Secure”.

MYSQL_TCP_PORT The default TCP/IP port number.

MYSQL_UNIX_PORT The default Unix socket filename; used for connections to localhost.

PATH Used by the shell to find MySQL programs.

TMPDIR The directory where temporary files are created.

TZ This should be set to your local time zone. See Section A.4.6, “Time
Zone Problems”.

UMASK_DIR The user-directory creation mask when creating directories. Note that
this is ANDed with UMASK!

UMASK The user-file creation mask when creating files.

USER The default username on Windows and NetWare to use when connecting
to mysqld.

1415

Appendix G. MySQL Regular
Expressions

A regular expression is a powerful way of specifying a pattern for a complex search.

MySQL uses Henry Spencer's implementation of regular expressions, which is aimed at conform-
ance with POSIX 1003.2. See Appendix B, Credits. MySQL uses the extended version to support
pattern-matching operations performed with the REGEXP operator in SQL statements. See Sec-
tion 3.3.4.7, “Pattern Matching”.

This appendix is a summary, with examples, of the special characters and constructs that can be
used in MySQL for REGEXP operations. It does not contain all the details that can be found in
Henry Spencer's regex(7) manual page. That manual page is included in MySQL source distribu-
tions, in the regex.7 file under the regex directory.

A regular expression describes a set of strings. The simplest regular expression is one that has no
special characters in it. For example, the regular expression hello matches hello and nothing
else.

Non-trivial regular expressions use certain special constructs so that they can match more than one
string. For example, the regular expression hello|word matches either the string hello or the
string word.

As a more complex example, the regular expression B[an]*s matches any of the strings Bana-
nas, Baaaaas, Bs, and any other string starting with a B, ending with an s, and containing any
number of a or n characters in between.

A regular expression for the REGEXP operator may use any of the following special characters and
constructs:

• ^

Match the beginning of a string.

mysql> SELECT 'fo\nfo' REGEXP '^fo$'; -> 0
mysql> SELECT 'fofo' REGEXP '^fo'; -> 1

• $

Match the end of a string.

mysql> SELECT 'fo\no' REGEXP '^fo\no$'; -> 1
mysql> SELECT 'fo\no' REGEXP '^fo$'; -> 0

• .

Match any character (including carriage return and newline).

mysql> SELECT 'fofo' REGEXP '^f.*$'; -> 1
mysql> SELECT 'fo\r\nfo' REGEXP '^f.*$'; -> 1

• a*

Match any sequence of zero or more a characters.

mysql> SELECT 'Ban' REGEXP '^Ba*n'; -> 1
mysql> SELECT 'Baaan' REGEXP '^Ba*n'; -> 1
mysql> SELECT 'Bn' REGEXP '^Ba*n'; -> 1

1416

• a+

Match any sequence of one or more a characters.

mysql> SELECT 'Ban' REGEXP '^Ba+n'; -> 1
mysql> SELECT 'Bn' REGEXP '^Ba+n'; -> 0

• a?

Match either zero or one a character.

mysql> SELECT 'Bn' REGEXP '^Ba?n'; -> 1
mysql> SELECT 'Ban' REGEXP '^Ba?n'; -> 1
mysql> SELECT 'Baan' REGEXP '^Ba?n'; -> 0

• de|abc

Match either of the sequences de or abc.

mysql> SELECT 'pi' REGEXP 'pi|apa'; -> 1
mysql> SELECT 'axe' REGEXP 'pi|apa'; -> 0
mysql> SELECT 'apa' REGEXP 'pi|apa'; -> 1
mysql> SELECT 'apa' REGEXP '^(pi|apa)$'; -> 1
mysql> SELECT 'pi' REGEXP '^(pi|apa)$'; -> 1
mysql> SELECT 'pix' REGEXP '^(pi|apa)$'; -> 0

• (abc)*

Match zero or more instances of the sequence abc.

mysql> SELECT 'pi' REGEXP '^(pi)*$'; -> 1
mysql> SELECT 'pip' REGEXP '^(pi)*$'; -> 0
mysql> SELECT 'pipi' REGEXP '^(pi)*$'; -> 1

• {1} , {2,3}

{n} or {m,n} notation provides a more general way of writing regular expressions that match
many occurrences of the previous atom (or ``piece'') of the pattern. m and n are integers.

• a*

Can be written as a{0,}.

• a+

Can be written as a{1,}.

• a?

Can be written as a{0,1}.

To be more precise, a{n} matches exactly n instances of a. a{n,} matches n or more in-
stances of a. a{m,n} matches m through n instances of a, inclusive.

m and n must be in the range from 0 to RE_DUP_MAX (default 255), inclusive. If both m and n
are given, m must be less than or equal to n.

mysql> SELECT 'abcde' REGEXP 'a[bcd]{2}e'; -> 0

MySQL Regular Expressions

1417

mysql> SELECT 'abcde' REGEXP 'a[bcd]{3}e'; -> 1
mysql> SELECT 'abcde' REGEXP 'a[bcd]{1,10}e'; -> 1

• [a-dX] , [^a-dX]

Matches any character that is (or is not, if ^ is used) either a, b, c, d or X. A - character
between two other characters forms a range that matches all characters from the first character to
the second. For example, [0-9] matches any decimal digit. To include a literal] character, it
must immediately follow the opening bracket [. To include a literal - character, it must be writ-
ten first or last. Any character that does not have a defined special meaning inside a [] pair
matches only itself.

mysql> SELECT 'aXbc' REGEXP '[a-dXYZ]'; -> 1
mysql> SELECT 'aXbc' REGEXP '^[a-dXYZ]$'; -> 0
mysql> SELECT 'aXbc' REGEXP '^[a-dXYZ]+$'; -> 1
mysql> SELECT 'aXbc' REGEXP '^[^a-dXYZ]+$'; -> 0
mysql> SELECT 'gheis' REGEXP '^[^a-dXYZ]+$'; -> 1
mysql> SELECT 'gheisa' REGEXP '^[^a-dXYZ]+$'; -> 0

• [.characters.]

Within a bracket expression (written using [and]), matches the sequence of characters of that
collating element. characters is either a single character or a character name like newline.
You can find the full list of character names in the regexp/cname.h file.

mysql> SELECT '~' REGEXP '[[.~.]]'; -> 1
mysql> SELECT '~' REGEXP '[[.tilde.]]'; -> 1

• [=character_class=]

Within a bracket expression (written using [and]), [=character_class=] represents an
equivalence class. It matches all characters with the same collation value, including itself. For
example, if o and (+) are the members of an equivalence class, then [[=o=]], [[=(+)=]],
and [o(+)] are all synonymous. An equivalence class may not be used as an endpoint of a
range.

• [:character_class:]

Within a bracket expression (written using [and]), [:character_class:] represents a
character class that matches all characters belonging to that class. The standard class names are:

al-
num

Alphanumeric characters

al-
pha

Alphabetic characters

bla
nk

Whitespace characters

cnt
rl

Control characters

di-
git

Digit characters

gra
ph

Graphic characters

low
er

Lowercase alphabetic characters

pri Graphic or space characters

MySQL Regular Expressions

1418

nt

pun
ct

Punctuation characters

spa
ce

Space, tab, newline, and carriage return

up-
per

Uppercase alphabetic characters

xdi
git

Hexadecimal digit characters

These stand for the character classes defined in the ctype(3) manual page. A particular locale
may provide other class names. A character class may not be used as an endpoint of a range.

mysql> SELECT 'justalnums' REGEXP '[[:alnum:]]+'; -> 1
mysql> SELECT '!!' REGEXP '[[:alnum:]]+'; -> 0

• [[:<:]] , [[:>:]]

These markers stand for word boundaries. They match the beginning and end of words, respect-
ively. A word is a sequence of word characters that is not preceded by or followed by word char-
acters. A word character is an alphanumeric character in the alnum class or an underscore (_).

mysql> SELECT 'a word a' REGEXP '[[:<:]]word[[:>:]]'; -> 1
mysql> SELECT 'a xword a' REGEXP '[[:<:]]word[[:>:]]'; -> 0

To use a literal instance of a special character in a regular expression, precede it by two backslash (\)
characters. The MySQL parser interprets one of the backslashes, and the regular expression library
interprets the other. For example, to match the string 1+2 that contains the special + character, only
the last of the following regular expressions is the correct one:

mysql> SELECT '1+2' REGEXP '1+2'; -> 0
mysql> SELECT '1+2' REGEXP '1\+2'; -> 0
mysql> SELECT '1+2' REGEXP '1\\+2'; -> 1

MySQL Regular Expressions

1419

Appendix H. GNU General Public
License

Version 2, June 1991

Copyright © 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By
contrast, the GNU General Public License is intended to guarantee your freedom to share and
change free software---to make sure the software is free for all its users. This General Public Li-
cense applies to most of the Free Software Foundation's software and to any other program whose
authors commit to using it. (Some other Free Software Foundation software is covered by the GNU
Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Li-
censes are designed to make sure that you have the freedom to distribute copies of free software
(and charge for this service if you wish), that you receive source code or can get it if you want it,
that you can change the software or use pieces of it in new free programs; and that you know you
can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to
ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give
the recipients all the rights that you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license
which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands that
there is no warranty for this free software. If the software is modified by someone else and passed
on, we want its recipients to know that what they have is not the original, so that any problems intro-
duced by others will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger
that redistributors of a free program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any patent must be licensed for
everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBU-
TION AND MODIFICATION

1. This License applies to any program or other work which contains a notice placed by the copy-
right holder saying it may be distributed under the terms of this General Public License. The
``Program'', below, refers to any such program or work, and a ``work based on the Program''
means either the Program or any derivative work under copyright law: that is to say, a work
containing the Program or a portion of it, either verbatim or with modifications and/or trans-

1420

lated into another language. (Hereinafter, translation is included without limitation in the term
``modification''.) Each licensee is addressed as ``you''.

Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running the Program is not restricted, and the output from
the Program is covered only if its contents constitute a work based on the Program
(independent of having been made by running the Program). Whether that is true depends on
what the Program does.

2. You may copy and distribute verbatim copies of the Program's source code as you receive it, in
any medium, provided that you conspicuously and appropriately publish on each copy an ap-
propriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to
this License and to the absence of any warranty; and give any other recipients of the Program a
copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

3. You may modify your copy or copies of the Program or any portion of it, thus forming a work
based on the Program, and copy and distribute such modifications or work under the terms of
Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you changed the
files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part contains
or is derived from the Program or any part thereof, to be licensed as a whole at no charge
to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you must
cause it, when started running for such interactive use in the most ordinary way, to print or
display an announcement including an appropriate copyright notice and a notice that there
is no warranty (or else, saying that you provide a warranty) and that users may redistribute
the program under these conditions, and telling the user how to view a copy of this Li-
cense. (Exception: if the Program itself is interactive but does not normally print such an
announcement, your work based on the Program is not required to print an announce-
ment.)

These requirements apply to the modified work as a whole. If identifiable sections of that work
are not derived from the Program, and can be reasonably considered independent and separate
works in themselves, then this License, and its terms, do not apply to those sections when you
distribute them as separate works. But when you distribute the same sections as part of a whole
which is a work based on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the entire whole, and thus to each
and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written en-
tirely by you; rather, the intent is to exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or
with a work based on the Program) on a volume of a storage or distribution medium does not
bring the other work under the scope of this License.

4. You may copy and distribute the Program (or a work based on it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you also do
one of the following:

a. Accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third-party,

GNU General Public License

1421

for a charge no more than your cost of physically performing source distribution, a com-
plete machine-readable copy of the corresponding source code, to be distributed under the
terms of Sections 1 and 2 above on a medium customarily used for software interchange;
or,

c. Accompany it with the information you received as to the offer to distribute corresponding
source code. (This alternative is allowed only for noncommercial distribution and only if
you received the program in object code or executable form with such an offer, in accord
with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to
it. For an executable work, complete source code means all the source code for all modules it
contains, plus any associated interface definition files, plus the scripts used to control compila-
tion and installation of the executable. However, as a special exception, the source code distrib-
uted need not include anything that is normally distributed (in either source or binary form)
with the major components (compiler, kernel, and so on) of the operating system on which the
executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a desig-
nated place, then offering equivalent access to copy the source code from the same place counts
as distribution of the source code, even though third parties are not compelled to copy the
source along with the object code.

5. You may not copy, modify, sublicense, or distribute the Program except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Pro-
gram is void, and will automatically terminate your rights under this License. However, parties
who have received copies, or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

6. You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Program or its derivative works. These
actions are prohibited by law if you do not accept this License. Therefore, by modifying or dis-
tributing the Program (or any work based on the Program), you indicate your acceptance of this
License to do so, and all its terms and conditions for copying, distributing or modifying the
Program or works based on it.

7. Each time you redistribute the Program (or any work based on the Program), the recipient auto-
matically receives a license from the original licensor to copy, distribute or modify the Program
subject to these terms and conditions. You may not impose any further restrictions on the recip-
ients' exercise of the rights granted herein. You are not responsible for enforcing compliance by
third parties to this License.

8. If, as a consequence of a court judgment or allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot distribute so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a consequence
you may not distribute the Program at all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be to refrain
entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circum-
stance, the balance of the section is intended to apply and the section as a whole is intended to
apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right
claims or to contest validity of any such claims; this section has the sole purpose of protecting
the integrity of the free software distribution system, which is implemented by public license
practices. Many people have made generous contributions to the wide range of software distrib-
uted through that system in reliance on consistent application of that system; it is up to the au-
thor/donor to decide if he or she is willing to distribute software through any other system and

GNU General Public License

1422

a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the
rest of this License.

9. If the distribution and/or use of the Program is restricted in certain countries either by patents
or by copyrighted interfaces, the original copyright holder who places the Program under this
License may add an explicit geographical distribution limitation excluding those countries, so
that distribution is permitted only in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of this License.

10. The Free Software Foundation may publish revised and/or new versions of the General Public
License from time to time. Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version num-
ber of this License which applies to it and ``any later version'', you have the option of following
the terms and conditions either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of this License, you
may choose any version ever published by the Free Software Foundation.

11. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is copy-
righted by the Free Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals of preserving the free
status of all derivatives of our free software and of promoting the sharing and reuse of software
generally.

NO WARRANTY

12. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WAR-
RANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM ``AS IS'' WITHOUT WAR-
RANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PER-
FORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DE-
FECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

13. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRIT-
ING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO
YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BE-
ING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PRO-
GRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the
best way to achieve this is to make it free software which everyone can redistribute and change un-
der these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each

GNU General Public License

1423

source file to most effectively convey the exclusion of warranty; and each file should have at least
the ``copyright'' line and a pointer to where the full notice is found.

one line to give the program's name and a brief idea of what it does.
Copyright (C) yyyy name of author
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive
mode:

Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.

The hypothetical commands 'show w' and 'show c' should show the appropriate parts of the Gen-
eral Public License. Of course, the commands you use may be called something other than 'show
w' and 'show c'; they could even be mouse-clicks or menu items---whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a
``copyright disclaimer'' for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
`Gnomovision' (which makes passes at compilers) written by James Hacker.
signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs.
If your program is a subroutine library, you may consider it more useful to permit linking propriet-
ary applications with the library. If this is what you want to do, use the GNU Library General Public
License instead of this License.

GNU General Public License

1424

Appendix I. MySQL FLOSS License
Exception

Version 0.3, 10 February 2005

The MySQL AB Exception for Free/Libre and Open Source Software-only Applications Using
MySQL Client Libraries (the ``FLOSS Exception'').

Exception Intent

We want specified Free/Libre and Open Source Software (``FLOSS'') applications to be able to use
specified GPL-licensed MySQL client libraries (the ``Program'') despite the fact that not all FLOSS
licenses are compatible with version 2 of the GNU General Public License (the ``GPL'').

Legal Terms and Conditions

As a special exception to the terms and conditions of version 2.0 of the GPL:

1. You are free to distribute a Derivative Work that is formed entirely from the Program and one
or more works (each, a ``FLOSS Work'') licensed under one or more of the licenses listed be-
low in section 1, as long as:

a. You obey the GPL in all respects for the Program and the Derivative Work, except for
identifiable sections of the Derivative Work which are not derived from the Program, and
which can reasonably be considered independent and separate works in themselves,

b. all identifiable sections of the Derivative Work which are not derived from the Program,
and which can reasonably be considered independent and separate works in themselves,

• i

are distributed subject to one of the FLOSS licenses listed below, and

• ii

the object code or executable form of those sections are accompanied by the complete
corresponding machine-readable source code for those sections on the same medium
and under the same FLOSS license as the corresponding object code or executable
forms of those sections, and

c. any works which are aggregated with the Program or with a Derivative Work on a volume
of a storage or distribution medium in accordance with the GPL, can reasonably be con-
sidered independent and separate works in themselves which are not derivatives of either
the Program, a Derivative Work or a FLOSS Work.

If the above conditions are not met, then the Program may only be copied, modified, distrib-
uted or used under the terms and conditions of the GPL or another valid licensing option from
MySQL AB.

2. FLOSS License List

License name Version(s)/Copyright Date

Academic Free License 2.0

Apache Software License 1.0/1.1/2.0

Apple Public Source License 2.0

Artistic license From Perl 5.8.0

BSD license "July 22 1999"

1425

Common Public License 1.0

GNU Library or "Lesser" General Public License
(LGPL)

2.0/2.1

Jabber Open Source License 1.0

MIT license -

Mozilla Public License (MPL) 1.0/1.1

Open Software License 2.0

OpenSSL license (with original SSLeay license) "2003" ("1998")

PHP License 3.0

Python license (CNRI Python License) -

Python Software Foundation License 2.1.1

Sleepycat License "1999"

W3C License "2001"

X11 License "2001"

Zlib/libpng License -

Zope Public License 2.0

Due to the many variants of some of the above licenses, we require that any version follow the
2003 version of the Free Software Foundation's Free Software Definition (ht-
tp://www.gnu.org/philosophy/free-sw.html) or version 1.9 of the Open Source Definition by
the Open Source Initiative (http://www.opensource.org/docs/definition.php).

3. Definitions

a. Terms used, but not defined, herein shall have the meaning provided in the GPL.

b. Derivative Work means a derivative work under copyright law.

4. Applicability This FLOSS Exception applies to all Programs that contain a notice placed by
MySQL AB saying that the Program may be distributed under the terms of this FLOSS Excep-
tion. If you create or distribute a work which is a Derivative Work of both the Program and any
other work licensed under the GPL, then this FLOSS Exception is not available for that work;
thus, you must remove the FLOSS Exception notice from that work and comply with the GPL
in all respects, including by retaining all GPL notices. You may choose to redistribute a copy
of the Program exclusively under the terms of the GPL by removing the FLOSS Exception no-
tice from that copy of the Program, provided that the copy has never been modified by you or
any third party.

MySQL FLOSS License Exception

1426

http://www.gnu.org/philosophy/free-sw.html
http://www.gnu.org/philosophy/free-sw.html
http://www.opensource.org/docs/definition.php

Index
Symbols
! (logical NOT), 576
!= (not equal), 571
", 505
% (modulo), 599
% (wildcard character), 502
& (bitwise AND), 632
&& (logical AND), 576
() (parentheses), 570
(Control-Z) \Z, 502
* (multiplication), 594
+ (addition), 594
- (subtraction), 594
- (unary minus), 594
--password option, 310
--with-raid link errors, 99
-p option, 310
.my.cnf file, 205, 207, 287, 294, 310, 359
.mysql_history file, 467
.pid (process ID) file, 334
/ (division), 595
/etc/passwd, 276, 674
< (less than), 572
<<, 196
<< (left shift), 633
<= (less than or equal), 572
<=> (equal to), 571
<> (not equal), 571
= (equal), 571
> (greater than), 572
>= (greater than or equal), 572
>> (right shift), 633
\" (double quote), 501
\' (single quote), 501
\0 (ASCII 0), 501
\b (backspace), 501
\n (linefeed), 501
\n (newline), 501
\r (carriage return), 501
\t (tab), 502
\Z (Control-Z) ASCII 26, 502
\\ (escape), 502
^ (bitwise XOR), 632
_ (wildcard character), 502
`, 505
| (bitwise OR), 632
|| (logical OR), 576
~, 633

A
aborted clients, 1157
aborted connection, 1157
ABS(), 595
access control, 287
access denied errors, 1150
access privileges, 278
Access program, 1074
account privileges

adding, 304
accounts

anonymous user, 118
root, 118

ACID, 27, 794
ACLs, 278
ACOS(), 595
ActiveState Perl, 166
ADDDATE(), 603
adding

character sets, 342
native functions, 1146
new account privileges, 304
new functions, 1138
new user privileges, 304
new users, 89, 92
procedures, 1147
user-defined functions, 1139

addition (+), 594
ADDTIME(), 603
administration

server, 473
ADO program, 1075
AES_DECRYPT(), 634
AES_ENCRYPT(), 634
age

calculating, 181
alias, 1172
alias names

case sensitivity, 506
aliases

for expressions, 652
for tables, 672
in GROUP BY clauses, 652
in ORDER BY clauses, 652
names, 504
on expressions, 671

ALL, 675
ALLOW_INVALID_DATES SQL mode, 232
ALTER COLUMN, 694
ALTER DATABASE, 692
ALTER FUNCTION, 931
ALTER PROCEDURE, 931
ALTER SCHEMA, 692
ALTER TABLE, 692, 694, 1176
ALTER VIEW, 697
altering

database, 692
schema, 692

ANALYZE TABLE, 728
AND

bitwise, 632
logical, 576

anonymous user, 118, 118, 288, 291
ANSI mode

running, 23
ANSI SQL mode, 232, 235
ANSI_QUOTES SQL mode, 232
answering questions

etiquette, 21
Apache, 201
API's

list of, 1190

1427

APIs, 958
Perl, 1044

ARCHIVE storage engine, 770, 791
ARCHIVE table type, 770, 791
Area(), 918, 919
argument processing, 1142
arithmetic expressions, 594
arithmetic functions, 632
AS, 672, 676
AsBinary(), 913
ASCII(), 579
ASIN(), 596
AsText(), 913
ATAN(), 596
ATAN2(), 596
attackers

security against, 275
AUTO-INCREMENT

ODBC, 1087
AUTO_INCREMENT, 197

and NULL values, 1172
AVG(), 646

B
backing up

databases, 486, 493
backslash

escape character, 501
backspace (\b), 501
BACKUP TABLE, 728
backups, 317

database, 728
batch

mysql option, 463
batch mode, 190
BDB storage engine, 770, 784
BDB table type, 770, 784
BDB tables, 27
BdMPolyFromText(), 908
BdMPolyFromWKB(), 909
BdPolyFromText(), 908
BdPolyFromWKB(), 909
BEGIN, 714, 932
benchmark suite, 398
BENCHMARK(), 637
benchmarks, 399
BerkeleyDB storage engine, 770, 784
BerkeleyDB table type, 770, 784
BETWEEN ... AND, 573
Big5 Chinese character encoding, 1169
BIGINT, 544
BIN(), 580
BINARY, 548, 629
binary distributions, 48

installing, 86
on Linux, 138

binary log, 348
BIT, 543
BitKeeper tree, 95
BIT_AND(), 646
BIT_COUNT, 196
BIT_COUNT(), 633

bit_functions
example, 196

BIT_LENGTH(), 580
BIT_OR, 196
BIT_OR(), 646
BIT_XOR(), 646
BLOB, 549, 562

inserting binary data, 503
size, 567

BLOB columns
default values, 562
indexing, 434, 703

blocking_queries
mysqlcc option, 481

BOOL, 543
BOOLEAN, 543
Borland Builder 4 program, 1076
Borland C++ compiler, 1045
Boundary(), 915
brackets

square, 543
buffer sizes

client, 958
mysqld server, 444

Buffer(), 921
bug reports

criteria for, 19
bugs

known, 35
reporting, 17

bugs database, 17
bugs.mysql.com, 17
building

client programs, 1038

C
C API

data types, 959
functions, 963
linking problems, 1038

C Prepared statement API
functions, 1009

C++ APIs, 1045
C++ Builder, 1078
C++ compiler

gcc, 94
C++ compiler cannot create executables, 99
C:\my.cnf file, 359
CACHE INDEX, 753
caches

clearing, 754
calculating

dates, 181
CALL, 932
calling sequences for aggregate functions

UDF, 1141
calling sequences for simple functions

UDF, 1140
can't create/write to file, 1158
carriage return (\r), 501
CASE, 577, 936
case sensitivity

Index

1428

in identifiers, 506
in names, 506
in searches, 1169
in string comparisons, 591

case-sensitivity
in access checking, 282
of database names, 24
of table names, 24

CAST, 630
cast functions, 629
cast operators, 629
casts, 570, 629
CC environment variable, 94, 94, 100, 1415
cc1plus problems, 99
CEILING(), 596
Centroid(), 920
CFLAGS environment variable, 94, 100, 1415
CHANGE MASTER TO, 759
ChangeLog, 1198
changes

log, 1198
version 3.19, 1374
version 3.20, 1366
version 3.21, 1352
version 3.22, 1337
version 3.23, 1292
version 4.0, 1244
version 4.1, 1210
version 5.0, 1198

changes to privileges, 293
changing

column, 694
column order, 1177
field, 694
table, 692, 694, 1176

changing socket location, 93, 114, 1169
CHAR, 547, 560
CHAR VARYING, 548
CHAR(), 580
CHARACTER, 547
character sets, 95, 340

adding, 342
Character sets, 516
CHARACTER VARYING, 548
character-sets-dir

mysql option, 463
characters

multi-byte, 344
CHARACTER_LENGTH(), 580
CHARACTER_SETS

INFORMATION_SCHEMA table, 951
CHARSET(), 638
CHAR_LENGTH(), 580
check options

myisamchk, 326
CHECK TABLE, 729
checking

tables for errors, 330
checksum errors, 145
CHECKSUM TABLE, 730
Chinese, 1169
choosing

a MySQL version, 43

choosing types, 567
clearing

caches, 754
client programs

building, 1038
client tools, 958
clients

debugging, 1411
threaded, 1039

CLOSE, 935
closing

tables, 442
COALESCE(), 574
COERCIBILITY(), 638
ColdFusion program, 1076
collating

strings, 344
COLLATION(), 638
COLLATIONS

INFORMATION_SCHEMA table, 951
COLLA-
TION_CHARACTER_SET_APPLICABILITY

INFORMATION_SCHEMA table, 952
column

changing, 694
column comments, 702
column names

case sensitivity, 506
columns

changing, 1177
displaying, 497
indexes, 433
names, 504
other types, 567
selecting, 178
storage requirements, 566
types, 543

COLUMNS
INFORMATION_SCHEMA table, 946

COLUMN_PRIVILEGES
INFORMATION_SCHEMA table, 950

command syntax, 3
command-line history

mysql, 467
command-line options, 221

mysql, 463
mysqladmin, 476
mysqlcc, 481

command-line tool, 462
commands

for binary distribution, 87
replication masters, 757
replication slaves, 759

commands out of sync, 1159
Comment syntax, 511
comments

adding, 511
starting, 31

COMMIT, 27, 714
comparison operators, 570
compatibility

between MySQL versions, 122, 122, 128, 131, 133
with mSQL, 593

Index

1429

with ODBC, 506, 545, 570, 573, 677, 701, 1359
with Oracle, 25, 648, 714
with PostgreSQL, 26
with standard SQL, 22
with Sybase, 714

compiler
C++ gcc, 94

compiling
on Windows, 106
optimizing, 443
problems, 98
speed, 447
statically, 93
user-defined functions, 1144

compliance
Y2K, 10

compress
mysql option, 463
mysqlcc option, 482

COMPRESS(), 580
compressed tables, 457, 776
CONCAT(), 581
CONCAT_WS(), 581
concurrent inserts, 429
Conditions, 933
config-file

mysqld_multi option, 218
config.cache, 98
config.cache file, 98
configuration files, 294
configuration options, 93
configure

running after prior invocation, 98
configure option

--with-charset, 95
--with-collation, 95
--with-extra-charsets, 95
--with-low-memory, 99

configure script, 93
connecting

remotely with SSH, 317
to the server, 169, 286
verification, 287

connection
aborted, 1157

CONNECTION_ID(), 639
connection_name

mysqlcc option, 482
Connector/J, 1104
Connector/JDBC, 1047
Connector/ODBC, 1047, 1047

reporting problems, 1049
Connectors

MySQL, 1047
connect_timeout variable, 467, 477, 483
constant table, 402, 410
constraints, 32
CONSTRAINTS

INFORMATION_SCHEMA table, 952
Contains(), 923
contributing companies

list of, 1191
contributors

list of, 1183
control access, 287
control flow functions, 577
CONV(), 582
conventions

typographical, 2
CONVERT, 630
CONVERT TO, 695
CONVERT_TZ(), 604
ConvexHull(), 921
copying databases, 135
copying tables, 707
COS(), 597
COT(), 597
COUNT(), 646
COUNT(DISTINCT), 647
counting

table rows, 186
crash, 1406

recovery, 330
repeated, 1165

crash-me, 399
crash-me program, 397, 398
CRC32(), 597
CREATE DATABASE, 697
CREATE FUNCTION, 929, 1138
CREATE INDEX, 697
CREATE PROCEDURE, 929
CREATE SCHEMA, 697
CREATE TABLE, 699
CREATE USER, 719
CREATE VIEW, 709
creating

bug reports, 17
database, 697
databases, 172
default startup options, 205
schema, 697
tables, 174

creating user accounts, 719
CROSS JOIN, 676
Crosses(), 923
CR_SERVER_GONE_ERROR, 1154
CR_SERVER_LOST_ERROR, 1154
CSV storage engine, 770, 792
CSV table type, 770, 792
CURDATE(), 604
CURRENT_DATE, 604
CURRENT_TIME, 605
CURRENT_TIMESTAMP, 605
CURRENT_USER(), 639
Cursors, 934
CURTIME(), 604
customer support

mailing address, 21
customers

of MySQL, 398
CXX environment variable, 94, 94, 99, 99, 100, 1415
CXXFLAGS environment variable, 94, 100, 1415

D
data

Index

1430

character sets, 340
importing, 495
loading into tables, 175
retrieving, 177
size, 432

data types, 543
C API, 959

database
altering, 692
creating, 697
deleting, 711
mysql option, 463
mysqlcc option, 482

database design, 432
Database information

obtaining, 737
database metadata, 943
database names

case sensitivity, 506
case-sensitivity, 24

DATABASE(), 639
databases

backups, 317
copying, 135
creating, 172
defined, 4
displaying, 497
dumping, 486, 493
information about, 189
names, 504
replicating, 365
selecting, 174
symbolic links, 451
using, 172

DataJunction, 1076
DATE, 546, 553, 1170
date and time functions, 603
Date and Time types, 552
date calculations, 181
DATE columns

problems, 1170
date functions

Y2K compliance, 10
date types, 566

Y2K issues, 560
date values

problems, 554
DATE(), 605
DATEDIFF(), 605
DATETIME, 546, 553
DATE_ADD(), 605
DATE_FORMAT(), 607
DATE_SUB(), 605
DAY(), 609
DAYNAME(), 609
DAYOFMONTH(), 609
DAYOFWEEK(), 609
DAYOFYEAR(), 609
db table

sorting, 291
DB2 SQL mode, 235
DBI interface, 1044
DBI->quote, 503

DBI->trace, 1408
DBI/DBD interface, 1044
DBI_TRACE environment variable, 1408, 1415
DBI_USER environment variable, 1415
DBUG package, 1411
DEALLOCATE PREPARE, 767
debug

mysql option, 463
debug-info

mysql option, 463
debugging

client, 1411
server, 1406

DEC, 545
DECIMAL, 545
decimal point, 543
DECLARE, 932
DECODE(), 634
decode_bits myisamchk variable, 325
DEFAULT

constraint, 33
default

privileges, 118
default hostname, 286
default installation location, 57
default options, 205
DEFAULT value clause, 702
default values, 396, 658, 702

BLOB and TEXT columns, 562
implicit, 702
suppression, 33

DEFAULT(), 643
default-character-set

mysql option, 463
defaults

embedded, 1041
DEGREES(), 597
DELAYED, 661
delayed_insert_limit, 662
DELETE, 653
deleting

database, 711
foreign key, 695, 810
function, 1138
index, 694, 711
primary key, 694
rows, 1173
schema, 711
table, 712
user, 307, 719
users, 307, 719

deletion
mysql.sock, 1168

Delphi program, 1078
derived tables, 685
DESC, 713
DESCRIBE, 189, 713
design

choices, 432
issues, 35
limitations, 396

DES_DECRYPT(), 635
DES_ENCRYPT(), 635

Index

1431

developers
list of, 1179

development source tree, 95
Difference(), 921
digits, 543
Dimension(), 914
directory structure

default, 57
DISCARD TABLESPACE, 695, 813
disconnecting

from the server, 169
Disjoint(), 923
disk full, 1167
disk issues, 450
disks

splitting data across, 453
display size, 543
display width, 543
displaying

database information, 497
information

Cardinality, 742
Collation, 742
SHOW, 737, 738, 742, 750

table status, 748
Distance(), 924
DISTINCT, 179, 417, 647, 675
DISTINCTROW, 675
DIV, 595
division (/), 595
DNS, 449
DO, 655
Documenters

list of, 1188
DOUBLE, 545
DOUBLE PRECISION, 545
double quote (\"), 501
DOUBLE(M

D), 545
downgrading, 136
downloading, 54
DROP DATABASE, 711
DROP FOREIGN KEY, 695, 810
DROP FUNCTION, 931, 1138
DROP INDEX, 694, 711
DROP PRIMARY KEY, 694
DROP PROCEDURE, 931
DROP SCHEMA, 711
DROP TABLE, 712
DROP USER, 719
DROP VIEW, 712
dropping

user, 307, 719
DUMPFILE, 675
dumping

databases, 486, 493
dynamic table characteristics, 776

E
Eiffel Wrapper, 1045
ELT(), 582
email lists, 15

embedded MySQL server library, 1040
ENCODE(), 634
ENCRYPT(), 636
encryption functions, 634
END, 932
EndPoint(), 916
entering

queries, 170
ENUM, 549, 563

size, 567
Envelope(), 914
environment variable

CC, 94, 94, 100
CFLAGS, 94, 100
CXX, 94, 94, 100
CXXFLAGS, 94, 100
HOME, 467
LD_RUN_PATH, 140, 147
MYSQL_DEBUG, 456
MYSQL_HISTFILE, 467
MYSQL_HOST, 287
MYSQL_PWD, 287, 456
MYSQL_TCP_PORT, 358, 359, 456
MYSQL_UNIX_PORT, 358, 359, 456
PATH, 88
USER, 287

Environment variable
CC, 1415
CFLAGS, 1415
CXX, 99, 1415
CXXFLAGS, 1415
DBI_TRACE, 1408, 1415
DBI_USER, 1415
HOME, 1415
LD_LIBRARY_PATH, 167
LD_RUN_PATH, 167, 1415
MYSQL_DEBUG, 1411, 1415
MYSQL_HISTFILE, 1415
MYSQL_HOST, 1415
MYSQL_PS1, 1415
MYSQL_PWD, 1415
MYSQL_TCP_PORT, 1415
MYSQL_UNIX_PORT, 112, 1415
PATH, 1415
TMPDIR, 112, 1415
TZ, 1169, 1415
UMASK, 1163, 1415
UMASK_DIR, 1163, 1415
USER, 1415

Environment variables
CXX, 99

environment variables, 208, 294, 456
list of, 1415

environment varible
PATH, 203

equal (=), 571
Equals(), 924
Errcode, 499
errno, 499
error messages

can't find file, 1163
displaying, 499
languages, 341

Index

1432

errors
access denied, 1150
checking tables for, 330
common, 1149
directory checksum, 145
handling for UDFs, 1144
known, 35
linking, 1161
list of, 1150
reporting, 1, 15, 17

ERROR_FOR_DIVISION_BY_ZERO SQL mode,
232
escape (\\), 502
escape characters, 501
estimating

query performance, 408
example

mysqld_multi option, 218
EXAMPLE storage engine, 770, 789
EXAMPLE table type, 770, 789
examples

compressed tables, 458
myisamchk output, 335
queries, 192

Excel, 1076
execute

mysql option, 464
EXECUTE, 767
EXP(), 597
EXPLAIN, 400
EXPORT_SET(), 582
expression aliases, 652, 671
expressions

extended, 184
extensions

to standard SQL, 22
ExteriorRing(), 919
EXTRACT(), 609
extracting

dates, 181

F
FALSE, 503

testing for, 572
fatal signal 11, 99
features of MySQL, 5
FEDERATED storage engine, 770, 789
FEDERATED table type, 770, 789
FETCH, 935
field

changing, 694
FIELD(), 582
FILE, 584
files

binary log, 348
config.cache, 98
error messages, 341
log, 93, 352
my.cnf, 377
not found message, 1163
permissions, 1163
query log, 347

repairing, 327
script, 190
size limits, 8
slow query log, 352
text, 495
tmp, 112
update log, 348

filesort optimization, 419
FIND_IN_SET(), 583
FIXED, 545
FLOAT, 544, 545
FLOAT(M

D), 545
FLOAT(p), 544, 545, 545
floating-point number, 544
floats, 503
FLOOR(), 598
FLUSH, 754
flush tables, 475
FOR UPDATE, 675
force

mysql option, 464
FORCE INDEX, 672, 678, 1176
FORCE KEY, 672, 678
foreign key

constraint, 33
deleting, 695, 810

foreign keys, 30, 195, 695
FORMAT(), 643
Forums, 22
FOUND_ROWS(), 639
FreeBSD troubleshooting, 100
FROM, 672
FROM_DAYS(), 610
FROM_UNIXTIME(), 610
ft_max_word_len myisamchk variable, 325
ft_min_word_len myisamchk variable, 325
ft_stopword_file myisamchk variable, 325
full disk, 1167
full-text search, 622
FULLTEXT, 622
function

deleting, 1138
functions, 569

arithmetic, 632
bit, 632
C API, 963
C Prepared statement API, 1009
cast, 629
control flow, 577
date and time, 603
encryption, 634
GROUP BY, 646
grouping, 570
information, 637
mathematical, 595
miscellaneous, 643
native

adding, 1146
new, 1138
string, 579
string comparison, 591
user-defined, 1138

Index

1433

adding, 1139
Functions

user-defined, 1138
functions for SELECT and WHERE clauses, 569

G
gcc, 94
gdb

using, 1407
general information, 1
General Public License, 4
geographic feature, 898
GeomCollFromText(), 907
GeomCollFromWKB(), 909
geometry, 898
GEOMETRY, 907
GEOMETRYCOLLECTION, 907
GeometryCollection(), 910
GeometryCollectionFromText(), 907
GeometryCollectionFromWKB(), 909
GeometryFromText(), 907
GeometryFromWKB(), 909
GeometryN(), 920
GeometryType(), 914
GeomFromText(), 907, 913
GeomFromWKB(), 909, 913
geospatial feature, 898
getting MySQL, 54
GET_FORMAT(), 610
GET_LOCK(), 643
GIS, 898, 898
GLength(), 916, 918
global privileges, 720
goals of MySQL, 5
GPL

General Public License, 1420
GNU General Public License, 1420
MySQL FLOSS License Exception, 1425

GRANT, 720
GRANT statement, 304, 315
grant tables, 293

re-creating, 108
sorting, 290, 291
upgrading, 134

granting
privileges, 720

GRANTS, 741
graphical tool, 481
greater than (>), 572
greater than or equal (>=), 572
GREATEST(), 574
GROUP BY, 421

aliases in, 652
extensions to standard SQL, 651, 673

GROUP BY functions, 646
grouping

expressions, 570
GROUP_CONCAT(), 647
GUI tool, 481

H
HANDLER, 656

Handlers, 933
handling

errors, 1144
HAVING, 673
HEAP storage engine, 770, 782
HEAP table type, 770, 782
help

mysql option, 463
mysqlcc option, 481
mysqld_multi option, 218

HEX(), 583
hexadecimal values, 503
HIGH_NOT_PRECEDENCE SQL mode, 233
HIGH_PRIORITY, 675
hints, 24, 676, 677, 677

index, 672, 678
history of MySQL, 5
history_size

mysqlcc option, 482
HOME environment variable, 467, 1415
host

mysql option, 464
mysqlcc option, 482

host table, 292
sorting, 291

host.frm
problems finding, 109

hostname
default, 286

hostname caching, 449
HOUR(), 611
html

mysql option, 464

I
ID

unique, 1037
identifiers, 504

case sensitivity, 506
quoting, 505

IF, 936
IF(), 578
IFNULL(), 578
IGNORE INDEX, 672, 678
IGNORE KEY, 672, 678
ignore-space

mysql option, 464
IGNORE_SPACE SQL mode, 233
implicit default values, 702
IMPORT TABLESPACE, 695, 813
importing

data, 495
IN, 574
increasing

performance, 390
increasing with replication

speed, 365
index

deleting, 694, 711
index hints, 672, 678
indexes, 697

and BLOB columns, 434, 703

Index

1434

and IS NULL, 436
and LIKE, 436
and NULL values, 703
and TEXT columns, 434, 703
assigning to key cache, 753
block size, 246
columns, 433
leftmost prefix of, 436
multi-column, 434
multiple-part, 697
names, 504
use of, 435

INET_ATON(), 644
INET_NTOA(), 644
information functions, 637
INFORMATION_SCHEMA, 943, 944
INNER JOIN, 676
InnoDB, 794
InnoDB storage engine, 770, 794
InnoDB table type, 770, 794
InnoDB tables, 27
INSERT, 424, 657
INSERT ... SELECT, 660
INSERT DELAYED, 661, 661
INSERT statement

grant privileges, 305
INSERT(), 583
inserting

speed of, 424
installation layouts, 57
installation overview, 89
installing

binary distribution, 86
Linux RPM packages, 80
Mac OS X PKG packages, 82
overview, 41
Perl, 165
Perl on Windows, 166
source distribution, 89
user-defined functions, 1144

INSTR(), 583
INT, 544
INTEGER, 544
integers, 503
InteriorRingN(), 919
internal compiler errors, 99
internal locking, 428
internals, 1135
Internet Relay Chat, 21
Intersection(), 921
Intersects(), 924
INTERVAL(), 575
introducer

string literal, 501, 523
invalid data

constraint, 33
IRC, 21
IS boolean_value, 572
IS NOT boolean_value, 572
IS NOT NULL, 573
IS NULL, 416, 573

and indexes, 436
ISAM storage engine, 770, 792

ISAM table type, 770, 792
IsClosed(), 917, 918
IsEmpty(), 915
ISNULL(), 575
ISOLATION LEVEL, 719
IsRing(), 918
IsSimple(), 915
IS_FREE_LOCK(), 644
IS_USED_LOCK(), 644
ITERATE, 937

J
Java connectivity, 1104
JDBC, 1104
JOIN, 676

K
Key cache

MyISAM, 437
key cache

assigning indexes to, 753
key space

MyISAM, 775
keys, 433

foreign, 30, 195
multi-column, 434
searching on two, 196

keywords, 512
key_buffer_size myisamchk variable, 325
KEY_COLUMN_USAGE

INFORMATION_SCHEMA table, 953
KILL, 755
known errors, 35

L
language support, 341
last row

unique ID, 1037
LAST_DAY(), 612
LAST_INSERT_ID(), 29, 660
LAST_INSERT_ID([expr]), 640
layout of installation, 57
LCASE(), 584
LD_LIBRARY_PATH environment variable, 167
LD_RUN_PATH environment variable, 140, 147,
167, 1415
LEAST(), 575
LEAVE, 937
LEFT JOIN, 418, 676
LEFT OUTER JOIN, 676
LEFT(), 584
leftmost prefix of indexes, 436
legal names, 504
LENGTH(), 584
less than (<), 572
less than or equal (<=), 572
libmysqld, 1040
libraries

list of, 1189
library

mysqlclient, 958
mysqld, 958

Index

1435

License, 1425
LIKE, 591

and indexes, 436
and wildcards, 436

LIMIT, 423, 639, 674
limitations

design, 396
replication, 377

limits
file-size, 8

linefeed (\n), 501
LineFromText(), 908
LineFromWKB(), 909
LINESTRING, 907
LineString(), 910
LineStringFromText(), 908
LineStringFromWKB(), 909
linking, 1038

errors, 1161
problems, 1038
speed, 447

links
symbolic, 451

Linux
binary distribution, 138
source distribution, 139

literals, 501
LN(), 598
LOAD DATA FROM MASTER, 761
LOAD DATA INFILE, 663, 1172
LOAD TABLE FROM MASTER, 761
loading

tables, 175
LOAD_FILE(), 584
local-infile

mysql option, 464
mysqlcc option, 482

LOCALTIME, 612
LOCALTIMESTAMP, 612
LOCATE(), 585
LOCK IN SHARE MODE, 675
LOCK TABLES, 716
locking, 443

page-level, 428
row-level, 29, 428
table-level, 428

locking methods, 428
log

changes, 1198
mysqld_multi option, 219

log files, 93
maintaining, 352
names, 318

Log files, 346
LOG(), 598
LOG10(), 599
LOG2(), 599
logical operators, 576
LONG, 562
LONGBLOB, 549
LONGTEXT, 549
LOOP, 936
LOWER(), 585

LPAD(), 585
LTRIM(), 585

M
Mac OS X

installation, 82
mailing address

for customer support, 21
mailing list address, 1
mailing lists, 15

archive location, 17
guidelines, 21

main features of MySQL, 5
maintaining

log files, 352
tables, 334

MAKEDATE(), 612
MAKETIME(), 612
make_binary_distribution, 212
MAKE_SET(), 586
manual

available formats, 2
online location, 1
typographical conventions, 2

master/slave setup, 365
MASTER_POS_WAIT(), 644, 762
MATCH ... AGAINST(), 622
matching

patterns, 184
mathematical functions, 595
MAX(), 648
MAXDB SQL mode, 235
maximum memory used, 476
max_allowed_packet variable, 467, 483
MAX_CONNECTIONS_PER_HOUR, 307
max_join_size variable, 467, 483
MAX_QUERIES_PER_HOUR, 307
MAX_UPDATES_PER_HOUR, 307
MAX_USER_CONNECTIONS, 307
MBR, 922
MBRContains(), 922
MBRDisjoint(), 922
MBREqual(), 922
MBRIntersects(), 922
MBROverlaps(), 922
MBRTouches(), 922
MBRWithin(), 923
MD5(), 636
MEDIUMBLOB, 549
MEDIUMINT, 544
MEDIUMTEXT, 549
MEMORY storage engine, 770, 782
MEMORY table type, 770, 782
memory usage

myisamchk, 329
memory use, 448, 476
MERGE storage engine, 770, 779
MERGE table type, 770, 779
MERGE tables

defined, 779
messages

languages, 341

Index

1436

metadata
database, 943

methods
locking, 428

MICROSECOND(), 613
MID(), 586
MIN(), 648
Minimum Bounding Rectangle, 922
minus

unary (-), 594
MINUTE(), 613
mirror sites, 54
miscellaneous functions, 643
MIT-pthreads, 101
MLineFromText(), 908
MLineFromWKB(), 909
MOD (modulo), 599
MOD(), 599
modes

batch, 190
modules

list of, 8
modulo (%), 599
modulo (MOD), 599
monitor

terminal, 169
MONTH(), 613
MONTHNAME(), 613
MPointFromText(), 908
MPointFromWKB(), 909
MPolyFromText(), 908
MPolyFromWKB(), 909
mSQL compatibility, 593
msql2mysql, 958
MSSQL SQL mode, 236
multi mysqld, 217
multi-byte character sets, 1160
multi-byte characters, 344
multi-column indexes, 434
MULTILINESTRING, 907
MultiLineString(), 910
MultiLineStringFromText(), 908
MultiLineStringFromWKB(), 909
multiple servers, 353
multiple-part index, 697
multiplication (*), 594
MULTIPOINT, 907
MultiPoint(), 910
MultiPointFromText(), 908
MultiPointFromWKB(), 909
MULTIPOLYGON, 907
MultiPolygon(), 910
MultiPolygonFromText(), 908
MultiPolygonFromWKB(), 909
My

derivation, 5
my.cnf file, 377
MyISAM

compressed tables, 457, 776
size, 566

MyISAM key cache, 437
MyISAM storage engine, 770, 772
MyISAM table type, 770, 772

myisamchk, 95, 212
example output, 335
options, 324

myisampack, 455, 457, 709, 776
myisam_block_size myisamchk variable, 325
MyODBC, 1047

reporting problems, 1049
MySQL

defined, 4
introduction, 4
pronunciation, 5

mysql, 455, 462
MySQL binary distribution, 43
MYSQL C type, 960
MySQL C type, 1008
mysql command-line options, 463
mysql commands

list of, 468
MySQL Dolphin name, 5
MySQL history, 5
mysql history file, 467
MySQL mailing lists, 15
MySQL name, 5
mysql prompt command, 469
MySQL source distribution, 43
mysql status command, 468
MySQL storage engines, 770
MySQL table types, 770
MySQL version, 54
MySQL++, 1045
mysql.server, 211
mysql.sock

changing location of, 93
protection, 1168

MYSQL323 SQL mode, 236
MYSQL40 SQL mode, 236
mysqlaccess, 455
mysqladmin, 455, 473, 697, 711, 747, 750, 754, 755

mysqld_multi option, 219
mysqladmin command-line options, 476
mysqlbinlog, 455, 478
mysqlbug, 212
mysqlbug script, 17

location, 1
mysqlcc, 455, 481
mysqlcc command-line options, 481
mysqlcheck, 455
mysqlclient library, 958
mysqld, 211

mysqld_multi option, 219
starting, 1162

mysqld library, 958
mysqld options, 221, 444
mysqld server

buffer sizes, 444
mysqld-max, 211, 212
mysqldump, 136, 456, 486
mysqld_multi, 211, 217
mysqld_safe, 211, 214
mysqlhotcopy, 456
mysqlimport, 136, 456, 495, 663
mysqlshow, 456
mysqltest

Index

1437

MySQL Test Suite, 1135
mysql_affected_rows(), 967
mysql_autocommit()., 1004
MYSQL_BIND C type, 1006
mysql_change_user(), 967
mysql_character_set_name(), 969
mysql_close(), 969
mysql_commit()., 1004
mysql_config, 958
mysql_connect(), 969
mysql_create_db(), 970
mysql_data_seek(), 970
MYSQL_DEBUG environment variable, 456, 1411,
1415
mysql_debug(), 971
mysql_drop_db(), 971
mysql_dump_debug_info(), 972
mysql_eof(), 972
mysql_errno(), 973
mysql_error(), 974
mysql_escape_string(), 974
mysql_fetch_field(), 974
mysql_fetch_fields(), 975
mysql_fetch_field_direct(), 975
mysql_fetch_lengths(), 976
mysql_fetch_row(), 977
MYSQL_FIELD C type, 960
mysql_field_count(), 977, 987
MYSQL_FIELD_OFFSET C type, 960
mysql_field_seek(), 978
mysql_field_tell(), 979
mysql_fix_privilege_tables, 212, 294
mysql_free_result(), 979
mysql_get_client_info(), 979
mysql_get_client_version(), 980
mysql_get_host_info(), 980
mysql_get_proto_info(), 980
mysql_get_server_info(), 980
mysql_get_server_version(), 981
mysql_hex_string(), 981
MYSQL_HISTFILE environment variable, 467, 1415
MYSQL_HOST environment variable, 287, 1415
mysql_info(), 660, 669, 691, 696, 982
mysql_init(), 983
mysql_insert_id(), 29, 660, 983
mysql_install_db, 211
mysql_install_db script, 111
mysql_kill(), 984
mysql_library_end(), 985
mysql_library_init(), 984
mysql_list_dbs(), 985
mysql_list_fields(), 985
mysql_list_processes(), 986
mysql_list_tables(), 987
mysql_more_results()., 1004
mysql_next_result()., 1005
mysql_num_fields(), 987
mysql_num_rows(), 988
mysql_options(), 989
mysql_ping(), 991
MYSQL_PS1 environment variable, 1415
MYSQL_PWD environment variable, 287, 456, 1415
mysql_query(), 992, 1036

mysql_real_connect(), 992
mysql_real_escape_string(), 503, 995
mysql_real_query(), 996
mysql_reload(), 996
MYSQL_RES C type, 960
mysql_rollback()., 1004
MYSQL_ROW C type, 960
mysql_row_seek(), 997
mysql_row_tell(), 997
mysql_select_db(), 997
mysql_server_end(), 1036
mysql_server_init(), 1035
mysql_set_sever_option(), 998
mysql_shutdown(), 999
mysql_sqlstate(), 999
mysql_ssl_set(), 1000
mysql_stat(), 1000
MYSQL_STMT C type, 1006
mysql_stmt_affected_rows(), 1012
mysql_stmt_attr_get(), 1012
mysql_stmt_attr_set(), 1013
mysql_stmt_bind_param(), 1013
mysql_stmt_bind_result(), 1014
mysql_stmt_close(), 1015
mysql_stmt_data_seek(), 1016
mysql_stmt_errno(), 1016
mysql_stmt_error()., 1016
mysql_stmt_execute(), 1017
mysql_stmt_fetch(), 1020
mysql_stmt_fetch_column(), 1024
mysql_stmt_field_count(), 1025
mysql_stmt_free_result(), 1020
mysql_stmt_init(), 1025
mysql_stmt_insert_id(), 1020
mysql_stmt_num_rows(), 1025
mysql_stmt_param_count(), 1026
mysql_stmt_param_metadata(), 1026
mysql_stmt_prepare(), 1026
mysql_stmt_reset(), 1027
mysql_stmt_result_metadata., 1028
mysql_stmt_row_seek(), 1029
mysql_stmt_row_tell(), 1029
mysql_stmt_send_long_data()., 1030
mysql_stmt_sqlstate(), 1031
mysql_stmt_store_result(), 1031
mysql_store_result(), 1001, 1036
MYSQL_TCP_PORT environment variable, 358, 359,
456, 1415
mysql_thread_end(), 1035
mysql_thread_id(), 1002
mysql_thread_init(), 1034
mysql_thread_safe(), 1035
MYSQL_UNIX_PORT environment variable, 112,
358, 359, 456, 1415
mysql_use_result(), 1002
mysql_warning_count()., 1003
my_init(), 1034
my_ulonglong C type, 961
my_ulonglong values

printing, 961

N

Index

1438

named pipes, 70, 75
named-commands

mysql option, 464
names, 504

case sensitivity, 506
variables, 507

naming
releases of MySQL, 44

NATIONAL CHAR, 547
native functions

adding, 1146
native thread support, 41
NATURAL LEFT JOIN, 676
NATURAL LEFT OUTER JOIN, 676
NATURAL RIGHT JOIN, 676
NATURAL RIGHT OUTER JOIN, 676
NCHAR, 547
negative values, 503
nested queries, 679
nested query, 679
nesting queries, 679
net etiquette, 17, 21
netmask notation

in mysql.user table, 288
NetWare, 84
net_buffer_length variable, 467, 483
new procedures

adding, 1147
new users

adding, 89, 92
newline (\n), 501
no matching rows, 1173
no-auto-rehash

mysql option, 464
no-beep

mysql option, 464
no-log

mysqld_multi option, 219
no-named-commands

mysql option, 464
no-pager

mysql option, 464
no-tee

mysql option, 465
non-delimited strings, 554
Non-transactional tables, 1172
NOT

logical, 576
NOT BETWEEN, 573
not equal (!=), 571
not equal (<>), 571
NOT IN, 574
NOT LIKE, 593
NOT NULL

constraint, 33
NOT REGEXP, 593
Novell NetWare, 84
NOW(), 613
NO_AUTO_CREATE_USER SQL mode, 233
NO_AUTO_VALUE_ON_ZERO SQL mode, 233
NO_BACKSLASH_ESCAPES SQL mode, 233
NO_DIR_IN_CREATE SQL mode, 233
NO_FIELD_OPTIONS SQL mode, 234

NO_KEY_OPTIONS SQL mode, 234
NO_TABLE_OPTIONS SQL mode, 234
NO_UNSIGNED_SUBTRACTION SQL mode, 234
NO_ZERO_DATE SQL mode, 234
NO_ZERO_IN_DATE SQL mode, 234
NUL, 501
NULL, 183, 1171

testing for null, 571, 573, 574, 578
NULL value, 183, 504
NULL values

and AUTO_INCREMENT columns, 1172
and indexes, 703
and TIMESTAMP columns, 1172
vs. empty values, 1171

NULLIF(), 579
numbers, 503
NUMERIC, 545
numeric types, 566
NumGeometries(), 920
NumInteriorRings(), 919
NumPoints(), 917

O
OCT(), 586
OCTET_LENGTH(), 586
ODBC, 1047
ODBC compatibility, 506, 545, 570, 573, 677, 701,
1359
odbcadmin program, 1077
OLAP, 649
OLD_PASSWORD(), 636
ON DUPLICATE KEY, 657, 1210
one-database

mysql option, 465
online location of manual, 1
ONLY_FULL_GROUP_BY SQL mode, 234
OPEN, 935
Open Source

defined, 4
open tables, 442, 476
OpenGIS, 898
opening

tables, 442
opens, 475
OpenSSL, 311
open_files_limit variable, 480
operating systems

file-size limits, 8
supported, 41
Windows versus Unix, 77

operations
arithmetic, 594

operators, 569
cast, 594, 629
logical, 576

optimization
tips, 426

optimizations, 409, 414
OPTIMIZE TABLE, 731
optimizer

controlling, 446
optimizing

Index

1439

DISTINCT, 417
filesort, 419
GROUP BY, 421
LEFT JOIN, 418
LIMIT, 423
tables, 333

option files, 205, 294
options

command-line, 221
mysql, 463
mysqladmin, 476
mysqlcc, 481

configure, 93
myisamchk, 324
provided by MySQL, 169
replication, 377

OR, 196, 414
bitwise, 632
logical, 576

OR Index Merge optimization, 414
Oracle compatibility, 25, 648, 714
ORACLE SQL mode, 236
ORD(), 586
ORDER BY, 180, 673, 694

aliases in, 652
OUTFILE, 674
Overlaps(), 924
overview, 1

P
packages

list of, 1190
pack_isam, 457
page-level locking, 428
pager

mysql option, 465
parameters

server, 444
parentheses (and), 570
password

mysql option, 465
mysqlcc option, 482
mysqld_multi option, 219
root user, 118

password encryption
reversibility of, 637

PASSWORD(), 288, 308, 637, 1159
passwords

for users, 303
forgotten, 1163
lost, 1163
resetting, 1163
security, 278
setting, 308, 724, 727

PATH environment variable, 88, 203, 1415
pattern matching, 184
performance

benchmarks, 399
disk issues, 450
estimating, 408
improving, 390, 432

PERIOD_ADD(), 614

PERIOD_DIFF(), 614
Perl

installing, 165
installing on Windows, 166

Perl API, 1044
Perl DBI/DBD

installation problems, 166
permission checks

effect on speed, 400
perror, 456, 499
PHP API, 1044
PI(), 600
PIPES_AS_CONCAT SQL mode, 234
plugins_path

mysqlcc option, 482
POINT, 907
Point(), 910
PointFromText(), 908
PointFromWKB(), 909
PointN(), 917
PointOnSurface(), 920
PolyFromText(), 908
PolyFromWKB(), 909
POLYGON, 907
Polygon(), 910
PolygonFromText(), 908
PolygonFromWKB(), 909
port

mysql option, 465
mysqlcc option, 482

portability, 397
types, 567

porting
to other systems, 1405

POSITION(), 587
post-install

multiple servers, 353
post-installation

setup and testing, 106
PostgreSQL compatibility, 26
POSTGRESQL SQL mode, 236
POW(), 600
POWER(), 600
PREPARE, 767
PRIMARY KEY, 694, 703

constraint, 33
primary key

deleting, 694
privilege

changes, 293
privilege information

location, 283
privilege system, 278

described, 279
privileges

access, 278
adding, 304
default, 118
deleting, 307, 719
display, 741
dropping, 307, 719
granting, 720
revoking, 720

Index

1440

problems
access denied errors, 1150
common errors, 1149
compiling, 98
DATE columns, 1170
date values, 554
installing on IBM-AIX, 153
installing on Solaris, 145
installing Perl, 166
linking, 1161
ODBC, 1049
reporting, 17
starting the server, 115
table locking, 430
time zone, 1169

PROCEDURE, 675
procedures

adding, 1147
stored, 30, 928

process support, 41
processes

display, 745
processing

arguments, 1142
PROCESSLIST, 745
program variables

setting, 209
programs

client, 1038
crash-me, 397
list of, 211

prompt
mysql option, 465

prompts
meanings, 171

pronunciation
MySQL, 5

protocol
mysql option, 465

Protocol mismatch, 134
PURGE MASTER LOGS, 757
Python API, 1045

Q
QUARTER(), 614
queries

entering, 170
estimating performance, 408
examples, 192
speed of, 400
Twin Studies project, 198

query
mysqlcc option, 482

Query Cache, 359
query log, 347
questions, 475

answering, 21
quick

mysql option, 465
QUOTE(), 587
quotes

in strings, 502

quoting, 503
quoting binary data, 502
quoting of identifiers, 505

R
RADIANS(), 600
RAID

compile errors, 99
table type, 706

RAND(), 600
raw

mysql option, 465
re-creating

grant tables, 108
read_buffer_size myisamchk variable, 325
REAL, 545
REAL_AS_FLOAT SQL mode, 234
reconfiguring, 98, 98
reconnect

mysql option, 465
recovery

from crash, 330
reducing

data size, 432
references, 695
ref_or_null, 416
regex, 1416
REGEXP, 593
register

mysqlcc option, 482
regular expression syntax

described, 1416
Related(), 924
relational databases

defined, 4
release numbers, 43
releases

naming scheme, 44
testing, 45
updating, 46

RELEASE_LOCK(), 645
RENAME TABLE, 712
RENAME USER, 727
renaming user accounts, 727
reordering

columns, 1177
repair options

myisamchk, 327
REPAIR TABLE, 731
repairing

tables, 331
REPEAT, 937
REPEAT(), 587
replace, 456
REPLACE, 670
REPLACE ... SELECT, 660
replace utility, 499
REPLACE(), 587
replication, 365
replication limitations, 377
replication masters

commands, 757

Index

1441

replication options, 377
replication slaves

commands, 759
reporting

bugs, 17
Connector/ODBC problems, 1049
errors, 1, 15
MyODBC problems, 1049

REQUIRE GRANT option, 315, 725
reserved words

exceptions, 512
RESET MASTER, 758
RESET SLAVE, 762
restarting

the server, 110
RESTORE TABLE, 732
retrieving

data from tables, 177
return (\r), 501
return values

UDFs, 1144
REVERSE(), 587
REVOKE, 720
revoking

privileges, 720
RIGHT JOIN, 676
RIGHT OUTER JOIN, 676
RIGHT(), 588
RLIKE, 593
ROLLBACK, 27, 714
ROLLBACK TO SAVEPOINT, 716
ROLLUP, 649
root password, 118
root user

password resetting, 1163
ROUND(), 601
rounding errors, 544, 602
ROUTINES

INFORMATION_SCHEMA table, 954
row-level locking, 428
rows

counting, 186
deleting, 1173
locking, 29
matching problems, 1173
selecting, 177
sorting, 180

ROW_COUNT(), 641
RPAD(), 588
RPM file, 80
RPM Package Manager, 80
RTRIM(), 588
RTS-threads, 1412
running

ANSI mode, 23
batch mode, 190
multiple servers, 353
queries, 170

running configure after prior invocation, 98

S
safe-updates

mysql option, 465
safe-updates option, 472
safe_mysqld, 214
Sakila, 5
SAVEPOINT, 716
schema

altering, 692
creating, 697
deleting, 711

SCHEMATA
INFORMATION_SCHEMA table, 945

SCHEMA_PRIVILEGES
INFORMATION_SCHEMA table, 949

script files, 190
scripts, 214, 217

mysqlbug, 17
mysql_install_db, 111
SQL, 462

searching
and case sensitivity, 1169
full-text, 622
MySQL Web pages, 17
two keys, 196

SECOND(), 614
security

against attackers, 275
security system, 278
SEC_TO_TIME(), 614
SELECT

LIMIT, 671
optimizing, 400
Query Cache, 359

SELECT INTO, 933
SELECT INTO TABLE, 27
SELECT speed, 409
selecting

databases, 174
select_limit variable, 467, 483
SEQUENCE, 197
sequence emulation, 641
sequences, 197
server

connecting, 169, 286
debugging, 1406
disconnecting, 169
mysqlcc option, 482
restart, 110
shutdown, 110
starting, 108
starting and stopping, 113
starting problems, 115

server administration, 473
server variables, 236, 508, 750
servers

multiple, 353
SESSION_USER(), 642
SET, 549, 564, 733, 933

size, 567
SET GLOBAL SQL_SLAVE_SKIP_COUNTER, 762
SET OPTION, 733
SET PASSWORD, 727
SET PASSWORD statement, 308
SET SQL_LOG_BIN, 758

Index

1442

SET TRANSACTION, 719
setting

passwords, 308
setting passwords, 727
setting program variables, 209
setup

post-installation, 106
SHA(), 637
SHA1(), 637
shell syntax, 3
SHOW BINARY LOGS, 758
SHOW BINLOG EVENTS, 737, 758
SHOW CHARACTER SET, 738
SHOW COLLATION, 738
SHOW COLUMNS, 737, 738
SHOW CREATE DATABASE, 737, 739
SHOW CREATE FUNCTION, 931
SHOW CREATE PROCEDURE, 931
SHOW CREATE SCHEMA, 737, 739
SHOW CREATE TABLE, 737, 739
SHOW CREATE VIEW, 739
SHOW DATABASES, 737, 740
SHOW ENGINES, 737, 737, 740
SHOW ERRORS, 737, 741
SHOW extensions, 956
SHOW FIELDS, 737
SHOW FUNCTION STATUS, 932
SHOW GRANTS, 737, 741
SHOW INDEX, 737, 742
SHOW INNODB STATUS, 737
SHOW KEYS, 737, 742
SHOW MASTER LOGS, 737, 758
SHOW MASTER STATUS, 737, 758
SHOW PRIVILEGES, 737, 744
SHOW PROCEDURE STATUS, 932
SHOW PROCESSLIST, 737, 745
SHOW SCHEMAS, 737, 740
SHOW SLAVE HOSTS, 737, 759
SHOW SLAVE STATUS, 737, 762
SHOW STATUS, 737
SHOW STORAGE ENGINES, 740
SHOW TABLE STATUS, 737
SHOW TABLE TYPES, 737, 740
SHOW TABLES, 737, 750
SHOW VARIABLES, 737
SHOW WARNINGS, 737, 751
SHOW with WHERE, 943, 956
showing

database information, 497
shutdown_timeout variable, 477
shutting down

the server, 110
sigint-ignore

mysql option, 466
SIGN(), 601
silent

mysql option, 466
mysqld_multi option, 219

silent column changes, 708
SIN(), 601
single quote (\'), 501
size of tables, 8
sizes

display, 543
skip-column-names

mysql option, 466
skip-line-numbers

mysql option, 466
slow queries, 475
slow query log, 352
SMALLINT, 544
socket

mysql option, 466
mysqlcc option, 483

socket location
changing, 93

Solaris installation problems, 145
Solaris troubleshooting, 100
sorting

character sets, 340
data, 180
grant tables, 290, 291
table rows, 180

sort_buffer_size myisamchk variable, 325
sort_key_blocks myisamchk variable, 325
SOUNDEX(), 588
SOUNDS LIKE, 589
source distribution

installing, 89
source distributions

on Linux, 139
SPACE(), 589
Spatial Extensions in MySQL, 898
speed

compiling, 447
increasing with replication, 365
inserting, 424
linking, 447
of queries, 400, 409

SQL
defined, 4

SQL commands
replication masters, 757
replication slaves, 759

SQL scripts, 462
SQL-92

extensions to, 22
SQL_BIG_RESULT, 676
SQL_BUFFER_RESULT, 676
SQL_CACHE, 361, 676
SQL_CALC_FOUND_ROWS, 676
SQL_NO_CACHE, 361, 676
SQL_SMALL_RESULT, 676
sql_yacc.cc problems, 99
SQRT(), 602
square brackets, 543
SRID(), 915
SSH, 317
SSL and X509 Basics, 311
SSL command-line options, 316
SSL related options, 315, 725
stability, 8
standard SQL

extensions to, 22
Standard SQL

differences from, 727

Index

1443

standards compatibility, 22
START SLAVE, 766
START TRANSACTION, 714
starting

comments, 31
mysqld, 1162
the server, 108
the server automatically, 113

Starting many servers, 353
StartPoint(), 917
startup options

default, 205
startup parameters, 444

mysql, 463
mysqladmin, 476
mysqlcc, 481
tuning, 443

statements
GRANT, 304
INSERT, 305

statically
compiling, 93

STATISTICS
INFORMATION_SCHEMA table, 948

status
tables, 748

status command
results, 475

status variables, 262, 747
STD(), 648
STDDEV(), 648
STOP SLAVE, 767
stopping

the server, 113
storage engines

choosing, 770
storage of data, 432
storage requirements

column type, 566
storage space

minimising, 432
stored procedures, 928
stored procedures and triggers

defined, 30
STRAIGHT_JOIN, 676, 676
STRCMP(), 593
STRICT SQL mode, 232
STRICT_ALL_TABLES SQL mode, 234
STRICT_TRANS_TABLES SQL mode, 232, 235
string collating, 344
string comparison functions, 591
string comparisons

case sensitivity, 591
string functions, 579
string literal introducer, 501, 523
string replacement

replace utility, 499
string types, 560
strings

defined, 501
escaping characters, 501
non-delimited, 554

striping

defined, 450
STR_TO_DATE(), 615
SUBDATE(), 615
subqueries, 679
subquery, 679
subselects, 679
SUBSTRING(), 589
SUBSTRING_INDEX(), 589
SUBTIME(), 616
subtraction (-), 594
SUM(), 649
superuser, 118
support

for operating systems, 41
mailing address, 21

suppression
default values, 33

Sybase compatibility, 714
symbolic links, 451, 453
SymDifference(), 921
syntax

mysqlcc option, 483
regular expression, 1416

syntax_file
mysqlcc option, 483

SYSDATE(), 616
system

privilege, 278
security, 272

system optimization, 443
system table, 402
system variables, 236, 508, 750
SYSTEM_USER(), 642

T
tab (\t), 502
table

changing, 692, 694, 1176
deleting, 712
mysql option, 466

table aliases, 672
table cache, 442
table is full, 734, 1158
table names

case sensitivity, 506
case-sensitivity, 24

Table scans
avoiding, 423

table types
choosing, 770

table-level locking, 428
tables

ARCHIVE, 791
BDB, 784
Berkeley DB, 784
changing column order, 1177
checking, 326
closing, 442
compressed, 457
compressed format, 776
constant, 402, 410
copying, 707

Index

1444

counting rows, 186
creating, 174
CSV, 792
defragment, 334, 776
defragmenting, 731
deleting rows, 1173
displaying, 497
displaying status, 748
dumping, 486, 493
dynamic, 776
error checking, 330
EXAMPLE, 789
FEDERATED , 789
flush, 475
fragmentation, 731
grant, 293
HEAP, 782
host, 292
improving performance, 432
information, 335
information about, 189
InnoDB, 794
ISAM, 792
loading data, 175
maintenance regimen, 334
maximum size, 8
MEMORY, 782
MERGE, 779
merging, 779
multiple, 188
MyISAM, 772
names, 504
open, 442
opening, 442
optimizing, 333
partitioning, 779
RAID, 706
repairing, 331
retrieving data, 177
selecting columns, 178
selecting rows, 177
sorting rows, 180
symbolic links, 452
system, 402
too many, 443
unique ID for last row, 1037
updating, 27

TABLES
INFORMATION_SCHEMA table, 945

table_cache, 442
TABLE_PRIVILEGES

INFORMATION_SCHEMA table, 949
TAN(), 602
tar

problems on Solaris, 145
Tcl API, 1045
tcp-ip

mysqld_multi option, 219
TCP/IP, 70, 75
technical support

mailing address, 21
tee

mysql option, 466

temporary file
write access, 112

temporary tables
problems, 1178

terminal monitor
defined, 169

testing
connection to the server, 287
installation, 108
of MySQL releases, 45
post-installation, 106

testing mysqld
mysqltest, 1135

Texinfo, 2
TEXT, 549, 562

size, 567
TEXT columns

default values, 562
indexing, 434, 703

text files
importing, 495

thread packages
differences between, 1414

thread support, 41
non-native, 101

threaded clients, 1039
threads, 475, 745, 1135

display, 745
RTS, 1412

TIME, 546, 559
time types, 566
time zone problems, 1169
TIME(), 616
TIMEDIFF(), 616
timeout, 242, 643, 662

connect_timeout variable, 467, 477, 483
shutdown_timeout variable, 477

TIMESTAMP, 546, 553
and NULL values, 1172

TIMESTAMP(), 617
TIMESTAMPADD(), 617
TIMESTAMPDIFF(), 617
TIME_FORMAT(), 618
TIME_TO_SEC(), 618
TINYBLOB, 549
TINYINT, 543
TINYTEXT, 549
tips

optimization, 426
TMPDIR environment variable, 112, 1415
TODO

embedded server, 1041
symlinks, 453

ToDo list for MySQL, 1192
tools

command-line, 462
graphical, 481
GUI, 481
list of, 1190
mysqld_multi, 217
mysqld_safe, 214
safe_mysqld, 214

Touches(), 924

Index

1445

TO_DAYS(), 618
trace DBI method, 1408
TRADITIONAL SQL mode, 236
TRADITONAL SQL mode, 232
transaction-safe tables, 27, 794
transactions

support, 27, 794
translations_path

mysqlcc option, 483
Translators

list of, 1188
triggers, 30, 939
TRIM(), 590
troubleshooting

FreeBSD, 100
Solaris, 100

TRUE, 503
testing for, 572

TRUNCATE, 690
TRUNCATE(), 602
tutorial, 169
Twin Studies

queries, 198
type conversions, 570
types

columns, 543, 567
data, 543
date, 566
Date and Time, 552
numeric, 566
of tables, 770
portability, 567
strings, 560
time, 566

Types, 543
typographical conventions, 2
TZ environment variable, 1169, 1415

U
UCASE(), 590
UCS-2, 516
UDF functions, 1138
UDFs

compiling, 1144
defined, 1138
return values, 1144

ulimit, 1161
UMASK environment variable, 1163, 1415
UMASK_DIR environment variable, 1163, 1415
unary minus (-), 594
unbuffered

mysql option, 466
UNCOMPRESS(), 590
UNCOMPRESSED_LENGTH(), 590
UNHEX(), 590
Unicode, 516
UNION, 196, 678
Union(), 921
UNIQUE, 694

constraint, 33
unique ID, 1037
UNIX_TIMESTAMP(), 619

UNKNOWN
testing for, 572

unloading
tables, 177

UNLOCK TABLES, 716
unnamed views, 685
UNTIL, 937
UPDATE, 690
update log, 348
updating

releases of MySQL, 46
tables, 27

upgrading, 121
3.20 to 3.21, 133
3.21 to 3.22, 133
3.22 to 3.23, 131
3.23 to 4.0, 128
4.0 to 4.1, 122
different architecture, 135
grant tables, 134
to 5.0, 122

UPPER(), 591
uptime, 475
URLs for downloading MySQL, 54
USE, 714
USE INDEX, 672, 678
USE KEY, 672, 678
user

mysql option, 466
mysqlcc option, 483
mysqld_multi option, 219

user accounts
creating, 719
renaming, 727

USER environment variable, 287, 1415
user privileges

adding, 304
deleting, 307, 719
dropping, 307, 719

user table
sorting, 290

user variables, 507
USER(), 642
user-defined functions

adding, 1138, 1139
User-defined functions, 1138
usernames

and passwords, 303
users

adding, 89, 92
deleting, 307, 719
root, 118

USER_PRIVILEGES
INFORMATION_SCHEMA table, 949

uses
of MySQL, 398

using multiple disks to start data, 453
UTC_DATE(), 619
UTC_TIME(), 619
UTC_TIMESTAMP(), 619
UTF-8, 516
UTF8, 516
UUID(), 645

Index

1446

V
valid numbers

examples, 503
VARBINARY, 548
VARCHAR, 548, 560

size, 567
VARCHARACTER, 548
variables

mysqld, 444
server, 236, 750
status, 262, 747
system, 236, 750
System, 508
user, 507
values, 239

VARIANCE(), 649
verbose

mysql option, 466
mysqld_multi option, 219

version
choosing, 43
latest, 54
mysql option, 466
mysqlcc option, 483
mysqld_multi option, 219

VERSION(), 642
vertical

mysql option, 467
views, 31, 709

updatable, 31, 709
VIEWS

INFORMATION_SCHEMA table, 955
virtual memory

problems while compiling, 99
Visual Basic, 1078

W
wait

mysql option, 467
WEEK(), 620
WEEKDAY(), 621
WEEKOFYEAR(), 621
Well-Known Binary format, 906
Well-Known Text format, 905
What is an X509/Certificate?, 311
What is encryption, 311
WHERE, 409

with SHOW, 943, 956
WHILE, 938
widths

display, 543
Wildcard character (%), 502
Wildcard character (_), 502
wildcards

and LIKE, 436
in mysql.columns_priv table, 291
in mysql.db table, 291
in mysql.host table, 291
in mysql.tables_priv table, 291
in mysql.user table, 288

Windows, 1047

compiling on, 106
open issues, 79
upgrading, 76
versus Unix, 77

Within(), 924
without-server option, 93
WKB format, 906
WKT format, 905
Word program, 1077
wrappers

Eiffel, 1045
write access

tmp, 112
write_buffer_size myisamchk variable, 325

X
X(), 915
xml

mysql option, 467
XOR

bitwise, 632
logical, 577

Y
Y(), 916
YEAR, 546, 559
Year 2000 compliance, 10
Year 2000 issues, 560
YEAR(), 621
YEARWEEK(), 621

Index

1447

	MySQL Reference Manual
	Table of Contents
	Preface
	Chapter 1. General Information
	1.1. About This Manual
	1.1.1. Conventions Used in This Manual

	1.2. Overview of the MySQL Database Management System
	1.2.1. History of MySQL
	1.2.2. The Main Features of MySQL
	1.2.3. MySQL Stability
	1.2.4. How Big MySQL Tables Can Be
	1.2.5. Year 2000 Compliance

	1.3. MySQL Development Roadmap
	1.3.1. MySQL 4.0 in a Nutshell
	1.3.1.1. Features Available in MySQL 4.0
	1.3.1.2. The Embedded MySQL Server

	1.3.2. MySQL 4.1 in a Nutshell
	1.3.2.1. Features Available in MySQL 4.1

	1.3.3. MySQL 5.0: The Next Development Release

	1.4. MySQL Information Sources
	1.4.1. MySQL Mailing Lists
	1.4.1.1. The MySQL Mailing Lists
	1.4.1.2. Asking Questions or Reporting Bugs
	1.4.1.3. How to Report Bugs or Problems
	1.4.1.4. Guidelines for Answering Questions on the Mailing List

	1.4.2. MySQL Community Support on IRC (Internet Relay Chat)
	1.4.3. MySQL Community Support at the MySQL Forums

	1.5. MySQL Standards Compliance
	1.5.1. What Standards MySQL Follows
	1.5.2. Selecting SQL Modes
	1.5.3. Running MySQL in ANSI Mode
	1.5.4. MySQL Extensions to Standard SQL
	1.5.5. MySQL Differences from Standard SQL
	1.5.5.1. Subqueries
	1.5.5.2. SELECT INTO TABLE
	1.5.5.3. Transactions and Atomic Operations
	1.5.5.4. Stored Procedures and Triggers
	1.5.5.5. Foreign Keys
	1.5.5.6. Views
	1.5.5.7. '--' as the Start of a Comment

	1.5.6. How MySQL Deals with Constraints
	1.5.6.1. PRIMARY KEY and UNIQUE Index Constraints
	1.5.6.2. Constraints on Invalid Data
	1.5.6.3. ENUM and SET Constraints

	1.5.7. Known Errors and Design Deficiencies in MySQL
	1.5.7.1. Errors in 3.23 Fixed in a Later MySQL Version
	1.5.7.2. Errors in 4.0 Fixed in a Later MySQL Version
	1.5.7.3. Open Bugs and Design Deficiencies in MySQL

	Chapter 2. Installing MySQL
	2.1. General Installation Issues
	2.1.1. Operating Systems Supported by MySQL
	2.1.2. Choosing Which MySQL Distribution to Install
	2.1.2.1. Choosing Which Version of MySQL to Install
	2.1.2.2. Choosing a Distribution Format
	2.1.2.3. How and When Updates Are Released
	2.1.2.4. Release Philosophy---No Known Bugs in Releases
	2.1.2.5. MySQL Binaries Compiled by MySQL AB

	2.1.3. How to Get MySQL
	2.1.4. Verifying Package Integrity Using MD5 Checksums or GnuPG
	2.1.4.1. Verifying the MD5 Checksum
	2.1.4.2. Signature Checking Using GnuPG
	2.1.4.3. Signature Checking Using RPM

	2.1.5. Installation Layouts

	2.2. Standard MySQL Installation Using a Binary Distribution
	2.3. Installing MySQL on Windows
	2.3.1. Windows System Requirements
	2.3.2. Choosing An Installation Package
	2.3.3. Installing MySQL with the Automated Installer
	2.3.4. Using the MySQL Installation Wizard
	2.3.4.1. Introduction
	2.3.4.2. Downloading and Starting the MySQL Installation Wizard
	2.3.4.3. Choosing an Install Type
	2.3.4.4. The Custom Install Dialog
	2.3.4.5. The Confirmation Dialog
	2.3.4.6. Changes Made by MySQL Installation Wizard
	2.3.4.7. Upgrading MySQL

	2.3.5. Using the Configuration Wizard
	2.3.5.1. Introduction
	2.3.5.2. Starting the MySQL Configuration Wizard
	2.3.5.3. Choosing a Maintenance Option
	2.3.5.4. Choosing a Configuration Type
	2.3.5.5. The Server Type Dialog
	2.3.5.6. The Database Usage Dialog
	2.3.5.7. The InnoDB Tablespace Dialog
	2.3.5.8. The Concurrent Connections Dialog
	2.3.5.9. The Networking Options Dialog
	2.3.5.10. The Character Set Dialog
	2.3.5.11. The Service Options Dialog
	2.3.5.12. The Security Options Dialog
	2.3.5.13. The Confirmation Dialog
	2.3.5.14. The Location of the my.ini File
	2.3.5.15. Editing The my.ini File

	2.3.6. Installing MySQL from a noinstall Zip Archive
	2.3.7. Extracting the Install Archive
	2.3.8. Creating an Option File
	2.3.9. Selecting a MySQL Server type
	2.3.10. Starting the Server for the First Time
	2.3.11. Starting MySQL from the Windows Command Line
	2.3.12. Starting MySQL as a Windows Service
	2.3.13. Testing The MySQL Installation
	2.3.14. Troubleshooting a MySQL Installation Under Windows
	2.3.15. Upgrading MySQL on Windows
	2.3.16. MySQL on Windows Compared to MySQL on Unix

	2.4. Installing MySQL on Linux
	2.5. Installing MySQL on Mac OS X
	2.6. Installing MySQL on NetWare
	2.7. Installing MySQL on Other Unix-Like Systems
	2.8. MySQL Installation Using a Source Distribution
	2.8.1. Source Installation Overview
	2.8.2. Typical configure Options
	2.8.3. Installing from the Development Source Tree
	2.8.4. Dealing with Problems Compiling MySQL
	2.8.5. MIT-pthreads Notes
	2.8.6. Installing MySQL from Source on Windows
	2.8.6.1. Building MySQL Using VC++
	2.8.6.2. Creating a Windows Source Package from the Latest Development Source

	2.8.7. Compiling MySQL Clients on Windows

	2.9. Post-Installation Setup and Testing
	2.9.1. Windows Post-Installation Procedures
	2.9.2. Unix Post-Installation Procedures
	2.9.2.1. Problems Running mysql_install_db
	2.9.2.2. Starting and Stopping MySQL Automatically
	2.9.2.3. Starting and Troubleshooting the MySQL Server

	2.9.3. Securing the Initial MySQL Accounts

	2.10. Upgrading MySQL
	2.10.1. Upgrading from Version 4.1 to 5.0
	2.10.2. Upgrading from Version 4.0 to 4.1
	2.10.3. Upgrading from Version 3.23 to 4.0
	2.10.4. Upgrading from Version 3.22 to 3.23
	2.10.5. Upgrading from Version 3.21 to 3.22
	2.10.6. Upgrading from Version 3.20 to 3.21
	2.10.7. Upgrading the Grant Tables
	2.10.8. Copying MySQL Databases to Another Machine

	2.11. Downgrading MySQL
	2.11.1. Downgrading to 4.0

	2.12. Operating System-Specific Notes
	2.12.1. Linux Notes
	2.12.1.1. Linux Operating System Notes
	2.12.1.2. Linux Binary Distribution Notes
	2.12.1.3. Linux Source Distribution Notes
	2.12.1.4. Linux Post-Installation Notes
	2.12.1.5. Linux x86 Notes
	2.12.1.6. Linux SPARC Notes
	2.12.1.7. Linux Alpha Notes
	2.12.1.8. Linux PowerPC Notes
	2.12.1.9. Linux MIPS Notes
	2.12.1.10. Linux IA-64 Notes

	2.12.2. Mac OS X Notes
	2.12.2.1. Mac OS X 10.x (Darwin)
	2.12.2.2. Mac OS X Server 1.2 (Rhapsody)

	2.12.3. Solaris Notes
	2.12.3.1. Solaris 2.7/2.8 Notes
	2.12.3.2. Solaris x86 Notes

	2.12.4. BSD Notes
	2.12.4.1. FreeBSD Notes
	2.12.4.2. NetBSD Notes
	2.12.4.3. OpenBSD 2.5 Notes
	2.12.4.4. OpenBSD 2.8 Notes
	2.12.4.5. BSD/OS Version 2.x Notes
	2.12.4.6. BSD/OS Version 3.x Notes
	2.12.4.7. BSD/OS Version 4.x Notes

	2.12.5. Other Unix Notes
	2.12.5.1. HP-UX Version 10.20 Notes
	2.12.5.2. HP-UX Version 11.x Notes
	2.12.5.3. IBM-AIX notes
	2.12.5.4. SunOS 4 Notes
	2.12.5.5. Alpha-DEC-UNIX Notes (Tru64)
	2.12.5.6. Alpha-DEC-OSF/1 Notes
	2.12.5.7. SGI Irix Notes
	2.12.5.8. SCO Notes
	2.12.5.9. SCO UnixWare Version 7.1.x Notes

	2.12.6. OS/2 Notes
	2.12.7. BeOS Notes

	2.13. Perl Installation Notes
	2.13.1. Installing Perl on Unix
	2.13.2. Installing ActiveState Perl on Windows
	2.13.3. Problems Using the Perl DBI/DBD Interface

	Chapter 3. MySQL Tutorial
	3.1. Connecting to and Disconnecting from the Server
	3.2. Entering Queries
	3.3. Creating and Using a Database
	3.3.1. Creating and Selecting a Database
	3.3.2. Creating a Table
	3.3.3. Loading Data into a Table
	3.3.4. Retrieving Information from a Table
	3.3.4.1. Selecting All Data
	3.3.4.2. Selecting Particular Rows
	3.3.4.3. Selecting Particular Columns
	3.3.4.4. Sorting Rows
	3.3.4.5. Date Calculations
	3.3.4.6. Working with NULL Values
	3.3.4.7. Pattern Matching
	3.3.4.8. Counting Rows
	3.3.4.9. Using More Than one Table

	3.4. Getting Information About Databases and Tables
	3.5. Using mysql in Batch Mode
	3.6. Examples of Common Queries
	3.6.1. The Maximum Value for a Column
	3.6.2. The Row Holding the Maximum of a Certain Column
	3.6.3. Maximum of Column per Group
	3.6.4. The Rows Holding the Group-wise Maximum of a Certain Field
	3.6.5. Using User Variables
	3.6.6. Using Foreign Keys
	3.6.7. Searching on Two Keys
	3.6.8. Calculating Visits Per Day
	3.6.9. Using AUTO_INCREMENT

	3.7. Queries from the Twin Project
	3.7.1. Find All Non-distributed Twins
	3.7.2. Show a Table of Twin Pair Status

	3.8. Using MySQL with Apache

	Chapter 4. Using MySQL Programs
	4.1. Overview of MySQL Programs
	4.2. Invoking MySQL Programs
	4.3. Specifying Program Options
	4.3.1. Using Options on the Command Line
	4.3.2. Using Option Files
	4.3.3. Using Environment Variables to Specify Options
	4.3.4. Using Options to Set Program Variables

	Chapter 5. Database Administration
	5.1. The MySQL Server and Server Startup Scripts
	5.1.1. Overview of the Server-Side Scripts and Utilities
	5.1.2. The mysqld-max Extended MySQL Server
	5.1.3. The mysqld_safe Server Startup Script
	5.1.4. The mysql.server Server Startup Script
	5.1.5. The mysqld_multi Program for Managing Multiple MySQL Servers

	5.2. Configuring the MySQL Server
	5.2.1. mysqld Command-Line Options
	5.2.2. The Server SQL Mode
	5.2.3. Server System Variables
	5.2.3.1. Dynamic System Variables

	5.2.4. Server Status Variables

	5.3. The MySQL Server Shutdown Process
	5.4. General Security Issues
	5.4.1. General Security Guidelines
	5.4.2. Making MySQL Secure Against Attackers
	5.4.3. Startup Options for mysqld Concerning Security
	5.4.4. Security Issues with LOAD DATA LOCAL

	5.5. The MySQL Access Privilege System
	5.5.1. What the Privilege System Does
	5.5.2. How the Privilege System Works
	5.5.3. Privileges Provided by MySQL
	5.5.4. Connecting to the MySQL Server
	5.5.5. Access Control, Stage 1: Connection Verification
	5.5.6. Access Control, Stage 2: Request Verification
	5.5.7. When Privilege Changes Take Effect
	5.5.8. Causes of Access denied Errors
	5.5.9. Password Hashing in MySQL 4.1
	5.5.9.1. Implications of Password Hashing Changes for Application Programs
	5.5.9.2. Password Hashing in MySQL 4.1.0

	5.6. MySQL User Account Management
	5.6.1. MySQL Usernames and Passwords
	5.6.2. Adding New User Accounts to MySQL
	5.6.3. Removing User Accounts from MySQL
	5.6.4. Limiting Account Resources
	5.6.5. Assigning Account Passwords
	5.6.6. Keeping Your Password Secure
	5.6.7. Using Secure Connections
	5.6.7.1. Basic SSL Concepts
	5.6.7.2. Requirements
	5.6.7.3. Setting Up SSL Certificates for MySQL
	5.6.7.4. SSL GRANT Options
	5.6.7.5. SSL Command-Line Options
	5.6.7.6. Connecting to MySQL Remotely from Windows with SSH

	5.7. Disaster Prevention and Recovery
	5.7.1. Database Backups
	5.7.2. Example Backup and Recovery Strategy
	5.7.2.1. Backup Policy
	5.7.2.2. Using Backups for Recovery
	5.7.2.3. Backup Strategy Summary

	5.7.3. Table Maintenance and Crash Recovery
	5.7.3.1. myisamchk Invocation Syntax
	5.7.3.2. General Options for myisamchk
	5.7.3.3. Check Options for myisamchk
	5.7.3.4. Repair Options for myisamchk
	5.7.3.5. Other Options for myisamchk
	5.7.3.6. myisamchk Memory Usage
	5.7.3.7. Using myisamchk for Crash Recovery
	5.7.3.8. How to Check MyISAM Tables for Errors
	5.7.3.9. How to Repair Tables
	5.7.3.10. Table Optimization

	5.7.4. Setting Up a Table Maintenance Schedule
	5.7.5. Getting Information About a Table

	5.8. MySQL Localization and International Usage
	5.8.1. The Character Set Used for Data and Sorting
	5.8.1.1. Using the German Character Set

	5.8.2. Setting the Error Message Language
	5.8.3. Adding a New Character Set
	5.8.4. The Character Definition Arrays
	5.8.5. String Collating Support
	5.8.6. Multi-Byte Character Support
	5.8.7. Problems With Character Sets
	5.8.8. MySQL Server Time Zone Support

	5.9. The MySQL Log Files
	5.9.1. The Error Log
	5.9.2. The General Query Log
	5.9.3. The Update Log
	5.9.4. The Binary Log
	5.9.5. The Slow Query Log
	5.9.6. Log File Maintenance

	5.10. Running Multiple MySQL Servers on the Same Machine
	5.10.1. Running Multiple Servers on Windows
	5.10.1.1. Starting Multiple Windows Servers at the Command Line
	5.10.1.2. Starting Multiple Windows Servers as Services

	5.10.2. Running Multiple Servers on Unix
	5.10.3. Using Client Programs in a Multiple-Server Environment

	5.11. The MySQL Query Cache
	5.11.1. How the Query Cache Operates
	5.11.2. Query Cache SELECT Options
	5.11.3. Query Cache Configuration
	5.11.4. Query Cache Status and Maintenance

	Chapter 6. Replication in MySQL
	6.1. Introduction to Replication
	6.2. Replication Implementation Overview
	6.3. Replication Implementation Details
	6.3.1. Replication Master Thread States
	6.3.2. Replication Slave I/O Thread States
	6.3.3. Replication Slave SQL Thread States
	6.3.4. Replication Relay and Status Files

	6.4. How to Set Up Replication
	6.5. Replication Compatibility Between MySQL Versions
	6.6. Upgrading a Replication Setup
	6.6.1. Upgrading Replication to 4.0 or 4.1
	6.6.2. Upgrading Replication to 5.0

	6.7. Replication Features and Known Problems
	6.8. Replication Startup Options
	6.9. Replication FAQ
	6.10. Troubleshooting Replication
	6.11. Reporting Replication Bugs

	Chapter 7. MySQL Optimization
	7.1. Optimization Overview
	7.1.1. MySQL Design Limitations and Tradeoffs
	7.1.2. Designing Applications for Portability
	7.1.3. What We Have Used MySQL For
	7.1.4. The MySQL Benchmark Suite
	7.1.5. Using Your Own Benchmarks

	7.2. Optimizing SELECT Statements and Other Queries
	7.2.1. EXPLAIN Syntax (Get Information About a SELECT)
	7.2.2. Estimating Query Performance
	7.2.3. Speed of SELECT Queries
	7.2.4. How MySQL Optimizes WHERE Clauses
	7.2.5. Range Optimization
	7.2.5.1. Range Access Method for Single-Part Indexes
	7.2.5.2. Range Access Method for Multiple-Part Indexes

	7.2.6. Index Merge Optimization
	7.2.6.1. Index Merge Intersection Access Algorithm
	7.2.6.2. Index Merge Union Access Algorithm
	7.2.6.3. Index Merge Sort-Union Access Algorithm

	7.2.7. How MySQL Optimizes IS NULL
	7.2.8. How MySQL Optimizes DISTINCT
	7.2.9. How MySQL Optimizes LEFT JOIN and RIGHT JOIN
	7.2.10. How MySQL Optimizes ORDER BY
	7.2.11. How MySQL Optimizes GROUP BY
	7.2.11.1. Loose index scan
	7.2.11.2. Tight index scan

	7.2.12. How MySQL Optimizes LIMIT
	7.2.13. How to Avoid Table Scans
	7.2.14. Speed of INSERT Statements
	7.2.15. Speed of UPDATE Statements
	7.2.16. Speed of DELETE Statements
	7.2.17. Other Optimization Tips

	7.3. Locking Issues
	7.3.1. Locking Methods
	7.3.2. Table Locking Issues

	7.4. Optimizing Database Structure
	7.4.1. Design Choices
	7.4.2. Make Your Data as Small as Possible
	7.4.3. Column Indexes
	7.4.4. Multiple-Column Indexes
	7.4.5. How MySQL Uses Indexes
	7.4.6. The MyISAM Key Cache
	7.4.6.1. Shared Key Cache Access
	7.4.6.2. Multiple Key Caches
	7.4.6.3. Midpoint Insertion Strategy
	7.4.6.4. Index Preloading
	7.4.6.5. Key Cache Block Size
	7.4.6.6. Restructuring a Key Cache

	7.4.7. How MySQL Counts Open Tables
	7.4.8. How MySQL Opens and Closes Tables
	7.4.9. Drawbacks to Creating Many Tables in the Same Database

	7.5. Optimizing the MySQL Server
	7.5.1. System Factors and Startup Parameter Tuning
	7.5.2. Tuning Server Parameters
	7.5.3. Controlling Query Optimizer Performance
	7.5.4. How Compiling and Linking Affects the Speed of MySQL
	7.5.5. How MySQL Uses Memory
	7.5.6. How MySQL Uses DNS

	7.6. Disk Issues
	7.6.1. Using Symbolic Links
	7.6.1.1. Using Symbolic Links for Databases on Unix
	7.6.1.2. Using Symbolic Links for Tables on Unix
	7.6.1.3. Using Symbolic Links for Databases on Windows

	Chapter 8. MySQL Client and Utility Programs
	8.1. Overview of the Client-Side Scripts and Utilities
	8.2. myisampack, the MySQL Compressed Read-only Table Generator
	8.3. mysql, the Command-Line Tool
	8.3.1. mysql Commands
	8.3.2. Executing SQL Statements from a Text File
	8.3.3. mysql Tips
	8.3.3.1. Displaying Query Results Vertically
	8.3.3.2. Using the --safe-updates Option
	8.3.3.3. Disabling mysql Auto-Reconnect

	8.4. mysqladmin, Administering a MySQL Server
	8.5. The mysqlbinlog Binary Log Utility
	8.6. mysqlcc, the MySQL Control Center
	8.7. The mysqlcheck Table Maintenance and Repair Program
	8.8. The mysqldump Database Backup Program
	8.9. The mysqlhotcopy Database Backup Program
	8.10. The mysqlimport Data Import Program
	8.11. mysqlshow, Showing Databases, Tables, and Columns
	8.12. perror, Explaining Error Codes
	8.13. The replace String-Replacement Utility

	Chapter 9. Language Structure
	9.1. Literal Values
	9.1.1. Strings
	9.1.2. Numbers
	9.1.3. Hexadecimal Values
	9.1.4. Boolean Values
	9.1.5. NULL Values

	9.2. Database, Table, Index, Column, and Alias Names
	9.2.1. Identifier Qualifiers
	9.2.2. Identifier Case Sensitivity

	9.3. User Variables
	9.4. System Variables
	9.4.1. Structured System Variables

	9.5. Comment Syntax
	9.6. Treatment of Reserved Words in MySQL

	Chapter 10. Character Set Support
	10.1. Character Sets and Collations in General
	10.2. Character Sets and Collations in MySQL
	10.3. Determining the Default Character Set and Collation
	10.3.1. Server Character Set and Collation
	10.3.2. Database Character Set and Collation
	10.3.3. Table Character Set and Collation
	10.3.4. Column Character Set and Collation
	10.3.5. Examples of Character Set and Collation Assignment
	10.3.6. Connection Character Sets and Collations
	10.3.7. Character String Literal Character Set and Collation
	10.3.8. Using COLLATE in SQL Statements
	10.3.9. COLLATE Clause Precedence
	10.3.10. BINARY Operator
	10.3.11. Some Special Cases Where the Collation Determination Is Tricky
	10.3.12. Collations Must Be for the Right Character Set
	10.3.13. An Example of the Effect of Collation

	10.4. Operations Affected by Character Set Support
	10.4.1. Result Strings
	10.4.2. CONVERT()
	10.4.3. CAST()
	10.4.4. SHOW Statements

	10.5. Unicode Support
	10.6. UTF8 for Metadata
	10.7. Compatibility with Other DBMSs
	10.8. New Character Set Configuration File Format
	10.9. National Character Set
	10.10. Upgrading Character Sets from MySQL 4.0
	10.10.1. 4.0 Character Sets and Corresponding 4.1 Character Set/Collation Pairs
	10.10.2. Converting 4.0 Character Columns to 4.1 Format

	10.11. Character Sets and Collations That MySQL Supports
	10.11.1. Unicode Character Sets
	10.11.2. West European Character Sets
	10.11.3. Central European Character Sets
	10.11.4. South European and Middle East Character Sets
	10.11.5. Baltic Character Sets
	10.11.6. Cyrillic Character Sets
	10.11.7. Asian Character Sets

	Chapter 11. Column Types
	11.1. Column Type Overview
	11.1.1. Overview of Numeric Types
	11.1.2. Overview of Date and Time Types
	11.1.3. Overview of String Types

	11.2. Numeric Types
	11.3. Date and Time Types
	11.3.1. The DATETIME, DATE, and TIMESTAMP Types
	11.3.1.1. TIMESTAMP Properties Prior to MySQL 4.1
	11.3.1.2. TIMESTAMP Properties as of MySQL 4.1

	11.3.2. The TIME Type
	11.3.3. The YEAR Type
	11.3.4. Y2K Issues and Date Types

	11.4. String Types
	11.4.1. The CHAR and VARCHAR Types
	11.4.2. The BINARY and VARBINARY Types
	11.4.3. The BLOB and TEXT Types
	11.4.4. The ENUM Type
	11.4.5. The SET Type

	11.5. Column Type Storage Requirements
	11.6. Choosing the Right Type for a Column
	11.7. Using Column Types from Other Database Engines

	Chapter 12. Functions and Operators
	12.1. Operators
	12.1.1. Operator Precedence
	12.1.2. Parentheses
	12.1.3. Comparison Functions and Operators
	12.1.4. Logical Operators

	12.2. Control Flow Functions
	12.3. String Functions
	12.3.1. String Comparison Functions

	12.4. Numeric Functions
	12.4.1. Arithmetic Operators
	12.4.2. Mathematical Functions

	12.5. Date and Time Functions
	12.6. Full-Text Search Functions
	12.6.1. Boolean Full-Text Searches
	12.6.2. Full-Text Searches with Query Expansion
	12.6.3. Full-Text Restrictions
	12.6.4. Fine-Tuning MySQL Full-Text Search
	12.6.5. Full-Text Search TODO

	12.7. Cast Functions and Operators
	12.8. Other Functions
	12.8.1. Bit Functions
	12.8.2. Encryption Functions
	12.8.3. Information Functions
	12.8.4. Miscellaneous Functions

	12.9. Functions and Modifiers for Use with GROUP BY Clauses
	12.9.1. GROUP BY (Aggregate) Functions
	12.9.2. GROUP BY Modifiers
	12.9.3. GROUP BY with Hidden Fields

	Chapter 13. SQL Statement Syntax
	13.1. Data Manipulation Statements
	13.1.1. DELETE Syntax
	13.1.2. DO Syntax
	13.1.3. HANDLER Syntax
	13.1.4. INSERT Syntax
	13.1.4.1. INSERT ... SELECT Syntax
	13.1.4.2. INSERT DELAYED Syntax

	13.1.5. LOAD DATA INFILE Syntax
	13.1.6. REPLACE Syntax
	13.1.7. SELECT Syntax
	13.1.7.1. JOIN Syntax
	13.1.7.2. UNION Syntax

	13.1.8. Subquery Syntax
	13.1.8.1. The Subquery as Scalar Operand
	13.1.8.2. Comparisons Using Subqueries
	13.1.8.3. Subqueries with ANY, IN, and SOME
	13.1.8.4. Subqueries with ALL
	13.1.8.5. Row Subqueries
	13.1.8.6. EXISTS and NOT EXISTS
	13.1.8.7. Correlated Subqueries
	13.1.8.8. Subqueries in the FROM clause
	13.1.8.9. Subquery Errors
	13.1.8.10. Optimizing Subqueries
	13.1.8.11. Rewriting Subqueries as Joins for Earlier MySQL Versions

	13.1.9. TRUNCATE Syntax
	13.1.10. UPDATE Syntax

	13.2. Data Definition Statements
	13.2.1. ALTER DATABASE Syntax
	13.2.2. ALTER TABLE Syntax
	13.2.3. ALTER VIEW Syntax
	13.2.4. CREATE DATABASE Syntax
	13.2.5. CREATE INDEX Syntax
	13.2.6. CREATE TABLE Syntax
	13.2.6.1. Silent Column Specification Changes

	13.2.7. CREATE VIEW Syntax
	13.2.8. DROP DATABASE Syntax
	13.2.9. DROP INDEX Syntax
	13.2.10. DROP TABLE Syntax
	13.2.11. DROP VIEW Syntax
	13.2.12. RENAME TABLE Syntax

	13.3. MySQL Utility Statements
	13.3.1. DESCRIBE Syntax (Get Information About Columns)
	13.3.2. USE Syntax

	13.4. MySQL Transactional and Locking Statements
	13.4.1. START TRANSACTION, COMMIT, and ROLLBACK Syntax
	13.4.2. Statements That Cannot Be Rolled Back
	13.4.3. Statements That Cause an Implicit Commit
	13.4.4. SAVEPOINT and ROLLBACK TO SAVEPOINT Syntax
	13.4.5. LOCK TABLES and UNLOCK TABLES Syntax
	13.4.6. SET TRANSACTION Syntax

	13.5. Database Administration Statements
	13.5.1. Account Management Statements
	13.5.1.1. CREATE USER Syntax
	13.5.1.2. DROP USER Syntax
	13.5.1.3. GRANT and REVOKE Syntax
	13.5.1.4. RENAME USER Syntax
	13.5.1.5. SET PASSWORD Syntax

	13.5.2. Table Maintenance Statements
	13.5.2.1. ANALYZE TABLE Syntax
	13.5.2.2. BACKUP TABLE Syntax
	13.5.2.3. CHECK TABLE Syntax
	13.5.2.4. CHECKSUM TABLE Syntax
	13.5.2.5. OPTIMIZE TABLE Syntax
	13.5.2.6. REPAIR TABLE Syntax
	13.5.2.7. RESTORE TABLE Syntax

	13.5.3. SET Syntax
	13.5.4. SHOW Syntax
	13.5.4.1. SHOW CHARACTER SET Syntax
	13.5.4.2. SHOW COLLATION Syntax
	13.5.4.3. SHOW COLUMNS Syntax
	13.5.4.4. SHOW CREATE DATABASE Syntax
	13.5.4.5. SHOW CREATE TABLE Syntax
	13.5.4.6. SHOW CREATE VIEW Syntax
	13.5.4.7. SHOW DATABASES Syntax
	13.5.4.8. SHOW ENGINES Syntax
	13.5.4.9. SHOW ERRORS Syntax
	13.5.4.10. SHOW GRANTS Syntax
	13.5.4.11. SHOW INDEX Syntax
	13.5.4.12. SHOW INNODB STATUS Syntax
	13.5.4.13. SHOW LOGS Syntax
	13.5.4.14. SHOW PRIVILEGES Syntax
	13.5.4.15. SHOW PROCESSLIST Syntax
	13.5.4.16. SHOW STATUS Syntax
	13.5.4.17. SHOW TABLE STATUS Syntax
	13.5.4.18. SHOW TABLES Syntax
	13.5.4.19. SHOW VARIABLES Syntax
	13.5.4.20. SHOW WARNINGS Syntax

	13.5.5. Other Administrative Statements
	13.5.5.1. CACHE INDEX Syntax
	13.5.5.2. FLUSH Syntax
	13.5.5.3. KILL Syntax
	13.5.5.4. LOAD INDEX INTO CACHE Syntax
	13.5.5.5. RESET Syntax

	13.6. Replication Statements
	13.6.1. SQL Statements for Controlling Master Servers
	13.6.1.1. PURGE MASTER LOGS Syntax
	13.6.1.2. RESET MASTER Syntax
	13.6.1.3. SET SQL_LOG_BIN Syntax
	13.6.1.4. SHOW BINLOG EVENTS Syntax
	13.6.1.5. SHOW MASTER LOGS Syntax
	13.6.1.6. SHOW MASTER STATUS Syntax
	13.6.1.7. SHOW SLAVE HOSTS Syntax

	13.6.2. SQL Statements for Controlling Slave Servers
	13.6.2.1. CHANGE MASTER TO Syntax
	13.6.2.2. LOAD DATA FROM MASTER Syntax
	13.6.2.3. LOAD TABLE tbl_name FROM MASTER Syntax
	13.6.2.4. MASTER_POS_WAIT() Syntax
	13.6.2.5. RESET SLAVE Syntax
	13.6.2.6. SET GLOBAL SQL_SLAVE_SKIP_COUNTER Syntax
	13.6.2.7. SHOW SLAVE STATUS Syntax
	13.6.2.8. START SLAVE Syntax
	13.6.2.9. STOP SLAVE Syntax

	13.7. SQL Syntax for Prepared Statements

	Chapter 14. MySQL Storage Engines and Table Types
	14.1. The MyISAM Storage Engine
	14.1.1. MyISAM Startup Options
	14.1.2. Space Needed for Keys
	14.1.3. MyISAM Table Storage Formats
	14.1.3.1. Static (Fixed-Length) Table Characteristics
	14.1.3.2. Dynamic Table Characteristics
	14.1.3.3. Compressed Table Characteristics

	14.1.4. MyISAM Table Problems
	14.1.4.1. Corrupted MyISAM Tables
	14.1.4.2. Problems from Tables Not Being Closed Properly

	14.2. The MERGE Storage Engine
	14.2.1. MERGE Table Problems

	14.3. The MEMORY (HEAP) Storage Engine
	14.4. The BDB (BerkeleyDB) Storage Engine
	14.4.1. Operating Systems Supported by BDB
	14.4.2. Installing BDB
	14.4.3. BDB Startup Options
	14.4.4. Characteristics of BDB Tables
	14.4.5. Things We Need to Fix for BDB
	14.4.6. Restrictions on BDB Tables
	14.4.7. Errors That May Occur When Using BDB Tables

	14.5. The EXAMPLE Storage Engine
	14.6. The FEDERATED Storage Engine
	14.6.1. Installing the FEDERATED Storage Engine
	14.6.2. Description of the FEDERATED Storage Engine
	14.6.3. How to use FEDERATED Tables
	14.6.4. Limitations of the FEDERATED Storage Engine

	14.7. The ARCHIVE Storage Engine
	14.8. The CSV Storage Engine
	14.9. The ISAM Storage Engine

	Chapter 15. The InnoDB Storage Engine
	15.1. InnoDB Overview
	15.2. InnoDB Contact Information
	15.3. InnoDB in MySQL 3.23
	15.4. InnoDB Configuration
	15.5. InnoDB Startup Options
	15.6. Creating the InnoDB Tablespace
	15.6.1. Dealing with InnoDB Initialization Problems

	15.7. Creating InnoDB Tables
	15.7.1. How to Use Transactions in InnoDB with Different APIs
	15.7.2. Converting MyISAM Tables to InnoDB
	15.7.3. How an AUTO_INCREMENT Column Works in InnoDB
	15.7.4. FOREIGN KEY Constraints
	15.7.5. InnoDB and MySQL Replication
	15.7.6. Using Per-Table Tablespaces

	15.8. Adding and Removing InnoDB Data and Log Files
	15.9. Backing Up and Recovering an InnoDB Database
	15.9.1. Forcing Recovery
	15.9.2. Checkpoints

	15.10. Moving an InnoDB Database to Another Machine
	15.11. InnoDB Transaction Model and Locking
	15.11.1. InnoDB and AUTOCOMMIT
	15.11.2. InnoDB and TRANSACTION ISOLATION LEVEL
	15.11.3. Consistent Non-Locking Read
	15.11.4. Locking Reads SELECT ... FOR UPDATE and SELECT ... LOCK IN SHARE MODE
	15.11.5. Next-Key Locking: Avoiding the Phantom Problem
	15.11.6. An Example of How the Consistent Read Works in InnoDB
	15.11.7. Locks Set by Different SQL Statements in InnoDB
	15.11.8. When Does MySQL Implicitly Commit or Roll Back a Transaction?
	15.11.9. Deadlock Detection and Rollback
	15.11.10. How to Cope with Deadlocks

	15.12. InnoDB Performance Tuning Tips
	15.12.1. SHOW INNODB STATUS and the InnoDB Monitors

	15.13. Implementation of Multi-Versioning
	15.14. Table and Index Structures
	15.14.1. Physical Structure of an Index
	15.14.2. Insert Buffering
	15.14.3. Adaptive Hash Indexes
	15.14.4. Physical Record Structure

	15.15. File Space Management and Disk I/O
	15.15.1. Disk I/O
	15.15.2. Using Raw Devices for the Tablespace
	15.15.3. File Space Management
	15.15.4. Defragmenting a Table

	15.16. Error Handling
	15.16.1. InnoDB Error Codes
	15.16.2. Operating System Error Codes

	15.17. Restrictions on InnoDB Tables
	15.18. InnoDB Troubleshooting
	15.18.1. Troubleshooting InnoDB Data Dictionary Operations

	Chapter 16. MySQL Cluster
	16.1. MySQL Cluster Overview
	16.2. Basic MySQL Cluster Concepts
	16.3. MySQL Cluster Configuration
	16.3.1. Building from Source Code
	16.3.2. Installing the Software
	16.3.3. Quick Test Setup of MySQL Cluster
	16.3.4. Configuration File
	16.3.4.1. Example Configuration for a MySQL Cluster
	16.3.4.2. The MySQL Cluster connectstring
	16.3.4.3. Defining the Computers Making up a MySQL Cluster
	16.3.4.4. Defining the MySQL Cluster Management Server
	16.3.4.5. Defining MySQL Cluster Storage Nodes
	16.3.4.6. Defining the MySQL Servers for a MySQL Cluster
	16.3.4.7. MySQL Cluster TCP/IP Connections
	16.3.4.8. MySQL Cluster Shared-Memory Connections
	16.3.4.9. MySQL Cluster SCI Transport Connections

	16.4. Process Management in MySQL Cluster
	16.4.1. MySQL Server Process Usage for MySQL Cluster
	16.4.2. ndbd, the Storage Engine Node Process
	16.4.3. ndb_mgmd, the Management Server Process
	16.4.4. ndb_mgm, the Management Client Process
	16.4.5. Command Options for MySQL Cluster Processes
	16.4.5.1. MySQL Cluster-Related Command Options for mysqld
	16.4.5.2. Command Options for ndbd
	16.4.5.3. Command Options for ndb_mgmd
	16.4.5.4. Command Options for ndb_mgm

	16.5. Management of MySQL Cluster
	16.5.1. Commands in the Management Client
	16.5.2. Event Reports Generated in MySQL Cluster
	16.5.2.1. Logging Management Commands
	16.5.2.2. Log Events

	16.5.3. Single User Mode
	16.5.4. On-line Backup of MySQL Cluster
	16.5.4.1. Cluster Backup Concepts
	16.5.4.2. Using The Management Server to Create a Backup
	16.5.4.3. How to Restore a Cluster Backup
	16.5.4.4. Configuration for Cluster Backup
	16.5.4.5. Backup Troubleshooting

	16.6. Using High-Speed Interconnects with MySQL Cluster
	16.6.1. Configuring MySQL Cluster to use SCI Sockets
	16.6.2. Low-level benchmarks to understand impact of cluster interconnects

	16.7. MySQL Cluster Limitations in 4.1

	Chapter 17. Introduction to MaxDB
	17.1. History of MaxDB
	17.2. Licensing and Support
	17.3. MaxDB-Related Links
	17.4. Basic Concepts of MaxDB
	17.5. Feature Differences Between MaxDB and MySQL
	17.6. Interoperability Features Between MaxDB and MySQL
	17.7. Reserved Words in MaxDB

	Chapter 18. Spatial Extensions in MySQL
	18.1. Introduction
	18.2. The OpenGIS Geometry Model
	18.2.1. The Geometry Class Hierarchy
	18.2.2. Class Geometry
	18.2.3. Class Point
	18.2.4. Class Curve
	18.2.5. Class LineString
	18.2.6. Class Surface
	18.2.7. Class Polygon
	18.2.8. Class GeometryCollection
	18.2.9. Class MultiPoint
	18.2.10. Class MultiCurve
	18.2.11. Class MultiLineString
	18.2.12. Class MultiSurface
	18.2.13. Class MultiPolygon

	18.3. Supported Spatial Data Formats
	18.3.1. Well-Known Text (WKT) Format
	18.3.2. Well-Known Binary (WKB) Format

	18.4. Creating a Spatially Enabled MySQL Database
	18.4.1. MySQL Spatial Data Types
	18.4.2. Creating Spatial Values
	18.4.2.1. Creating Geometry Values Using WKT Functions
	18.4.2.2. Creating Geometry Values Using WKB Functions
	18.4.2.3. Creating Geometry Values Using MySQL-Specific Functions

	18.4.3. Creating Spatial Columns
	18.4.4. Populating Spatial Columns
	18.4.5. Fetching Spatial Data
	18.4.5.1. Fetching Spatial Data in Internal Format
	18.4.5.2. Fetching Spatial Data in WKT Format
	18.4.5.3. Fetching Spatial Data in WKB Format

	18.5. Analyzing Spatial Information
	18.5.1. Geometry Format Conversion Functions
	18.5.2. Geometry Functions
	18.5.2.1. General Geometry Functions
	18.5.2.2. Point Functions
	18.5.2.3. LineString Functions
	18.5.2.4. MultiLineString Functions
	18.5.2.5. Polygon Functions
	18.5.2.6. MultiPolygon Functions
	18.5.2.7. GeometryCollection Functions

	18.5.3. Functions That Create New Geometries from Existing Ones
	18.5.3.1. Geometry Functions That Produce New Geometries
	18.5.3.2. Spatial Operators

	18.5.4. Functions for Testing Spatial Relations Between Geometric Objects
	18.5.5. Relations on Geometry Minimal Bounding Rectangles (MBRs)
	18.5.6. Functions That Test Spatial Relationships Between Geometries

	18.6. Optimizing Spatial Analysis
	18.6.1. Creating Spatial Indexes
	18.6.2. Using a Spatial Index

	18.7. MySQL Conformance and Compatibility
	18.7.1. GIS Features That Are Not Yet Implemented

	Chapter 19. Stored Procedures and Functions
	19.1. Stored Procedure Syntax
	19.1.1. Maintaining Stored Procedures
	19.1.1.1. CREATE PROCEDURE and CREATE FUNCTION
	19.1.1.2. ALTER PROCEDURE and ALTER FUNCTION
	19.1.1.3. DROP PROCEDURE and DROP FUNCTION
	19.1.1.4. SHOW CREATE PROCEDURE and SHOW CREATE FUNCTION

	19.1.2. SHOW PROCEDURE STATUS and SHOW FUNCTION STATUS
	19.1.3. CALL Statement
	19.1.4. BEGIN ... END Compound Statement
	19.1.5. DECLARE Statement
	19.1.6. Variables in Stored Procedures
	19.1.6.1. DECLARE Local Variables
	19.1.6.2. Variable SET Statement
	19.1.6.3. SELECT ... INTO Statement

	19.1.7. Conditions and Handlers
	19.1.7.1. DECLARE Conditions
	19.1.7.2. DECLARE Handlers

	19.1.8. Cursors
	19.1.8.1. Declaring Cursors
	19.1.8.2. Cursor OPEN Statement
	19.1.8.3. Cursor FETCH Statement
	19.1.8.4. Cursor CLOSE Statement

	19.1.9. Flow Control Constructs
	19.1.9.1. IF Statement
	19.1.9.2. CASE Statement
	19.1.9.3. LOOP Statement
	19.1.9.4. LEAVE Statement
	19.1.9.5. ITERATE Statement
	19.1.9.6. REPEAT Statement
	19.1.9.7. WHILE Statement

	Chapter 20. Triggers
	20.1. CREATE TRIGGER Syntax
	20.2. DROP TRIGGER Syntax
	20.3. Using Triggers

	Chapter 21. The INFORMATION_SCHEMA Information Database
	21.1. INFORMATION_SCHEMA Tables
	21.1.1. The INFORMATION_SCHEMA SCHEMATA Table
	21.1.2. The INFORMATION_SCHEMA TABLES Table
	21.1.3. The INFORMATION_SCHEMA COLUMNS Table
	21.1.4. The INFORMATION_SCHEMA STATISTICS Table
	21.1.5. The INFORMATION_SCHEMA USER_PRIVILEGES Table
	21.1.6. The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table
	21.1.7. The INFORMATION_SCHEMA TABLE_PRIVILEGES Table
	21.1.8. The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table
	21.1.9. The INFORMATION_SCHEMA CHARACTER_SETS Table
	21.1.10. The INFORMATION_SCHEMA COLLATIONS Table
	21.1.11. The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY Table
	21.1.12. The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table
	21.1.13. The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table
	21.1.14. The INFORMATION_SCHEMA ROUTINES Table
	21.1.15. The INFORMATION_SCHEMA VIEWS Table
	21.1.16. Other INFORMATION_SCHEMA Tables

	21.2. Extensions to SHOW Statements

	Chapter 22. MySQL APIs
	22.1. MySQL Program Development Utilities
	22.1.1. msql2mysql, Convert mSQL Programs for Use with MySQL
	22.1.2. mysql_config, Get compile options for compiling clients

	22.2. MySQL C API
	22.2.1. C API Data types
	22.2.2. C API Function Overview
	22.2.3. C API Function Descriptions
	22.2.3.1. mysql_affected_rows()
	22.2.3.2. mysql_change_user()
	22.2.3.3. mysql_character_set_name()
	22.2.3.4. mysql_close()
	22.2.3.5. mysql_connect()
	22.2.3.6. mysql_create_db()
	22.2.3.7. mysql_data_seek()
	22.2.3.8. mysql_debug()
	22.2.3.9. mysql_drop_db()
	22.2.3.10. mysql_dump_debug_info()
	22.2.3.11. mysql_eof()
	22.2.3.12. mysql_errno()
	22.2.3.13. mysql_error()
	22.2.3.14. mysql_escape_string()
	22.2.3.15. mysql_fetch_field()
	22.2.3.16. mysql_fetch_fields()
	22.2.3.17. mysql_fetch_field_direct()
	22.2.3.18. mysql_fetch_lengths()
	22.2.3.19. mysql_fetch_row()
	22.2.3.20. mysql_field_count()
	22.2.3.21. mysql_field_seek()
	22.2.3.22. mysql_field_tell()
	22.2.3.23. mysql_free_result()
	22.2.3.24. mysql_get_client_info()
	22.2.3.25. mysql_get_client_version()
	22.2.3.26. mysql_get_host_info()
	22.2.3.27. mysql_get_proto_info()
	22.2.3.28. mysql_get_server_info()
	22.2.3.29. mysql_get_server_version()
	22.2.3.30. mysql_hex_string()
	22.2.3.31. mysql_info()
	22.2.3.32. mysql_init()
	22.2.3.33. mysql_insert_id()
	22.2.3.34. mysql_kill()
	22.2.3.35. mysql_library_init()
	22.2.3.36. mysql_library_end()
	22.2.3.37. mysql_list_dbs()
	22.2.3.38. mysql_list_fields()
	22.2.3.39. mysql_list_processes()
	22.2.3.40. mysql_list_tables()
	22.2.3.41. mysql_num_fields()
	22.2.3.42. mysql_num_rows()
	22.2.3.43. mysql_options()
	22.2.3.44. mysql_ping()
	22.2.3.45. mysql_query()
	22.2.3.46. mysql_real_connect()
	22.2.3.47. mysql_real_escape_string()
	22.2.3.48. mysql_real_query()
	22.2.3.49. mysql_reload()
	22.2.3.50. mysql_row_seek()
	22.2.3.51. mysql_row_tell()
	22.2.3.52. mysql_select_db()
	22.2.3.53. mysql_set_server_option()
	22.2.3.54. mysql_shutdown()
	22.2.3.55. mysql_sqlstate()
	22.2.3.56. mysql_ssl_set()
	22.2.3.57. mysql_stat()
	22.2.3.58. mysql_store_result()
	22.2.3.59. mysql_thread_id()
	22.2.3.60. mysql_use_result()
	22.2.3.61. mysql_warning_count()
	22.2.3.62. mysql_commit()
	22.2.3.63. mysql_rollback()
	22.2.3.64. mysql_autocommit()
	22.2.3.65. mysql_more_results()
	22.2.3.66. mysql_next_result()

	22.2.4. C API Prepared Statements
	22.2.5. C API Prepared Statement Data types
	22.2.6. C API Prepared Statement Function Overview
	22.2.7. C API Prepared Statement Function Descriptions
	22.2.7.1. mysql_stmt_affected_rows()
	22.2.7.2. mysql_stmt_attr_get()
	22.2.7.3. mysql_stmt_attr_set()
	22.2.7.4. mysql_stmt_bind_param()
	22.2.7.5. mysql_stmt_bind_result()
	22.2.7.6. mysql_stmt_close()
	22.2.7.7. mysql_stmt_data_seek()
	22.2.7.8. mysql_stmt_errno()
	22.2.7.9. mysql_stmt_error()
	22.2.7.10. mysql_stmt_execute()
	22.2.7.11. mysql_stmt_free_result()
	22.2.7.12. mysql_stmt_insert_id()
	22.2.7.13. mysql_stmt_fetch()
	22.2.7.14. mysql_stmt_fetch_column()
	22.2.7.15. mysql_stmt_field_count()
	22.2.7.16. mysql_stmt_init()
	22.2.7.17. mysql_stmt_num_rows()
	22.2.7.18. mysql_stmt_param_count()
	22.2.7.19. mysql_stmt_param_metadata()
	22.2.7.20. mysql_stmt_prepare()
	22.2.7.21. mysql_stmt_reset()
	22.2.7.22. mysql_stmt_result_metadata()
	22.2.7.23. mysql_stmt_row_seek()
	22.2.7.24. mysql_stmt_row_tell()
	22.2.7.25. mysql_stmt_send_long_data()
	22.2.7.26. mysql_stmt_sqlstate()
	22.2.7.27. mysql_stmt_store_result()

	22.2.8. C API Prepared statement problems
	22.2.9. C API Handling of Multiple Query Execution
	22.2.10. C API Handling of Date and Time Values
	22.2.11. C API Threaded Function Descriptions
	22.2.11.1. my_init()
	22.2.11.2. mysql_thread_init()
	22.2.11.3. mysql_thread_end()
	22.2.11.4. mysql_thread_safe()

	22.2.12. C API Embedded Server Function Descriptions
	22.2.12.1. mysql_server_init()
	22.2.12.2. mysql_server_end()

	22.2.13. Common questions and problems when using the C API
	22.2.13.1. Why mysql_store_result() Sometimes Returns NULL After mysql_query() Returns Success
	22.2.13.2. What Results You Can Get from a Query
	22.2.13.3. How to Get the Unique ID for the Last Inserted Row
	22.2.13.4. Problems Linking with the C API

	22.2.14. Building Client Programs
	22.2.15. How to Make a Threaded Client
	22.2.16. libmysqld, the Embedded MySQL Server Library
	22.2.16.1. Overview of the Embedded MySQL Server Library
	22.2.16.2. Compiling Programs with libmysqld
	22.2.16.3. Restrictions when using the Embedded MySQL Server
	22.2.16.4. Using Option Files with the Embedded Server
	22.2.16.5. Things left to do in Embedded Server (TODO)
	22.2.16.6. A Simple Embedded Server Example
	22.2.16.7. Licensing the Embedded Server

	22.3. MySQL PHP API
	22.3.1. Common Problems with MySQL and PHP

	22.4. MySQL Perl API
	22.5. MySQL C++ API
	22.5.1. Borland C++

	22.6. MySQL Python API
	22.7. MySQL Tcl API
	22.8. MySQL Eiffel Wrapper

	Chapter 23. MySQL Connectors
	23.1. MySQL ODBC Support
	23.1.1. Introduction to MyODBC
	23.1.1.1. What is ODBC?
	23.1.1.2. What is Connector/ODBC?
	23.1.1.3. What is MyODBC 2.50?
	23.1.1.4. What is MyODBC 3.51?
	23.1.1.5. Where to Get MyODBC
	23.1.1.6. Supported Platforms
	23.1.1.7. MyODBC Mailing List
	23.1.1.8. MyODBC Forum
	23.1.1.9. How to Report MyODBC Problems or Bugs
	23.1.1.10. How to Submit a MyODBC Patch

	23.1.2. General Information About ODBC and MyODBC
	23.1.2.1. Introduction to ODBC
	23.1.2.2. MyODBC Architecture
	23.1.2.3. ODBC Driver Managers
	23.1.2.4. Types of MySQL ODBC Drivers

	23.1.3. How to Install MyODBC
	23.1.4. Installing MyODBC from a Binary Distribution on Windows
	23.1.5. Installing MyODBC from a Binary Distribution on Unix
	23.1.5.1. Installing MyODBC from an RPM Distribution
	23.1.5.2. Installing MyODBC from a Binary Tarball Distribution

	23.1.6. Installing MyODBC from a Source Distribution on Windows
	23.1.6.1. Requirements
	23.1.6.2. Building MyODBC 3.51
	23.1.6.3. Testing
	23.1.6.4. Building MyODBC 2.50

	23.1.7. Installing MyODBC from a Source Distribution on Unix
	23.1.7.1. Requirements
	23.1.7.2. Typical configure Options
	23.1.7.3. Thread-Safe Client
	23.1.7.4. Shared or Static Options
	23.1.7.5. Enabling Debugging Information
	23.1.7.6. Enabling the Documentation
	23.1.7.7. Building and Compilation
	23.1.7.8. Building Shared Libraries
	23.1.7.9. Installing Driver Libraries
	23.1.7.10. Testing MyODBC on Unix
	23.1.7.11. Mac OS X Notes
	23.1.7.12. HP-UX Notes
	23.1.7.13. AIX Notes:

	23.1.8. Installing MyODBC from the BitKeeper Development Source Tree
	23.1.9. MyODBC Configuration
	23.1.9.1. What is a Data Source Name?
	23.1.9.2. Configuring a MyODBC DSN on Windows
	23.1.9.3. Configuring a MyODBC DSN on Unix
	23.1.9.4. Connection Parameters
	23.1.9.5. Connecting Without a Predefined DSN
	23.1.9.6. Establishing a Remote Connection to System A from System B
	23.1.9.7. Getting an ODBC Trace File
	23.1.9.8. Applications Tested with MyODBC
	23.1.9.9. Programs Known to Work With MyODBC

	23.1.10. MyODBC Connection-Related Issues
	23.1.10.1. While Configuring a MyODBC DSN, a Could Not Load Translator or Setup Library Error Occurs
	23.1.10.2. While Connecting, an Access denied Error Occurs
	23.1.10.3. INFO: About ODBC Connection Pooling

	23.1.11. MyODBC and Microsoft Access
	23.1.11.1. How to Set Up Microsoft Access to Work with MySQL using MyODBC?
	23.1.11.2. How to Export a Table or Query from Access to MySQL?
	23.1.11.3. How to Import or Link MySQL Database Tables to Access?
	23.1.11.4. The Structure or Location of a Linked Table has been Changed. Can I See Those Changes Locally in Linked Tables?
	23.1.11.5. When I Insert or Update a Record in Linked Tables, I Get #DELETED#
	23.1.11.6. How Do I Handle Write Conflicts or Row Location Errors?
	23.1.11.7. Whenever I Export a Table from Access 97, a Strange Syntax Error Occurs
	23.1.11.8. Access Returns Another user has modified the record that you have modified While Editing Records
	23.1.11.9. How to Trap ODBC Login Error Messages in Access?
	23.1.11.10. How Do I Optimize Access for Performance with MyODBC?
	23.1.11.11. I Have Very Long Tables. What is the Best Configuration for MyODBC to Access These Tables?
	23.1.11.12. How to Set the QueryTimeout Value for ODBC Connections?
	23.1.11.13. INFO: Tools to Export/Import from/to Access to/from MySQL

	23.1.12. MyODBC and Microsoft VBA and ASP
	23.1.12.1. Why Does SELECT COUNT(*) FROM tbl_name Return an Error?
	23.1.12.2. Whenever I Use the AppendChunk() or GetChunk() ADO Methods, I Get an Error Multiple-step operation generated errors. Check each status value.
	23.1.12.3. How to Find the Total Number of Rows Affected by a Particular SQL Statement in ADO?
	23.1.12.4. How Do I Handle Blob Data in Visual Basic?
	23.1.12.5. How Do I Map Visual Basic Data Types to MySQL Types?
	23.1.12.6. SAMPLES: VB with ADO, DAO and RDO
	23.1.12.7. ASP and MySQL with MyODBC
	23.1.12.8. INFO: Frequently Asked Questions on ActiveX Data Objects (ADO)

	23.1.13. MyODBC and Third-Party ODBC Tools
	23.1.13.1. How to Retrieve Data from MySQL into MS-Word/Excel Documents?
	23.1.13.2. Exporting Tables from MS DTS to MySQL Using MyODBC Results in a Syntax Error
	23.1.13.3. HOWTO: Configure MySQL+MyODBC+unixODBC+ColdFusion on Solaris

	23.1.14. MyODBC General Functionality
	23.1.14.1. How to Get the Value of an AUTO_INCREMENT Column in ODBC
	23.1.14.2. Does MyODBC Support Dynamic Cursor Type?
	23.1.14.3. What Causes Transactions are not enabled Errors?
	23.1.14.4. What Causes Cursor not found Errors?
	23.1.14.5. Can I Use MyODBC 2.50 Applications with MyODBC 3.51?
	23.1.14.6. Can I Access MySQL from .NET Environment Using MyODBC?
	23.1.14.7. Why Does MyODBC Perform Poorly, and Also Make a Lot of Disk Activity for Relatively Small Queries?

	23.1.15. Basic MyODBC Application Steps
	23.1.16. MyODBC API Reference
	23.1.17. MyODBC Data Types
	23.1.18. MyODBC Error Codes
	23.1.19. MyODBC With VB: ADO, DAO and RDO
	23.1.19.1. ADO: rs.addNew, rs.delete, and rs.update
	23.1.19.2. DAO: rs.addNew, rs.update, and Scrolling
	23.1.19.3. RDO: rs.addNew and rs.update

	23.1.20. MyODBC with Microsoft .NET
	23.1.20.1. ODBC.NET: CSHARP(C#)
	23.1.20.2. ODBC.NET: VB

	23.1.21. Credits

	23.2. MySQL Java Connectivity (JDBC)

	Chapter 24. Error Handling in MySQL
	Chapter 25. Extending MySQL
	25.1. MySQL Internals
	25.1.1. MySQL Threads
	25.1.2. MySQL Test Suite
	25.1.2.1. Running the MySQL Test Suite
	25.1.2.2. Extending the MySQL Test Suite
	25.1.2.3. Reporting Bugs in the MySQL Test Suite

	25.2. Adding New Functions to MySQL
	25.2.1. CREATE FUNCTION/DROP FUNCTION Syntax
	25.2.2. Adding a New User-defined Function
	25.2.2.1. UDF Calling Sequences for simple functions
	25.2.2.2. UDF Calling Sequences for aggregate functions
	25.2.2.3. Argument Processing
	25.2.2.4. Return Values and Error Handling
	25.2.2.5. Compiling and Installing User-defined Functions

	25.2.3. Adding a New Native Function

	25.3. Adding New Procedures to MySQL
	25.3.1. Procedure Analyse
	25.3.2. Writing a Procedure

	Appendix A. Problems and Common Errors
	A.1. How to Determine What Is Causing a Problem
	A.2. Common Errors When Using MySQL Programs
	A.2.1. Access denied
	A.2.2. Can't connect to [local] MySQL server
	A.2.3. Client does not support authentication protocol
	A.2.4. Password Fails When Entered Interactively
	A.2.5. Host 'host_name' is blocked
	A.2.6. Too many connections
	A.2.7. Out of memory
	A.2.8. MySQL server has gone away
	A.2.9. Packet too large
	A.2.10. Communication Errors and Aborted Connections
	A.2.11. The table is full
	A.2.12. Can't create/write to file
	A.2.13. Commands out of sync
	A.2.14. Ignoring user
	A.2.15. Table 'tbl_name' doesn't exist
	A.2.16. Can't initialize character set
	A.2.17. File Not Found

	A.3. Installation-Related Issues
	A.3.1. Problems Linking to the MySQL Client Library
	A.3.2. How to Run MySQL as a Normal User
	A.3.3. Problems with File Permissions

	A.4. Administration-Related Issues
	A.4.1. How to Reset the Root Password
	A.4.2. What to Do If MySQL Keeps Crashing
	A.4.3. How MySQL Handles a Full Disk
	A.4.4. Where MySQL Stores Temporary Files
	A.4.5. How to Protect or Change the MySQL Socket File /tmp/mysql.sock
	A.4.6. Time Zone Problems

	A.5. Query-Related Issues
	A.5.1. Case Sensitivity in Searches
	A.5.2. Problems Using DATE Columns
	A.5.3. Problems with NULL Values
	A.5.4. Problems with Column Aliases
	A.5.5. Rollback Failure for Non-Transactional Tables
	A.5.6. Deleting Rows from Related Tables
	A.5.7. Solving Problems with No Matching Rows
	A.5.8. Problems with Floating-Point Comparisons

	A.6. Optimizer-Related Issues
	A.7. Table Definition-Related Issues
	A.7.1. Problems with ALTER TABLE
	A.7.2. How to Change the Order of Columns in a Table
	A.7.3. TEMPORARY TABLE Problems

	Appendix B. Credits
	B.1. Developers at MySQL AB
	B.2. Contributors to MySQL
	B.3. Documenters and translators
	B.4. Libraries used by and included with MySQL
	B.5. Packages that support MySQL
	B.6. Tools that were used to create MySQL
	B.7. Supporters of MySQL

	Appendix C. MySQL and the Future (the TODO)
	C.1. New Features Planned for 5.0
	C.2. New Features Planned for 5.1
	C.3. New Features Planned for the Near Future
	C.4. New Features Planned for the Mid-Term Future
	C.5. New Features We Don't Plan to Implement

	Appendix D. MySQL Change History
	D.1. Changes in release 5.0.x (Development)
	D.1.1. Changes in release 5.0.3 (not released yet)
	D.1.2. Changes in release 5.0.2 (01 Dec 2004)
	D.1.3. Changes in release 5.0.1 (27 Jul 2004)
	D.1.4. Changes in release 5.0.0 (22 Dec 2003: Alpha)

	D.2. Changes in release 4.1.x (Production)
	D.2.1. Changes in release 4.1.10 (not released yet)
	D.2.2. Changes in release 4.1.10 (to be released soon)
	D.2.3. Changes in release 4.1.9 (11 Jan 2005)
	D.2.4. Changes in release 4.1.8 (14 Dec 2004)
	D.2.5. Changes in release 4.1.7 (23 Oct 2004: Production)
	D.2.6. Changes in release 4.1.6 (10 Oct 2004)
	D.2.7. Changes in release 4.1.5 (16 Sep 2004)
	D.2.8. Changes in release 4.1.4 (26 Aug 2004: Gamma)
	D.2.9. Changes in release 4.1.3 (28 Jun 2004: Beta)
	D.2.10. Changes in release 4.1.2 (28 May 2004)
	D.2.11. Changes in release 4.1.1 (01 Dec 2003)
	D.2.12. Changes in release 4.1.0 (03 Apr 2003: Alpha)

	D.3. Changes in release 4.0.x (Production)
	D.3.1. Changes in release 4.0.24 (not released yet)
	D.3.2. Changes in release 4.0.23 (18 Dec 2004)
	D.3.3. Changes in release 4.0.22 (27 Oct 2004)
	D.3.4. Changes in release 4.0.21 (06 Sep 2004)
	D.3.5. Changes in release 4.0.20 (17 May 2004)
	D.3.6. Changes in release 4.0.19 (04 May 2004)
	D.3.7. Changes in release 4.0.18 (12 Feb 2004)
	D.3.8. Changes in release 4.0.17 (14 Dec 2003)
	D.3.9. Changes in release 4.0.16 (17 Oct 2003)
	D.3.10. Changes in release 4.0.15 (03 Sep 2003)
	D.3.11. Changes in release 4.0.14 (18 Jul 2003)
	D.3.12. Changes in release 4.0.13 (16 May 2003)
	D.3.13. Changes in release 4.0.12 (15 Mar 2003: Production)
	D.3.14. Changes in release 4.0.11 (20 Feb 2003)
	D.3.15. Changes in release 4.0.10 (29 Jan 2003)
	D.3.16. Changes in release 4.0.9 (09 Jan 2003)
	D.3.17. Changes in release 4.0.8 (07 Jan 2003)
	D.3.18. Changes in release 4.0.7 (20 Dec 2002)
	D.3.19. Changes in release 4.0.6 (14 Dec 2002: Gamma)
	D.3.20. Changes in release 4.0.5 (13 Nov 2002)
	D.3.21. Changes in release 4.0.4 (29 Sep 2002)
	D.3.22. Changes in release 4.0.3 (26 Aug 2002: Beta)
	D.3.23. Changes in release 4.0.2 (01 Jul 2002)
	D.3.24. Changes in release 4.0.1 (23 Dec 2001)
	D.3.25. Changes in release 4.0.0 (Oct 2001: Alpha)

	D.4. Changes in release 3.23.x (Recent; still supported)
	D.4.1. Changes in release 3.23.59 (not released yet)
	D.4.2. Changes in release 3.23.58 (11 Sep 2003)
	D.4.3. Changes in release 3.23.57 (06 Jun 2003)
	D.4.4. Changes in release 3.23.56 (13 Mar 2003)
	D.4.5. Changes in release 3.23.55 (23 Jan 2003)
	D.4.6. Changes in release 3.23.54 (05 Dec 2002)
	D.4.7. Changes in release 3.23.53 (09 Oct 2002)
	D.4.8. Changes in release 3.23.52 (14 Aug 2002)
	D.4.9. Changes in release 3.23.51 (31 May 2002)
	D.4.10. Changes in release 3.23.50 (21 Apr 2002)
	D.4.11. Changes in release 3.23.49 (14 Feb 2002)
	D.4.12. Changes in release 3.23.48 (07 Feb 2002)
	D.4.13. Changes in release 3.23.47 (27 Dec 2001)
	D.4.14. Changes in release 3.23.46 (29 Nov 2001)
	D.4.15. Changes in release 3.23.45 (22 Nov 2001)
	D.4.16. Changes in release 3.23.44 (31 Oct 2001)
	D.4.17. Changes in release 3.23.43 (04 Oct 2001)
	D.4.18. Changes in release 3.23.42 (08 Sep 2001)
	D.4.19. Changes in release 3.23.41 (11 Aug 2001)
	D.4.20. Changes in release 3.23.40 (18 Jul 2001)
	D.4.21. Changes in release 3.23.39 (12 Jun 2001)
	D.4.22. Changes in release 3.23.38 (09 May 2001)
	D.4.23. Changes in release 3.23.37 (17 Apr 2001)
	D.4.24. Changes in release 3.23.36 (27 Mar 2001)
	D.4.25. Changes in release 3.23.35 (15 Mar 2001)
	D.4.26. Changes in release 3.23.34a (11 Mar 2001)
	D.4.27. Changes in release 3.23.34 (10 Mar 2001)
	D.4.28. Changes in release 3.23.33 (09 Feb 2001)
	D.4.29. Changes in release 3.23.32 (22 Jan 2001)
	D.4.30. Changes in release 3.23.31 (17 Jan 2001: Production)
	D.4.31. Changes in release 3.23.30 (04 Jan 2001)
	D.4.32. Changes in release 3.23.29 (16 Dec 2000)
	D.4.33. Changes in release 3.23.28 (22 Nov 2000: Gamma)
	D.4.34. Changes in release 3.23.27 (24 Oct 2000)
	D.4.35. Changes in release 3.23.26 (18 Oct 2000)
	D.4.36. Changes in release 3.23.25 (29 Sep 2000)
	D.4.37. Changes in release 3.23.24 (08 Sep 2000)
	D.4.38. Changes in release 3.23.23 (01 Sep 2000)
	D.4.39. Changes in release 3.23.22 (31 Jul 2000)
	D.4.40. Changes in release 3.23.21 (04 Jul 2000)
	D.4.41. Changes in release 3.23.20 (28 Jun 2000: Beta)
	D.4.42. Changes in release 3.23.19
	D.4.43. Changes in release 3.23.18 (11 Jun 2000)
	D.4.44. Changes in release 3.23.17 (07 Jun 2000)
	D.4.45. Changes in release 3.23.16 (16 May 2000)
	D.4.46. Changes in release 3.23.15 (08 May 2000)
	D.4.47. Changes in release 3.23.14 (09 Apr 2000)
	D.4.48. Changes in release 3.23.13 (14 Mar 2000)
	D.4.49. Changes in release 3.23.12 (07 Mar 2000)
	D.4.50. Changes in release 3.23.11 (16 Feb 2000)
	D.4.51. Changes in release 3.23.10 (30 Jan 2000)
	D.4.52. Changes in release 3.23.9 (29 Jan 2000)
	D.4.53. Changes in release 3.23.8 (02 Jan 2000)
	D.4.54. Changes in release 3.23.7 (10 Dec 1999)
	D.4.55. Changes in release 3.23.6 (15 Nov 1999)
	D.4.56. Changes in release 3.23.5 (20 Oct 1999)
	D.4.57. Changes in release 3.23.4 (28 Sep 1999)
	D.4.58. Changes in release 3.23.3 (13 Sep 1999)
	D.4.59. Changes in release 3.23.2 (09 Aug 1999)
	D.4.60. Changes in release 3.23.1 (08 Jul 1999)
	D.4.61. Changes in release 3.23.0 (05 Jul 1999: Alpha)

	D.5. Changes in release 3.22.x (Old; discontinued)
	D.5.1. Changes in release 3.22.35
	D.5.2. Changes in release 3.22.34
	D.5.3. Changes in release 3.22.33
	D.5.4. Changes in release 3.22.32 (14 Feb 2000)
	D.5.5. Changes in release 3.22.31
	D.5.6. Changes in release 3.22.30 (11 Jan 2000)
	D.5.7. Changes in release 3.22.29 (02 Jan 2000)
	D.5.8. Changes in release 3.22.28 (20 Oct 1999)
	D.5.9. Changes in release 3.22.27 (05 Oct 1999)
	D.5.10. Changes in release 3.22.26 (16 Sep 1999)
	D.5.11. Changes in release 3.22.25 (07 Jun 1999)
	D.5.12. Changes in release 3.22.24 (05 Jul 1999)
	D.5.13. Changes in release 3.22.23 (08 Jun 1999)
	D.5.14. Changes in release 3.22.22 (30 Apr 1999)
	D.5.15. Changes in release 3.22.21 (04 Apr 1999)
	D.5.16. Changes in release 3.22.20 (18 Mar 1999)
	D.5.17. Changes in release 3.22.19 (01 Mar 1999)
	D.5.18. Changes in release 3.22.18 (26 Feb 1999)
	D.5.19. Changes in release 3.22.17 (22 Feb 1999: Production)
	D.5.20. Changes in release 3.22.16 (05 Feb 1999)
	D.5.21. Changes in release 3.22.15 (27 Jan 1999)
	D.5.22. Changes in release 3.22.14 (01 Jan 1999: Gamma)
	D.5.23. Changes in release 3.22.13 (16 Dec 1998)
	D.5.24. Changes in release 3.22.12 (09 Dec 1998)
	D.5.25. Changes in release 3.22.11 (24 Nov 1998)
	D.5.26. Changes in release 3.22.10 (04 Nov 1998)
	D.5.27. Changes in release 3.22.9 (19 Oct 1998)
	D.5.28. Changes in release 3.22.8 (06 Oct 1998)
	D.5.29. Changes in release 3.22.7 (21 Sep 1998: Beta)
	D.5.30. Changes in release 3.22.6 (31 Aug 1998)
	D.5.31. Changes in release 3.22.5 (20 Aug 1998: Alpha)
	D.5.32. Changes in release 3.22.4 (06 Jul 1998: Beta)
	D.5.33. Changes in release 3.22.3 (30 Jun 1998)
	D.5.34. Changes in release 3.22.2
	D.5.35. Changes in release 3.22.1 (Jun 1998)
	D.5.36. Changes in release 3.22.0 (18 May 1998: Alpha)

	D.6. Changes in release 3.21.x
	D.6.1. Changes in release 3.21.33 (08 Jul 1998)
	D.6.2. Changes in release 3.21.32 (30 Jun 1998)
	D.6.3. Changes in release 3.21.31 (10 Jun 1998)
	D.6.4. Changes in release 3.21.30
	D.6.5. Changes in release 3.21.29
	D.6.6. Changes in release 3.21.28
	D.6.7. Changes in release 3.21.27
	D.6.8. Changes in release 3.21.26
	D.6.9. Changes in release 3.21.25
	D.6.10. Changes in release 3.21.24
	D.6.11. Changes in release 3.21.23
	D.6.12. Changes in release 3.21.22
	D.6.13. Changes in release 3.21.21a
	D.6.14. Changes in release 3.21.21
	D.6.15. Changes in release 3.21.20
	D.6.16. Changes in release 3.21.19
	D.6.17. Changes in release 3.21.18
	D.6.18. Changes in release 3.21.17
	D.6.19. Changes in release 3.21.16
	D.6.20. Changes in release 3.21.15
	D.6.21. Changes in release 3.21.14b
	D.6.22. Changes in release 3.21.14a
	D.6.23. Changes in release 3.21.13
	D.6.24. Changes in release 3.21.12
	D.6.25. Changes in release 3.21.11
	D.6.26. Changes in release 3.21.10
	D.6.27. Changes in release 3.21.9
	D.6.28. Changes in release 3.21.8
	D.6.29. Changes in release 3.21.7
	D.6.30. Changes in release 3.21.6
	D.6.31. Changes in release 3.21.5
	D.6.32. Changes in release 3.21.4
	D.6.33. Changes in release 3.21.3
	D.6.34. Changes in release 3.21.2
	D.6.35. Changes in release 3.21.0

	D.7. Changes in release 3.20.x
	D.7.1. Changes in release 3.20.18
	D.7.2. Changes in release 3.20.17
	D.7.3. Changes in release 3.20.16
	D.7.4. Changes in release 3.20.15
	D.7.5. Changes in release 3.20.14
	D.7.6. Changes in release 3.20.13
	D.7.7. Changes in release 3.20.11
	D.7.8. Changes in release 3.20.10
	D.7.9. Changes in release 3.20.9
	D.7.10. Changes in release 3.20.8
	D.7.11. Changes in release 3.20.7
	D.7.12. Changes in release 3.20.6
	D.7.13. Changes in release 3.20.3
	D.7.14. Changes in release 3.20.0

	D.8. Changes in release 3.19.x
	D.8.1. Changes in release 3.19.5
	D.8.2. Changes in release 3.19.4
	D.8.3. Changes in release 3.19.3

	D.9. InnoDB Change History
	D.9.1. MySQL/InnoDB-4.0.21, September 10, 2004
	D.9.2. MySQL/InnoDB-4.1.4, August 31, 2004
	D.9.3. MySQL/InnoDB-4.1.3, June 28, 2004
	D.9.4. MySQL/InnoDB-4.1.2, May 30, 2004
	D.9.5. MySQL/InnoDB-4.0.20, May 18, 2004
	D.9.6. MySQL/InnoDB-4.0.19, May 4, 2004
	D.9.7. MySQL/InnoDB-4.0.18, February 13, 2004
	D.9.8. MySQL/InnoDB-5.0.0, December 24, 2003
	D.9.9. MySQL/InnoDB-4.0.17, December 17, 2003
	D.9.10. MySQL/InnoDB-4.1.1, December 4, 2003
	D.9.11. MySQL/InnoDB-4.0.16, October 22, 2003
	D.9.12. MySQL/InnoDB-3.23.58, September 15, 2003
	D.9.13. MySQL/InnoDB-4.0.15, September 10, 2003
	D.9.14. MySQL/InnoDB-4.0.14, July 22, 2003
	D.9.15. MySQL/InnoDB-3.23.57, June 20, 2003
	D.9.16. MySQL/InnoDB-4.0.13, May 20, 2003
	D.9.17. MySQL/InnoDB-4.1.0, April 3, 2003
	D.9.18. MySQL/InnoDB-3.23.56, March 17, 2003
	D.9.19. MySQL/InnoDB-4.0.12, March 18, 2003
	D.9.20. MySQL/InnoDB-4.0.11, February 25, 2003
	D.9.21. MySQL/InnoDB-4.0.10, February 4, 2003
	D.9.22. MySQL/InnoDB-3.23.55, January 24, 2003
	D.9.23. MySQL/InnoDB-4.0.9, January 14, 2003
	D.9.24. MySQL/InnoDB-4.0.8, January 7, 2003
	D.9.25. MySQL/InnoDB-4.0.7, December 26, 2002
	D.9.26. MySQL/InnoDB-4.0.6, December 19, 2002
	D.9.27. MySQL/InnoDB-3.23.54, December 12, 2002
	D.9.28. MySQL/InnoDB-4.0.5, November 18, 2002
	D.9.29. MySQL/InnoDB-3.23.53, October 9, 2002
	D.9.30. MySQL/InnoDB-4.0.4, October 2, 2002
	D.9.31. MySQL/InnoDB-4.0.3, August 28, 2002
	D.9.32. MySQL/InnoDB-3.23.52, August 16, 2002
	D.9.33. MySQL/InnoDB-4.0.2, July 10, 2002
	D.9.34. MySQL/InnoDB-3.23.51, June 12, 2002
	D.9.35. MySQL/InnoDB-3.23.50, April 23, 2002
	D.9.36. MySQL/InnoDB-3.23.49, February 17, 2002
	D.9.37. MySQL/InnoDB-3.23.48, February 9, 2002
	D.9.38. MySQL/InnoDB-3.23.47, December 28, 2001
	D.9.39. MySQL/InnoDB-4.0.1, December 23, 2001
	D.9.40. MySQL/InnoDB-3.23.46, November 30, 2001
	D.9.41. MySQL/InnoDB-3.23.45, November 23, 2001
	D.9.42. MySQL/InnoDB-3.23.44, November 2, 2001
	D.9.43. MySQL/InnoDB-3.23.43, October 4, 2001
	D.9.44. MySQL/InnoDB-3.23.42, September 9, 2001
	D.9.45. MySQL/InnoDB-3.23.41, August 13, 2001
	D.9.46. MySQL/InnoDB-3.23.40, July 16, 2001
	D.9.47. MySQL/InnoDB-3.23.39, June 13, 2001
	D.9.48. MySQL/InnoDB-3.23.38, May 12, 2001

	D.10. MySQL Cluster Change History
	D.10.1. MySQL Cluster-4.1.10 (not released yet)
	D.10.2. MySQL Cluster-4.1.9 (13 Jan 2005)
	D.10.3. MySQL Cluster-4.1.8 (14 Dec 2004)
	D.10.4. MySQL Cluster-4.1.7 (23 Oct 2004)
	D.10.5. MySQL Cluster-4.1.6 (10 Oct 2004)
	D.10.6. MySQL Cluster-4.1.5 (16 Sep 2004)
	D.10.7. MySQL Cluster-4.1.4 (31 Aug 2004)
	D.10.8. MySQL Cluster-5.0.1 (27 Jul 2004)
	D.10.9. MySQL Cluster-4.1.3 (28 Jun 2004)

	Appendix E. Porting to Other Systems
	E.1. Debugging a MySQL Server
	E.1.1. Compiling MySQL for Debugging
	E.1.2. Creating Trace Files
	E.1.3. Debugging mysqld under gdb
	E.1.4. Using a Stack Trace
	E.1.5. Using Log Files to Find Cause of Errors in mysqld
	E.1.6. Making a Test Case If You Experience Table Corruption

	E.2. Debugging a MySQL Client
	E.3. The DBUG Package
	E.4. Comments about RTS Threads
	E.5. Differences Between Thread Packages

	Appendix F. Environment Variables
	Appendix G. MySQL Regular Expressions
	Appendix H. GNU General Public License
	Appendix I. MySQL FLOSS License Exception
	Index

